AIR CONSTRUCTION PERMIT APPLICATION

Greenfield Torrefied Wood Pellet Manufacturing Facility

Northeast Mississippi Renewables, LLC / Fulton, MS

Prepared By:

TRINITY CONSULTANTS

282 Third Avenue Sherman, MS 38869 662.840.5945

Initial: June 2025 Revised: August 2025

Project 231101.0190

TABLE OF CONTENTS

i

1.	EXE	CUTIVE SUMMARY	1-1
2.	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8	CRIPTION OF FACILITY Raw Material Receiving and Processing Biomass Drying Torrefication System Dry Hammermill Pelletizing Operation Pellet Storage and Barge Loadout Combustion Sources Emergency Fire Pump	. 2-2 . 2-2 . 2-2 . 2-3 . 2-3
3.	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	SSIONS QUANTIFICATION Whole Log and Green Chips Processing	. 3-1 . 3-2 . 3-2 . 3-3 . 3-3
4.	REG 4.1	ULATORY APPLICABILITY REVIEW New Source Review	
	4.4	Title V Operating Permit ProgramNew Source Performance Standards4.3.1 40 CFR 60 Subpart A – General Provisions4.3.2 40 CFR 60 Subpart D – Fossil Fuel-Fired Steam Generators4.3.3 40 CFR 60 Subpart Da – Electric Utility Steam Generators4.3.4 40 CFR 60 Subpart Db – Industrial, Commercial, and Institutional Steam Generating Utilits4-24.3.5 40 CFR 60 Subpart Dc – Small Industrial, Commercial, and Institutional Steam GeneralUnits4-24.3.6 40 CFR 60 Subpart E – Incinerators4.3.7 40 CFR 60 Subpart IIII – Compression Ignition Internal Combustion Engines4.3.8 Non-Applicability of All Other NSPSNational Emission Standards for Hazardous Air Pollutants4.4.1 40 CFR 63 Subpart A – General Provisions4.4.2 40 CFR 63 Subpart DDDD – Plywood and Composite Wood Products4.4.3 40 CFR 63 Subpart DDDD – Industrial, Commercial, and Institutional Boilers and Producters4.4.4 40 CFR 63 Subpart DDDDD – Industrial, Commercial, and Institutional Boilers and Producters4.4.5 40 CFR 63 Subpart JJJJJJ – Industrial, Commercial, and Institutional Boilers (Area South	4-2 4-2 4-2 Inits ting 4-3 4-4 4-5 4-5 4-5 4-5
		4-5 4.4.6 40 CFR 63 Subpart QQQQQQ — Wood Preserving (Area Sources)	

		liance Assurance Monitoring (CAM)	
4.6 4.7		Aanagement Plan	
4. <i>7</i> 4.8		Rain Regulationsospheric Ozone Rulesospheric Ozone Rules	
4.9		sippi Administrative Code	
		11 Miss. Admin. Code Pt. 2, R.1.3.A(1)-(2) & 1.3.B – Visible Emissions	
		11 Miss. Admin. Code Pt. 2, R.1.3.C – General Nuisances	
	4.9.3	11 Miss. Admin. Code Pt. 2, R.1.3.D(1)(a) – PM Emissions from Fuel Burning	4-7
	4.9.4	11 Miss. Admin. Code Pt. 2, R.1.3.D(1)(b) – PM Emissions from Fuel Burning	4-7
	4.9.5	11 Miss. Admin. Code Pt.2, R.1.3.F – PM Emissions from Manufacturing Processes	4-8
	4.9.6	11 Miss. Admin. Code Pt.2, R.1.3.G – PM Emissions from Open Burning	4-8
	4.9.7	11 Miss. Admin. Code Pt.2, R.1.4.A(1) – Sulfur Dioxide	4-8
	4.9.8	11 Miss. Admin. Code Pt.2, R.2.13.A & R.2.13.D(5) – New Source Permit to Construc	t 4-8
	4.9.9	11 Miss. Admin. Code Pt.2, R.2.13.G & R.6.1.A.17.B – Title V Permit to Operate	4-8
APPEND	IX A. F	PERMIT TO CONSTRUCT AIR APPLICATION FORMS	A-1
APPEND	IX B. A	AREA MAP, SITE MAP, AND PROCESS FLOW DIAGRAM	B-1
APPEND	IX C. F	POTENTIAL EMISSIONS CALCULATIONS	C-1
APPEND	IX D. S	SUPPORTING DOCUMENTATION	D-1

Northeast Mississippi Renewables, LLC (NMR) is proposing to construct a wood pellet manufacturing facility in Fulton, Itawamba County, Mississippi (Fulton Facility). NMR is submitting this Permit to Construct (PTC) air permit application to Mississippi Department of Environmental Quality's Environmental Permits Division (MDEQ EPD) to authorize the construction of the proposed greenfield facility.

The Fulton Facility will be located in Itawamba County, Mississippi, which is currently designated as being in attainment or an unclassified area with respect to the National Ambient Air Quality Standards (NAAQS) for all criteria pollutants. NMR is proposing to control potential emissions, such that the Fulton Facility will be categorized as a synthetic minor source with respect to Prevention of Significant Deterioration (PSD) permitting program by maintaining potential PSD pollutant emissions less than 250 tons per year (tpy).

The proposed facility will be a major source with respect to the Title V permitting program, as potential criteria emissions of at least one pollutant exceed the major source threshold of 100 tpy for criteria pollutants. The facility will be a minor source with respect to emissions of hazardous air pollutants (HAP), as potential emissions of individual HAP and total HAP are less than the major source thresholds of 10 tpy and 25 tpy, respectively. The initial Title V operating permit application will be submitted to the EPD within twelve months of the commencement of operations for the Fulton Facility.

NMR is requesting expedited processing of the construction permit application, and paying to utilize a 3rd party contractor for assisting MDEQ EPD in processing the application and draft permit development.¹

The following information is included as part of this permit to construct application submittal package:

- Section 2 provides a description of the proposed facility operations;
- Section 3 discusses the potential emissions calculation methodologies;
- Section 4 details the regulatory applicability analysis;
- ▶ Appendix A contains the construction permit application forms;
- ▶ Appendix B includes the facility area map, site plan, and process flow diagram;
- Appendix C presents the detailed emissions calculations; and
- Appendix D contains other supporting documentation.

¹ Pre-application call completed June 5, 2025, between MDEQ and NMR representatives to review the project and air permitting requirements.

NMR is proposing to construct and operate a wood pellet manufacturing facility in Fulton, Itawamba County, Mississippi. The operations are categorized under Standard Industrial Classification (SIC) code 2499, Wood Products – Not Elsewhere Classified. The Fulton Facility will process whole logs, green wood residuals, and dry shavings into torrefied wood pellets to produce a source of alternative renewable fuel.

The Fulton Facility operations will include the following equipment:

- One (1) truck tipper for green residuals;
- One (1) roundwood pile;
- One (1) chipper;
- One (1) chip screen;
- One (1) green chips storage pile;
- One (1) dryer (heated by torrefication system burners);
- ➤ One (1) regenerative thermal oxidizer (RTO);
- One (1) wet electrostatic precipitator (WESP);
- ▶ Two (2) torrefication systems including natural gas and syngas burners;
- ▶ One (1) torrefied material storage silo;
- One (1) dry hammermill;
- ► Six (6) pellet mills;
- ▶ One (1) pellet cooler;
- ▶ One (1) natural gas-fired boiler;
- ▶ Two (2) pellet storage silos;
- ▶ One (1) barge pellet loadout area; and
- Six (6) dust collectors

The Fulton Facility will have an annual pellet production capacity of 150,000 metric tons per year (approximately 165,437 U.S. short tons per year) and will have the potential for continuous operation. All future references to tons in this permit application are in terms of U.S. short tons.

2.1 Raw Material Receiving and Processing

To optimize flexibility at the Fulton Facility, NMR plans to have the ability to receive raw material in the form of whole logs or green residuals.

NMR will have the ability to bring softwood whole logs into the Fulton Facility via trucks at a maximum annual capacity of 551,155 tpy. Logs are unloaded at the unbinding rack and are stored in the whole log pile. The logs will be moved from the pile through a chipper to be processed into green chips.

Additionally, NMR will have the ability to bring green residuals to the facility by truck at a maximum annual capacity of 165,347 tpy, where one (1) truck tipper will transfer the green residuals into the processing area along with green chips processed from the whole logs. The residuals will be screened and will be transported through on-site conveyors to the chipper as needed.

2.2 Biomass Drying

NMR is proposing to install one (1) biomass dryer system to dry the green chips. The rotary dryer will process the wood chips to approximately 10% moisture content in preparation for the torrefication operation. The green chips and sawdust are mixed with indirect heat from the torrefication system burners in the rotary dryer. The dryer will be designed to ensure proper mixing of green chips with heat and sufficient retention time.

The dryer processes the residual mix containing approximately 40-50% moisture to dried wood with a moisture content of approximately 10%. The exhaust gases will be controlled by a wet electrostatic precipitator (WESP) for particulate matter (PM) and metal HAPs emissions control, as well as by a regenerative thermal oxidizer (RTO) for volatile organic compounds (VOC) and organic HAPs emissions control. The RTO burners will combust natural gas only and have a total maximum heat input capacity of 8.7 million British Thermal Units per hour (MMBtu/hr).

2.3 Torrefication System

Torrefaction is a form of pyrolysis in which the biomass is thermochemically treated under atmospheric pressure and in the absence of oxygen while being heated up to approximately 600° F. During the process, the biomass releases its inherent moisture and superfluous volatiles. The hemicellulose, cellulose, and lignin in the biomass partly decompose releasing more volatiles. These volatiles are used in the heating of the torrefaction process, the recycled synthetic gas (syngas). Torrefaction reduces the moisture content of the biomass from 10% to approximately zero. The system will be equipped with two (2) torrefiers, and each unit will utilize an 85 MMBtu/hr burner for the process. Both burners will be dual fired utilizing natural gas and the syngas generated in the torrefication processes. Exhaust from the burners combustion (natural gas or syngas) will be routed through the dryer and controlled by the WESP and RTO.

The dryer and torrefication system will also include a bypass stack for use during upset conditions, with the circumvention of the control devices (WESP and RTO). The estimated uncontrolled emissions is based on 500 hr/yr of upset conditions for the system.

The final product is the dry, solid chips. A storage silo will be used to store the dry, torrefied chips in the post-torrefaction part of the process. A dust collector will control the displaced air (PM emissions) from the loading of the torrefied material storage silo.

Due to the removal of moisture content (and organic content) from the torrefied material, no VOC or organic HAP emissions will occur in the post-torrefication operations (pelletizing of the material). Therefore, only PM emissions will result from the dry hammermill, pellet mills, pellet cooler, pellet storage, and barge loadout operations.

2.4 Dry Hammermill

From the torrefied material storage silo, the material will be conveyed into a dry hammermill. The dry hammermill is designed to further reduce the material size for generating pellets. The dry hammermill system will be limited to a throughput of 260,718 tpy. Exhaust from the dry hammermill will be routed to a dust collector for PM emissions control.

2.5 Pelletizing Operation

Following the dry hammermilling process, the torrefied material will be conveyed to the pelletizing area, which will include six (6) pellet mills. The pellet mills will be followed by one (1) pellet cooler. The pellet mills compress the torrefied material into pellets by rolling and squeezing the material through holes in a dye. The process of squeezing the torrefied material generates heat which causes the wood's natural lignin to flow. The wood's natural lignin produces a natural binder that holds the pellet together. Additional heat will be added to the pellet mills via conditioning steam from a natural gas-fired boiler with a total maximum heat input capacity of 8.6 MMBtu/hr.

Immediately after the pellets are produced, they will be directed to the pellet cooler in the pelletizing area. Ambient air will be used as a cooling medium in a direct contact process of heat exchange. Exhaust air from this pellet press system and cooling process will be routed to a dust collector for control of PM emissions.

2.6 Pellet Storage and Barge Loadout

Pellets produced will be transferred into two (2) pellet loadout storage silos. The pellets will feed out of the storage silos into open top barges for transfer off-site, with a potential annual throughput of 165,347 tpy. Exhaust air from the storage silos will be controlled by separate dust collectors for reducing PM emissions. Additionally, a dust collector will control PM emissions from the barge loadout operation.

2.7 Combustion Sources

As previously referenced, the torrefication systems will be equipped with two (2) 85 MMBtu/hr burners firing natural gas or syngas fired. The burners will exhaust into the rotary dryer and be controlled by the WESP and RTO.

The RTO will be equipped with a total of 8.7 MMBtu/hr natural gas-fired burners.

The Fulton Facility will also include an $8.6 \, \text{MMBtu/hr}$ natural gas-fired boiler to supply conditioning steam to the pellet mills. The boiler will include a low-NO_X burner with no add-on pollution control devices.

2.8 Emergency Fire Pump

The Fulton Facility will include one diesel emergency fire pump for fire prevention needs. The engine will have a capacity of 220 hp and will operate a maximum of 500 hours (100 non-emergency hours) annually.

The Fulton Facility has emissions of carbon monoxide (CO), nitrogen oxides (NO_X), filterable PM, total PM₁₀, total PM_{2.5}, sulfur dioxide (SO₂), VOC, greenhouse gases (GHGs) in the form of carbon dioxide equivalent (CO₂e), and HAP. Detailed emissions calculations for the facility are included in Appendix C.

3.1 Whole Log and Green Chips Processing

The wood handling, storage, and wood chipping operations are sources of fugitive filterable PM/PM₁₀/PM_{2.5} emissions. Emission rates of these processing operations are estimated based on the drop point equation in AP-42, Section 13.2.4, *Aggregate Handling and Storage Piles* (September 2006). Fugitive dust from the drop and transfer operations that are not confined in an enclosure and are not equipped with a dust control system (i.e., baghouse) are estimated based on maximum throughput rates, and the methodology outlined in AP 42 Section 13.2.4, Equation 1:

PM Emissions
$$\left(\frac{lb}{ton}\right) = k \times 0.0032 \times \left(\frac{U}{5}\right)^{1.3} \div \left(\frac{M}{2}\right)^{1.4}$$

Where: k = particle size multiplier, obtained from AP-42 Section 13.2.4.4

M = material moisture content, based on facility design basis

U = mean wind speed, mph, based on site measurements

As the site is designed to receive both whole logs and green residuals for pelletizing, emissions are quantified for both scenarios assuming an annual throughput of 165,437 tons of finished pellets per year at 50% moisture content. Annual throughputs of whole logs and green residuals are 551,155 tons of whole logs and 165,347 green residual tons, respectively, based on equipment sizing. As these sources are not combustion sources, condensable PM is negligible. Therefore, filterable PM/PM₁₀/PM_{2.5} is equal to total PM/PM₁₀/PM_{2.5}.

3.2 Dryer and Torrefaction Systems

The torrefication system consists of the rotary dryer and torrefaction operations with a WESP and RTO for emissions controls. Emissions from the dryer occur as a result of the biomass drying. The dryer vendor has provided emission guarantees for CO, NOx, VOC, Filterable PM, and total HAP after control by the WESP and RTO. Potential emissions for other pollutants from the dryer are calculated using uncontrolled emission factors from the Georgia EPD guidance for wood pellet manufacturing facilities for a rotary dryer (direct wood-fired processing green softwood at a Wood Pellet Manufacturing facility). For other individual HAP of acrolein, phenol, and propionaldehyde, uncontrolled emissions factors for biomass drying from AP-42 Section 10.6.2, *Particleboard Manufacturing*, Table 10.6.2-3, for a Rotary dryer, green, direct wood-fired, softwood (06/02) are used. A removal efficiency of 70% is applied for HCl as a WESP unit is used for PM control. For the remaining organic HAP emission factors, a 95% control efficiency is applied to account for the RTO units.

The torrefiers will mainly use recirculated syngas for heating purposes. Each torrefier will be equipped with a burner firing natural gas or syngas. Because of the recirculation of the synthetic gas within the torrefiers, VOC and HAP emissions will be negligible because each gives the synthetic gas its heating value. The HAP emissions estimated from the torrefication burners is the maximum level for specific HAP combusting either natural gas (emission factors source subsequently referenced) or syngas (wood residue combustion emission factors conservatively used from AP-42 Section 1.6, *Wood Residue Combustion in Boilers*, Table 1.6-1,2,3).

Potential emissions from natural gas combustion in the RTO are calculated using AP-42 Section 1.4, *Natural Gas Combustion*, Tables 1.4-1 and 1.4-3 emission factors. Emissions of GHG from natural gas combustion in the form of CO_2e were calculated by multiplying each GHG pollutant by its respective global warming potential pursuant to 40 CFR Part 98.

3.3 Torrefied Material Handling and Storage Silo

The torrefied material handling operations are non-fugitive sources of filterable PM/PM₁₀/PM_{2.5} emissions. The torrefaction process removes all VOC and organic HAP from the torrefied material. Emission rates of these storage and handling operations are estimated based on the drop point equation in AP-42, Section 13.2.4, *Aggregate Handling and Storage Piles* (September 2006). Dust from the drop and transfer operations that are not confined in an enclosure and are not equipped with a dust control system (i.e., baghouse) are estimated based on maximum throughput rates, and the methodology outlined in AP 42 Section 13.2.4, Equation 1:

PM Emissions
$$\left(\frac{lb}{ton}\right) = k \times 0.0032 \times \left(\frac{U}{5}\right)^{1.3} \div \left(\frac{M}{2}\right)^{1.4}$$

Where:

k = particle size multiplier, obtained from AP-42 Section 13.2.4.4
 M = material moisture content, based on facility design basis
 U = mean wind speed, mph, based on site measurements

As these torrefied material handling operations are not combustion sources, condensable PM is negligible. Therefore, filterable $PM/PM_{10}/PM_{2.5}$ equals total $PM/PM_{10}/PM_{2.5}$.

The torrefied material storage silo is a non-fugitive source of filterable $PM/PM_{10}/PM_{2.5}$ emissions. Filterable $PM/PM_{10}/PM_{2.5}$ emissions from the silo is controlled by a dust collector. Filterable $PM/PM_{10}/PM_{2.5}$ emissions are calculated using an exit grain loading rate methodology based on vendor estimates for the control device. This emissions calculation method uses the exhaust air flow rate and estimated mass concentration as opposed to control device efficiency. As these sources are not combustion sources, condensable PM is negligible. Therefore, filterable $PM/PM_{10}/PM_{2.5}$ equals total $PM/PM_{10}/PM_{2.5}$.

3.4 Dry Hammermills and Pellet Mills/Pellet Coolers

The grinding and pelletizing operations are non-fugitive sources of filterable $PM/PM_{10}/PM_{2.5}$ emissions. Filterable $PM/PM_{10}/PM_{2.5}$ emissions from the dry hammermill and pelletizing operations (pellet mills and pellet cooler) are controlled by dust collectors. Filterable $PM/PM_{10}/PM_{2.5}$ emissions from the dry hammermill and pelletizing operations are calculated using an exit grain loading rate methodology based on vendor estimates for the control devices. This emissions calculation method uses the exhaust air flow rate and estimated mass concentration as opposed to control device efficiency. As these sources are not combustion sources, condensable PM is negligible. Therefore, filterable $PM/PM_{10}/PM_{2.5}$ equals total $PM/PM_{10}/PM_{2.5}$.

3.5 Pellet Storage and Loadout

Pellet storage and loadout operations are non-fugitive sources of filterable PM/PM₁₀/PM_{2.5}. Filterable PM/PM₁₀/PM_{2.5} emissions from pellet storage and loadout operations are controlled by dust collectors. Filterable PM/PM₁₀/PM_{2.5} emissions are calculated using an exit grain loading rate methodology based on vendor estimates for the control devices. This emissions calculation method uses the exhaust air flow rate and estimated mass concentration as opposed to control device efficiency. As these sources are not

combustion sources, condensable PM is negligible. Therefore, filterable $PM/PM_{10}/PM_{2.5}$ equals total $PM/PM_{10}/PM_{2.5}$.

3.6 Fire Water Pump Engine

Diesel combustion in the emergency fire water pump engine result in emissions of CO, NOx, total PM/PM₁₀/PM_{2.5}, SO₂, VOC, GHGs, and HAP. The engine criteria pollutant emissions calculations are based on NSPS Subpart IIII limitations for several criteria pollutants (CO, PM, and NO_X) and AP-42 Section 3.3 (VOC, HAP, CO₂).² Note that total PM₁₀ and total PM_{2.5} are assumed to be equal to total PM for the engine. SO₂ emissions are based on a maximum fuel sulfur content of 15 ppm by weight (as required by NSPS Subpart IIII beginning October 1, 2010). CH₄ and N₂O emission factors were calculated using emission factors for diesel fuel from 40 CFR 98, Subpart C, Table C-2. Emissions of GHG in the form of CO₂e were calculated by multiplying each GHG pollutant by its respective global warming potential from 40 CFR Part 98, Subpart A, Table A-1. A maximum operating schedule of 500 hr/yr is assumed for estimating potential emissions from the emergency fire pump engine.³

3.7 Auxiliary Natural Gas Equipment

Natural gas-fired RTO burners will be used for control of emissions from the dryer and torrefiers. Emissions are quantified using the natural gas combustion emission factors from AP-42 Section 1.4.

The RTO is assumed to control VOC with 95% efficiency. For the organic HAP emission factors, a 95% control efficiency is applied to account for routing to the RTO.

Emissions of GHG from natural gas combustion in the form of CO₂e were calculated by multiplying each GHG pollutant by its respective global warming potential pursuant to 40 CFR Part 98.

3.8 Paved Roads

The logs and green residuals are transferred to the facility via trucks. The truck roads are paved and the truck traffic results in fugitive sources of filterable $PM/PM_{10}/PM_{2.5}$ emissions. Emission rates of the truck traffic are estimated based on the equations in AP-42, Section 13.2.1.3, *Paved Roads* (January 2011). Dust from the truck traffic is estimated based on potential daily loads (based on maximum annual throughout of whole logs and green residuals), continuous delivery to the facility, distance travelled (loaded and unloaded) on paved roads at the facility by the trucks, and the methodology outlined in AP 42 Section 13.2.1.3, Equations 1 and 2:

PM Emissions (hourly)
$$\left(\frac{lb}{VMT}\right) = k \times (sL)^{0.91} x(W)^{1.02}$$

Where:

k = particle size multiplier, lb/VMT

sL = silt loading (g/m²)

W = average weight of trucks on paved roads (tons)

² U.S. EPA AP-42 Section 3.3, *Gasoline and Diesel Industrial Engines*. October 1996. https://www3.epa.gov/ttn/chief/ap42/ch03/final/c03s03.pdf

³ Potential operation includes non-emergency service (readiness testing and maintenance as recommended by the manufacturer) and emergency usage.

PM Emissions (annual)
$$\left(\frac{lb}{VMT}\right) = [k \times (sL)^{0.91}x(W)^{1.02}](1 - \frac{P}{4N})$$

Where:

k = particle size multiplier, lb/VMT

sL = silt loading (g/m²)

W = average weight of trucks on paved roads (tons)

P = number of days with at least 0.01 in. of precipitation per year, Figure 13.2.1-9

N = number of days in the average period

Since truck traffic fugitive PM emissions are not combustion sources, condensable PM is negligible. Therefore, filterable PM/PM_{10} is assumed equivalent to total PM/PM_{10} . Furthermore, due to no particle size multiplier for $PM_{2.5}$, the potential $PM_{2.5}$ emissions are assumed equivalent to PM_{10} .

3.9 Facility-Wide Potential Emissions

Table 3-1 includes the facility-wide controlled criteria pollutant, GHG, and HAP emissions. Detailed emissions calculations are included in Appendix C of the permit application. The potential emissions in Table 3-1 include emissions with fugitives, which are compared to the Title V major source thresholds, and emissions without fugitives, which are compared to the PSD major source thresholds. Facility-wide emissions can exclude fugitives from the PSD major source determination as wood pellet production operation is not on the list of 28 categories with a lower major source threshold for criteria pollutants, which requires subject source categories to include fugitive emissions for permitting applicability determinations.

Table 3-1. Facility-Wide Potential Emissions

Pollutant	Potential Emissions Including Fugitives (tpy)	PSD Major Source Threshold (tpy)	Above Threshold?	Potential Emissions Without Fugitives (tpy)	Title V Major Source Threshold (tpy)	Above Threshold?
Filterable PM	100.50	250	No	76.92	100	No
Total PM ₁₀	101.34	250	No	91.51	100	No
Total PM _{2.5}	95.60	250	No	91.51	100	No
NO _X	102.55	250	No	102.55	100	Yes
CO	116.03	250	No	116.03	100	Yes
SO ₂	0.13	250	No	0.13	100	No
VOC	72.45	250	No	72.45	100	No
CO ₂ e	96,954	75,000	N/A	96,954	N/A	N/A
Total HAP	10.51	N/A	N/A	10.51	25	No
Individual HAP*	4.81	N/A	N/A	4.81	10	No

^{*}The maximum individual HAP is Hydrogen Chloride.

4. REGULATORY APPLICABILITY REVIEW

Potentially applicable rules are discussed for the Fulton Facility in the following section. These include federal and state air regulations.

4.1 New Source Review

New Source Review (NSR) requires that federal construction permitting of new emission sources or modifications to existing emission sources be completed when significant net emission increases result. Two distinct NSR permitting programs apply depending on whether the facility is located in an attainment or nonattainment area for a particular pollutant. Nonattainment New Source Review (NNSR) permitting applies to new construction or modifications that result in emission increases of a particular pollutant for which the area in which the facility is located is classified as "nonattainment" for that pollutant. The PSD permitting program applies to project increases of those pollutants for which the area the facility is located in is classified as "attainment" or "unclassifiable".

The Fulton Facility will be located in Itawamba County, which has been classified as in attainment with the NAAQS or unclassified for all regulated pollutants. Therefore, the Fulton Facility is not subject to NNSR permitting requirements for any criteria pollutants. The facility is potentially subject to PSD permitting requirements.

Under PSD permitting rules, the major source threshold is 250 tpy for criteria pollutants, unless the facility is listed specifically in 40 CFR 52.21 as having a lower 100 tpy threshold. Wood pellet production is not on the list of 28 categories detailed in 40 CFR 52.21 with a lower threshold of 100 tpy for criteria pollutants. As shown in Table 3-1, the Fulton Facility will be a minor source for the purposes of PSD permitting requirements as facility-wide potential emissions of all criteria pollutants will be below the major source threshold of 250 tpy.

4.1.1 Operational Limitations

NMR will operate control devices on multiple emission units at the Fulton Facility, limiting potential emissions of PSD pollutants. NMR requests the parametric monitoring as limitations associated with the respective control devices (WESP, RTO, and dust collectors) for demonstrating PSD synthetic minor source classification. The control device parametric range(s) and threshold(s) can be established in one-time performance testing for the respective PSD pollutant emissions.

4.2 Title V Operating Permit Program

40 CFR Part 70 establishes the federal Title V operating permit program. Mississippi has incorporated the provisions of the federal program in the Mississippi Administrative Cods for air quality and permitting (11 Miss. Admin. Code Pt. 2, Chapter 6). The major source thresholds with respect to the Mississippi Title V operating permit program for sources in attainment areas are 10 tpy of a single HAP, 25 tpy of any combination of HAP, or 100 tpy of a criteria pollutant. As referenced in Table 3-1, the facility wide potential emissions will exceed the Title V major source thresholds for at least one criteria pollutant. Therefore, NMR will submit an application for the initial Title V operating permit within twelve (12) months after operation of the facility commences as required by the program.

4.3 New Source Performance Standards

New Source Performance Standards (NSPS) have been promulgated to govern the emissions of specific sources of air pollutants that are modified, constructed, or reconstructed after the applicability dates of the regulations. The NSPS regulations are documented in 40 CFR Part 60. The following is a list of potentially applicable NSPS.

4.3.1 40 CFR 60 Subpart A – General Provisions

All affected sources subject to source-specific NSPS are subject to the general provisions of NSPS Subpart A unless specifically excluded by the source-specific NSPS. Subpart A requires initial notification, performance testing, recordkeeping and monitoring, provides reference methods, and mandates general control device requirements for all other subparts as applicable.

4.3.2 40 CFR 60 Subpart D – Fossil Fuel-Fired Steam Generators

NSPS Subpart D, Standards of Performance for Fossil Fuel-Fired Steam Generators for which Construction is Commenced after August 17, 1971, applies to steam generating units with a heat input capacity of 250 MMBtu/hr or greater from fossil fuel combustion for which construction is commenced after August 17, 1971. The torrefier burners and natural gas fired boiler at the Fulton Facility will not have a maximum heat input capacity greater than 250 MMBtu/hr, and only the boiler will produce steam. Therefore, the facility will not be subject to NSPS Subpart D.

4.3.3 40 CFR 60 Subpart Da – Electric Utility Steam Generators

NSPS Subpart Da, Standards of Performance for Electric Utility Steam Generating Units for which Construction is Commenced After September 18, 1978, applies to electric utility steam generating units (EGUs) with a fossil fuel heat input capacity of 250 MMBtu/hr or greater (alone or in combination with any other fuel) for which construction, modification, or reconstruction began after September 18, 1978. The torrefier burners and natural gas fired boiler at the Fulton Facility will not be subject to Subpart Da as the units do not meet the definition of electric utility steam generating units.

4.3.4 40 CFR 60 Subpart Db – Industrial, Commercial, and Institutional Steam Generating Units

NSPS Subpart Db, Standards of Performance for Industrial-Commercial-Institutional Steam Generating Units, applies to industrial, commercial, and institutional steam generating units with a heat input greater than 100 MMBtu/hr that began construction, modification, or reconstruction after June 19, 1984. The individual heat input capacities for the torrefier burner and RTO burners is less than 100 MMBtu/hr, respectively. Furthermore, these units will not generate steam for process operations and does not meet the definition of a steam generating units subject to this regulation. Therefore, the torrefier burners and RTO burners will not be subject to the requirements of Subpart Db.

The natural gas-fired boiler has a maximum heat input capacity of 8.6 MMBtu/hr. Therefore, the boiler is not subject to Subpart Db.

4.3.5 40 CFR 60 Subpart Dc – Small Industrial, Commercial, and Institutional Steam Generating Units

NSPS Subpart Dc, Standards of Performance for Small Industrial-Commercial-Institutional Steam Generating Units, applies to steam generating units with a maximum heat input capacity of 100 MMBtu/hr or less, but

greater than or equal to 10 MMBtu/hr. The applicability date for NSPS Subpart Dc is June 9, 1989. The torrefier burners heat input capacity is 85 MMBtu/hr (for each burner). However, the burners will be used to generate heat for drying biomass and torrefication process and will not be utilized to generate steam for process operations. Therefore, the units do not meet the definition of a steam generating unit regulated under this rule. Therefore, the torrefier burners are not subject to the requirements of Subpart Dc.

The maximum heat input capacity for the RTO burners is 8.7 MMBtu/hr. Therefore, these burners are not subject to Subpart Dc.

The natural gas-fired boiler produces steam for use in the pelletizing process, but the unit has a maximum heat input capacity of 8.6 MMBtu/hr. Therefore, the boiler is not subject to Subpart Dc.

4.3.6 40 CFR 60 Subpart E – Incinerators

NSPS Subpart E, Standards of Performance for Incinerators, applies to incinerators with a charging rate of 50 tons/day for which construction or modification commenced after August 17, 1971. An incinerator is defined as any furnace used in the process of burning solid waste for the purpose of reducing the volume of the waste by removing combustible matter. The combustion sources at the Fulton Facility will not combust solid waste; therefore, this subpart is not applicable.

4.3.7 40 CFR 60 Subpart IIII – Compression Ignition Internal Combustion Engines

NSPS Subpart IIII applies to stationary compression ignition (CI) internal combustion engines (ICE) manufactured after April 1, 2006. NMR will install a diesel-fired emergency fire pump. This regulation is potentially applicable to the diesel-fired pump engine, which is anticipated to be rated at 220 hp. The proposed unit meets the definition of emergency stationary ICE in 40 CFR 60.4219. Per the NSPS, a fire pump engine is defined as "emergency stationary internal combustion engine certified to National Fire Protection Association (NFPA) requirements that is used to provide power to pump water for fire suppression or protection." The unit is a fire pump engine that will be certified to National Fire Protection Association (NFPA) requirements.⁴

4.3.7.1 Emission Limits

Per 40 CFR 60.4202(a)(2), the emergency use fire pump engine must meet the requirements of 40 CFR 89.112 and 113. The engine has been certified by its manufacturer to be in compliance with these emission standards.

Per 40 CFR 60.4205(c), the emergency fire pump engine must meet the emission standards in Table 4 of the rule, which include:

- \triangleright NHMC + NO_X 3.0 g/hp-hr
- ► CO 2.6 g/hp-hr
- ► PM 0.15 g/hp-hr

Additionally pursuant to 40 CFR 60.4207, the fire pump engine will have to meet the fuel requirements of 40 CFR 80.510(a) and (b), which state that fuel oil combusted in CI ICE must meet the following requirements:

- Maximum sulfur content of 15 ppm; and
- ▶ Minimum Centane index of 40 or maximum aromatic content of 35% by volume.

^{4 40} CFR 60.4219

NMR will use fuel that meets the required specifications.

4.3.7.2 Monitoring, Recordkeeping, and Reporting

NMR must operate and maintain the stationary CI ICE according to the manufacturer's written instructions or procedures developed by NMR that are approved by the engine manufacturer. In addition, NMR may only change those settings that are permitted by the manufacturer. The engine is required to be equipped with a non-resettable hour meter prior to the startup of the engine.

Per 40 CFR 60.4211(e), emergency stationary ICE may be operated for the purpose of maintenance checks and readiness testing, provided that the tests are recommended by Federal, State, or local government, the manufacturer, the vendor, or the insurance company associated with the engine. Maintenance checks and readiness testing of such units is limited to 100 hours per year. There is no time limit on the use of emergency stationary ICE in emergency situations given in the regulation.

No initial notifications are required for emergency engines, per 40 CFR 60.4214(b). NMR will keep records of the operation of the engine in emergency and non-emergency services that are recorded through the non-resettable hour meter. NMR must record the time of operation of the engine and the reason the engine was in operation during that time. NMR should keep records of the Certificate of Conformity, a document typically supplied by the manufacturer stating the engine is NFPA certified and certified to meet EPA standards.

4.3.8 Non-Applicability of All Other NSPS

NSPS standards are developed for particular industrial source categories and the applicability of a particular NSPS to a facility can be readily ascertained based on the industrial source category covered. All other NSPS are categorically not applicable to the Fulton Facility.

4.4 National Emission Standards for Hazardous Air Pollutants

National Emission Standards for Hazardous Air Pollutants (NESHAP) are emission standards for HAP and are applicable to major and area sources of HAP. A HAP major source is defined as having potential emissions in excess of 25 tpy for total HAP and/or potential emissions in excess of 10 tpy for any individual HAP. An area source is a stationary source that is not a major source. Part 63 NESHAP allowable emission limits are established on the basis of a Maximum Achievable Control Technology (MACT) determination for a particular source category. NESHAP apply to sources in specifically regulated industrial source categories (CAA Section 112(d)) or on a case-by-case basis (Section 112(g)) for facilities not regulated as a specific industrial source type. Potential emissions at the Fulton Facility will be less than 25 tpy for total HAP and 10 tpy for individual HAP. Therefore, the facility is an area source of HAP emissions. Due to control devices (WESP and RTO) controlling HAP emissions from the dryer and torrefication processes, NMR requests synthetic minor emissions limitations for individual HAPs at 9 tons/12-month rolling period and total HAPs at 24 tons/22-month rolling period.

Regulatory requirements for facilities subject to Part 61 and Part 63 NESHAP are incorporated by reference in Mississippi's Administrative Code, 11 Miss. Admin. Code Pt. 2, Chapter 8.

4.4.1 40 CFR 63 Subpart A – General Provisions

NESHAP Subpart A, *General Provisions*, contains national emission standards for HAP defined in Section 112(b) of the Clean Air Act. All affected sources which are subject to another NESHAP are subject to the general provisions of NESHAP Subpart A, unless specifically excluded by the source-specific NESHAP.

4.4.2 40 CFR 63 Subpart DDDD – Plywood and Composite Wood Products

NESHAP Subpart DDDD, *NESHAP for Plywood and Composite Wood Products*, applies to major sources of HAP that manufacture plywood or composite wood products (PCWP) by bonding wood materials (fibers, particles, strands, veneers, etc.) or agricultural fiber, generally with resin under heat and pressure, to form a structural panel or engineered wood product. The Fulton Facility is an area source of HAP emissions; therefore, NESHAP Subpart DDDD does not apply.

4.4.3 40 CFR 63 Subpart ZZZZ – Stationary Reciprocating Internal Combustion Engines

NESHAP Subpart ZZZZ regulates HAP emitted from stationary reciprocating internal combustion engines (RICE) located at major and area sources of HAP emissions. Per 40 CFR 63.6590(a)(2)(iii), a stationary RICE at a major source of HAP is considered new if construction commences on or after June 12, 2006. The proposed diesel emergency fire pump engine qualifies as a new stationary RICE. However, compliance per NESHAP for the engine is attained through compliance with the requirements of NSPS IIII.⁵ NMR will ensure compliance to applicable requirements or limits for the diesel fire pump engine.

4.4.4 40 CFR 63 Subpart DDDDD – Industrial, Commercial, and Institutional Boilers and Process Heaters (Major Sources)

NESHAP Subpart DDDDD, *NESHAP for Industrial, Commercial, and Institutional Boilers and Process Heaters*, regulates HAP emissions from solid, liquid, and gaseous-fired boilers and process heaters at facilities that are major sources of HAP. The Fulton Facility will be an area source of HAP emissions; therefore, NESHAP DDDDD does not apply for the natural gas-fired boiler.

4.4.5 40 CFR 63 Subpart JJJJJJ – Industrial, Commercial, and Institutional Boilers (Area Sources)

NESHAP Subpart JJJJJJ, *NESHAP for Industrial, Commercial, and Institutional Boilers Area Sources*, regulates HAP emissions from boilers at facilities that are area sources of HAP. The Fulton Facility torrefier burners are not defined as boilers per 40 CFR 63.11237, because no portion of the heat from these systems are used to generate steam at the facility.

Boiler means an enclosed device using controlled flame combustion in which water is heated to recover thermal energy in the form of steam or hot water. Controlled flame combustion refers to a steady-state, or near steady state, process wherein fuel and/or oxidizer feed rates are controlled. Waste heat boilers are excluded from this definition.

Therefore, the torrefier burners are not subject to the requirements of Subpart JJJJJJ.

⁵ 40 CFR 63.6590(c)(6)

Per 40 CFR 63.11195(e), a natural gas-fired boiler is not subject to Subpart JJJJJJ. Because the Fulton Facility boiler will only fire natural gas, the unit is not subject to Subpart JJJJJJ.

4.4.6 40 CFR 63 Subpart QQQQQQ – Wood Preserving (Area Sources)

NESHAP Subpart QQQQQ, *NESHAP for Wood Preserving Area Sources*, applies to area sources of HAP that conduct wood preserving operations. A wood preserving operation is defined by Subpart QQQQQ as a pressure treatment process with use of a wood preservative containing chromium, arsenic, dioxins, or methylene chloride, where the preservative is applied to the wood product inside a retort or similarly closed vessel. The Fulton Facility will not use any wood preservatives in the production of the wood pellets. Therefore, Subpart QQQQQQ is not applicable to the pelletizing operations.

4.4.7 Non-Applicability of All Other NESHAP

NESHAP standards are developed for particular industrial source categories, and the applicability of a particular NESHAP to a facility can be readily ascertained based on the industrial source covered. All other NESHAP are categorically not applicable to the facility.

4.5 Compliance Assurance Monitoring (CAM)

The Compliance Assurance Monitoring (CAM) rule (40 CFR Part 64) became effective November 21, 1997. A CAM Plan may be due upon renewal of the facility's Title V Operating Permit or during a significant modification. The rule applies to units that:

- Are subject to an emission limit,
- ▶ Use a control device to achieve compliance with the emission limit, and
- ▶ Have potential *pre-control* device emissions equal to or greater than the major source threshold. ("Potential *pre-control* device emissions" has the same meaning as "potential to emit", except emission reductions achieved by the control device are not taken into account.)

This is a new greenfield source and the application is not a permit renewal or significant modification. Therefore, on this basis, a CAM Plan will not be required until the Title V permit renewal application is submitted as stated in 40 CFR 64.5 or a significant modification occurs.

4.6 Risk Management Plan

Under Title III, Section 112(r), of the Clean Air Act Amendments (CAAA), the EPA was required to promulgate regulations regarding storage and handling of hazardous chemicals that could be harmful if there were an accidental release of these chemicals into the environment. The regulation was promulgated in March 1994 as the Risk Management Program (RMP) Rule under 40 CFR 68. Of those chemicals listed, none will be stored on site in total quantities and/or concentrations greater than the applicable thresholds. Therefore, the Fulton Facility will not be required to develop and register a Risk Management Plan.

4.7 Acid Rain Regulations

These regulations apply to utility units for the control of acid rain precursors and other pollutants. These regulations will not apply to the Fulton Facility.

4.8 Stratospheric Ozone Rules

These regulations, under 40 CFR 82, apply to the use, reuse, consumption, and manufacture of stratospheric ozone depleting substances which include Class I and Class II substances and refrigerants. These regulations also include requirements for training and certification of personnel involved in maintenance of certain air conditioning systems using listed refrigerants. The rules require identification of all units with a capacity of 50 pounds or more of refrigerant and servicing of machines containing regulated refrigerants performed by trained and certified individuals. The Fulton Facility will comply with the standard if applicable by using certified personnel and maintaining required records.

4.9 Mississippi Administrative Code

In addition to federal air regulations, 11 Miss. Admin. Code Pt. 2, Chapters 2 and 6 establish regulations applicable at the emission unit level (source-specific) and at the facility level. The rules also contain requirements related to the need for construction and/or operating permits.

4.9.1 11 Miss. Admin. Code Pt. 2, R.1.3.A(1)-(2) & 1.3.B - Visible Emissions

No source is allowed to emit particulate matter (PM) such that the opacity exceeds forty percent (40%). However, during startup operations the source may exceed the 40% opacity requirement for up to 15 minutes per startup in any one hour, not to exceed three (3) startups per 24-hour period. Facility fuel burning equipment combusts natural gas only and control equipment (i.e., dust collectors) are utilized for the various PM generating processes; therefore, opacity is expected to be well within the required limit.

4.9.2 11 Miss. Admin. Code Pt. 2, R.1.3.C – General Nuisances

No source shall allow the emissions of particles or any contaminants in sufficient amounts or of such duration from any process as to be injurious to humans, animals, plants, or property, or to be a public nuisance, or create a condition of air pollution. This rule will apply to all emission sources at the Fulton Facility.

4.9.3 11 Miss. Admin. Code Pt. 2, R.1.3.D(1)(a) – PM Emissions from Fuel Burning

This regulation limits emissions from fuel burning equipment based on heat input capacity. The maximum permissible emission of ash and/or PM from fossil fuel burning installations of less than 10 MMBtu/hr heat input shall not exceed 0.6 pounds per million Btu (lb/MMBtu) heat input. This regulation will apply to the torrifier burners, RTO burners, and natural gas-fired boiler.

4.9.4 11 Miss. Admin. Code Pt. 2, R.1.3.D(1)(b) – PM Emissions from Fuel Burning

All fuel burning equipment with a rated capacity greater than 10 MMBtu/hr but less than 10,000 MMBtu/hr shall not exceed an emission limitation equal to

 $E = 0.8808 \times I^{-0.1667}$

Where: E = allowable PM emission rate (lb/hr)

I = heat input (MMBtu/hr)

This regulation will apply to the torrefier burners as each unit has maximum heat input capacity of 85 MMBtu/hr (firing natural gas or syngas).

4.9.5 11 Miss. Admin. Code Pt. 2, R.1.3.F – PM Emissions from Manufacturing Processes

This regulation, commonly known as the process weight rule (PWR), establishes PM limits for all sources if not specified elsewhere. No source shall cause, permit, or allow the emission of PM in total quantities in any one hour from any manufacturing process, which includes associated stacks, vents, outlets, or combination thereof, to exceed the amount determined by the relationship

$$E = 4.10 \times p^{0.67}$$

Where: E = allowable PM emission rate (lb/hr)

p = process input weight rate (tons/hr)

This regulation applies to the raw material, torrefied material, and pellets processing and handling systems. Since the torrefier burners and boiler are subject to a PM limit under Rule (d), this rule does not apply to the combustion units.

4.9.6 11 Miss. Admin. Code Pt. 2, R.1.3.G – PM Emissions from Open Burning

This regulation imposes restrictions on open burning activities. The regulation specifies what type of burning is permitted, when, and where. The facility shall comply with the requirements of this regulation in the event of performing open burning.

4.9.7 11 Miss. Admin. Code Pt. 2, R.1.4.A(1) – Sulfur Dioxide

All fuel burning equipment in which the fuel is burned primarily to produce heat or power by indirect heat transfer shall not exceed an SO_2 emission rate of 4.8 lb/MMBtu. Fuel burning equipment will only combust natural gas, syngas, and #2 fuel oil (diesel fuel). Therefore, emissions are not expected to result in non-compliance with this conservative emissions standard.

4.9.8 11 Miss. Admin. Code Pt. 2, R.2.13.A & R.2.13.D(5) – New Source Permit to Construct

The facility is considered a new "greenfield" stationary source. Calculations demonstrate that facility-wide potential emissions for criteria pollutants (PM, NO_X, and CO) are above the Categorical Exclusion from Permit to Construct thresholds. Therefore, the facility is required to obtain an air construction permit.

4.9.9 11 Miss. Admin. Code Pt. 2, R.2.13.G & R.6.1.A.17.B – Title V Permit to Operate

Calculations demonstrate that facility-wide allowable emissions for the criteria pollutants Total $PM_{2.5}$, NO_X , and CO are above the Title V major source threshold of 100 tpy. Therefore, the facility will be considered a Title V major source for criteria pollutants. The facility will submit the initial Title V permit application within 12 months of the commencement of operation at the Fulton Facility.

APPENDIX A. PERMIT TO CONSTRUCT AIR APPLICATION FORMS

FORM 5 MDEQ

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT

			CONTROL PERMIT	
Fac	ility	(Agency Interest) Information		Section A
1.		ne, Address, and Location of Facility		
		,		
	A.	Owner/Company Name: Northeast Missis	ssippi Renewables, LLC	_
	В.	Facility Name (if different than A. above):	Northeast Mississippi Renewa	bles Fulton Facility
	C.	Facility Air Permit No. (if known):		
	C.	racinty An Termit No. (ij known).		-
	D.	Agency Interest No. (if known):		
				-
	E.	Physical Address		
		1. Street Address: 200 Access Road	2 G MS	
		2. City: Fulton4. County: Itawamba	3. State: MS 5. Zip Code: 38843	
		4. County: <u>Itawamba</u>6. Telephone No.:	5. Zip Code: 38843 7. Fax No.:	
		o. Telephone No	/. Pax No	
	F.	Mailing Address (if different from physical ac	ldress)	
			ox 355	
		2. City: Fulton		
		3. State: MS	4. Zip Code:	38843
	G.	Latitude/Longitude Data		
		1. Collection Point (check one):		
		✓ Plant Entrance ☐ Other:		
		2. Method of Collection (check one):	(NIAD 02 -4-)	
			system (NAD 83, etc.)	
		Map Interpolation (Google Earth		<u> </u>
		3. Latitude (degrees/minutes/seconds):	34° 14' 34.39" N 88° 24' 36.79" W	_
		4. Longitude (degrees/minutes/seconds):5. Elevation:		_
		3. Elevation.	feet	
	Н.	SIC/NAICS Codes (primary code listed first)		
		SIC: 2499		
		NAICS: 321999		
		(NAICS Code should correspond with the SIC	Code directly above.)	
2.	Nai	ne and Address of Facility Contact		
		•		
	A.	Name: Donald Land	Title: Partner	
	В.	Mailing Address	255	
			355 MS	
		2. City: Fulton	3. State: MS	aggan datara ca a ann
		4. Zip Code: 38843	5. Email: donald@proc	essandstorage.com

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL

FOF	KM	5	IV.	IDE	Q	QUA	ALITY A		LICATIO: CONTROI		IR POLLU′ Γ	ΓΙΟΝ
Facil	lity	(A	gency	Inte	rest)		tion					tion A
						r Contact		ren	t from Fa	acility Co	ntact)	
	A.	Nar	ne:	Ashley	Kimes				Title: _M	anaging Co	nsultant	
	B.	Mai	iling A	ddress								
		1			ess or F	P.O. Box:	P.O. Bo		56			
		2	,		Shern			3.	State:	MS	0.11	
		4	-	Code:	38869		2.4	5.	Email:		es@trinityconsu	ltants.com
		6	. Tele	phone	No.:	662-374-352	24	7.	Fax No.:	N/A		
4.	Nan	ne a	nd A	ddress	of the	e Responsi	ible Offi	icia	l for the	Facility		
						d as one of th			2 101 111			
	principal business function, or any other person who performs similar policy or decision-making functions for the corporation, or a duly authorized representative of such person if the representative responsible for the overall operation of one or more manufacturing, production, or operating facionapplying for or subject to a permit and the facilities employ more than 250 persons or have gross annual sales or expenditures exceeding \$25 million (in second quarter 1980 dollars), if authority sign documents has been assigned or delegated in accordance with corporate procedures. b. For a partnership or sole proprietorship: a general partner or the proprietor, respectively. c. For a municipality, state, federal, or other public agency: either a principal executive officer or ranking elected official. For purposes of these regulations, a principal executive officer of a Federal agency includes the chief executive officer having responsibility for the overall operations of a principal geographic unit of the agency (e.g., a Regional Administrator of EPA). A principal executive officer of a military facility includes the facility commander, chief executive officer, or any other similar person who performs similar policy or decision-making functions for the institution.								ng facilities gross hority to er or a Federal of a al executive other			
	A.	Nar	ne:	John	Sumner	•			Title: C	ЕО		
	В.	1 2 4	. City . Zip	et Addi 7: Code:	Fultor 3884	3	P.O. Bo	3. 5.	State: Email:	MS john@nm	nr.energy	
		6	. Tele	ephone !	NO.:	850-572-03	598	/.	Fax No.:	N/A		
	C.	not	a corp	orate of written	ficer?	y authorized ation of such No	authoriz	atio			~	

FORM 5 MDEQ

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT

		CONTROLIERIMI	
Fac	ility	(Agency Interest) Information	Section A
5.	Tvr	oe of Permit Application (Check all that apply)	
	_ J I	The second of th	
	State	e Permit to Construct (i.e., non-PSD or PSD avoidance)	
	State	☐ Initial Application ☐ Modification	
	New	Source Review (NSR) Permit to Construct (includes both Prevention of Signi	ficant Deterioration
		o) and Nonattainment)	neunt Deterioration
	(151	☐ Initial Application ☐ Modification	
	Title	eV Operating Permit	
	11010	☐ Initial Application	
		\square Re-issuance: Are any modifications to the permit/facility being \square	Yes □ No
		requested?	103 🗀 110
		(If yes, provide a separate sheet identifying the modification(s) and resulting chan	ige to emissions)
			☐ Administrative
		in Modification (Speedy type).	
	Synt	chetic Minor Operating Permit (Appendix B must be completed and attached.)	
	Sym	☐ Initial Application	
		☐ Re-issuance: Are any modifications to the permit/facility being ☐	Yes □ No
		requested? If yes, address such on a separate sheet.	103 🗀 110
		☐ Modification	
		Nouncation	
	State	e Permit to Operate a Significant Minor Source (defined in 11 Miss. Admin. Co	nde Pt. 2. R. 2.1 C(25)
	State	☐ Initial Application	nic 1 i. 2, 11.2.1.0(23).)
		□ Re-issuance: Are any modifications to the permit/facility being □	Yes □ No
		requested? If yes, address such on a separate sheet.	103 🗀 110
		☐ Modification	
		- Modification	
	True	e Minor Determination	
		☐ Uncontrolled potential to emit air pollutants is below the Title V thresholds	
		= checking personal to think an personal to color the time t and the	
6.	Pro	cess/Product Details	
U.	110	cess/1 fourt Details	
	٨	List Civilian Description (if we discult)	
	A.	List Significant Raw Materials (if applicable):	
		Southern yellow pine logs and chips	
	В.	List All Products (if applicable): torrefied pellets	
	C.	Brief Description of Principal Process(es):	
	-	Logs are chipped then dried to essentially zero moisture before being ham	mered into
		fine particles to then be compressed into pellets.	III III III III III III III III III II
		inte particles to then be compressed into penets.	

FORM 5

MDEQ

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT

Facility (Agency Interest) Information

Section A

- 6. Process/Product Details (continued)
 - D. Maximum Throughput for Raw Material(s) (if applicable):

Raw Material	Throughput	Units
Whole Logs/Chips	551,155	tpy

E. Maximum Throughput for Principal Product(s) (if applicable):

Product	Throughput	Units
Pellets	165,347	tpy

7. Facility Operating Information

A. Number of employees at the facility: 80+

		Average Actual	Maximum Potential
B.	Hours per day the facility will operate:	24	24
C.	Days per week the facility will operate:	7	7
D.	Weeks per year the facility will operate:	52	52
E.	Months the facility will operate:	12	12

8. Maps

- A. Attach a topographical map of the area extending to at least ½ mile beyond the property boundaries. The map must show the outline of the property boundaries.
- B. Attach a site map/diagram showing the outline of the property, an outline of all buildings and roadways on the site, and the location of each significant air emission source.

FORM 5 MDEQ

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT

Facility (Agency Interest) Information

Section A

Λ		•
9.	7.0	ning
ノ・		111112

- A. Is the facility (either existing or proposed) located in accordance with any applicable city and/or county zoning ordinances? If no, please explain.

 Yes
- B. Is the facility (either existing or proposed) required to obtain any zoning variance to locate/expand the facility at this site? If yes, please explain.
 No

10. Risk Management Plan

- A. Is the facility required to develop and register a risk management plan ☐ Yes ☐ No pursuant to Section 112(r), regulated under 40 CFR Part 68?
- B. If yes, to whom was the plan submitted?

 Date submitted:

11. Is confidential information being submitted with this application?

☐ Yes 🖾 No

If so, please follow the procedures outlined in the Mississippi Code Ann. Sections 49-17-39 and 17-17-27(6), as outlined in MCEQ-2 – "Regulation regarding the review and reproduction of public records".

12. MS Secretary of State Registration / Certificate of Good Standing

No permit will be issued to a company that is not authorized to conduct business in Mississippi. If the company applying for the permit is a corporation, limited liability company, a partnership or a business trust, the application package should include proof of registration with the Mississippi Secretary of State and/or a copy of the company's Certificate of Good Standing. The name listed on the permit will include the company name as it is registered with the Mississippi Secretary of State.

It should be noted that for an application submitted in accordance with 11 Miss. Admin. Code Pt. 2, R. 2.8.B. to renew a State Permit to Operate or in accordance with 11 Miss. Admin. Code Pt. 2, R. 6.2.A(1)(c). to renew a Title V Permit to be considered timely and complete, the applicant shall be registered and in good standing with the Mississippi Secretary of State to conduct business in Mississippi.

FORM 5

MDEQ

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT

Facility (Agency Interest) Information

Section A

13. Certification

Note: If approved by MDEQ, a duly authorized representative (DAR) may sign the air permit application. The DAR must be listed in Section 4 of this application.

I certify that to the best of my knowledge and belief formed after reasonable inquiry, the statements and information in this application are true, complete, and accurate, and that as a responsible official, my signature shall constitute an agreement that the applicant assumes the responsibility for any alteration, additions, or changes in operation that may be necessary to achieve and maintain compliance with all applicable Rules and Regulations. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

Signature of Responsible Official/DAR	8/8/35 Date
John Sumner	СЕО
Printed Name	Title

Section B.0: Emission Point Descriptions & Status

This form should list all the of the Emission Points and descriptions as proposed or as otherwise identified in an existing permit. This worksheet should be updated to reflect changes to the Status of the emission points over time. Emission Point ID's should match those assigned in the current MDEQ permit. Facility ID is optional. For proposed emission points, the facility should leave the Emission Point ID blank but may complete the Facility ID (if any). Under "Status," for Emission Points that are proposed or under construction but not yet operating, indicate their status as "Proposed." For emissions points already operating or for which construction has been certified complete, indicate their status as "Operating." Include all control devices for each emission point and the pollutant(s) the device controls. Control devices may be specified in general terms (e.g., baghouse, catalytic oxidizer, fabric filter, wet ESP, etc.). When an Emission Point is removed, indicate so by changing the "Status" to "Removed." Remove the emissions on the subsequent worksheets or indicate they are removed with a "-" for all pollutants.

Emission Point ID	Facility ID	Description	Status	Control Device	Controlled Pollutant(s)	Control Device	Controlled Pollutant(s)	Control Device	Controlled Pollutant(s)
AA-100		Whole Logs and Green Residuals Processing	Proposed						
AA-101		Truck Unloading	Proposed						
AA-102		Whole Log Pile	Proposed						
AA-103		Chipper	Proposed						
AA-104		Green Chips Storage Pile	Proposed						
AA-200		Drying/Torrefication	Proposed						
AA-201		Dryer	Proposed	RTO	VOC, HAP	WESP	PM		
AA-202		Torrefication Systems	Proposed	RTO	VOC, HAP	WESP	PM		
AA-203		RTO Burners	Proposed	RTO	VOC, HAP	WESP	PM		
AA-204		System Bypass Stack	Proposed						
AA-300		Pellet Production Operations	Proposed						
AA-301		Torrefied Material Storage Silo	Proposed	Dust Collector	PM				
AA-302		Dry Hammermill	Proposed	Dust Collector	PM				
AA-303		Pellet Mills and Cooler	Proposed	Dust Collector	PM				
AA-400		Dry Material Handling	Proposed						
AA-401		Torrefied Material Handling	Proposed						
AA-500		Pellets Storage and Loadout	Proposed						
AA-501		Pellet Storage Silo No. 1	Proposed	Dust Collector	PM				
AA-502		Pellet Storage Silo No. 2	Proposed	Dust Collector	PM				
AA-503		Barge Loadout	Proposed	Dust Collector	PM				
AA-600		Auxiliary Equipment	Proposed						
AA-601		Boiler	Proposed						
AA-602		Diesel Fire Pump	Proposed						
IA-001		Paved Roads Traffic	Proposed						

Section B.1: Maximum Uncontrolled Emissions (under normal operating conditions)

Maximum Uncontrolled Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless operating capacity and/or hours of operation are specifically limited in an enforceable permit. (Existing limits on operating conditions, not emissions or use of a control device, may be used when determining uncontrolled emissions.) Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Emissions ≥ 0.01 ton/yr from a specific emission unit must be included. Please do not change the column widths on this table.

Emission	TSP ¹	(PM)	PM-	-10 ¹	PM-	-2.5 ¹	S	O_2	N	Ox	C	0	V	OC	TI	RS^2	Le	ead	Total	HAPs
Point ID	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
AA-101	2.45E-03	1.07E-02	1.16E-03	5.08E-03	1.76E-04	7.69E-04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-102	2.45E-03	1.07E-02	1.16E-03	5.08E-03	1.76E-04	7.69E-04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-103	7.36E-03	3.22E-02	3.48E-03	1.52E-02	5.27E-04	2.31E-03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-104	2.45E-03	1.07E-02	1.16E-03	5.08E-03	1.76E-04	7.69E-04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-201																	0.00	0.00	8.36	36.62
AA-202	100.00	438.00	120.76	528.94	120.76	528.94	0.00	0.00	20.00	87.60	20.00	87.60	200.00	876.00	0.00	0.00	0.01	0.04	3.26	14.27
AA-203																	0.00	0.00	0.02	0.07
AA-204	100.00	25.00	120.76	30.19	120.76	30.19	0.00	0.00	50.96	12.74	100.04	25.01	113.25	28.31	0.00	0.00	0.00	0.00	8.36	2.09
AA-301	17.14	75.09	17.14	75.09	17.14	75.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-302	101.83	446.01	101.83	446.01	101.83	446.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-303	64.29	281.57	64.29	281.57	64.29	281.57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-401	3.25	14.23	1.54	6.73	0.23	1.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-501	17.14	75.09	17.14	75.09	17.14	75.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-502	17.11	, 5.0,	.,,	75.07	17111	75.07	0.00	0.00	0.00	0.00		0.00		0.00	0.00	0.00	0.00	0.00		0.00
AA-503	17.14	75.09	17.14	75.09	17.14	75.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-601	0.02	0.07	0.06	0.28	0.06	0.28	0.01	0.02	0.42	1.85	0.71	3.10	0.05	0.20	0.00	0.00	0.00	0.00	0.02	0.07
AA-602	0.07	0.02	0.48	0.12	0.48	0.12	0.45	0.11	1.46	0.36	1.26	0.32	0.54	0.14	0.00	0.00	0.00	0.00	0.01	0.00
IA-001	1.78	7.79	0.36	1.56	0.36	1.56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Totals	422.67	1,438.01	461.52	1,520.69	460.21	1,514.95	0.46	0.13	72.84	102.55	122.01	116.03	313.84	904.65	0.00	0.00	0.01	0.04	20.02	53.13

¹ Condensables: Include condensable particulate matter emissions in particulate matter calculations for PM-10 and PM-2.5, but not for TSP (PM).

² TRS: Total reduced sulfur (TRS) is the sum of the sulfur compounds hydrogen sulfide (H₂S), methyl mercaptan (CH₄S), dimethyl sulfide (C₂H₆S), and dimethyl disulfide (C₂H₆S₂).

Section B.2: Proposed Allowable Emissions

Proposed Allowable Emissions (Potential to Emit) are those emissions the facility is currently permitted to emit as limited by a specific permit requirement or federal/state standard (e.g., a MACT standard); or the emission rate at which the facility proposes to emit considering emissions control devices, restrictions to operating rates/hours, or other requested permit limits that reduce the maximum emission rates. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Emissions ≥ 0.01 ton/yr from a specific emission unit must be included. Additional columns may be added if there are regulated pollutants (other than HAPs and GHGs) emitted at the facility. List HAPs in Section B.3 and GHGs in Section B.4 (if applicable).

Emission	TS	SP ¹	PM	[10 ¹	PM	2.5 ¹	S	O_2	N	Ox	C	0	V	OC	T	RS	Le	ead
Point ID	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
AA-101	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-102	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-103	0.01	0.03	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-104	0.00	0.01	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-201																	0.00	0.00
AA-202	10.00	43.80	12.08	52.89	12.08	52.89	0.00	0.00	20.00	87.60	20.00	87.60	10.00	43.80	0.00	0.00	0.01	0.04
AA-203																	0.00	0.00
AA-204	100.00	25.00	120.76	30.19	120.76	30.19	0.00	0.00	50.96	12.74	100.04	25.01	113.25	28.31	0.00	0.00	0.00	0.00
AA-301	0.17	0.75	0.17	0.75	0.17	0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-302	1.02	4.46	1.02	4.46	1.02	4.46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-303	0.64	2.82	0.64	2.82	0.64	2.82	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-401	3.25	14.23	1.54	6.73	0.23	1.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-501	0.17	0.75	0.17	0.75	0.17	0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-502	0.17	0.75	0.17	0.75	0.17	0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-503	0.17	0.75	0.17	0.75	0.17	0.75	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-601	0.02	0.07	0.06	0.28	0.06	0.28	0.01	0.02	0.42	1.85	0.71	3.10	0.05	0.20	0.00	0.00	0.00	0.00
AA-602	0.07	0.02	0.48	0.12	0.48	0.12	0.45	0.11	1.46	0.36	1.26	0.32	0.54	0.14	0.00	0.00	0.00	0.00
IA-001	1.92	7.79	0.38	1.56	0.38	1.56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Totals	117.45	100.50	137.49	101.34	136.18	95.60	0.46	0.13	72.84	102.55	122.01	116.03	123.84	72.45	0.00	0.00	0.01	0.04

^{1 117.45 100.50 137.49 101.34 136.18 95.60 0.46 0.13 72.84 102.55 122.01 116.03 123.84 72.45 0.00 0.00 0.01 0.04}

² TRS: Total reduced sulfur (TRS) is the sum of the sulfur compounds hydrogen sulfide (H₂S), methyl mercaptan (CH₄S), dimethyl sulfide (C₂H₆S), and dimethyl disulfide (C₂H₆S₂).

Section B.3: Proposed Allowable Hazardous Air Pollutants (HAPs)

Proposed Allowable HAPs (Potential to Emit) are those emissions the facility is currently permitted to emit as limited by a specific permit requirement or federal/state standard (e.g., a MACT standard); or the emission rate at which the facility proposes to emit considering emissions control devices, restrictions to operating rates/hours, or other requested permit limits that reduce the maximum emission rates. Select an individual HAP from the dropdown list provided. Emissions 2 e.0.11 tonlyr of an individual HAP from a specific emission unit must be provided. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. Fill all cells in this table with the emission numbers or a "" symbol. A """ symbol indicates that emissions of this pollutant are not expected or are below the reporting threshold. Select the appropriate HAP from the drop down menu in the header cell of the given column in the table below. Additional columns may be added as necessary to address each HAP.

Emission Point ID	Total	HAPs	Acetal	dehyde	Acr	olein	Arsenic C	compounds	Ben	zene	Chle	orine		omium oounds	Forma	ldehyde	Hydroge	n Chloride	He	xane	Mang	ganese	Meti	hanol	Nickel Co	ompounds	Ph	enol	Propion	naldehyde	Tob	luene
TOIRTID	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
AA-101	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-102	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-103	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-104	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-201	0.51	2.22	0.10	0.45	0.02	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.13	0.58	0.11	0.47	0.00	0.00	0.00	0.00	0.10	0.45	0.00	0.00	0.03	0.12	0.01	0.05	0.00	0.00
AA-202	1.40	6.12	0.01	0.03	0.03	0.15	0.00	0.02	0.04	0.16	0.01	0.03	0.00	0.02	0.04	0.16	0.97	4.24	0.02	0.07	0.27	1.19	0.00	0.00	0.01	0.02	0.00	0.00	0.00	0.00	0.01	0.03
AA-203	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-204	8.36	2.09	2.08	0.52	0.43	0.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.64	0.66	0.36	0.09	0.00	0.00	0.00	0.00	2.08	0.52	0.00	0.00	0.53	0.13	0.25	0.06	0.00	0.00
AA-301	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-302	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-303	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-401	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-501	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-502	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-503	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-601	0.02	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
AA-602	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
IA-001	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
																															'	
Totals:	10.29	10.51	2.19	1.00	0.49	0.35	0.00	0.02	0.04	0.16	0.01	0.03	0.00	0.02	2.81	1.41	1.44	4.81	0.03	0.14	0.27	1.19	2.18	0.97	0.01	0.02	0.55	0.25	0.26	0.12	0.01	0.03

Section B.4: Greenhouse Gas (GHG) Emissions

This form is required for facilities that have or will require a Title V Operating Permit and for all industries in the energy and oil and gas sectors (i.e., SIC codes beginning with 13, 29, 46, and 49). Proposed Allowable GHGs (Potential to Emit) are those emissions the facility is currently permitted to emit as limited by a specific permit requirement or federal/state standard; or the emission rate at which the facility proposes to emit considering emissions control devices, restrictions to operating rates/hours, or other requested permit limits that reduce the maximum emission rates. Applicants must report potential emission rates in SHORT TONS per year, as opposed to metric tons required by Part 98. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. Only those emission points with emissions of greenhouse gases are required to be provided on this form.

		CO ₂ (non- biogenic) ton/yr	CO ₂ (biogenic) ² ton/yr	N ₂ O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ³ ton/yr			Total GHG Mass Basis ton/yr ⁵	Total CO ₂ e ton/yr ⁶
Emission Point ID	GWPs 1	1	1	265	28	22,800	footnote 4				
AA-201 - AA	mass GHG	85,490.77	-	6.90	5.25	-	-			85,502.91	-
203	CO ₂ e	87,465.25	-	1,827.37	147.11	-	-			-	89,439.73
4.4.601	mass GHG	4,433	-	8.14E-06	8.14E-05	-	-			4,432.98	-
AA-601	CO ₂ e	4,433	-	2.16E-03	2.28E-03	-	-			-	4,432.99
1.1.602	mass GHG	63.25	-	5.09E-04	2.55E-03	-	-			63.25	-
AA-602	CO ₂ e	63.46	-	1.35E-01	7.13E-02	-	-			-	63.66
	mass GHG							1			
	CO ₂ e										
	mass GHG		ĺ					1	İ	ĺ	
	CO ₂ e										
	mass GHG		İ					1	1		
	CO ₂ e										
	mass GHG		ĺ					İ	İ		
	CO ₂ e										
	mass GHG		1					1	<u> </u>		
	CO ₂ e										
	mass GHG		ĺ					İ	İ		
	CO ₂ e										
	mass GHG										
	CO ₂ e										
	mass GHG										
	CO ₂ e										
	mass GHG							1			
	CO ₂ e										
FACILITY	mass GHG	89,986.99	-	6.90	5.26	-	-		1	89,999.15	_
TOTAL	CO ₂ e	91,961.68	_	1,827.51	147.18	_	_	1		_	93,936.38

¹ **GWP** (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² Biogenic CO2 is defined as carbon dioxide emissions resulting from the combustion or decomposition of non-fossilized and biodegradable organic material originating from plants, animals, or micro-organisms.

³ For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

⁴ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁵ Greenhouse gas emissions on a mass basis is the ton per year greenhouse gas emission before adjustment with its GWP. Include both biogenic and non-biogenic GHG in this total.

⁶ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the ton/yr mass emissions of the greenhouse gas by its GWP. Include both biogenic and non-biogenic CO₂e in this total.

Section B.5: Stack Parameters and Exit Conditions

Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit.

Emission Point ID	Orientation (H-Horizontal	Rain Caps	Height Above Ground	Base Elevation	Exit Temp.	Inside Diameter or Dimensions	Velocity	Moisture by Volume	Geograph (degrees/min	ic Position utes/seconds)
	V=Vertical)	(Yes or No)	(ft)	(ft)	(°F)	(ft)	(ft/sec)	(%)	Latitude	Longitude
AA-101	All stacks and rele	vant information	are TBD.							
AA-102										
AA-103										
AA-104										
AA-201										
AA-202										
AA-203										
AA-204										
AA-301										
AA-302										
AA-303										
AA-401										
AA-501										
AA-502										
AA-503										
AA-601										
AA-602										

¹ A WAAS-capable GPS receiver should be used and in the WGS84 or NAD83 coordinate system.

FORM 5

MDEQ

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION **CONTROL PERMIT**

Fuel Burni	ng Equipment	- External Combustion Sources	Section C

l Burning	Equipment –	External Co	mbustior	Sources	Section C
Emission	Point Description	n			
A. Emission	n Point Designation (Ref	f. No.): AA-201	- AA-202		
	1 1 0 m 2 00 g m 1 0 m (1 1 0 1	<u> </u>	11111111111		
B. Equipn	to d	o (2) burners combus lry chips in the dryer to supplement synga	and torrefication		ication and route back s is used for start-up
C. Manufa	turer: TBD	D.	Model Yr. and	l No.: TBD	
E. Maxim	m Heat Input: 85 e	ach MMBtu/hr			
F. For uni	subject to NSPS Db, is	the heat release rate	> 70,000 Btu/h	r-ft ³ ?	☐ Yes ⊠ No
G. Use:	☐ Electrical Ge	eneration	Steam		ess Heat
	pace Heat S	tandby/Emergency	Othe	r (describe):	
H. Heat M	chanism:	Direct	Indirect		
	Type (e.g., pulverized cong oil, low-NO _x , etc.):		aditional burne	ers	
J. Additio	al Design Controls (e.g.	, FGR, etc.): <u>N/A</u>			
K. Status:	Operating	Propos	sed _	Under Construc	etion
	construction, reconstruct sources) or date of antic		odification (fo	r ~ Dec 20	25
Fuel Typ					
Complete the	ollowing table, identifyind yearly usage.	ng each type of fuel a	nd the amount	used. Specify the	units for heat content,
FUEL TYPI		% SULFUR	% ASH	MAXIMUM HOURLY USAGE	MAXIMUM YEARLY USAGE
Syngas	4,210 btu/lb – wet	unknown	2.6	85 MMBtu	744,600 MMBtu
Natural Ga	1020 btu/scf	Negligible	Negligible	85 MMBtu	744,600 MMBtu
Please list any	fuel components that are	hazardous air polluta	ants and the pe	rcentage in the fuel	:
	ng solid waste may be co				
	ons. However, you are obusted are indicated in t		piete section C	, not i, of this appli	cauon as long as

FORM 5 MDEO

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION

				CONTR	OL PERMIT	
ıel Bı	irning E	Equipment – E	External Co	mbustion	Sources	Section C
En	nission Po	int Description				
A.	Emission P	oint Designation (Ref. 1	No.): <u>AA-601</u>			
B.	Equipment	Description: <u>Natur</u>	ral gas-fired boiler	used to produce	steam.	
C.	Manufactur	er: TBD	D.	Model Yr. and	No.: TBD	
E.	Maximum 1	Heat Input: 8.6	MMBtu/hr			
F.	For units su	ubject to NSPS Db, is th	ne heat release rate	> 70,000 Btu/h	r-ft ³ ?	☐ Yes 🖂
G.	Use:	☐ Electrical Gen	eration	Steam	Proc	eess Heat
	Spac	e Heat Sta	ndby/Emergency	Other	(describe):	
Н.	Heat Mecha	anism: I	Direct [Indirect		
I.	* 1	e (e.g., pulverized coal oil, low-NO _x , etc.):	•	ow NO _X		
J.	Additional	Design Controls (e.g., l	FGR, etc.): <u>N/A</u>			
K.	Status:	Operating	Propo	sed	Under Construc	ction
L.		astruction, reconstruction arces) or date of anticip		nodification (for	~ Dec 20	25
Fu	el Type					
Con		owing table, identifying	g each type of fuel	and the amount	used. Specify the	units for heat content
	EL TYPE ¹	HEAT CONTENT (higher heating value – HHV)	% SULFUR	% ASH	MAXIMUM HOURLY USAGE	MAXIMUM YEARLY USAGE
N	atural Gas	1020 Btu/scf	Negligible	Negligible	8.6 MMBtu	75,336 MMBtu
DI	1: 4		1	1.1		
Plea	se list any fue	el components that are h	iazardous air pollut	ants and the per	rcentage in the fuel	:
1 R o	ilers hurning	solid waste may be con	sidered "solid wast	e incinerators"	for nurnoses of cor	nnlying with

federal regulations. However, you are only required to complete Section C, not I, of this application as long as the wastes combusted are indicated in the table above.

FORM 5 MDEQ

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT

Fue	l Bu	rning E	Equipment –	- Internal C	Combusti	ion Sources	Section D
1.			t Description				
	A.	Emission P	oint Designation (R	ef. No.): <u>AA-6</u>	02		
	B.	Equipment	Description: E	mergency diesel fi	re pump engin	<u>ne</u>	
	C.	Manufactu	rer: TBD		D. Model	Yr. and No.: TBD	
	E.	Maximum	Heat Input (higher h	eating value):	0.56	MMBtu/hr	
	F.	Rated Pow	er: <u>220</u>	hp	164.1	kW	
	G.	Use:	□ Non-emerger	ncy	⊠ Eme	rgency	
	Com	plete H thro	ough Q for Recipro	cating (Piston) In	ternal Combi	ustion Engines	
	Н.		ent per cylinder:	⊠ < 10 Liters		10 to <30 Liters	$\triangle \ge 30 \text{ Liters}$
	I.	Engine Ign	ition Type:	☐ Spark Ignit	ion		nition
	J.	Engine Bu		4-stroke	□ 2-strok	e 🗆 Rich B	urn 🗆 Lean Burn
	K.	Design Cor	ne answered for Conntrols (e.g., catalytic filter, SCR, etc.)		only) 		
	L.	Status:	☐ Operating	\boxtimes	Proposed	☐ Under Co	onstruction
	M.	Engine mar	nufactured or ed date:	TBD	N	N. Engine order date:	TBD
	O.	_	ne certified by EPA				Yes □ No
	P.	Demand Re	ency engine, can yo esponse per the NEF	RC Reliability Stan	dard?		Yes ⊠ No
	Q.	If an emerg	gency engine, is it us sponse?	sed for peak shavin	g or non-emer	rgency	Yes ⊠ No
	Com	plete R thro	ugh T for Stationa	ry Gas Turbines			
			pe: Sin		_		Combined Cycle
	S.	Controls:		m Injection rols (SCR, oxidation	☐ Lean Pron catalyst, etc		
	T.		astruction, reconstruction, or date of anti-			on (for	
2.	Fuel	l Type					
			owing table, identify	ying each type of f	uel and the am	nount used. Specify un	nits of measurement.
		EL TYPE	HEAT	% SULFUR	% ASH	MAXIMUM	MAXIMUM
			CONTENT			HOURLY USAGE	YEARLY USAGE
		Diesel	139,000 Btu/gal	0.0015%	0%	4.03 gal	2,014 gal
			l .		1	1	

FORM 5	MDEQ
--------	------

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT

					CONTROL P	PERMIT	
Ma	nuf	acturing Pr	ocess	es			Section E
1.		ission Point					
1.	A. B. C. E.	Emission Poin Process Descri screened for th chips received Manufacturer: Max. Design C	t Desigr ption: (e approby trucl	Chipper – who priate size. Ch	whole logs) to: 62.92	re re-chipped a	llong with
	G. H.		ction, rec	construction, or	hrs/day7 d most recent modification ited construction:	_	52 weeks/yr
2.	Rav	w Material II	ıput				
	Who	MATERIAL ele Logs en Chips	A' 62	NTITY/HR VERAGE 2.92 tons 8.88 tons	QUANTITY/HR MAXIMUM 62.92 tons 18.88 tons	QUANTITI MAXI 551,15 165,34	MUM 5 tons
3.	Pro	duct Output					
	ı	MATERIAL	A	NTITY/HR VERAGE	QUANTITY/HR MAXIMUM	QUANTII MAXI	MUM
	Gree	en Chips	62	2.92 tons	62.92 tons	551,15	5 tons

FORM 5	MDEQ
--------	------

				CONTROL P	LKIVIII		
Ma	nuf	Sacturing Pr	ocesses			Section E	
1.	Em	nission Point l	Description				
	A. B.		•	o.): AA-302 rmill is used to process	torrefied mate	erial into	
	C. E.	Manufacturer: Max. Design C	TBD apacity (specify units)		TBD		
	F. Status: Operating Proposed Under Construction						
	G. H.			hrs/day 7 da most recent modification ted construction:	ys/week _~ Dec 2025	weeks/yr	
2.	Ra	w Material In	put				
		MATERIAL refied Material	QUANTITY/HR AVERAGE 29.76 tons	QUANTITY/HR MAXIMUM 29.76 tons	QUANTIT MAXI 260,71	MUM	
3.	Pro	oduct Output					
· ·	11(oduci Guipui					
		MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTIT MAXI		
	Torr	refied Material	29.76 tons	29.76 tons	260,71	8 tons	
						·	

				CONTROL PI	ERMIT	
Ma	nuf	acturing Pr	ocesses			Section E
1.		nission Point I				
	A. B.	Emission Point	Designation (Ref.: No ption: Pelletizing — incide in pelletizing proce	cludes 6 pellet mills whess, and a pellet cooler v		
	C. E.	Manufacturer: Max. Design C	TBD apacity (specify units)	D. Model:	TBD	
	F.	_		oposed U	ons/hr Jnder Constru	
	G. H.		· , ,	most recent modification	ys/week _~ Dec 2025	weeks/yr
2.	Ra	w Material In	put			
		MATERIAL refied Material	QUANTITY/HR AVERAGE 18.88 tons	QUANTITY/HR MAXIMUM 18.88 tons	QUANTIT MAXI 165,34	MUM
3.	Dra	oduct Output				
J	11(
	Pello	MATERIAL	QUANTITY/HR AVERAGE 18.88 tons	QUANTITY/HR MAXIMUM 18.88 tons	QUANTIT MAXI 165,34	MUM
			10.00 1013	10.00 tons	100,04	7 10115

	CONTROL PERMIT						
Ma	nuf	acturing P	rocesses			Section	$\overline{\mathbf{E}}$
1.		ission Point			L		
1.	Em A. B. C. E. H.	Emission Point Process Descritransferred to burners that consummers that consummers that consummers that consummers that consummers that consummers that consummers that consummers that consummers that consummers that consummers that consummers that consummers that consummers that consummers that consummers that consummers that consumers the consumers that consumers the consumers t	iption: Rotary Dryer - two (2) torrefication upombust syngas and nate TBD Capacity (specify units Equivalent to the component of the compon	D. Model: 551,155 tons (greer or whole logs) 62.92	TBD a chips ons/hr Under Construction	tion	- s/yr
2.			urces) or date of anticipa	ated construction:	~ Dec 2025		
_,		,, 1,2,00012012					
]	MATERIAL	QUANTITY/HR	QUANTITY/HR	QUANTIT	Y/YEAR	
			AVERAGE	MAXIMUM	MAXIN		
		ole Logs	62.92 tons	62.92 tons	551,155		
	Gree	en Chips	18.88 tons	18.88 tons	165,347	tons	
3.	Dro	duct Output	<u>.</u>				
J.	110						
	1	MATERIAL	QUANTITY/HR	QUANTITY/HR	QUANTIT	V/VFAR	
			AVERAGE	MAXIMUM	MAXIN		
	Dry	Chips	29.76 tons	29.76 tons	260,718		
					,		

FORM 5	MDEQ
--------	------

			- ~	CONTROL PI	ERMIT		
Ma	anufa	acturing Pr	ocesses			Section	E
1.		ission Point l					
1.	A. B. C. E.	Emission Point Process Descripin an oxygen detorrefiers. Heat exhaust gas (i.e.) Manufacturer:	Designation (Ref.: Note of the period of the	Systems – dried chips wit a relatively low temper wo (2) burners, which coded, natural gas is comb D. Model:	cature in two (2)	2) orrefier	-
	F.	_	Equivalent	to: 62.92 to	ons/hr Jnder Constru	ction	
	G. H.	Date of construc		hrs/day7 da most recent modification ited construction:	ys/week	52 week	ks/yr
2.	Rav	v Material In	put				
		MATERIAL	QUANTITY/HR AVERAGE 62.92 tons	QUANTITY/HR MAXIMUM 62.92 tons	QUANTIT MAXIN 551,15	MUM	
3.		duct Output					
		MATERIAL efied Material	QUANTITY/HR AVERAGE 29.76 tons	QUANTITY/HR MAXIMUM 29.76 tons	QUANTIT MAXIN 260,718	MUM	
	1				1		

FORM 5	MDEQ
--------	------

				CONTROL PI	LKIVIII	
Ma	nuf	acturing Pr	ocesses			Section E
1.		ission Point I			1	
	A. B.	Emission Point Process Descrip	Designation (Ref.: No	rial Storage Silo – torre	fied material	is stored
	C. E.	Manufacturer: Max. Design C	TBD apacity (specify units)		TBD	
	F.	Status:	Equivalent to Departing 🛛 Pro		ons/hr Inder Constru	ction
	G. H.		·	hrs/day 7 day most recent modification ted construction:		52 weeks/yr
2.	Ra	w Material In	put			
		MATERIAL refied Material	QUANTITY/HR AVERAGE 29.76 tons	QUANTITY/HR MAXIMUM 29.76 tons	QUANTIT MAXII 260,713	MUM
3.	Pro	oduct Output				
		MATERIAL refied Material	QUANTITY/HR AVERAGE 29.76 tons	QUANTITY/HR MAXIMUM 29.76 tons	QUANTIT MAXII 260,713	MUM

FORM 5 MDEQ

10	ALIVA		Q verial	CONTROL PE	ERMIT	22011	
Ma	nufa	ecturing Pro	ocesses			Section E	
1.		ission Point D					
	B.		tion: Pellet Storage	No.): <u>AA-501 – AA-50</u> Silos – includes two (2)		e pellets	
		Manufacturer: Max. Design Ca	TBD apacity (specify units Equivalent		TBD ons/hr		
	F.	Status:	Operating N Pr	roposed U	Inder Constru	ction	
	G.	Operating Schedu	ule (Actual): 24	hrs/day7 day	ys/week	52 weeks/y	yr
			ion, reconstruction, or ces) or date of anticipa	most recent modification ated construction:	~ Dec 2025		
2.	Raw	Material In	put				
	Pellet	MATERIAL	QUANTITY/HR AVERAGE 18.88 tons	QUANTITY/HR MAXIMUM 18.88 tons	QUANTIT MAXIN 165,34	MUM	
3.	M	duct Output MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTIT MAXIN	MUM	
	Pellet	ts	18.88 tons	18.88 tons	165,34	/ tons	

FORM 5	MDEQ
--------	------

				CONTROL PI	CRMIT		
Ma	nuf	acturing Pr	ocesses			Section E	
1.	Em	ission Point l	Description				
	A. B.	Process Descri	Designation (Ref.: No ption: Pellet Loadout -502) into barges to be	 Pellets are transferred 	from storage	<u>silos</u>	
	C.	Manufacturer:		D. Model:	N/A		
	E.	Max. Design C	apacity (specify units) Equivalent to		ons/hr		
	F.	Status:	Operating Note Pro	oposed U	Inder Constru	ction	
	G.	Operating Scheo	lule (Actual): 24	hrs/day 7 da	ys/week	52 weeks/y	r
	Н.		tion, reconstruction, or reces) or date of anticipat	most recent modification ted construction:	~ Dec 2025		
2.	Ra	w Material Ir	put				
		MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTIT MAXII	MUM	
	Pell	ets	18.88 tons	18.88 tons	165,34	7 tons	
3.	Pro	duct Output					
		MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTIT MAXII		
	Pell	ets	18.88 tons	18.88 tons	165,34	7 tons	
					L		

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL FORM 5 MDEQ QUALITY APPLICATION FOR AIR POLLUTION CONTROL

		PERMIT						
Bag	ghou	ises/Fabric Filters	Section L1					
1.	Baş	ghouse Description						
	A.	Emission Point Designation (Ref. No.): AA-301, AA-302, AA-303, AA-501, 502, AA-503	AA-					
	B.	Specifics to the control equipment is still TBD, but expecting to control PM on the	Equipment Description (include the process(es) that the baghouse controls emissions from): Specifics to the control equipment is still TBD, but expecting to control PM on the torrefied material storage silo, dry hammermill, pellet mills/pellet cooler, pellet storage silos, and barge loadout.					
	C.	Manufacturer: TBD D. Model: TBD						
	Е.	Status: Operating Proposed Under Construction						
2.	Baş	ghouse Data						
	A.	Cloth Area: TBD ft^2 B. Air to cloth ratio: $>3:1$	acfm/ft ²					
	C.	Type of bag:	ner:					
	D.	Filter Material: PPS E. Max. Filter Operating Ten	np.: Ambient °F					
	F.	No. of compartments: G. No. of bags per compartments	ent: TBD					
	H.	Bag length: TBD ft I. Bag diameter:	TBD ft					
	J.	Pressure drop: TBD in. H ₂ O K. Inlet air flow rate:	TBD acfm					
	L.	Air temperature: Ambient °F M. Efficiency (PM):	99 %					
	N.	Is a pressure measurement device installed? Yes No Warning alarm	n?					
	O.	Dirty air is on: ☐ Inside of bag ☐ Outside of bag						
	P.	Time between bag cleaning (specify units):	Timed					
	Q.	Method of cleaning: Shaking Other: Reverse Air Pulse Je	et					
	R.	Are extra bags readily available?	ny? <u>TBD</u>					
	S.	Method for determining when to replace bags: Alarm Inspection Other:	☐ Visible Emission					
	T.	How is the collected dust stored, handled, and disposed of? Reused in system.						

FORM 5 MDEQ

		CONTROL PERMIT	
Oxi	idati	ion Systems	Section L4
1.	Oxi	idation Equipment Description	
	A.	Emission Point Designation (Ref. No.): AA-201 – AA-203	
	В.	Equipment Description (include the process(es) that oxidation system corfrom): Dryer, torrefication units, and burner emissions are routed to a Wearto. There is one dryer and two torrefication units which are routed to o one RTO.	et ESP then to a
	C.	Manufacturer: TBD D. Model: TBD	
	Е.	Status:	struction
2.	Oxi	idation System Data	
	A.	Type of Oxidation Process: Afterburner	
	B.	Efficiency: 95 % Controlling the following pollutant(s Controlling the following pollutant)	· ———
	C.	Inlet air flow rate:TBD acfm	
	D.	Combustion chamber temperature: Minimum:70 °F Max	imum:70 °F
	E.	Maximum burner rating: 8.7 MMBtu/hr F. Fuel type:	Natural Gas
	G.	Fuel usage rate (specify units): H. Sulfur in Fu	el: wt %
	I.	Residence time: TBD seconds J. Percent excess air:	
	K.	Combustion chamber volume: ft ³	
	L.	VOC Concentration: Inlet: 311 ppmv Outlet: TBE) ppmv

FORM 5

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL **QUALITY APPLICATION FOR AIR POLLUTION**

MDEQ CONTROL PERMIT Oxidation Systems Section L4 Oxidation System Data (continued) M. Catalyst Data (if applicable): N/A 1. Catalyst type: Catalyst volume: ft³ 2. How is spent catalyst disposed of? 3. Flare Data (if applicable): N/A N. Non-assisted Steam-assisted 1. Air-assisted Flare type: Other: Net heating value of combusted gas: Btu/scf 2. Design exit velocity: ft/sec 3. 4. Is the presence of a flare pilot flame monitored? Yes No If yes, please describe the monitoring:

FORM 5 MDEQ

1 (CONTROL PERMIT
Ele	ctro	static Precipitators (ESP) Section L6
1.	Ele	ctrostatic Precipitator Description
	A.	Emission Point Designation (Ref. No.): AA-201 – AA-203
	В.	Equipment Description (include the process(es) that ESP controls emissions from): <u>Dryer, torrefication units, and burner emissions are routed to a Wet ESP then to a RTO.</u> <u>There is one dryer and two torrefication units which are routed to one Wet ESP and one RTO.</u>
	C.	Manufacturer: TBD D. Model: TBD
	Е.	Status:
2.	Ele	ctrostatic Precipitator Data
	A.	Precipitator Type: Wet Dry Single-stage
		Two-stage Other:
	B.	Efficiency: 90 % Controlling the following pollutant(s): PM
	C.	Inlet air flow rate:TBD acfm
	D.	Pressure Drop: TBD in. of H_2O
	E.	Inlet Temperature:TBD °F
	F.	Total collection plate area: ft ²
	G.	Collector Plate Size: Length: <u>TBD</u> ft Width: <u>TBD</u> ft
	Н.	Gas Viscosity: TBD poise
	I.	Pollutant Resistivity: TBD ohm-cm
	J.	Field strength: Charging: <u>TBD</u> volts Collecting: <u>TBD</u> volts
	K.	No. of fields: TBD
	L.	No. of collector plates per field: TBD

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL

FOR	M 5	MD	EQ	QU.	ALITY APPLIC	CATIO	N FOR AI PERMIT	R POLI	
Electr	ostat	ic Precip	oitators	(ESP)					ection L6
2. E	lectro	static Pre	cipitator	· Data (c	ontinued)				
M	. Spa	cing betwee	en collecto	r plates:	TBD in.				
N.	. No.	of comparts	ments:	TBD					
Ο.	. No.	No. of discharge electrodes: TBD							
P.	Cor	Corona Power: TBD watts/1000cfm							
Q.	. Elec	Electrical Usage:TBD kW/hr							
R.	Clea	aning Metho	od:	Plate Rapp	oing Pl	ate Vibra	ating	☐ Wa	ashing
		Other: _							
S.	Rap	per Frequer	ncy:	TBD	min/cycle		Automati	ic	Manual
T.	Is fl	ue gas cond	litioning re	equired?	Yes		No		
U.	. Fan	location rel	lative to pr	recipitator:	Upstream	[Down	nstream	
V.	. Hov TBI		ected dust	stored, har	ndled, and dispos	sed of?			
W	. List	the electric	al condition	ons per fiel	d:				
	FI	ELD NO.	VOLTA	GE (kV)	AMPERAGE	(mA)			
		TBD							

					PERMIT				
	ord	keeping				Section M8			
1.	Ap	Applicable Emission Point Description							
	A.	Emission Point Design	gnation (Ref.	No.): Facility-W	ïde				
	B.	Emission Point Description: <u>Facility-Wide</u>							
	C.	For what emission limit or standard does the recordkeeping demonstrate compliance? ≤ 9 tons/12-month rolling period for individual HAP emissions; ≤ 24 tons/12-month rolling period for total HAP emissions							
	D.	Is there an applicable Yes	e underlying 1 No	requirement for the 1	recordkeeping?				
		If yes, what is that requirement (e.g., NSPS Subpart QQ, Permit to Construct issued, etc.)? HAP synthetic minor source							
2.	Rec	cordkeeping Infor	mation						
	A.	Data/information rec	orded:						
		Parameter/Materia	Units	Recordkeeping Frequency	Sampling and ar (e.g., EPA M				
		Individual HAPs	tons	Monthly	Record monthly rolling total				
		Total HAPs	tons	Monthly	Record monthly rolling total				
	В.	Compliance is determ	nined:						
		☐ Daily ☐ Weekly ☑ Monthly							
		Other:							

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL FORM 5 MDFO QUALITY APPLICATION FOR AIR POLLUTION CONTROL

TORM 5			MIDEQ	PERMIT						
Rec	cord	kee	ping				Section M8			
1.	Ap	plica	ble Emission P	oint Desc	ription					
	A.	Emi	ssion Point Design	nation (Ref.)	No.): <u>AA201 – A</u>	AA203				
	B.	Emission Point Description: <u>Dryer and Torrefication Systems</u>								
	C.	For what emission limit or standard does the recordkeeping demonstrate compliance? WESP: Secondary voltage for each field, secondary current for each field, total power for unit (3-hr average total power) RTO: Minimum combustion temperature (3-hr average temperature)								
	D.	Is there an applicable underlying requirement for the recordkeeping? Yes No If yes, what is that requirement (e.g., NSPS Subpart QQ, Permit to Construct issued, etc.)? PSD Avoidance (40 CFR 51.166)								
			`							
2.	Re	cord	keeping Inform	<u>nation</u>						
	A.	Data	/information recor	ded:						
		Para	ameter/Material	Units	Recordkeeping Frequency	Sampling and ar (e.g., EPA M	•			
		WES Volt	SP: Secondary age	kV	3-hr average	Continuous vo	ltage monitor			
		WES Curr	SP: Secondary ent	ma	3-hr average	Continuous cu	rrent monitor			
		WES	SP: Total Power	W	3-hr average	Total Power = Sec * Secondary Curr field	rent (sum for all ls)			
		RTC	: Temperature	F	3-hr average	Continuous temp (combustion z				

В.	Compliance is de	etermined:		
	Daily	Weekly	Monthly	
	Other:	Continuous		

FORM 5 MDEQ

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT

Applicable Requirements and Status

Section N

1.	Summary	of Ani	nlicable	Rea	mirement
T •	Summary	OTIV	piicabic	1100	un cincii,

Provide a list of all applicable federal standards for which your facility is or will be subject to, as well as a list of all Construction Permits establishing limits or restrictions issued to your facility. The specific emission standards and limitations applicable to each emission point shall be provided on the following pages (Parts 2 and 3).

Federal Regulations:

40 CFR Part	60	Subpart	IIII			
	63	-	ZZZZ			
State Constru	ction Permits	s ¹ :				
		MM/DD/	$'YY^2$	PSD	PSD Avoidance	ce ³ Other
Permit to Cons	truct issued:					
			_			

¹ Any Construction Permits containing requirements that are currently applicable to the facility should be addressed in this section.

² If the permit has been modified, give the most recent modification date.

³ Because permits are issued on a pollutant-by-pollutant basis, a PSD permit may be significant for one pollutant while also containing PSD avoidance limits for another pollutant. Therefore, you may check multiple boxes for each permit.

FORM 5	MDEQ
--------	------

Applicable Requirements and Status

Section N

2. Current Applicable Requirements

List all applicable state and federal requirements to the level of detail needed to identify each applicable emission standard and/or work practice standard and the applicable test methods or monitoring used to demonstrate compliance with each applicable requirement. Applicable provisions from any relevant Permit to Construct shall also be listed. Provide the compliance status as of the day the application is signed.

EMISSION POINT NO.	APPLICABLE REQUIREMENT (Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING	COMPLIANCE STATUS (In/Out) ^{1,2}
N/A					
			-		

¹ Per 11 Miss. Admin. Code Pt. 2, R. 6.2.C(8)(b)(1) for Title V sources, by specifying that the source is in compliance with the applicable requirement(s), I (the applicant) am certifying that I will continue to operate and maintain this source to assure compliance for the duration of the permit term.

² Per 11 Miss. Admin. Code Pt. 2, R. 6.2.C(8)(b)(3) for Title V sources, by specifying that the source is out of compliance with the applicable requirement(s), I (the applicant) am submitting a schedule, attached herein, which includes a description of the problems and proposed solutions in accordance with 11 Miss. Admin. Code Pt. 2, R. 6.2.C(8)(c).

FORM 5 MDEQ

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT

Applicable Requirements and Status

Section N

3. Future Applicable Requirements

List all future applicable state and federal requirements, including emission limits, operating restrictions, etc., and the applicable test methods or monitoring to be used to demonstrate compliance with each applicable requirement. Applicable provisions from any Permit to Construct for which certification of construction has not yet been submitted shall also be listed.

EMISSION POINT NO.	FUTURE APPLICABLE REQUIREMENT (Regulation citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING	COMPLIANCE DATE ¹
Facility Wide	11 Miss. Admin. Code Pt. 2, R.1.3.A(1)-(2) & B	PM	≥ 40%, up to 15 minutes per startup in any 1 hour, not to exceed 3 startups in any 24 hour period.	EPA Ref. Method 9	Upon Operation Commencement
Facility Wide	PSD Avoidance (40 CFR 51.166)	PM ₁₀ NO _x CO	249 tpy	Recordkeeping	Upon Operation Commencement
AA-201, AA-202, AA-203, AA-601, AA-602	11 Miss. Admin. Code Pt. 2, R.1.3.D(1)(a)	PM	0.6 lb/MMBtu Heat Input	EPA Ref. Methods 1-5	Upon Operation Commencement
AA-201, AA-202	11 Miss. Admin. Code Pt. 2, R.1.3.D(1)(b)	PM	$E = 0.8808 \times I^{-0.1667}$	EPA Ref. Methods 1-5	Upon Operation Commencement
AA-100, AA-300	11 Miss. Admin. Code, Pt. 2, R.1.3.F	PM	$E = 4.1(p)^{0.67}$	EPA Ref. Methods 1-5	Upon Operation Commencement
AA-201, AA-202, AA-203, AA-601	11 Miss. Admin. Code, Pt. 2., R.1.4.A(1)	SO_2	4.8 lb/MMBtu	EPA Ref. Method 6	Upon Operation Commencement
AA-602	40 CFR 63 Subpart IIII: 60.4202(a)(2), 60.4205(c), 60.4207, 60.4211(e), 60.4214(b)	PM NO _x CO	Certification from manufacturer that pump engine meets emission standards set forth in Table 4; install a non-resettable hour meter; limit hours of operation to 100 hours per year for nonemergency	Recordkeeping	Upon Operation Commencement

¹ Per 11 Miss. Admin. Code Pt. 2, R. 6.2.C(8)(b)(2). for Title V sources, I (the applicant) am certifying that I will meet future applicable requirements which will become effective during the permit term on a timely basis.

MDEO

Applicable Requirements and Status

Section N

3. Future Applicable Requirements

List all future applicable state and federal requirements, including emission limits, operating restrictions, etc., and the applicable test methods or monitoring to be used to demonstrate compliance with each applicable requirement. Applicable provisions from any Permit to Construct for which certification of construction has not yet been submitted shall also be listed.

EMISSION POINT NO.	FUTURE APPLICABLE REQUIREMENT (Regulation citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING	COMPLIANCE DATE ¹
			scenarios; keep records of maintenance and hours of operation; Use only ultra-low sulfur diesel in engine.		
AA-602	40 CFR 63 Subpart ZZZZ	НАР	Compliance with Subpart ZZZZ is demonstrated by compliance with the requirements of Subpart IIII.	Recordkeeping	Upon Operation Commencement

¹ Per 11 Miss. Admin. Code Pt. 2, R. 6.2.C(8)(b)(2). for Title V sources, I (the applicant) am certifying that I will meet future applicable requirements which will become effective during the permit term on a timely basis.

FORM 5

MDEQ

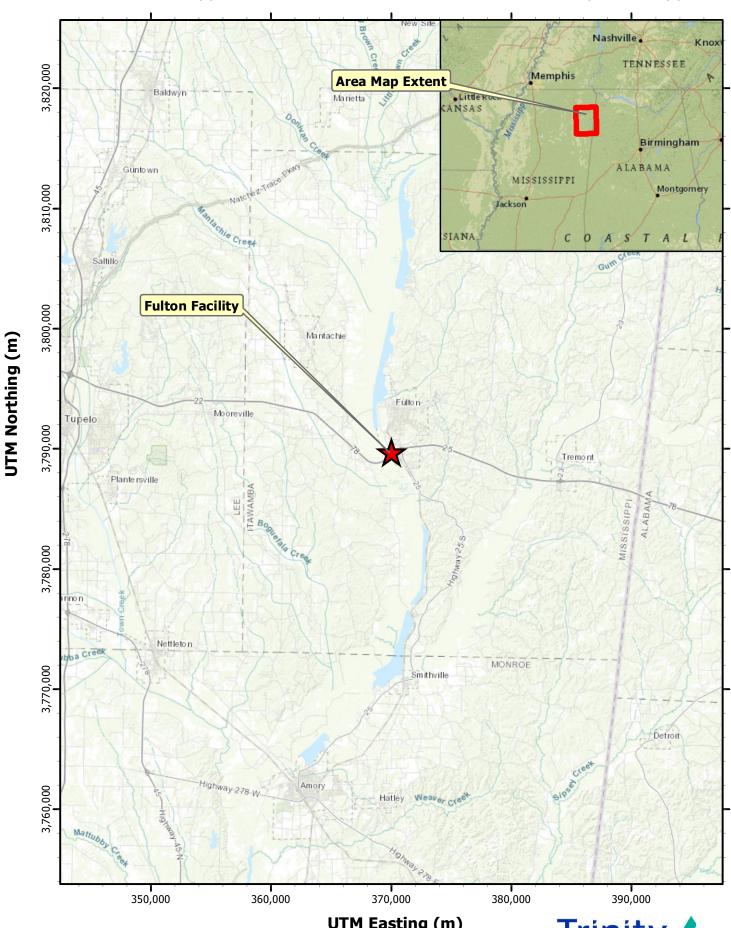
MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT

Insignificant Activities (for Title V facilities only)

Appendix A

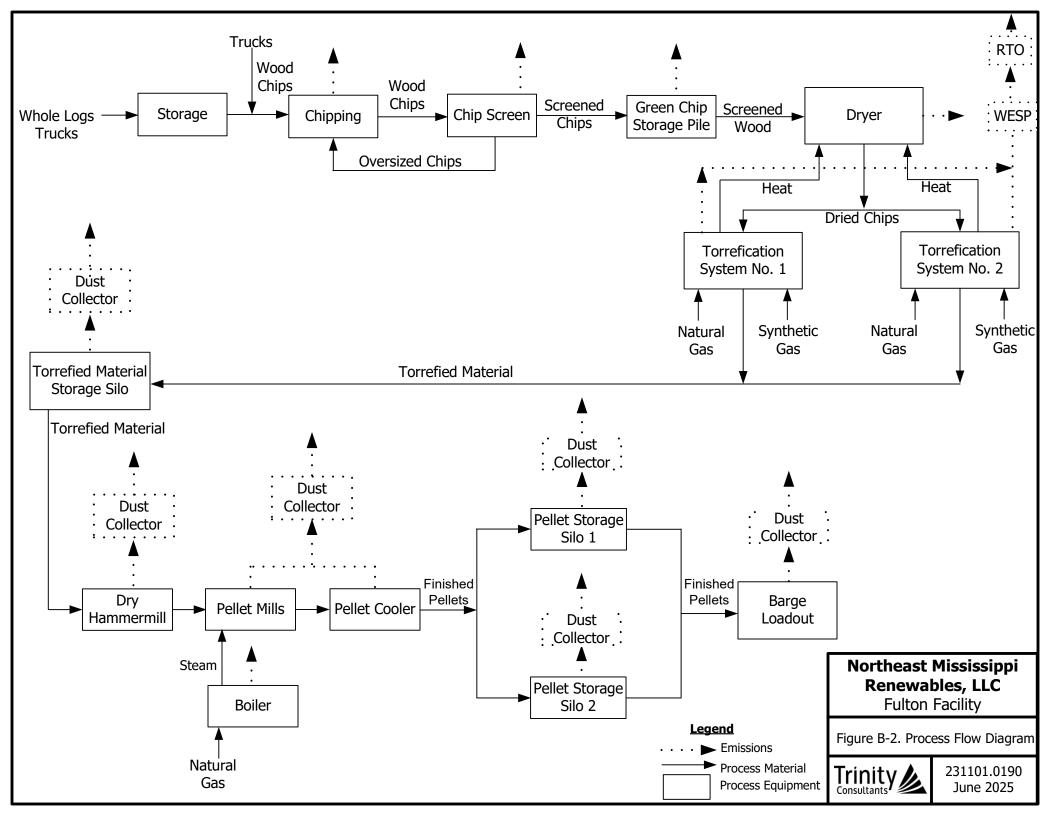
1. List of Insignificant Activities

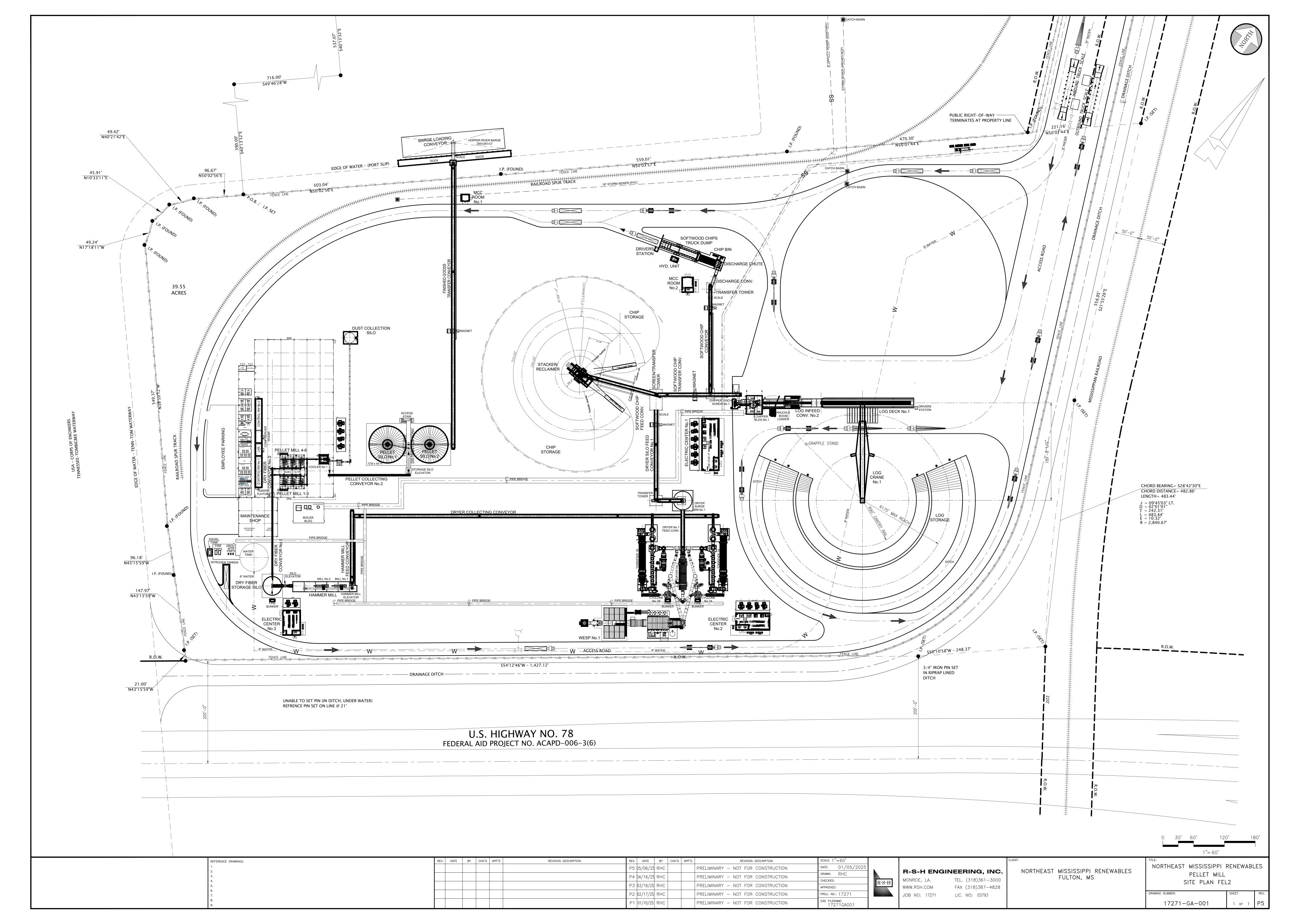
List all insignificant activities identified in 11 Miss. Admin. Code Pt. 2, R. 6.7., with the exception of those in 11 Miss. Admin. Code Pt. 2, R.6.7.A. IA-001, Paved Roads Traffic


2. Emissions Information

List the total emissions for each regulated pollutant from the combined insignificant activities listed above in accordance with the Permit Application Instructions (calculations not needed unless requested by DEQ).

POLLUTANT	POTENTIA	L TO EMIT
	lb/hr	tons/yr
PM	1.92	7.79
PM_{10}	0.38	1.56
PM _{2.5}	0.38	1.56
	1	


APPENDIX B. AREA MAP, SITE MAP, AND PROCESS FLOW DIAGRAM


Figure B-1. Area MapNortheast Mississippi Renewables, LLC - Fulton, Itawamba County, Mississippi

UTM Easting (m)All Coordinates shown in UTM Coordinates,
Zone 16, NAD 83 Datum

APPENDIX C. POTENTIAL EMISSIONS CALCULATIONS

Table C-1. Facility Wide Emissions - Potential Uncontrolled

Table C-1. Facility Wide Emissions - Posinita	II OILCHIU CINU																																											
		co	NOx	Filterable PM	Total PM ₁₀	Total PM _{2.5}	so,	voc	Lead	CO ₂ e Ac	cetaldehy Ac	rolein An	senic B	enzene B	teryllium	1,3-	Cadmium	Carbon Tetrachlori	Chlorine	Chlorobenz	Chloroform	Chromium	Emissions (tp Cobalt	tthylbenze	Formaldehy	Hydrogen Chloride	Hexane	Manganese	Mercury	Methanol	Naphthalen	Nickel Compounds	Phenol	Phosphorus	Propionald	Propylene	РОМ	PAC	Selenium Compounds	Styrene	Toluene	Vinyl Chlorida	Xylene Isomers	Total HAP
Emission Sources	Emission Unit ID											Comp	poznas		impounta u	- CLEVELING		de		****		Compounds	Companies		-	Cilidras					_ •	Compounds			emjoe				Compositus			CHOIRE	A SOUTH A	
Whole Logs and Green Residuals Processing		1																																										
Truck Unloading	AA-101			1.07E-02	5.08E-03	7.695-04		-							-				-				-			-														-				
Whole Log Pile	AA-102			1.07E-02	5.08E-03	7.69E-04		-											-							-				-														-
Chipper	AA-103			3.22E-02	1.52E-02	2.31E-03		-				-											-			-				-							-			-				-
Green Chips Storage Pile	AA-104			1.07E-02	5.08E-03	7.695-04		-				-											-			-				-							-			-				-
Paved Roads Traffic	IA-001			7.79	1.56	1.56		-				-														-				-														-
Drying/Tomification	AA-200	1																																										
Drivers ¹										1	0.09E+00 1:	90E+00											-		1.16E+01	1.57E+00				9.09E+00			2.31E+00	-	1.07E+00		-							3.66E+01
Torrefication Systems ¹	AA-201 - AA-203	87.60	87.60	438.00	528.94	528.94				17,465.2	6.18E-01 2:	98E+00 1.6	46-02 3	13E+00 I	8.19E-04		3.05E-03	3.35E-02	5.88E-01	2.46E-02	2.08E-02	1.56E-02	4.84E-03	2.31E-02	3.28E+00	0.00E+00	1.31E+00	1.19E+00	2.61E-03	-	7.22E-02	2.46E-02	3.80E-02	2.01E-02			1.85E-02	2.165-03	2.08E-03	1.41E+00	6.85E-01	1.34E-02		1.43E+01
RTO Burner ¹		1							1.87E-05			- 7.4	76-06 7	.85E-05	4.52E-07		4.11E-05					5.23E-05	3.14E-06		2.80E-03	-	6.72E-02	1.425-05	9.71E-06	-	2.28E-05	7.85E-05		-			2.20E-06	1.095-06	0.00E+00		1.27E-04			7.05E-02
System Bypass Stack	AA-204	25.01	12.74	25.00	30.19	30.19		28.31		4.992	5.19E-01 1.	09E-01							-				-		6.61E-01	8.97E-02	-			5.196-01			1.32E-01	-	6.135-02					-				2.09E+00
Pallet Production Operations	AA-300	1																																										
Torrefied Material Storage Silo	AA-301	1		75.09	75.00	75.09		_																						_														
Dry Hemmermill	AA-302			446.0	446.0	446.0		_																						_				_										
Pulse Mills	AA-303			281.57	281 57																																							
Pullet Cooler	AA-303	-	-	281.57	201.57	201.57		-	-			-				-			-			-	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-		-		-	-
Dry Material Handling	AA-400	1																																										
Torrefied Material Handling	AA-401			14.23	6.73	1.02		_											-				-			_				_				-										-
Pallets Storage and Loadout	AA-500	1																																										
Pellet Storage Silos No. 1 - 2	AA-501 - AA-502	1		75.09	75.00	75.09		_																						_				_										
Barge Loadout	AA-503			75.09	75.09	75.00																																						-
			-	73.09	72.09	73.00		-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-		-	_	-	-	-	_	-	-	-	-	-	-	-	-	-	-
Auxiliary Equipment	AA-600																																											
Boller	AA-601	3.10	1.85	0.07	0.28	0.28	0.02	0.20	1.85E-05	4,433		- 73	196-06 7	.768-05	4.47E-07		4.068-05		-			5.17E-05	3.10E-06		2.77E-03	-	6.65E-02	1.405-05	9.60E-06	-	2.25E-05	7.768-05					2.18E-06	1.088-06	8.86E-07	-	1.265-04			
Diesel Fire Pump	AA-602	0.32	0.36	0.02	0.12	0.12	0.11	0.14	**	63.46	2.95E-04 3.	56E-05	3	.59E-04	**	1.51E-05	**	**	-	**		-		**	4.54E-04	-		**	**	-	3.268-05	**				9.93E-04	3.07E-05	1.325-06		**	1.57E-04		1.10E-04	2.48E-03
		_																																										
Facility-Wide Total With Fucitives Facility-Wide Total Without Fucitives ²		116.03	102.55	1.438.01	1.520.69	1.514.95	0.13	904.65	0.04	95.954	10.23	4.99 0	3.02	3.13 8	5.20E-04 5.20E-04	1.51E-05 1.51E-05	3.13E-03 3.13E-03	0.03	0.59	0.02	0.02	0.02	4.85E-03 4.85E-03	0.02	15.52	1.66	1.45	1.19	2.63E-03	9.61	0.07	0.02	2.48	0.02	1.14	9.93E-04 9.93E-04	1.85E-02 1.85E-02	2.16E-03 2.16E-03	2.09E-03 2.09E-03	1.41	0.69	0.01	0.02	53.13 53.13
		_																																										
Title V Maior Source Threshold (two) Above Threshold?		Yes	100	Yes	100	100	100	100 Voc	100	N/A	10 Vee	10 No	10	10	10	No.	10	10	10	10	10	10	10	10	10 Vac	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	25 Yes
		_	****	***	724	***	no.	***	nen.	no.	***	nn .	man .	nen.	man.	nn.	nan.	man.	man.	- mn	nan.			mn.	***	- man	- Man	mn.	- mn	nan.	man.	mn.	nn.	man.	man.			mn.	man.					
PSD Major Source Threshold (tov) Above Threshold? ²		250 No	250 No	250 Yes	250 Yes	250 Yes	250 No	250 Yes	250 : No	75.000 Yes	N/A N/A	N/A I	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A

1. Polantial emissions of controlled politaints from a manufacturer guarantee are combined for the dryer, transferation busmens, and RTU combustion, as guarantee in for total emissions exiting the RTO stack.

2. Further emissions excluded from RTO mains source threeleed determination due to send ordined manufacturine facility on being on the Ltd of 28 (with lower mains source threeleed of 100 tow).

2. Wittensce sets We be mains from making and exployer combustion in the tomortation busmen.

Table C-2. Facility Wide Emissions - Potential Controlled

														Emissions (tp	py)											
Emission Sources	Emission Unit ID	со	NOx	Filterable PM	Total PM ₁₀	Total PM _{2.5}	SO ₂	voc	Lead	CO ₂ e	Acetaldehy de	Acrolein	Arsenic Compounds	Benzene	Chlorine	Chromium I Compounds	Formaldehy de	Hydrogen Chloride	Hexane	Manganese	Methanol	Nickel Compounds	Phenol	Propionald ehyde	Toluene	Total HAF
Whole Logs and Green Residuals Processing	AA-100																									
Truck Unloading	AA-101			1.07E-02	5.08E-03	7.69E-04																				
Whole Log Pile	AA-102			1.07E-02	5.08E-03	7.69E-04																				
Chipper	AA-103			3.22E-02	1.52E-02	2.31E-03																				
Green Chips Storage Pile	AA-104			1.07E-02	5.08E-03	7.69E-04																				
Paved Roads Traffic	IA-001			7.79	1.56	1.56																				
Drying/Torrefication	AA-200																									
Dryers ¹											4.55E-01	9.51E-02					5.79E-01	4.71E-01			4.55E-01		1.16E-01	5.37E-02		2.22E+00
Torrefication Systems ^{1,3}	AA-201 - AA-203	87.60	87.60	43.80	52.89	52.89		43.80	3.57E-02	87,465.2	3.09E-02	1.49E-01	1.64E-02	1.56E-01	2.94E-02	1.56E-02	1.64E-01	4.24E+00	6.57E-02	1.19E+00		2.46E-02	0.00E+00		3.43E-02	6.12E+00
RTO Burner ¹									1.87E-05				7.47E-06	3.92E-06		5.23E-05	1.40E-04		3.36E-03	1.42E-05		7.85E-05			6.35E-06	3.74E-03
System Bypass Stack	AA-204	25.01	12.74	25.00	30.19	30.19		28.31		4,992	5.19E-01	1.09E-01					6.61E-01	8.97E-02			5.19E-01		1.32E-01	6.13E-02		2.09E+00
Pellet Production Operations	AA-300																									
Torrefied Material Storage Silo	AA-301			0.75	0.75	0.75																				
Dry Hammermill	AA-302			4.46	4.46	4.46																				
Pellet Mills	AA-303			2.82	2.82	2.82																				
Pellet Cooler	AA-303			2.02	2.02	2.02									-						-				-	
Dry Material Handling	AA-400																									
Torrefied Material Handling	AA-401			14.23	6.73	1.02																				
Pellets Storage and Loadout	AA-500																									
Pellet Storage Silos No. 1 - 2	AA-501 - AA-502			0.75	0.75	0.75																				
Barge Loadout	AA-503			0.75	0.75	0.75																				
Auxiliary Equipment	AA-600																									
		2.40	4.05	0.07	0.70	0.20	0.00	0.20	4.055.05	4.433			7 705 05	7.755.05		E 47E 0E	2 775 62		6 655 00	4 405 05		7.755.05			4 355 04	6 075 07
Boiler Diesel Fire Pump	AA-601 AA-602	3.10 0.32	1.85 0.36	0.07 1.82E-02	0.28 0.12	0.28 0.12	0.02	0.20 0.14	1.85E-05	4,433 63.46	2.95E-04	3.56E-05	7.39E-06	7.76E-05 3.59E-04		5.17E-05	2.77E-03 4.54E-04		6.65E-02	1.40E-05		7.76E-05			1.26E-04 1.57E-04	6.97E-02 2.48E-03
Diesei Fire Pullip	AA-802	0.32	0.30	1.025-02	0.12	0.12	0.11	0.14		03.40	2.950-04	3.300-03		3.390-04			4.346-04								1.3/6-04	2.400-03
Facility-Wide Total With Fugitives		116.03	102.55	100.50	101.34	95.60	0.13	72.45	0.04	96,954	1.00	0.35	0.02	0.16	0.03	0.02	1.41	4.81	0.14	1.19	0.97	0.02	0.25	0.12	0.03	10.51
Facility-Wide Total Without Fugitives ²		116.03	102.55	76.92	91.51	91.51	0.13	72.45	0.04	96,954	1.00	0.35	0.02	0.16	0.03	0.02	1.41	4.81	0.14	1.19	0.97	0.02	0.25	0.12	0.03	10.51
Fitle V Major Source Threshold (tpy) Above Threshold? ²		100 Yes	100 Yes	100 Yes	100 Yes	100 No	100 No	100 No	100 No	N/A No	10 No	10 No	10 No	10 No	10 No	10 No	10 No	10 No	10 No	10 No	10 No	10 No	10 No	10 No	10 No	25 No
PSD Major Source Threshold (tpy) Above Threshold? ²		250 No	250 No	250 No	250 No	250 No	250 No	250 No	250 No	75,000 No	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A

2 of 14

^{1.} Potential emissions of controlled pollutants from a manufacturer guarantee are combined for the dyer, torrefication burners, and RTO combustion, as guarantee is for total emissions excluded from PSO major source threshold determination due to wood gellel manufacturing facility not being on the List of 28 (with lower major source threshold of 100 tpy).

2. Worse-case MP emissions from natural gos and synaps consolution in the torrefication burners.

Table C-3. Whole Log Receiving, Processing, and Storage Operating Parameters

Emission Source	Number of Drop Points	Annual Throughput (tpy) ¹
Truck Unloading ²	1	551,155
Whole Log Pile	1	551,155
Chipper	3	551,155
Green Chips Storage Pile	1	551,155

^{1.} Annual throughput based on amount of dried material needed to generate final amount of finished pellets.

Table C-4. Raw Material Handling Emission Factors

Pollutant	Emission Factor ¹ (lb/ton)
Filterable PM	3.90E-05
Filterable PM ₁₀ Filterable PM _{2.5}	1.84E-05 2.79E-06

^{1.} PM emission factor for receiving and storage calculated using continuous drop point equation from AP-42, Section 13.2.4 Aggregate Handling and Storage Piles (11/06).

PM Emission Factor (lb/ton) = $[k * (0.0032) * (U/5)^{1.3}] / (M/2)^{1.4}$

Table C-5. Potential Emissions from Raw Material Handling

			Potential Emis	sions ¹		
Emission Source	Filtera	ble PM	Filterabl	e PM ₁₀	Filterab	ole PM _{2.5}
	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
Truck Unloading	2.45E-03	1.07E-02	1.16E-03	5.08E-03	1.76E-04	7.69E-04
Whole Log Pile	2.45E-03	1.07E-02	1.16E-03	5.08E-03	1.76E-04	7.69E-04
Chipper	7.36E-03	3.22E-02	3.48E-03	1.52E-02	5.27E-04	2.31E-03
Green Chips Storage Pile	2.45E-03	1.07E-02	1.16E-03	5.08E-03	1.76E-04	7.69E-04

^{1.} Potential Emissions are calculated as follows:

Potential Emissions (tpy) = Emission Factor (lb/ton) * Annual Throughput (tpy) / 2,000 (lb/ton)

Potential Emissions (lb/hr) = Emission Factor (lb/ton) * Annual Throughput (tpy) / Annual Operation (hr/yr)

Annual operation assumes 8,760 hr/yr of operation

^{2.} Truck unloading is primarily logs; however, could be up to 30% in chips.

Table C-6. Wood Drying Process Operating Parameters

Parameter ¹	Value	Units
Total Heat Input ² Potential Operation Dried Chips Throughput	170 8,760 165,347	MMBtu/hr hr/yr ODT/yr

^{1.} Annual throughput calculated based on throughput of pellets produced per year.

Table C-7. Wood Drying Process Criteria Pollutant Emissions

Pollutant	Wood Drying Emission Factor ¹ (lb/ODT)		ed Potential sions ² (tpy)	WESP Control Efficiency (%)	RTO Control Efficiency (%)	Controlled Emissi (lb/hr)	
CO ³	1.06	20.0	87.6	-	-	20.0	87.6
NO _x ³	1.06	20.0	87.6	-	-	20.0	87.6
Filterable PM ³	5.30	100.0	438.0	90%	-	10.0	43.8
Condensable PM	1.10	20.8	90.9	90%	-	2.08	9.09
Total PM ₁₀ ⁴	6.40	120.8	528.9	90%	-	12.1	52.9
Total PM _{2.5} ⁴	6.40	120.8	528.9	90%	-	12.1	52.9
SO ₂	-	0.0	0.0	-	-	0.0	0.0
VOC ³	10.60	200.0	876.0	-	95%	10.0	43.8

^{1.} Calculated from known control equipment efficiency and emission guarantees from vendor. Except for Condensable PM which is from Georgia EPD Recommended Emission Factors for Wood Pellet Manufacturing Emission Factors - rotary dryer direct wood fired processing green softwood (January 2013). The Condensable PM is a conservative emission factor as the dryer will be natural gas fired and not wood fired.

2. Potential emissions are calculated as follows:

Potential Emissions (tpy) = [Wood Drying EF (lb/ODT) * Dryer Capacity (ODT/yr)] * [100% - Control efficiency (%)]

Table C-8. Wood Drying Process Potential GHG Emissions

Pollutant	Uncontrolled Emission Factor ¹ (lb/MMBtu)	Potential E (lb/hr)	missions² (tpy)
CH₄	7.06E-03	1.20	5.25
N ₂ O	9.26E-03	1.57	6.90
CO ₂	114.81	19,518.4	85,490.8
CO₂e ³	117.47	19,969.2	87,465.2

^{1.} Emission factors for CO₂, N₂O, and CH₄ from 40 CFR Part 98, Subpart C, Table C-1 amended December 9, 2016 and Table C-2 amended May 14, 2024.

Potential Emissions (lb/hr) = [Natural Gas Combustion EF (lb/MMBtu) * Heat Input Capacity (MMBtu/hr)]

Potential Emissions (tpy) = Hourly emissions (lb/hr) * Operation (hr/yr) / 2,000 (lb/ton)
3. CO₂e is calculated using Global Warming Potentials (GWPs) from 40 CFR Part 98, Subpart A, Table A-1 effective January 1, 2025.

GWPs used for CO₂, CH₄, and N₂O are listed below.

28 265

Table C-9. Dryers Potential HAP Emissions

Pollutant	Wood Drying Emission Factor (lb/ODT)	Uncontrolled Potential Emissions¹ (lb/hr) (tpy)		Control Efficiency ² (%)		Post-Control Potential Emissions ³ (lb/hr) (tpy)	
Acetaldehyde ⁴	1.10E-01	2.08E+00	9.09E+00	95%	1.04E-01	4.55E-01	
Acrolein ⁵	2.30E-02	4.34E-01	1.90E+00	95%	2.17E-02	9.51E-02	
Formaldehyde ⁴	1.40E-01	2.64E+00	1.16E+01	95%	1.32E-01	5.79E-01	
HCI ⁴	1.90E-02	3.59E-01	1.57E+00	70%	1.08E-01	4.71E-01	
Methanol ⁴	1.10E-01	2.08E+00	9.09E+00	95%	1.04E-01	4.55E-01	
Phenol ⁵	2.80E-02	5.29E-01	2.31E+00	95%	2.64E-02	1.16E-01	
Propionaldehyde ⁵	1.30E-02	2.45E-01	1.07E+00	95%	1.23E-02	5.37E-02	
	Total HAP	8.36	36.62		0.51	2.22	

^{1.} Uncontrolled Potential emissions are calculated as follows:

^{2.} Two (2) torrefication burners, each 85 MMBtu/hr heat input capacity

Potential Emissions (lb/hr) = Potential Emissions (tpy) / Annual Operation (hr/yr) * 2,000 (lb/ton)

3. Potential Emissions for these pollutants are based on Vendor Guarantees for the Dryer/RTO system.

^{4.} Emission factors for Total PM₁₀ and Total PM_{2.5} are the sum of the filterable and condensable components. It is conservatively assumed that filterable PM = filterable PM₁₀ = filterable PM_{2.5}.

Potential emissions are calculated as follows:

Potential Emissions (tpy) = [Wood Drying EF (lb/ODT) * Dryer Capacity (ODT/yr)]
Potential Emissions (tp/hh) = Potential Emissions (th/hh) = Potential Emissi

facility.
3. Post-Control Potential emissions are calculated as follows:

Potential Emissions (tpy) = [Wood Drying EF (lb/ODT) * Dryer Capacity (ODT/yr)] * [100% - Control efficiency (%)]

Potential Emissions (lb/l/hr) = Potential Emissions (frv) / Annual Operation (hr/vr) * 2 nnn (lb/tron)

4. Emission factors pursuant to recommended uncontrolled emission factors from GA EPD for a direct wood fired dryer processing green softwood at a Wood Pellet Manufacturing facility.

^{5.} Emission factors for wood drying are uncontrolled and from AP-42 Section 10.6.2 (Particleboard Manufacturing) Table 10.6.2-3, Rotary dryer, green, direct woodfired, softwood (06/02).

Table C-10. Drying and Torrefication System Bypass Stack Operating Parameters

Parameter ¹	Value	Units
Unit Heat Input	170	MMBtu/hr
Potential Operation	8,760	hr/yr
Bypass Stack Operating Hours	500	hr/yr
Annual Throughput	165,347	ODT/yr
Hourly Throughput	19	ODT/hr

^{1.} Annual throughput calculated based on throughput of pellets produced per year.

Table C-11. Drying and Torrefication System Bypass Stack Criteria Pollutant Emissions

Pollutant	Wood Drying Emission Factor ¹ (Ib/ODT)	Potential E (lb/hr)	missions (tpy)
СО	5.30	100.0	25.01
NO _X	2.70	51.0	12.74
Filterable PM ³	5.30	100.0	25.00
Condensable PM	1.10	20.8	5.19
Total PM ₁₀ ^{3,4}	6.40	120.8	30.19
Total PM _{2.5} ^{3,4}	6.40	120.8	30.19
SO ₂	-	0.0	0.00
VOC ³	6.00	113.3	28.31

^{1.} Georgia EPD Recommended Emission Factors for Wood Pellet Manufacturing Emission Factors - rotary dryer direct wood fired processing green softwood (January 2013). Conservative emission factors as dryers will be natural gas fired and not wood fired. Emissions are uncontrolled as utilizing bypass stacks.

2. Potential emissions are calculated as follows:

Table C-12. Drying and Torrefication System Bypass Stack Potential GHG Emissions

Pollutant	Uncontrolled Emission Factor ¹ (lb/MMBtu)	Potential E (lb/hr)	Emissions² (tpy)
CH₄	7.06E-03	1.20	0.30
N ₂ O	9.26E-03	1.57	0.39
CO ₂	114.8	19,518.4	4,879.6
CO ₂ e ³	117.5	19,969.2	4,992.3

^{1.} Emission factors for CO2, N2O, and CH4 from 40 CFR Part 98, Subpart C, Table C-1 amended December 9, 2016 and Table C-2 amended May 14, 2024. 2. Potential emissions are calculated as follows:

Potential Emissions (lb/hr) = [Natural Gas Combustion EF (lb/MMBtu) * Heat Input Capacity (MMBtu/hr)]

Potential Emissions (tpy) = Hourly emissions (lb/hr) * Operation (hr/yr) / 2,000 (lb/ton)

 $3.\ CO_2e \ is \ calculated \ using \ Global \ Warming \ Potentials \ (GWPs) \ from \ 40 \ CFR \ Part \ 98, \ Subpart \ A, \ Table \ A-1 \ updated$ January 1, 2025. GWPs used for ${\rm CO_2}$, ${\rm CH_4}$, and ${\rm N_2O}$ are listed below.

 CO_2 CH₄ 28 N_2O 265

Table C-13. Drying and Torrefication System Bypass Stack Potential HAP Emissions

Pollutant	Wood Drying Emission Factor (lb/ODT)	Potential I (lb/hr)	Emissions ¹ (tpy)
Acetaldehyde ³	1.10E-01	2.08E+00	5.19E-01
Acrolein ⁴	2.30E-02	4.34E-01	1.09E-01
Formaldehyde ³	1.40E-01	2.64E+00	6.61E-01
HCl ³	1.90E-02	3.59E-01	8.97E-02
Methanol ³	1.10E-01	2.08E+00	5.19E-01
Phenol ⁴	2.80E-02	5.29E-01	1.32E-01
Propionaldehyde ⁴	1.30E-02	2.45E-01	6.13E-02
	Total HAP	8.36	2.09

Potential Emissions (tpy) = [Wood Drying EF (lb/ODT) * Dryer Capacity (ODT/yr)]
Potential Emissions (lb/hr) = Potential Emissions (tpy) / Annual Operation (hr/yr) * 2,000 (lb/ton)

3. Emission factors obtained from Vendor Guarantees for the Dryer/RTO system for filterable PM.

4. Emission factors for Total PM₁₀ and Total PM_{2.5} are the sum of the filterable and condensable components. It is conservatively assumed that filterable $PM = filterable PM_{10} = filterable PM_{2.5}$.

^{1.} Uncontrolled Potential emissions are calculated as follows:

Potential Emissions (tpy) = [Wood Drying EF (lb/ODT) * Dryer Capacity (ODT/yr)]

Potential Emissions (lb/hr) = Potential Emissions (tby) / Annual Operation (hr/yr) * 2,000 (lb/ton)

2. Emission factors for wood drying are uncontrolled and from AP-42 Section 10.6.2 (Particleboard Manufacturing)

Table 10.6.2-3, Rotary dryer, green, direct wood-fired, softwood (06/02).

^{3.} Emission factors pursuant to recommended uncontrolled emission factors from Georgia EPD for a direct wood fired dryer processing green softwood at a Wood Pellet Manufacturing facility.

4. Emission factors for wood drying are uncontrolled and from AP-42 Section 10.6.2 (Particleboard Manufacturing)

Table 10.6.2-3, Rotary dryer, green, direct wood-fired, softwood (06/02).

Table C-14. Torrefication Burners (Natural Gas) Operating Parameters

Parameter	Value	Units
Unit Heat Input	170	MMBtu/hr
Potential Operation	8,760	hr/yr
Natural Gas Heating Value	1,020	Btu/scf
Natural Gas Combustion Limit	1,460	MMscf/yr

Table C-15. Torrefication Burners - Potential HAP Emissions (Natural Gas)

	Uncontrolled Emission Factor ¹	Uncontrolled Potential Emissions ²		Control Efficiency ³		l Potential sions ⁴
Pollutant	(lb/MMscf)	(lb/hr)	(tpy)		(lb/hr)	(tpy)
Arsenic Compounds	2.00E-04	3.33E-05	1.46E-04		3.33E-05	1.46E-04
Benzene	2.10E-03	3.50E-04	1.53E-03	95%	1.75E-05	7.67E-05
Beryllium Compounds	1.21E-05	2.02E-06	8.83E-06		2.02E-06	8.83E-06
Cadmium	1.10E-03	1.83E-04	8.03E-04		1.83E-04	8.03E-04
Chromium Compounds	1.40E-03	2.33E-04	1.02E-03		2.33E-04	1.02E-03
Cobalt Compounds(CoC)	8.40E-05	1.40E-05	6.13E-05		1.40E-05	6.13E-05
Formaldehyde	7.50E-02	1.25E-02	5.48E-02	95%	6.25E-04	2.74E-03
Hexane	1.80E+00	3.00E-01	1.31E+00	95%	1.50E-02	6.57E-02
Lead	5.00E-04	8.33E-05	3.65E-04		8.33E-05	3.65E-04
Manganese	3.80E-04	6.33E-05	2.77E-04		6.33E-05	2.77E-04
Mercury	2.60E-04	4.33E-05	1.90E-04		4.33E-05	1.90E-04
Naphthalene	6.10E-04	1.02E-04	4.45E-04	95%	5.08E-06	2.23E-05
Nickel Compounds	2.10E-03	3.50E-04	1.53E-03		3.50E-04	1.53E-03
Selenium Compounds	2.40E-05				4.00E-06	1.75E-05
Toluene(Methylbenzene)	3.40E-03	5.67E-04	2.48E-03	95%	2.83E-05	1.24E-04
Polycyclic Organic Matter (POM) *						
Polycyclic Aromatic Compounds						
2-Methylnaphthalene*	2.40E-05	4.00E-06	1.75E-05	95%	2.00E-07	8.76E-07
3-Methylchloranthrene**	1.80E-06	3.00E-07	1.31E-06	95%	1.50E-08	6.57E-08
7,12-Dimethylbenzo(a)anthracene**	1.60E-05	2.67E-06	1.17E-05	95%	1.33E-07	5.84E-07
Acenaphthene*	1.80E-06	3.00E-07	1.31E-06	95%	1.50E-08	6.57E-08
Acenaphthylene*	1.80E-06	3.00E-07	1.31E-06	95%	1.50E-08	6.57E-08
Anthracene*	2.40E-06	4.00E-07	1.75E-06	95%	2.00E-08	8.76E-08
Benzo(a)anthracene**	1.80E-06	3.00E-07	1.31E-06	95%	1.50E-08	6.57E-08
Benzo(a)pyrene**	1.20E-06	2.00E-07	8.76E-07	95%	1.00E-08	4.38E-08
Benzo(b)fluoranthene**	1.80E-06	3.00E-07	1.31E-06	95%	1.50E-08	6.57E-08
Benzo(k)fluoranthene)**	1.80E-06	3.00E-07	1.31E-06	95%	1.50E-08	6.57E-08
Benzo(g,h,i)perylene*	1.20E-06	2.00E-07	8.76E-07	95%	1.00E-08	4.38E-08
Chrysene(Benzo(a)phenanthrene)**	1.80E-06	3.00E-07	1.31E-06	95%	1.50E-08	6.57E-08
Dibenzo(a,h)anthracene**	1.20E-06	2.00E-07	8.76E-07	95%	1.00E-08	4.38E-08
Fluoranthene*	3.00E-06	5.00E-07	2.19E-06	95%	2.50E-08	1.10E-07
Fluorene*	2.80E-06	4.67E-07	2.04E-06	95%	2.33E-08	1.02E-07
Indeno(1,2,3-cd)pyrene**	1.80E-06	3.00E-07	1.31E-06	95%	1.50E-08	6.57E-08
Phenanathrene*	1.70E-05	2.83E-06	1.24E-05	95%	1.42E-07	6.21E-07
Pyrene*	5.00E-06	8.33E-07	3.65E-06	95%	4.17E-08	1.83E-07
. ,	3.002 00	0.002 07	5.032 00	33,0	111, 2 30	11002 07
		Total HAP	1.38		Total HAP	0.07

^{1.} Uncontrolled emission factors for natural gas combustion from AP-42, Section 1.4 - Natural Gas Combustion, Table 1.4-1,3 (9/03).

 $Potential\ Emissions\ (lb/hr) = [Natural\ Gas\ Combustion\ EF\ (lb/MMBtu)\ *\ Heat\ Input\ Capacity\ (MMBtu/hr)]$

Potential Emissions (tpy) = Hourly emissions (lb/hr) * Operation (hr/yr) / 2,000 (lb/ton)

Potential Emissions (lb/hr) = [Natural Gas Combustion EF (lb/MMBtu) * Heat Input Capacity (MMBtu/hr)] * (1 - Control efficiency (%))

Potential Emissions (tpy) = Hourly emissions (lb/hr) * Operation (hr/yr) / 2,000 (lb/ton)

^{2.} Potential emissions are calculated as follows:

^{3.} VOC and Organic HAP emissions are controlled by an RTO, thus a 95% control efficiency has been applied to VOC and all organic HAP.

^{4.} Potential emissions are calculated as follows:

Table C-16. Torrefication Burners (Syngas) Operating Parameters

Parameter ¹	Value	Units
Unit Heat Input	170.00	MMBtu/hr
Potential Operation	8,760	hr/yr
Syngas Combustion	1,489,200	MMBtu/yr

^{1.} Operating parameters provided by ESI.

Table C-17. Torrefication Burners - Potential HAP Emissions (Syngas)

Pollutant	Uncontrolled Emission Factor ¹ (lb/MMBtu)	Uncontrolled Potential Emissions ² (lb/hr) (tpy) Control Efficiency ³			I Potential sions ⁴ (tpy)	
Acetaldehyde	8.30E-04	1.41E-01	6.18E-01	95%	7.06E-03	3.09E-02
Acrolein	4.00E-03	6.80E-01	2.98E+00	95%	3.40E-02	1.49E-01
Arsenic Compounds	2,20E-05	3.74E-03	1.64E-02		3.74E-03	1.64E-02
Benzene	4.20E-03	7.14E-01	3.13E+00	95%	3.57E-02	1.56E-01
Beryllium Compounds	1.10E-06	1.87E-04	8.19E-04		1.87E-04	8.19E-04
Cadmium	4.10E-06	6.97E-04	3.05E-03		6.97E-04	3.05E-03
Carbon tetrachloride	4.50E-05	7.65E-03	3.35E-02	95%	3.83E-04	1.68E-03
Chlorine	7.90E-04	1.34E-01	5.88E-01	95%	6.72E-03	2.94E-02
Chlorobenzene	3.30E-05	5.61E-03	2.46E-02	95%	2.81E-04	1.23E-03
Chloroform	2.80E-05	4.76E-03	2.08E-02	95%	2.38E-04	1.04E-03
Chromium Compounds	2.10E-05	3.57E-03	1.56E-02		3.57E-03	1.56E-02
Cobalt Compounds(CoC)	6.50E-06	1.11E-03	4.84E-03		1.11E-03	4.84E-03
Ethylbenzene	3.10E-05	5.27E-03	2.31E-02	95%	2.64E-04	1.15E-03
Formaldehyde	4.40E-03	7.48E-01	3.28E+00	95%	3.74E-02	1.64E-01
Hydrogen Chloride	1.90E-02		0.2027	70%	9.69E-01	4.24E+00
Lead	4.80E-05	8.16E-03	3.57E-02		8.16E-03	3.57E-02
Manganese	1.60E-03	2.72E-01	1.19E+00		2.72E-01	1.19E+0
Mercury	3.50E-06	5.95E-04	2.61E-03		5.95E-04	2.61E-03
Naphthalene	9.70E-05	1.65E-02	7.22E-02	95%	8.25E-04	3.61E-03
Nickel Compounds	3.30E-05	5.61E-03	2.46E-02		5.61E-03	2.46E-02
Phenol	5.10E-05	8.67E-03	3.80E-02	95%		0.00E+0
Phosphorus	2.70E-05	4.59E-03	2.01E-02	95%		0.00E+0
Selenium Compounds	2.80E-06	4.76E-04	2.08E-03		4.76E-04	2.08E-03
Styrene	1.90E-03	3.23E-01	1.41E+00	95%		0.00E+0
Toluene(Methylbenzene)	9.20E-04	1.56E-01	6.85E-01	95%	7.82E-03	3.43E-02
Vinyl Chloride	1.80E-05	3.06E-03	1.34E-02	95%	1.53E-04	6.70E-04
o-Xvlene	2.50E-05	4.25E-03	1.86E-02	95%	2.13E-04	9.31E-04
Polycyclic Organic Matter (POM) * Polycyclic Aromatic Compounds (PAC)**						
2-Methylnaphthalene*	1.60E-07	2.72E-05	1.19E-04	95%	1.36E-06	5.96E-06
Acenaphthene*	9.10E-07	1.55E-04	6.78E-04	95%	7.74E-06	3.39E-05
Acenaphthylene*	5.00E-06	8.50E-04	3.72E-03	95%	4.25E-05	1.86E-04
Anthracene*	3.00E-06	5.10E-04	2.23E-03	95%	2.55E-05	1.12E-0 ²
Benzo(a)anthracene**	6.50E-08	1.11E-05	4.84E-05	95%	5.53E-07	2.42E-06
Benzo(a)pyrene**	2.60E-06	4.42E-04	1.94E-03	95%	2.21E-05	9.68E-05
Benzo(b)fluoranthene**	1.00E-07	1.70E-05	7.45E-05	95%	8.50E-07	3.72E-06
Benzo(k)fluoranthene)**	3.60E-08	6.12E-06	2.68E-05	95%	3.06E-07	1.34E-06
Benzo(g,h,i)perylene*	9.30E-08	1.58E-05	6.92E-05	95%	7.91E-07	3.46E-06
Dibenzo(a,h)anthracene**	9.10E-09	1.55E-06	6.78E-06	95%	7.74E-08	3.39E-07
Fluoranthene*	1.60E-06	2.72E-04	1.19E-03	95%	1.36E-05	5.96E-05
Fluorene*	3.40E-06	5.78E-04	2.53E-03	95%	2.89E-05	1.27E-0
Indeno(1,2,3-cd)pyrene**	8.70E-08	1.48E-05	6.48E-05	95%	7.40E-07	3.24E-06
Phenanathrene*	7.00E-06	1.19E-03	5.21E-03	95%	5.95E-05	2.61E-04
Pyrene*	3.70E-06	6.29E-04	2.76E-03	95%	3.15E-05	1.38E-04
		Total HAP	14.27		Total HAP	6.12

^{1.} Uncontrolled emission factors for wood residue combustion from AP-42, Section 1.6 - Wood Residue Combustion in Boilers, Table 1.6-1,2,3 (4/22).

Potential Emissions (lb/hr) = [Natural Gas Combustion EF (lb/MMBtu) * Heat Input Capacity (MMBtu/hr)]

Potential Emissions (lb/hr) = [Natural Gas Combustion EF (lb/MMBtu) * Heat Input Capacity (MMBtu/hr)] * (1 - Control efficiency (%))
Potential Emissions (tpy) = Hourly emissions (lb/hr) * Operation (hr/yr) / 2,000 (lb/ton)

^{2.} Potential emissions are calculated as follows:

Potential Emissions (tpy) = Hourly emissions (lb/hr) * Operation (hr/yr) / 2,000 (lb/ton)

3. VOC and Organic HAP emissions are controlled by an RTO, thus a 95% control efficiency has been applied to VOC and all organic HAP.

^{4.} Potential emissions are calculated as follows:

Table C-18. RTO Burners Operating Parameters

Parameter ¹	Value	Units
Unit Heat Input	8.70	MMBtu/hr
Potential Operation	8,760	hr/yr
Natural Gas Heating Value	1,020	Btu/scf
Natural Gas Combustion Limit	75	MMscf/yr

^{1.} Operating parameters including total heat input capacity for all three unit RTO burners.

Table C-19. RTO Burners - Potential HAP Emissions

Pollutant	Uncontrolled Emission Factor ¹ (lb/MMscf)	Uncontrolle Emiss (lb/hr)		Control Efficiency ³		I Potential sions ⁴ (tpy)
Arsenic Compounds	2.00E-04	1.71E-06	7.47E-06		1.71E-06	7.47E-06
Benzene	2.10E-03	1.71E-00 1.79E-05	7.85E-05	95%	8.96E-07	3.92E-06
Beryllium Compounds	1.21E-05	1.03E-07	4.52E-07	9370	1.03E-07	4.52E-07
Cadmium	1.10E-03	9.38E-06	4.11E-05		9.38E-06	4.11E-05
Chromium Compounds	1.40E-03	1.19E-05	5.23E-05		1.19E-05	5.23E-05
Cobalt Compounds(CoC)	8.40E-05	7.16E-07	3.14E-06		7.16E-07	3.14E-06
Formaldehyde	7.50E-02	6.40E-04	2.80E-03	95%	3.20E-05	1.40E-04
Hexane	1.80E+00	1.54E-02	6.72E-02	95%	7.68E-04	3.36E-03
Lead	5.00E-04	4.26E-06	1.87E-05	9370	4.26E-06	1.87E-05
Manganese	3.80E-04	3.24E-06	1.42E-05		3.24E-06	1.67E-05 1.42E-05
Mercury	2.60E-04	2.22E-06	9.71E-06		2.22E-06	9.71E-06
Naphthalene	6.10E-04	5.20E-06	9.71E-06 2.28E-05	95%	2.60E-07	9.71E-06 1.14E-06
Nickel Compounds	2.10E-03	1.79E-05	7.85E-05	95%	1.79E-05	7.85E-05
		1./9E-05	7.83E-U3		2.05E-07	8.97E-07
Selenium Compounds Toluene(Methylbenzene)	2.40E-05 3.40E-03	2.90E-05	1.27E-04	95%	1.45E-06	6.35E-06
Polycyclic Aromatic Compounds (PAC)**	3. 4 0E-03	2.90E-05	1.27E-0 4	95%	1.45E-00	0.33E-00
2-Methylnaphthalene*	2.40E-05	2.05E-07	8.97E-07	95%	1.02E-08	4.48E-08
3-Methylchloranthrene**	1.80E-06	1.54E-08	6.72E-08	95%	7.68E-10	3.36E-09
7,12-Dimethylbenzo(a)anthracene**	1.60E-05	1.36E-07	5.98E-07	95%	6.82E-09	2.99E-08
Acenaphthene*	1.80E-06	1.54E-08	6.72E-08	95%	7.68E-10	3.36E-09
Acenaphthylene*	1.80E-06	1.54E-08	6.72E-08	95%	7.68E-10	3.36E-09
Anthracene*	2.40E-06	2.05E-08	8.97E-08	95%	1.02E-09	4.48E-09
Benzo(a)anthracene**	1.80E-06	1.54E-08	6.72E-08	95%	7.68E-10	3.36E-09
Benzo(a)pyrene**	1.20E-06	1.02E-08	4.48E-08	95%	5.12E-10	2.24E-09
Benzo(b)fluoranthene**	1.80E-06	1.54E-08	6.72E-08	95%	7.68E-10	3.36E-09
Benzo(k)fluoranthene)**	1.80E-06	1.54E-08	6.72E-08	95%	7.68E-10	3.36E-09
Benzo(g,h,i)perylene*	1.20E-06	1.02E-08	4.48E-08	95%	5.12E-10	2.24E-09
Chrysene(Benzo(a)phenanthrene)**	1.80E-06	1.54E-08	6.72E-08	95%	7.68E-10	3.36E-09
Dibenzo(a,h)anthracene**	1.20E-06	1.02E-08	4.48E-08	95%	5.12E-10	2.24E-09
Fluoranthene*	3.00E-06	2.56E-08	1.12E-07	95%	1.28E-09	5.60E-09
Fluorene*	2.80E-06	2.39E-08	1.05E-07	95%	1.19E-09	5.23E-09
Indeno(1,2,3-cd)pyrene**	1.80E-06	1.54E-08	6.72E-08	95%	7.68E-10	3.36E-09
Phenanathrene*	1.70E-05	1.45E-07	6.35E-07	95%	7.25E-09	3.18E-08
Pyrene*	5.00E-06	4.26E-08	1.87E-07	95%	2.13E-09	9.34E-09
		Total HAP	0.07		Total HAP	3.74E-03

^{1.} Uncontrolled emission factors for natural gas combustion from AP-42, Section 1.4 - Natural Gas Combustion, Table 1.4-1,3 (9/03).

Potential Emissions (lb/hr) = [Natural Gas Combustion EF (lb/MMBtu) * Heat Input Capacity (MMBtu/hr)]

Potential Emissions (tpy) = Hourly emissions (lb/hr) * Operation (hr/yr) / 2,000 (lb/ton)

3. The RTO is assumed to control VOC and Organic HAP with 95% efficiency.

4. Potential emissions are calculated as follows:

Potential Emissions (lb/hr) = [Natural Gas Combustion EF (lb/MMBtu) * Heat Input Capacity (MMBtu/hr)] * (1 - Control efficiency (%))

Potential Emissions (tpy) = Hourly emissions (lb/hr) * Operation (hr/yr) / 2,000 (lb/ton)

^{2.} Potential emissions are calculated as follows:

Table C-20. Torrefied Material Handling Operating Parameters

Emission Source	Number of Drop Points ²	Annual Throughput (tpy) ¹
Torrefied Material Handling	7	165,347

^{1.} Throughput based on amount of finished pellets.

Table C-21. Torrefied Material Handling Emission Factors

Pollutant	Emission Factor ¹ (lb/ton)
Filterable PM	2.46E-02
Filterable PM ₁₀	1.16E-02
Filterable PM _{2.5}	1.76E-03

^{1.} PM emission factor for receiving and storage calculated using continuous drop point equation from AP-42, Section 13.2.4 Aggregate Handling and Storage Piles (11/06).

PM Emission Factor (lb/ton) = $[k * (0.0032) * (U/5)^{1.3}] / (M/2)^{1.4}$

k - PM	0.74	Particle size multiplier for PM ₃₀ per AP-42, Section 13.2.4-4 (11/06).
k - PM ₁₀	0.35	Particle size multiplier for PM ₁₀ per AP-42, Section 13.2.4-4 (11/06).
k - PM _{2.5}	0.053	Particle size multiplier for PM _{2.5} per AP-42, Section 13.2.4.3.
M (%)	0.5	Moisture content indicated on moisture balance.
U	6.8	Based on historical data from Weather Sparks in Fulton, MS.

Table C-22. Torrefied Material Handling Potential PM Emissions

	Potential Emissions ¹					
Emission Source	Filterable PM Filterable PM ₁₀ Filterable PM _{2.5} (lb/hr) (tpy) (lb/hr) (tpy) (lb/hr) (tpy)					
Torrefied Material Handling	3.25	14.23	1.54	6.73	0.23	1.02

^{1.} Potential Emissions are calculated as follows:

Potential Emissions (tpy) = Emission Factor (lb/ton) * Annual Throughput (tpy) / 2,000 (lb/ton)

Potential Emissions (lb/hr) = Emission Factor (lb/ton) * Annual Throughput (tpy) / Annual Operation (hr/yr) hr/yr of operation

8,760 Annual operation assumes

^{2.} The number of drop points was counted from leaving the torrefiers to loading pellets.

Table C-23. Pelletizing Operating Parameters

Emission Source	Annual Throughput ¹	Units
Total Capacity Dry Hammermill Pellet Mills Pellet Cooler	260,718 165,347 165,347	tpy tpy tpy
Volumetric Capacity Pellet Density ² Pellet Mills ³ Pellet Cooler ³	40 8,267,325 8,267,325	lb/ft³ ft³/yr ft³/yr

- 1. Annual throughput based on finished pellet production capacity.
- 2. Pellet density provided by ESI.
- 3. Potential volume throughput estimated as follows: Potential Mass Throughput (tons/year) * 2,000 (lb/ton) / Pellet Density (lb/ft³)

Table C-24. Pelletizing Dust Collectors Operating Parameters and Potential PM Emissions

Emission Source	Control Device	Flow Rate (dscfm) ¹	Loading Rate (gr/dscf) ¹	Uncontrolle Emiss Filterable PM (lb/hr)		Control Efficiency (%)	Controlled Emiss Filterable PM (lb/hr)	ions ³
Torrefied Material Storage Silo	Dust Collector	2,000	0.01	17.14	75.09	99%	0.17	0.75
Dry Hammermill	Dust Collector	11,880	0.01	101.83	446.01	99%	1.02	4.46
Pellet Mills and Cooler	Dust Collector	7,500	0.01	64.29	281.57	99%	0.64	2.82

- 1. Flowrate and Loading rate provided by ESI.
- 2. Uncontrolled potential emissions are calculated as follows:

Potential Emissions (lb/hr) = Flowrate (dscfm) * 60 (min/hr) * Pollutant Loading (gr/dscf) / 7,000 (gr/lb) / (1 - Control Efficiency)
Potential Emissions (tpy) = Potential Emissions (lb/hr) * Annual Operation (hr/yr) / 2,000 (lb/ton) / (1 - Control Efficiency)
Where annual emissions assume 8,760 hours of operation per year for conservatism.

3. Controlled potential emissions are calculated as follows:

Potential Emissions (lb/hr) = Flowrate (dscfm) * 60 (min/hr) * Pollutant Loading (gr/dscf) / 7,000 (gr/lb)

Potential Emissions (tpy) = Potential Emissions (lb/hr) * Annual Operation (hr/yr) / 2,000 (lb/ton)

Where annual emissions assume 8,760 hours of operation per year for conservatism.

Table C-25. Pellet Storage and Loadout Operating Parameters

Emission Source	Annual Throughput (tpy) ¹
Pellet Storage (2 Silos)	165,347
Barge Loadout	165,347

^{1.} Throughput based on production of finished pellets.

Table C-26. Pellet Storage and Loadout Dust Collectors Operating Parameters and Potential PM Emissions

Emission Source	Control Device ⁴	Flow Rate (dscfm) ¹	Loading Rate (gr/dscf) ¹	Emiss	ed Potential sions ² I/PM ₁₀ /PM _{2.5} (tpy)	Control Efficiency (%)	Emiss	I Potential sions ³ I/PM ₁₀ /PM _{2.5} (tpy)
Pellet Storage Silos No. 1 - 2	Dust Collectors	2,000	0.01	17.14	75.09	99%	0.17	0.75
Barge Loadout	Dust Collector	2,000	0.01	17.14	75.09	99%	0.17	0.75

^{1.} Flowrate and loading rate provided by ESI.

Potential Emissions (lb/hr) = Flowrate (dscfm) * 60 (min/hr) * Pollutant Loading (gr/dscf) / 7,000 (gr/lb) / (1 - Control Efficiency) Potential Emissions (tpy) = Potential Emissions (lb/hr) * Annual Operation (hr/yr) / 2,000 (lb/ton) / (1 - Control Efficiency) Where annual emissions assume 8,760 hours of operation per year for conservatism.

3. Controlled potential emissions are calculated as follows:

Potential Emissions (lb/hr) = Flowrate (dscfm) * 60 (min/hr) * Pollutant Loading (gr/dscf) / 7,000 (gr/lb) Potential Emissions (tpy) = Potential Emissions (lb/hr) * Annual Operation (hr/yr) / 2,000 (lb/ton) Where annual emissions assume 8,760 hours of operation per year for conservatism.

4. Two (2) dust collectors (1,000 DSCFM exhaust flow rate each), with total PM emissions combined for pellet storage silos.

^{2.} Uncontrolled potential emissions are calculated as follows:

Table C-27. Boiler Operating Parameters

Parameter	Value	Units
Unit Heat Input	8.6	MMBtu/hr
Potential Operation	8,760	hr/yr
Natural Gas Heating Value	1,020	Btu/scf
Natural Gas Combustion Limit	74	MMscf/yr

Table C-28. Boiler Potential Criteria and HAP Emissions

	Natural Gas Emission		2
Pollutant	Factor ¹ (lb/MMscf)	Potential En (lb/hr)	issions² (tpy)
со	84	0.71	3.10
NO _X	50	0.42	1.85
Filterable PM	1.90	0.02	0.07
Condensable PM	5.70	0.05	0.21
Total PM	7.60	0.06	0.28
Total PM ₁₀ ³	7.60	0.06	0.28
Total PM _{2.5} ³	7.60	0.06	0.28
SO ₂	0.6	0.01	0.02
-			
VOC	5.5	0.05	0.20
Lead	5.00E-04	4.22E-06	1.85E-05
CH ₄ ⁴	2.21E-03	1.86E-05	8.14E-05
N_2O^4	2.21E-04	1.86E-06	8.14E-06
CO ₂ ⁴	120,039	1,012.10	4,433
CO ₂ e ⁵	120,039	1,012.10	4,433
HAP Emissions			
Arsenic Compounds	2.00E-04	1.69E-06	7.39E-06
Benzene	2.10E-03	1.77E-05	7.76E-05
Beryllium Compounds	1.21E-05	1.02E-07	4.47E-07
Cadmium	1.10E-03	9.27E-06	4.06E-05
Chromium Compounds	1.40E-03	1.18E-05	5.17E-05
Cobalt Compounds(CoC)	8.40E-05	7.08E-07	3.10E-06
Formaldehyde	7.50E-02	6.32E-04	2.77E-03
Hexane	1.80E+00	1.52E-02	6.65E-02
Lead	5.00E-04	4.22E-06	1.85E-05
Manganese	3.80E-04	3.20E-06	1.40E-05
Mercury Naphthalene	2.60E-04 6.10E-04	2.19E-06 5.14E-06	9.60E-06 2.25E-05
Nickel Compounds	2.10E-03	1.77E-05	7.76E-05
Selenium Compounds	2.40E-05	2.02E-07	8.86E-07
Toluene(Methylbenzene)	3.40E-03	2.87E-05	1.26E-04
Polycyclic Organic Matter (POM) * Polycyclic Aromatic Compounds (PAC)**	31.12		
2-Methylnaphthalene*	2.40E-05	2.02E-07	8.86E-07
3-Methylchloranthrene**	1.80E-06	1.52E-08	6.65E-08
7,12-Dimethylbenzo(a)anthracene**	1.60E-05	1.35E-07	5.91E-07
Acenaphthene*	1.80E-06	1.52E-08	6.65E-08
Acenaphthylene*	1.80E-06	1.52E-08	6.65E-08
Anthracene*	2.40E-06	2.02E-08	8.86E-08
Benzo(a)anthracene**	1.80E-06	1.52E-08	6.65E-08
Benzo(a)pyrene**	1.20E-06	1.01E-08	4.43E-08
Benzo(b)fluoranthene**	1.80E-06	1.52E-08	6.65E-08
Benzo(k)fluoranthene)**	1.80E-06	1.52E-08	6.65E-08
Benzo(g,h,i)perylene*	1.20E-06	1.01E-08	4.43E-08
Chrysene(Benzo(a)phenanthrene)** Dibenzo(a,h)anthracene**	1.80E-06 1.20E-06	1.52E-08 1.01E-08	6.65E-08 4.43E-08
Fluoranthene*	3.00E-06	2.53E-08	1.11E-07
Fluorene*	2.80E-06	2.36E-08	1.03E-07
Indeno(1,2,3-cd)pyrene**	1.80E-06	1.52E-08	6.65E-08
Phenanathrene*	1.70E-05	1.43E-07	6.28E-07
Pyrene*	5.00E-06	4.22E-08	1.85E-07
		Total HAP	0.07

^{1.} Uncontrolled emission factors for natural gas combustion from AP-42, Section 1.4 - Natural Gas Combustion, Table 1.4-1,3 (9/03). Low-NO₂ burner for NO₂ emission factor. 2. Potential emissions are calculated as follows: Potential Emissions (lb/hr) = [Natural Gas Combustion EF (lb/MMBtu) * Heat Input Capacity (MMBtu/hr)]

CO₂ CH₄ 28 N₂O 265

Potential Emissions (tryl) = [Natural Gas Confiduction Er (Ib/Minibib)] * rieat input Capacity (Minibib) * (Minibib) * rieat input Capacity (Minibib) * (Minibib)

^{4.} Emission factors for CO₂, N₂O, and CH₄ from 40 CFR Part 98, Subpart C, Table C-1 amended December

^{9, 2016} and Table C-2 amended May 14, 2024.

 $^{5.\} CO_2e$ is calculated using Global Warming Potentials (GWPs) from 40 CFR Part 98, Subpart A, Table A-1 updated January 1, 2025. GWPs used for CO_2 , CH_4 , and N_2O are listed below.

Table C-29. Emergency Fire Pump Operating Parameters

Parameter	Value	Units
Fuel	Diesel	
Maximum Power Output ¹	164	kW
Maximum Power Output ¹	220	hp
Potential Operation	500	hr/yr
Power Conversion ²	7,000	Btu/hp-hr
Maximum Heat Input ³	1.54	MMBtu/hr

- 1. Maximum power output based on regulatory requirements.
- 2. Conversion factor for diesel fuel as noted in AP-42, Section 3.3, Table 3.3-1 footnote.
- 3. Calculated as Power Conversion (Btu/hp-hr) * Power Output (hp) / 10^6 (Btu/MMBtu).

Table C-30. Emergency Fire Pump Potential Criteria and HAP Emissions

Pollutant	Emissio (lb/hp-hr)	on Factor ¹ (lb/MMBtu)		ential ions ^{5,6} (tpy)
NO _x	6.61E-03	0.94	1.46	0.36
voĉ	2.47E-03	0.35	0.54	0.14
CO	5.73E-03	0.82	1.26	0.32
Filterable PM	3.31E-04	0.05	0.07	1.82E-02
Total PM ²	3.31E-04	0.05	0.07	0.02
Total PM ₁₀ ²	2.20E-03	0.31	0.48	0.12
Total PM _{2.5} ²	2.20E-03	0.31	0.48	0.12
SO ₂	2.05E-03	0.29	0.45	0.11
CO ₂	1.15	164.3	253.00	63.25
CH ₄ ³	4.63E-05	6.61E-03	1.02E-02	2.55E-03
N_2O^3				
N ₂ U	9.26E-06	1.32E-03	2.04E-03	5.09E-04
CO₂e ⁴	1.15	164.8	253.83	63.46
Acetaldehyde	5.37E-06	7.67E-04	1.18E-03	2.95E-04
Acrolein	6.48E-07	9.25E-05	1.42E-04	3.56E-05
Benzene	6.53E-06	9.33E-04	1.44E-03	3.59E-04
1,3-Butadiene	2.74E-07	3.91E-05	6.02E-05	1.51E-05
Formaldehyde	8.26E-06	1.18E-03	1.82E-03	4.54E-04
Propylene	1.81E-05	2.58E-03	3.97E-03	9.93E-04
Naphthalene	5.94E-07	8.48E-05	1.31E-04	3.26E-05
Toluene	2.86E-06	4.09E-04	6.30E-04	1.57E-04
Xylene (o)	2.00E-06	2.85E-04	4.39E-04	1.10E-04
Polycyclic Organic Matter (POM) * Polycyclic Aromatic Compounds (PAC)**				
Acenaphthene*	9.94E-09	1.42E-06	2.19E-06	5.47E-07
Acenaphthylene*	3.54E-08	5.06E-06	7.79E-06	1.95E-06
Anthracene*	1.31E-08	1.87E-06	2.88E-06	7.20E-07
Benzo(a)anthracene**	1.18E-08	1.68E-06	2.59E-06	6.47E-07
Benzo(a)pyrene**	1.32E-09	1.88E-07	2.90E-07	7.24E-08
Benzo(b)fluoranthene**	6.94E-10	9.91E-08	1.53E-07	3.82E-08
Benzo(k)fluoranthene**	1.09E-09	1.55E-07	2.39E-07	5.97E-08
Benzo(g,h,i)perylene*	3.42E-09	4.89E-07	7.53E-07	1.88E-07
Chrysene**	2.47E-09	3.53E-07	5.44E-07	1.36E-07
Dibenzo(a,h)anthracene**	4.08E-09	5.83E-07	8.98E-07	2.24E-07
Fluoranthene*	5.33E-08	7.61E-06	1.17E-05	2.93E-06
Fluorene*	2.04E-07	2.92E-05	4.50E-05	1.12E-05
Indeno(1,2,3-cd)pyrene**	2.63E-09	3.75E-07	5.78E-07	1.44E-07
Phenanthrene*	2.06E-07	2.94E-05	4.53E-05	1.13E-05
Pyrene*	3.35E-08	4.78E-06	7.36E-06	1.84E-06
		To	tal HAP:	2.48E-03

^{1.} Emission factors from AP-42 Section 3.3 (Gasoline and Diesel Industrial Engines), Table 3.3-1 and 3.3-2 (10/96), except for NOx, CO, and filterable PM. For these three pollutants, Table 4 to NSPS Subpart III limits used for 2009 or newer fire pump engine (with NOx = NMHC + NOx, conservatively).

 $\begin{array}{ccc} \text{CO}_2 & 1 \\ \text{CH}_4 & 28 \\ \text{N}_2 \text{O} & 265 \end{array}$

Emissions (lb/hr) = Emission Factor (lb/hp-hr) * Engine Capacity (hp)

6. Annual emissions are calculated as follows:

Annual Emissions (tpy) = Hourly Emissions (lb/hr) * Annual Operation (hr/yr) / 2,000 (lb/ton)

^{2.} All PM is assumed to have a diameter of less than one micron. Additionally, there is no CPM factor available; thus, PM = PM_{10} = $PM_{2.5}$.

^{3.} CH₄ and N_2O factors are from 40 CFR Part 98, Table C-2 for petroleum fuels.

^{4.} CO_2e is calculated using Global Warming Potentials (GWPs) from 40 CFR Part 98, Subpart A, Table A-1 updated January 1, 2025. GWPs used for CO_2 , CH_4 , and N_2O are listed below.

^{5.} Short-term emissions are calculated as follows:

Table C-31. Truck Traffic Parameters

Parameter	Value	Units
Trucks - Whole Logs	551,155 1,510 27	tpy tons/day tons/load
Trucks - Green Residuals	56 165,347 453 28	loads/day tpy tons/day tons/load
Delivery Hours	17 24	loads/day hr/day

Table C-32. Vehicle Data

Type of Vehicles	Unloaded Weight (tons)	Loaded Weight (tons)	Unloaded Distance (mi/load)	Loaded Distance (mi/load)	Loads (per day)	Total Distance per Load (miles/load)	Max Hr Load (miles/hr)	Annual Load Distance (miles/yr)	% Annual Load Distance	Adj Weight (ton)
Truck Route - Whole Logs	15.0	42.0	0.42	0.30	56	0.72	1.68	14,711	70.25%	18.52
Truck Route - Green Residuals	15.1	43.3	0.74	0.27	17	1.00	0.71	6,229	29.75%	6.71
						Totals:	2.39	20,939		25.23

Emission Factors (lb/VMT)

$$\begin{split} E_{\text{hourly}} &= k \; (\text{sL})^{0.91} \, x \; (\text{W})^{1.02} \\ E_{\text{annual}} &= \left[\; k \; (\text{sL})^{0.91} \; x \; (\text{W})^{1.02} \; \right] \, (1 - \text{P/4N}) \end{split}$$
Paved Roads AP-42, Section 13.2.1.3, eq 1 AP-42, Section 13.2.1.3, eq 2

where: E_{hourly} = particulate emission factor (lb/VMT) for hourly emissions

 $\frac{1}{V_{early}} = \text{particulate emission factor (lb/VMT) for annual emissions} \\ k = \text{is the particulate size multiplier in lb/VMT}$ k (PM) 0.011 $k(PM_{10})$ s. L = silt loading in g/m^2 , utilized 3.0 g/m^2 (accepted by ADEQ for Highland Pellets) W = average weight of all the vehicles traveling on the haul roads in tons P = number of days with at least 0.01 in. of precipitation per year, Figure 13.2.1-9 3 25.23

0.0022

110 N = number of days in the average period365

Table C-33. Paved Road PM Emission Factors

Pollutant	lb/	lb/VMT		
	Hourly	Annual		
PM	0.80	0.74		
PM ₁₀	0.16	0.15		

Table C-34. Paved Road PM Emissions

	Potential	Potential Emissions		
Pollutant	(lb/hr)	(tpy)		
PM	1.92	7.79		
PM ₁₀	0.38	1.56		

APPENDIX D. SUPPORTING DOCUMENTATION

Georgia Department of Natural Resources

Environmental Protection Division • Air Protection Branch 4244 International Parkway • Suite 120 • Atlanta • Georgia 30354

404/363-7000 • Fax: 404/363-7100 Judson H. Turner, Director

GAEPD RECOMMENDED EMISSION FACTORS FOR WOOD PELLET MANUFACTURING

Emission Source	Uncontrolled Emission Factor	Basis of Emission factor	Control Device	
Rotary Dryer Direct wood fired processing green	6.0 lb/ODT for VOC	AP-42 Table 10.6.2-3 SCC 3-07-006-25 (Adjusted)		
softwood	5.3 lb/ODT for CO	AP-42 Table 10.6.1-2 SCC3-07-010-09		
	2.7 lb/ODT for NOx	AP-42 Table 10.6.2-2 SCC 3-07-006-25	If emissions are routed to the dryer with	
	2.2 lb/ODT for PM total	AP-42 Table 10.6.2-1 SCC 3-07-006-25	WESP/RTO controls use 95% DRE for VOC and HAP	
	1.1 lb/ODT for PM Condensible	AP-42 Table 10.6.2-1 SCC 3-07-006-25		
	0.11 lb/ODT for Acetaldehyde	AP-42 Table 10.6.2-3 SCC 3-07-006-25 (Adjusted)		
	0.14 lb/ODT for Formaldehyde	AP-42 Table 10.6.2-3 SCC 3-07-006-25		
	0.11 lb/ODT ton for Methanol	AP-42 Table 10.6.2-3 SCC 3-07-006-25	If WESP is used for PM control use 70% removal efficiency for	
	1.9 E-02 lb/MM Btu for HCl	AP-42 Table 1.6-3	HCl (pH of the water needs to be monitored and maintained)	
Hammermill	2.5 lb VOC/ton product			
	product	Georgia Biomass Testing	If emissions are routed to dryer 90 % DRE for	
	0.004 lb/ton of product for Acetaldehyde	Georgia Biomass- prorated from Pellet Cooler testing	VOC and HAP	
	0.008 lb/ton of product for Formaldehyde	Georgia Biomass-prorated from Pellet Cooler testing	If emissions are routed to RTO use 95 % DRE	
	0.004 lb/ton for Methanol	Georgia Biomass-prorated from Pellet Cooler testing	for VOC and HAP.	

GAEPD – VOC Unit Version 1 dated Jan 29, 2013

Emission Source	Uncontrolled Emission Factor	Basis of Emission factor	Control Device
Pelletizer/Pellet Cooler (without Steam injection or extraction)	0.5 lb VOC/ton of Product	Georgia Biomass Testing	If emissions are routed to dryer 90 % DRE for VOC and HAP
	0.001 lb/ton of product for Acetaldehyde	Georgia Biomass Testing	
	0.002 lb/ton of product for Formaldehyde	Georgia Biomass Testing	If emissions are routed to RTO use 95 % DRE for VOC and HAP.
	0.001 lb/ton of product for Methanol	Georgia Biomass Testing	101 VOC and HAT.
	1.3 lb VOC/ton of product	Georgia Biomass Testing	If emissions are routed to dryer 90 % DRE for
Pelletizer/Pellet Cooler (with Steam injection)	0.002 lb/ton of product for Acetaldehyde	Georgia Biomass- prorated from Pellet Cooler testing	VOC and HAP
	0.004 lb/ton of product for Formaldehyde	Georgia Biomass- prorated from Pellet Cooler testing	If emissions are routed to RTO use 95 % DRE for VOC and HAP.
	0.002 lb/ton of product for Methanol	Georgia Biomass- prorated from Pellet Cooler testing	
Storage/Handling	0.4 lb VOC/ton of product	Georgia Biomass Testing	If emissions are routed to dryer 90 % DRE for VOC and HAP
	0.001 lb/ton of product for Acetaldehyde	Georgia Biomass- prorated from Pellet Cooler testing	
	0.002 lb/ton of product for Formaldehyde	Georgia Biomass- prorated from Pellet Cooler testing	If emissions are routed to RTO use 95 % DRE for VOC and HAP
	0.001 lb/ton of product for Methanol	Georgia Biomass- prorated from Pellet Cooler testing	

Note: These are GAEPD recommended emission factors. Use of these emission factors does not guarantee compliance with all state and federal regulations