HOOD INDUSTRIES, INC. WAYNESBORO, MISSISSIPPI

Application for Permit to Construct

Prepared By: H. M. Rollins Company, Inc. P. O. Box 3471 Gulfport, Mississippi 39505 (228) 832-1738

May 23, 2025

Revised July 22, 2025

TABLE OF CONTENTS

1.0	INT	RODUCTION
2.0	FAC	ILITY AND PROCESS DESCRIPTION 1
	2.1	<u>Facility Description</u>
	2.2	<u>Process Description</u>
3.0	EMI	SSION INVENTORY
	3.1	<u>Insignificant Activities</u>
4.0	REG	SULATORY APPLICABILITY 5
	4.1	State Operating Permit
	4.2	New Source Performance Standards (NSPS)
	4.3	New Source Review
		4.3.1 Prevention of Significant Deterioration (PSD)
		4.3.2 <u>Non-Attainment</u>
		4.4 NESHAP Part 63 Standards (MACT)
5.0	CON	APLIANCE ASSURANCE MONITORING

LIST OF EXHIBITS

EXHIBIT 1 Permit Application Forms

Figure 1 - Topographic Map

Figure 2 - Site Layout and Air Emission Points

Figure 3 - Process Flow Diagram and Air Emission Points

EXHIBIT 2 Calculations of Maximum Potential Post-Project Emissions

EXHIBIT 3 PSD Applicability Determination

CY2017 Actual Emissions

CY2018 Actual Emissions

EXHIBIT 4 New Source Review

1.0 INTRODUCTION

This application is for a mill modernization project which will involve the replacement of the current sawmill and planer mill located on the property; the removal of the wood-fired boiler, steam-heated lumber kiln, batch wood-fired lumber kiln, and all pneumatic conveyance systems; the modification of the existing continuous lumber dry kiln from wood-fired to natural gas-fired; and the construction of two log cranes and one new pneumatic conveyance system.

The emissions from this project have been evaluated and found to trigger PSD permitting. Additional information may be found in the following sections.

2.0 FACILITY AND PROCESS DESCRIPTION

The Hood Industries, Inc., Waynesboro, Mississippi, facility is located at 915 Industrial Park Road, approximately ¼ mile west of U.S. Highway 45 in Waynesboro, Wayne County, Mississippi. The facility produces pine lumber, with bark, wood shavings, sawdust, and wood chips produced as secondary products.

2.1 Facility Description

The facility is located in Section 18 of Township 8 North, Range 6 West. The property elevation is approximately 165 feet above sea level. A site topographic map of the area is included in Figure 1. Current improvements on the property include a planer mill, a sawmill, a wood-fired boiler, one steam-heated lumber drying kiln, a direct-fired batch lumber kiln, a direct-fired continuous lumber kiln, and an office building. The property also includes numerous lumber storage

sheds, five wood residue pneumatic conveyance systems with cyclones, mechanical conveying systems, a log storage yard, a vehicle maintenance area, and chip and shaving load out areas. Railroad tracks run adjacent to the eastern boundary of the property, and the site is bounded to the south by Industrial Park Road. The land on which the facility is located is reasonably flat with no terrain irregularities which could have an obvious effect on pollution dispersion.

A site drawing showing the proposed layout of the modified facility is included in Figure 2.

2.2 **Process Description**

Lumber is produced at the mill as follows: (See process flow diagram in Figure 3)

- Southern pine logs arrive at the facility where they are debarked and cut to desired length. Bark and sawdust from the log debarking and bucking is conveyed to a hammer-hog where it is reduced to a more uniform particle size for sale. Any part of the log unusable for lumber proceeds to chippers where it is converted to chips used in the paper industry.
- The logs proceed to the sawmill where they are sawn into lumber and trimmed to the desired length. Sawdust from the sawmill is stored and sold as a by-product. Green residue lumber and slabs from the sawmill are sent to chippers for further processing.
- When cut in the sawmill, the lumber has a moisture content of approximately 55%. The lumber is heated in dry kilns to reduce the

moisture content to approximately 19%. Heat is provided directly using natural gas burners attached to each kiln.

- After adequate drying, the lumber proceeds to the planer mill for final
 processing. In the planer mill, the lumber is planed to ensure uniform
 dimensions and trimmed to the appropriate length. Dry residue in the form
 of shavings, sawdust, and hogged wood is collected and shipped as a
 commercial by-product.
- After sorting and stacking in the planer mill, the finished lumber is then ready for distribution.

3.0 EMISSION INVENTORY

Post-project maximum potential emissions from existing and new sources will be quantified by the use of production rates, rated capacities, emission factors, and test data, where available.

The unloading, storage, handling, debarking, and bucking (sawing) operations are sources of fugitive emissions of particulate matter (PM). Vehicle travel on paved and unpaved plant roads is also a source of fugitive PM emissions, where applicable.

The lumber kilns used to dry lumber are a source of VOC, PM, CO, NO_X, SO2, and HAP emissions.

Dry wood residues from facility operations are pneumatically conveyed to a product separation device integral to the design of the system. This device separates the wood from the conveying air stream and deposits the wood into storage bins used to load trucks for shipment. The pneumatic conveyance system is a source of PM emissions.

Emissions from the storage of motor fuels, generally considered to be insignificant activities, have been calculated.

Maximum potential post-project emissions calculations are presented in Exhibit 2.

3.1 **Insignificant Activities**

A number of manufacturing process emission sources are defined as insignificant activities in 11 Miss. Admin. Codes Pt. 2, R.6.7. Those activities which are covered by subparagraphs B through D of that Rule are listed below:

- Oil and Fuel Oil Storage Tanks (B.7) (Subject to change)
 - 10,000 gallon aboveground diesel fuel tank
 - 2,000 gallon aboveground gasoline tank
 - 2,000 gallon hydraulic oil tank
 - 2,000 gallon rockdrill oil tank
 - 1,000 hydraulic oil tank
 - 4,000 gallon aboveground used oil tank
- Bark and wood storage and handling (B.13)
- Steam discharge, vents and leaks (B.25)
- Deaerator vents (B.26)
- Process and instrument air discharges (B.27)
- Maintenance room vent cyclone (less than 1.0 lbs/hr criteria pollutant emissions, 0.1 lb/hr HAP, D.1)

4.0 REGULATORY APPLICABILITY

The facility currently operates under emissions limitations set forth in Permit No. 2840-00004. The following is a description of State and Federal emissions limitations governing the operation of the facility:

4.1 State Operating Permit

The current State operating permit lists general requirements for PM emissions based on a process weight equation of 4.1 (PW)^{0.67}. The permit also includes opacity limitations. All operations are subject to a limit of 40% opacity.

4.2 New Source Performance Standards (NSPS)

None of the proposed air emissions sources are subject to NSPS.

4.3 New Source Review

4.3.1 Prevention of Significant Deterioration (PSD)

The facility is a major source of emissions with respect to the PSD regulations. Therefore, this modification has been reviewed to determine if the proposed emissions increases exceed the significant levels listed at 40 CFR 52.21. The removal and replacement of equipment proposed in this project result in reductions in most pollutants. However, the increase in drying capacity does yield increases in VOC emissions exceeding PSD significance levels. The PSD evaluation is found in Exhibit 3. A BACT

analysis and Ambient Air Quality Impact analysis are found in Exhibit 4 as part of a New Source Review document.

4.3.2 Non-Attainment

For the purpose of compliance with National Ambient Air Standards for Criteria Air Pollutants, the facility is not located in an area designated as a Non-Attainment Area for any criteria air pollutants.

4.4 NESHAP Part 63 Standards (MACT)

The facility is subject to National Emission Standards for Hazardous Air Pollutants from Source Categories (NESHAP) regulations for the Plywood and Composite Wood Products (PCWP) source category (40 CFR 63 Subpart DDDD), due to the presence of the lumber kilns. However, there are no requirements assigned in the regulations beyond initial notification. The facility is currently in compliance with this Subpart.

5.0 COMPLIANCE ASSURANCE MONITORING

The Compliance Assurance Monitoring (CAM) requirements found at 40 CFR Part 64 apply to a pollutant-specific emission unit if the following three criteria are met:

1. The unit must be subject to an emission limitation or standard for the applicable pollutant (or a surrogate thereof), other than an emission limitation or standard that is exempt under paragraph 40 CFR Part 64.2(b)(1);

- 2. The unit must use a control device to achieve compliance with an emission limitation or standard; and
- 3. The unit must have "potential pre-control device emissions" in the amount required to classify the pollutant-specific emission unit as a major source under 40 CFR Part 70.

Each emission unit must be evaluated according to these criteria. That evaluation shows that no proposed emissions units meet the three requirements requiring CAM.

Exhibit 1

FORM 5 MDEQ

		1,1224	CONTROL PERMIT	
Fac	cility	(Agency Interest) Information		Section A
1.		me, Address, and Location of Facility	<u> </u>	
		,		
	A.	Owner/Company Name: Hood Industries, In	ic.	
	В.	Facility Name (if different than A. above):		
	C	E '1', A' D ', N ('C) \ 2040.00	004	
	C.	Facility Air Permit No. (if known): 2840-00	004	
	D.	Agency Interest No. (if known): 7876		
	υ.	rigency interest ivo. (y known).		
	E.	Physical Address		
		1. Street Address: 915 Industrial Park	Road	
		2. City: Waynesboro 3	. State: MS	
		4. County: Wayne 5	-	
		6. Telephone No.: <u>601-735-5038</u> 7	. Fax No.:	
	Г	M '1' A 11 (10 1100	1	
	F.	Mailing Address (if different from physical address or P.O. Box:	ess)	
) City		
		3 State:	4. Zip Code:	
		J. State.	1. Zip code.	
	G.	Latitude/Longitude Data		
		1. Collection Point (check one):		
		2. Method of Collection <i>(check one)</i> :		
		☐ GPS Specify coordinate sys	tem (NAD 83, etc.)	
			c.) \square Other:	
		· -	31/39/12.5	<u></u>
		e (9	088/37/43	<u></u>
		5. Elevation: <u>1</u>	75 feet	
	TT	SIC/NAICS Codes (review www. code linted Great)		
	Н.	SIC/NAICS Codes (primary code listed first) SIC: 2421		
		NAICS: 321113		
		(NAICS Code should correspond with the SIC C	Code directly above.)	
2.	Nai	me and Address of Facility Contact		
	1141	ine and reduces of Lacinty Contact		
	A.	Name: Sam Newbill	Title: Director, EHS	
	В.	Mailing Address		
		•	d Blvd, Suite 100	
		2. City: Hattiesburg 3.		
		4. Zip Code: <u>39401</u> 5.		ndustries.com
		6. Telephone No.: 601-762-0025 7.	Fax No.:	

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL

FO	RM	5	[V]	IDE	Q	QUAI	LITY AP				FOR AIR PERMIT	POLL	UTION
Fac	cility	(A	genc	y Inte	erest)	Informa	ation					Se	ction A
3.	Nai	ne a	and A	ddres	s of Ai	r Contact	t (if diffe	ere	ent froi	m I	Facility Co	ontact)
	A. B.	Na:	me: _	ddress					Title:				
		1 2 4 6	. City . Zip	r: Code:		P.O. Box:		3. 5. 7.	State: Email: Fax No				
4.	Nor	20 0	and A	ddwaa	a of th	e Respons	sible Of	fia	ial far	4h	o Eggility		
	а. b. c.	For chadec if the promote sector of a conference of a conferen	a corporge of a cision-male repreduction ordance a municular agreement agree	oration: a princip aking fu sentativ , or oper 250 pers etter 198 e with co nership o icipality, ected off ency inc oal geog	a presidal busin nctions j e is resp rating fa sons or h to dollar or sole p state, fe icial. For rudes the raphic u	ed as one of the dent, secretary ess function, for the corpor onsible for the cilities apply have gross and procedures. The procedures of the age on the full of the age on the performs so the performs are performs to the performs the performance the p	ry, treasure or any oth ration, or he overall ving for or anual sales ty to sign of the sere tive offices ency (e.g., cludes the	er, ner, ner a d ope sult s or doc al p age guld r h a H	or vice-person veluly autheration of bject to a comments hereartner of the artner of t	who porized from the control of the	performs sin ed represent e or more mo emit and the es exceeding been assigne e proprietor, a principal ex exibility for the ministrator o ender, chief ex	nilar poi tative of anufactu facilities \$25 mil respect xecutive tive offic the overa f EPA).	licy or such person aring, s employ lion (in legated in tively. c officer or cer of a all operations A principal c officer, or
	A.	Na	me:	Sam l	Newbill				Title:	Di	rector, EHS	;	
	B.	Ma	iling A . Stre		ess or F	P.O. Box:	1978 Ho	od	Blvd, S	Suite	e 100		
		2	. City	r :	Hattie	sburg		3.	State:		MS		
		4	. Zip	Code:	39401			5.	Email:	: .	snewbill@ho	oodindus	stries.com
		6	. Tele	phone	No.: _	601-762-00	25	7.	Fax N	o.:			
	C.	and	l not a dres, has	corpora writter	te office notific	ation of suc	h authoriz	zat	ion beer		Yes bmitted to I zation is at	MDEQ'	No ?

FORM 5 MDEQ

		CONTROL PERMIT	
Fac	cility	(Agency Interest) Information	Section A
5.		pe of Permit Application (Check all that apply)	
	Stat	te Permit to Construct (i.e., non-PSD or PSD avoidance) □ Initial Application □ Modification v Source Review (NSR) Permit to Construct (includes both Prevention of Signature)	gnificant
	Det	erioration (PSD) and Nonattainment) ⊠ Initial Application □ Modification	
	Syn Stat	e V Operating Permit ☐ Initial Application ☐ Re-issuance: Are any modifications to the permit/facility being requested? (If yes, provide a separate sheet identifying the modification(s) and resulting of Modification (Specify type): ☐ Significant ☐ Minor ☐ thetic Minor Operating Permit (Appendix B must be completed and attached. ☐ Initial Application ☐ Re-issuance: Are any modifications to the permit/facility being requested? If yes, address such on a separate sheet. ☐ Modification te Permit to Operate a Significant Minor Source (defined in 11 Miss. Admin. 1.C(25).) ☐ Initial Application ☐ Re-issuance: Are any modifications to the permit/facility being requested? If yes, address such on a separate sheet.	Administrative (L) Yes □ No
	Tru	 ☐ Modification e Minor Determination ☐ Uncontrolled potential to emit air pollutants is below the Title V threshold 	ds
6.	Pro	ocess/Product Details	
	A.	List Significant Raw Materials (if applicable): Southern Yellow Pine logs	
	B.	List All Products (if applicable): Lumber, wood chips, bark mulch	
	C.	Brief Description of Principal Process(es): <u>Manufacture of Lumber</u>	

FORM 5

MDEQ

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT

Facility	(Agency	Interest)	Inform	nation

Section A

- 6. Process/Product Details (continued)
 - D. Maximum Throughput for Raw Material(s) (if applicable):

Raw Material	Throughput	Units
Logs	200	Tons/hr

E. Maximum Throughput for Principal Product(s) (if applicable):

		·
Product	Throughput	Units
Lumber	50	MBF/hr

7. Facility Operating Information

A. Number of employees at the facility: 175

B.	Hours per day the facility will operate:	Average Actual 24	Maximum Potential 24
C.	Days per week the facility will operate:	5	7
D.	Weeks per year the facility will operate:	50	52

E. Months the facility will operate: 12 12

8. Maps

- A. Attach a topographical map of the area extending to at least ½ mile beyond the property boundaries. The map must show the outline of the property boundaries.
- B. Attach a site map/diagram showing the outline of the property, an outline of all buildings and roadways on the site, and the location of each significant air emission source.

FORM 5 MDEQ

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT

Facility (Agency Interest) Information

Section A

Λ		•
9.	7 0	ning
J.		111112

- A. Is the facility (either existing or proposed) located in accordance with any applicable city and/or county zoning ordinances? If no, please explain.

 Yes
- B. Is the facility (either existing or proposed) required to obtain any zoning variance to locate/expand the facility at this site? If yes, please explain.

 No

10. Risk Management Plan

- A. Is the facility required to develop and register a risk management ☐ Yes ☒ No plan pursuant to Section 112(r), regulated under 40 CFR Part 68?
- B. If yes, to whom was the plan submitted?

 Date submitted:

11. Is confidential information being submitted with this application? Yes No

If so, please follow the procedures outlined in the Mississippi Code Ann. Sections 49-17-39 and 17-17-27(6), as outlined in MCEQ-2 – "Regulation regarding the review and reproduction of public records".

12. MS Secretary of State Registration / Certificate of Good Standing

No permit will be issued to a company that is not authorized to conduct business in Mississippi. If the company applying for the permit is a corporation, limited liability company, a partnership or a business trust, the application package should include proof of registration with the Mississippi Secretary of State and/or a copy of the company's Certificate of Good Standing. The name listed on the permit will include the company name as it is registered with the Mississippi Secretary of State.

It should be noted that for an application submitted in accordance with 11 Miss. Admin. Code Pt. 2, R. 2.8.B. to renew a State Permit to Operate or in accordance with 11 Miss. Admin. Code Pt. 2, R. 6.2.A(1)(c). to renew a Title V Permit to be considered timely and complete, the applicant shall be registered and in good standing with the Mississippi Secretary of State to conduct business in Mississippi.

FORM 5

MDEQ

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT

Facility (Agency Interest) Information

Section A

13. Certification

Note: If approved by MDEQ, a duly authorized representative (DAR) may sign the air permit application. The DAR must be listed in Section 4 of this application.

I certify that to the best of my knowledge and belief formed after reasonable inquiry, the statements and information in this application are true, complete, and accurate, and that as a responsible official, my signature shall constitute an agreement that the applicant assumes the responsibility for any alteration, additions, or changes in operation that may be necessary to achieve and maintain compliance with all applicable Rules and Regulations. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment.

Z COO		
Signature	of Responsib	le Official/DAR

5-28-2025 Date

Sam Newbill
Printed Name

Director, EHS

Title

Section B.0: Emission Point Descriptions & Status

This form should list all the of the Emission Points and descriptions as proposed or as otherwise identified in an existing permit. This worksheet should be updated to reflect changes to the Status of the emission points over time. Emission Point ID's should match those assigned in the current MDEQ permit. Facility ID is optional. For proposed emission points, the facility should leave the Emission Point ID blank but may complete the Facility ID (if any). Under "Status," for Emission Points that are proposed or under construction but not yet operating, indicate their status as "Proposed." For emissions points already operating or for which construction has been certified complete, indicate their status as "Operating." Include all control devices for each emission point and the pollutant(s) the device controls. Control devices may be specified in general terms (e.g., baghouse, catalytic oxidizer, fabric filter, wet ESP, etc.). When an Emission Point is removed, indicate so by changing the "Status" to "Removed." Remove the emissions on the subsequent worksheets or indicate they are removed with a "-" for all pollutants.

Emission	Facility	Description	Status	Control	Controlled	Control	Controlled	Control	Controlled
Point ID	ID	•		Device	Pollutant(s)	Device	Pollutant(s)	Device	Pollutant(s)
AA-014	CDK1	Continuous Dry Kiln No. 1	Operating	None	None	None	None	None	None
AA-019	CDK2	Continuous Dry Kiln No. 2	Proposed	None	None	None	None	None	None
AA-020	CDK3	Continuous Dry Kiln No. 3	Proposed	None	None	None	None	None	None
AA-021	CDK4	Continuous Dry Kiln No. 4	Proposed	None	None	None	None	None	None
AA-022	PCS	Pneumatic Conveyance System	Proposed	None	None	None	None	None	None
	FUG-LOG PREP	Sawmill Fugitives (Debarking, Sawing)	Proposed	None	None	None	None	None	None
	FUG- ROADS	Facility Roads Fugitives	Proposed	None	None	None	None	None	None
	Gas Tank	Gasoline Tank	Operating	None	None	None	None	None	None
	Diesel Tank	Diesel Tank	Operating	None	None	None	None	None	None
									

Section B.1: Maximum Uncontrolled Emissions (under normal operating conditions)

Maximum Uncontrolled Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless operating capacity and/or hours of operation are specifically limited in an enforceable permit. (Existing limits on operating conditions, not emissions or use of a control device, may be used when determining uncontrolled emissions.) Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. Fill all cells in this table with the emission numbers or a "-" symbol indicates that emissions of this pollutant are not expected. Emissions ≥ 0.01 ton/yr from a specific emission unit must be included. Please do not change the column widths on this table.

Emission	TSP ¹	(PM)	PM	-10 ¹	PM-	-2.5^{1}	S	O_2	N	Ox	C	0	V	OC	TF	RS^2	Le	ead	Total	HAPs
Point ID	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
AA-014	0.0838	0.3670	0.5864	2.5684	0.5864	2.5684	0.0265	0.1161	3.1572	13.8285	3.7061	16.2327	50.5708	221.5001	-	-			3.5248	15.4386
AA-019	0.0838	0.3670	0.5864	2.5684	0.5864	2.5684	0.0265	0.1161	3.1572	13.8285	3.7061	16.2327	50.5708	221.5001	-	-			3.5248	15.4386
AA-020	0.0838	0.3670	0.5864	2.5684	0.5864	2.5684	0.0265	0.1161	3.1572	13.8285	3.7061	16.2327	50.5708	221.5001	-	-			3.5248	15.4386
AA-021	0.0838	0.3670	0.5864	2.5684	0.5864	2.5684	0.0265	0.1161	3.1572	13.8285	3.7061	16.2327	50.5708	221.5001	-	-			3.5248	15.4386
AA-022	6.1361	26.8761	2.9967	13.1255	1.1088	4.8565	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FUG- FUG-	11.1355	48.7735	5.5677	24.3865	2.7838	12.1930	-	-	-	-	-	-	-	-	-	-	-	-	-	-
FUG- ROADS	1.5985	7.0013	0.3197	1.4003	0.0784	0.3436	-	-	-	-	-	-	-	-	-	-	-	-	-	-
GAS TK	-	-	-	-	-	-	-	-	-	-	-	-	0.0333	0.1460	-	-	-	-	-	-
DSL TK	-	-	-	-	-	-	-	-	-	-	-	-	0.0005	0.0021	-	-	-	-	-	-
Totals	19.2053	84.1189	11.2297	49.1859	6.3166	27.6667	0.1060	0.4644	12.6288	55.3140	14.8244	64.9308	202.3170	886.1485	0.0000	0.0000	0.0000	0.0000	14.0992	61.7544

¹ Condensables: Include condensable particulate matter emissions in particulate matter calculations for PM-10 and PM-2.5, but not for TSP (PM).

² **TRS:** Total reduced sulfur (TRS) is the sum of the sulfur compounds hydrogen sulfide (H₂S), methyl mercaptan (CH₄S), dimethyl sulfide (C₂H₆S), and dimethyl disulfide (C₂H₆S₂).

Section B.2: Proposed Allowable Emissions

Proposed Allowable Emissions (Potential to Emit) are those emissions the facility is currently permitted to emit as limited by a specific permit requirement or federal/state standard (e.g., a MACT standard); or the emission rate at which the facility proposes to emit considering emissions control devices, restrictions to operating rates/hours, or other requested permit limits that reduce the maximum emission rates. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Emissions ≥ 0.01 ton/yr from a specific emission unit must be included. Additional columns may be added if there are regulated pollutants (other than HAPs and GHGs) emitted at the facility. List HAPs in Section B.3 and GHGs in Section B.4 (if applicable).

Emission	TS	\mathbf{P}^{1}	PM	[10 ¹	PM	2.5^{1}	SO	O_2	NO	Ox	C	0	V	OC	Tl	RS	Le	ad
Point ID	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
AA-014	0.0838	0.3670	0.5864	2.5684	0.5864	2.5684	0.0265	0.1161	3.1572	13.8285	3.7061	16.2327	50.5708	221.5001	-	-		
AA-019	0.0838	0.3670	0.5864	2.5684	0.5864	2.5684	0.0265	0.1161	3.1572	13.8285	3.7061	16.2327	50.5708	221.5001	1	-		
AA-020	0.0838	0.3670	0.5864	2.5684	0.5864	2.5684	0.0265	0.1161	3.1572	13.8285	3.7061	16.2327	50.5708	221.5001	-	-		
AA-021	0.0838	0.3670	0.5864	2.5684	0.5864	2.5684	0.0265	0.1161	3.1572	13.8285	3.7061	16.2327	50.5708	221.5001	-	-		
AA-022	6.1361	26.8761	2.9967	13.1255	1.1088	4.8565	-	-	-	-	-	-	-	-	-	-	-	-
FUG- LOG PREP FUG-	11.1355	48.7735	5.5677	24.3865	2.7838	12.1930	-	-	-	-	-	-	-	-	-	-	-	-
FUG- ROADS	1.5985	7.0013	0.3197	1.4003	0.0784	0.3436	-	-	-	-	-	-	-	-	-	-	-	-
GAS TK	-	-	-	-	-	-	-	-	-	-	-	-	0.0333	0.1460	-	-	-	-
DSL TK	-	-	-	-	-	-	-	-	-	-	-	-	0.0005	0.0021	-	-	-	-
Totals	19.2053	84.1189	11.2297	49.1859	6.3166	27.6667	0.1060	0.4644	12.6288	55.3140	14.8244	64.9308	202.3170	886.1485	0.0000	0.0000	0.0000	0.0000

¹ Condensables: Include condensable particulate matter emissions in particulate matter calculations for PM-10 and PM-2.5, but not for TSP (PM).

² **TRS:** Total reduced sulfur (TRS) is the sum of the sulfur compounds hydrogen sulfide (H_2S), methyl mercaptan (CH_4S), dimethyl sulfide (C_2H_6S), and dimethyl disulfide ($C_2H_6S_2$).

Section B.3: Proposed Allowable Hazardous Air Pollutants (HAPs)

Proposed Allowable HAPs (Potential to Emit) are those emissions the facility is currently permitted to emit as limited by a specific permit requirement or federal/state standard (e.g., a MACT standard); or the emission rate at which the facility proposes to emit considering emissions control devices, restrictions to operating rates/hours, or other requested permit limits that reduce the maximum emission rates. Select an inidividual HAP from the dropdown list provided. Emissions ≥ 0.01 ton/yr of an individual HAP from a specific emission unit must be provided. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected or are below the reporting threshold. Select the appropriate HAP from the drop down menu in the header cell of the given column in the table below. Additional columns may be added as necessary to address each HAP.

Emission Point ID	Total	HAPs	Acetal	dehyde	Acre	olein	Forma	dehyde	Meti	hanol	Pho	enol	Propion	aldehyde	Нез	cane	Name fr	Pollutant rom Drop i Menu
1 01110 12	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
AA-014	3.5248	15.4386	0.4566	1.9999	0.0457	0.2002	0.7452	3.2645	2.0548	9.0000	0.1142	0.5002	0.0457	0.2002	0.0794	0.3478		
AA-019	3.5248	15.4386	0.4566	1.9999	0.0457	0.2002	0.7452	3.2645	2.0548	9.0000	0.1142	0.5002	0.0457	0.2002	0.0794	0.3478		
AA-020	3.5248	15.4386	0.4566	1.9999	0.0457	0.2002	0.7452	3.2645	2.0548	9.0000	0.1142	0.5002	0.0457	0.2002	0.0794	0.3478		1
AA-021	3.5248	15.4386	0.4566	1.9999	0.0457	0.2002	0.7452	3.2645	2.0548	9.0000	0.1142	0.5002	0.0457	0.2002	0.0794	0.3478		
AA-022																		1
Totals:	14.0992	61.7544	1.8264	7.9996	0.1828	0.8008	2.9808	13.0580	8.2192	36.0000	0.4568	2.0008	0.1828	0.8008	0.3176	1.3912		

Section B.4: Greenhouse Gas (GHG) Emissions

This form is required for facilities that have or will require a Title V Operating Permit and for all industries in the energy and oil and gas sectors (i.e., SIC codes beginning with 13, 29, 46, and 49). Proposed Allowable GHGs (Potential to Emit) are those emissions the facility is currently permitted to emit as limited by a specific permit requirement or federal/state standard; or the emission rate at which the facility proposes to emit considering emissions control devices, restrictions to operating rates/hours, or other requested permit limits that reduce the maximum emission rates. Applicants must report potential emission rates in SHORT TONS per year, as opposed to metric tons required by Part 98. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. Only those emission points with emissions of greenhouse gases are required to be provided on this form.

		CO ₂ (non- biogenic) ton/yr	CO ₂ (biogenic) ² ton/yr	N ₂ O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ³ ton/yr		Total GHG Mass Basis ton/yr ⁵	Total CO ₂ e ton/yr ⁶
Emission Point ID	GWPs 1	1	1	298	25	22,800	footnote 4			
AA-014	mass GHG	23,043		0.0435	0.4346				23,043.4781	
AA-014	CO ₂ e	23,043		13	11					23,067.0
AA-019	mass GHG	23,043		0.0435	0.4346				23,043.4781	
AA-019	CO ₂ e	23,043		13	11					23,067.0
A A 020	mass GHG	23,043		0.0435	0.4346				23,043.4781	
AA-020	CO ₂ e	23,043		13	11					23,067.0
4 4 021	mass GHG	23,043		0.0435	0.4346				23,043.4781	
AA-021	CO ₂ e	23,043		13	11					23,067.0
	mass GHG									
	CO ₂ e									
	mass GHG									
	CO ₂ e									
	mass GHG									
	CO ₂ e									
	mass GHG									
	CO ₂ e									
	mass GHG									
	CO ₂ e									
	mass GHG									
	CO ₂ e									
	mass GHG						Ì			
	CO ₂ e									
	mass GHG						Ì			
	CO ₂ e									
FACILITY	mass GHG	92,172		0.17	1.74				92,174	
TOTAL	CO ₂ e	92,172		52	44				- , .	92,268

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

² Biogenic CO2 is defined as carbon dioxide emissions resulting from the combustion or decomposition of non-fossilized and biodegradable organic material originating from plants, animals, or micro-organisms.

³ For HFCs or PFCs describe the specific HFC or PFC compound and use a separate column for each individual compound.

⁴ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

Greenhouse gas emissions on a mass basis is the ton per year greenhouse gas emission before adjustment with its GWP. Include both biogenic and non-biogenic GHG in this total.

⁶ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the ton/yr mass emissions of the greenhouse gas by its GWP. Include both biogenic and non-biogenic CO₂e in this total.

Section B.5: Stack Parameters and Exit Conditions

Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit.

Emission Point ID	Orientation (H-Horizontal	Rain Caps	Height Above Ground	Base Elevation	Exit Temp.	Inside Diameter or Dimensions	Velocity	Moisture by Volume		ic Position autes/seconds)
Point ID	V=Vertical)	(Yes or No)	(ft)	(ft)	(°F)	(ft)	(ft/sec)	(%)	Latitude	Longitude
AA-014E	V	No	36	190	150	2.67	58.3	26	TBD	TBD
AA-014W	V	No	36	190	150	2.67	58.3	26	TBD	TBD
AA-019E	V	No	36	190	150	2.67	58.3	26	TBD	TBD
AA-019W	V	No	36	190	150	2.67	58.3	26	TBD	TBD
AA-020E	V	No	36	190	150	2.67	58.3	26	TBD	TBD
AA-020W	V	No	36	190	150	2.67	58.3	26	TBD	TBD
AA-021E	V	No	36	190	150	2.67	58.3	26	TBD	TBD
AA-021W	V	No	36	190	150	2.67	58.3	26	TBD	TBD
AA-022	V	No	50	190	Ambient	5.83	6.1	12	TBD	TBD

¹ A WAAS-capable GPS receiver should be used and in the WGS84 or NAD83 coordinate system.

FORM 5

MDEQ

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT

Fuel Rurning Equipment – External Combustion Sources Section C

A. Emission Point Description A. Emission Point Description: Continuous Direct-Fired Lumber Kiln (CDK) No. 1 C. Manufacturer: USNR D. Model Yr. and No.: 2016 High Temp CFC E. Maximum Heat Input (higher heating value): 45 MMBtu/hr Input Capacity: 35 (Avg) MMBtu G. For units subject to NSPS Db, is the heat release rate > 70,000 Btu/hr-ft³? Yes H. Use: Electrical Generation Steam Process Heat Space Heat Standby/Emergency Other (describe): I. Heat Mechanism: Direct Indirect J. Burner Type (e.g., pulverized coal, forced draft, atomizing oil, low-NO _x , etc.): L. Status: Operating Proposed Under Construction M. Date of construction, reconstruction, or most recent modification (for existing sources) or date of anticipated construction: Fuel Type Complete the following table, identifying each type of fuel and the amount used. Specify the units for heat contenhourly usage, and yearly usage. FUEL TYPE HEAT CONTENT Sulf-Fuel Neg Neg 44,120 sc//hr 386.5 MMscf Please list any fuel components that are hazardous air pollutants and the percentage in the fuel: Please list any fuel components that are hazardous air pollutants and the percentage in the fuel:			<u> Equipment – I</u>		IIDUSHOI	Sources	Section C					
B. Equipment Description: Continuous Direct-Fired Lumber Kiln (CDK) No. 1 C. Manufacturer: USNR D. Model Yr. and No.: 2016 High Temp CFC E. Maximum Heat Input (higher heating value): 45 MMBtu/hr F. Nominal Heat Input Capacity: 35 (Avg.) MMBtu (higher heating value): 45 MMBtu/hr Steam Process Heat Input Capacity: 35 (Avg.) MMBtu G. For units subject to NSPS Db, is the heat release rate > 70,000 Btu/hr-ft³? Yes H. Use: Electrical Generation Steam Process Heat Indirect J. Burner Type (e.g., pulverized coal, forced draft, atomizing oil, low-NO ₃ , etc.): Natural gas K. Additional Design Controls (e.g., FGR, etc.): L. Status: Operating Proposed Under Construction M. Date of construction, reconstruction, or most recent modification (for existing sources) or date of anticipated construction: Fuel Type Complete the following table, identifying each type of fuel and the amount used. Specify the units for heat content hourly usage, and yearly usage. FUEL TYPE HEAT CONTENT SULFUR ASH MAXIMUM HOURLY YEARLY USAGE Natural Gas 1020 BTU/sef Neg Neg 44,120 sef/hr 386.5 MMscf Please list any fuel components that are hazardous air pollutants and the percentage in the fuel: Boilers burning solid waste may be considered "solid waste incinerators" for purposes of complying with	Em	ission Po	oint Description									
C. Manufacturer: USNR D. Model Yr. and No.: 2016 High Temp CFC E. Maximum Heat Input (higher heating value): 45 MMBtu/hr F. Nominal Heat Input Capacity: 35 (Avg) MMBtu G. For units subject to NSPS Db, is the heat release rate > 70,000 Btu/hr-ft³?	A.	Emission P	oint Designation (Ref.	No.): AA-014								
E. Maximum Heat Input (higher heating value): 45 MMBtu/hr F. Nominal Heat Input Capacity: 35 (Avg) MMBtu G. For units subject to NSPS Db, is the heat release rate > 70,000 Btu/hr-ft³?	В.	Equipment	Description: <u>Cont</u>	inuous Direct-Fired	Lumber Kiln	(CDK) No. 1						
(higher heating value):45MMBtu/hr	C.	Manufactui	er: USNR	D.	Model Yr. and	1 No.: 2016 High	Temp CFC					
H. Use:	E.			MMBtu/hr			35 (Avg) MMBtu/l					
Space Heat	G.	For units su	ubject to NSPS Db, is the	he heat release rate	> 70,000 Btu/h	nr-ft ³ ?	Yes 1					
I. Heat Mechanism:	Н.	Use:	☐ Electrical Ger	neration	Steam	Proc	ess Heat					
J. Burner Type (e.g., pulverized coal, forced draft, atomizing oil, low-NO _x , etc.): K. Additional Design Controls (e.g., FGR, etc.): L. Status:		Space	e Heat Sta	andby/Emergency	Othe	r (describe):						
Additional Design Controls (e.g., FGR, etc.): L. Status:	I.	Heat Mech	anism:	Direct	Indirect							
L. Status:	J.				tural gas							
M. Date of construction, reconstruction, or most recent modification (for existing sources) or date of anticipated construction: June 2026 (mod)	K.	K. Additional Design Controls (e.g., FGR, etc.):										
Fuel Type Complete the following table, identifying each type of fuel and the amount used. Specify the units for heat content hourly usage, and yearly usage. FUEL TYPE¹ HEAT CONTENT % SULFUR % ASH MAXIMUM HOURLY YEARLY USAGE USAGE Natural Gas 1020 BTU/scf Neg Neg 44,120 scf/hr 386.5 MMscf Please list any fuel components that are hazardous air pollutants and the percentage in the fuel: 1 Boilers burning solid waste may be considered "solid waste incinerators" for purposes of complying with	L.	Status:	Operating	Propos	ed] Under Construc	tion					
Complete the following table, identifying each type of fuel and the amount used. Specify the units for heat content hourly usage, and yearly usage. FUEL TYPE HEAT CONTENT % SULFUR % ASH MAXIMUM HOURLY YEARLY USAGE USAGE	M.				odification (fo		5 (mod)					
hourly usage, and yearly usage. FUEL TYPE¹ HEAT CONTENT % SULFUR % ASH MAXIMUM HOURLY YEARLY USAGE Natural Gas 1020 BTU/scf Neg Neg 44,120 scf/hr 386.5 MMscf Please list any fuel components that are hazardous air pollutants and the percentage in the fuel: 1 Boilers burning solid waste may be considered "solid waste incinerators" for purposes of complying with	Fue	el Type										
FUEL TYPE¹ HEAT CONTENT % SULFUR % ASH MAXIMUM HOURLY USAGE Natural Gas 1020 BTU/scf Neg Neg 44,120 scf/hr 386.5 MMscf Please list any fuel components that are hazardous air pollutants and the percentage in the fuel: 1 Boilers burning solid waste may be considered "solid waste incinerators" for purposes of complying with				g each type of fuel a	nd the amount	used. Specify the u	units for heat content,					
Natural Gas 1020 BTU/scf Neg Neg 44,120 scf/hr 386.5 MMscf Please list any fuel components that are hazardous air pollutants and the percentage in the fuel: 1 Boilers burning solid waste may be considered "solid waste incinerators" for purposes of complying with				% SULFUR	% ASH	HOURLY	YEARLY					
¹ Boilers burning solid waste may be considered "solid waste incinerators" for purposes of complying with	Na	atural Gas	1020 BTU/scf	Neg	Neg							
¹ Boilers burning solid waste may be considered "solid waste incinerators" for purposes of complying with												
¹ Boilers burning solid waste may be considered "solid waste incinerators" for purposes of complying with												
	Pleas	se list any fue	components that are l	hazardous air polluta	ents and the pe	ercentage in the fuel:						
		_										
federal regulations. However, you are only required to complete Section C, not I, of this application as long as	¹ Boi		solid waste may be cor	nsidered "solid waste	incinerators"	for purposes of con	nplying with					

Form 5 Air Application, Section C, v. 2013.1

FORM 5 MDEO

						CONT	ROL PERMIT	
uel	l Bu	rning E	quipment	– Extern	al Con	ıbustio	n Sources	Section C
	Em	ission Po	int Descript	tion				
	A.	Emission D	oint Designation ((Dof No.)	AA-019			
	A.	Ellission F	omi Designation (Kei. No.).	AA-019			
	B.	Equipment	Description:	Continuous Dir	rect-Fired L	umber Kilr	(CDK) No. 2	
	C.	Manufactur	rer: TBD		D. N	Iodel Yr. aı	nd No.: TBD	
	E.	Maximum l (higher hear		45 MMI	Btu/hr	F.	Nominal Heat Input Capacity:	35 (Avg) MMBtu/h
	G.	For units su	bject to NSPS Db	o, is the heat rel	ease rate >	70,000 Btu	/hr-ft ³ ?	Yes N
	H.	Use:	Electrica	l Generation		Steam	⊠ Pro	cess Heat
		☐ Spac	e Heat	Standby/Em	ergency	Oth	ner (describe):	
	I.	Heat Mecha	anism:	Direct		Indirect		
	J.		e (e.g., pulverized oil, low-NO _x , etc.)			ıral gas		
	K.	Additional	Design Controls (e.g., FGR, etc.)):			
	L.	Status:	Operate	ting 🖂	Propose	d [Under Constru	ction
	M.		struction, reconst			dification (
		existing sou	arces) or date of a	nticipated cons	truction:		June 202	26
	Fue	el Type						
				ifying each typ	e of fuel and	d the amou	nt used. Specify the	units for heat content,
Γ		y usage, and EL TYPE ¹	yearly usage. HEAT CONTE	NT % SU	LFUR	% ASH	MAXIMUM	MAXIMUM
	101		TIETT COTTE	7,050	ZI OIL	,011511	HOURLY	YEARLY
-	Na	tural Gas	1020 BTU/sc	f N	eg	Neg	USAGE 44,120 scf/hr	USAGE 386.5 MMscf
-	INA	iurai Gas	1020 D10/80	ı IN	-g	TICK	77,120 801/111	JOU.J IVIIVISCI
-								
-								
L	Pleas	e list any fue	l components that	are hazardous	air pollutan	ts and the p	percentage in the fue	1:
		_						

¹ Boilers burning solid waste may be considered "solid waste incinerators" for purposes of complying with federal regulations. However, you are only required to complete Section C, not I, of this application as long as the wastes combusted are indicated in the table above.

FORM 5 MDFO

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL OHALITY APPLICATION FOR AIR POLILITION

OKI		MDEQ	CONTROL PERMIT							
uel B	urnin	g Equipment	– External Co	mbustio	n Sources	Section C				
En	nissio	n Point Descript	ion							
A.	Emiss	sion Point Designation (Ref. No.): AA-020)						
B.	Equip	oment Description:	Continuous Direct-Fire	d Lumber Kiln	(CDK) No. 3					
C.	Manu	facturer: TBD	D.	Model Yr. ar	nd No.: TBD					
E.		mum Heat Input er heating value):	45 MMBtu/hr	F.	Nominal Heat Input Capacity:	35 (Avg) MMBtu/h				
G.	For u	nits subject to NSPS Db	, is the heat release rate	e > 70,000 Btu	/hr-ft ³ ?	Yes N				
Н.	Use:	Electrical	Generation	Steam	⊠ Proc	cess Heat				
		Space Heat	Standby/Emergency	Oth	er (describe):					
I.	Heat 1	Mechanism:	Direct	Indirect						
J.		er Type (e.g., pulverized zing oil, low-NO _x , etc.)		Vatural gas						
K.	Addit	ional Design Controls (e.g., FGR, etc.):							
L.	Status	s:	ing 🛛 Prope	osed [Under Construc	ction				
M.		of construction, reconstrug sources) or date of ar		modification (1	For June 202	6				
Fu	el Ty	oe								
Con	nplete th	e following table, identi e, and yearly usage.	fying each type of fuel	and the amour	nt used. Specify the	units for heat content,				
	JEL TYI		NT % SULFUR	% ASH	MAXIMUM HOURLY USAGE	MAXIMUM YEARLY USAGE				
N	atural G	as 1020 BTU/sc	f Neg	Neg	44,120 scf/hr	386.5 MMscf				
Plea	se list aı	ny fuel components that	are hazardous air pollu	tants and the p	percentage in the fuel	l:				
	_									

¹ Boilers burning solid waste may be considered "solid waste incinerators" for purposes of complying with federal regulations. However, you are only required to complete Section C, not I, of this application as long as the wastes combusted are indicated in the table above.

FORM 5 MDFO

10				CONTROL PERMIT							
Tue	l Bur	ning I	Equipment -	- External Co	mbustio	1 Sources	Section C				
	Emis	ssion P	oint Descripti	on							
	A. I	Emission I	Point Designation (F	Ref. No.): AA-021							
						· · · · · · · · · · · · · · · · · · ·					
	B. I	Equipment	t Description: <u>C</u>	ontinuous Direct-Fire	d Lumber Kiln	(CDK) No. 4					
	C.	Manufactu	rer: TBD	D.	Model Yr. and	d No.: TBD					
			Heat Input ating value):	45 MMBtu/hr		Nominal Heat Input Capacity: _	35 (Avg) MMBtu/hi				
	G. I	For units s	ubject to NSPS Db,	is the heat release rate	> 70,000 Btu/h	nr-ft³?	Yes N				
	H. U	Jse:	Electrical	Generation [Steam	Proc	ess Heat				
		☐ Spa	ce Heat	Standby/Emergency	Othe	er (describe):					
	I. I	Heat Mech	nanism:	Direct	Indirect						
			pe (e.g., pulverized oil, low-NO _x , etc.):	· ·	Jatural gas						
	K. A	Additional	Design Controls (e	g., FGR, etc.):							
	L. S	Status:	Operation	ng Propo	osed] Under Construc	etion				
				action, or most recent recipated construction:	nodification (fo	June 202'	7				
2.	Fuel	Type									
	Comple	ete the foll		ying each type of fuel	and the amount	used. Specify the u	units for heat content,				
		usage, and TYPE ¹	l yearly usage. HEAT CONTEN	TT % SULFUR	% ASH	MAXIMUM	MAXIMUM				
	FUEL	LIPE.	HEAT CONTEN	% SULFUR	% ASH	HOURLY USAGE	YEARLY USAGE				
	Natu	ral Gas	1020 BTU/scf	Neg	Neg	44,120 scf/hr	386.5 MMscf				
	Please	list any fu	el components that s	are hazardous air pollu	tants and the ne	rcentage in the fuel					
		iist uily lu	er components that a	no nazaraous an ponu	and the po	reentage in the fuel	•				
	1 5 9		1:1	.1 1 (1:1			1.1. 2.1				

¹ Boilers burning solid waste may be considered "solid waste incinerators" for purposes of complying with federal regulations. However, you are only required to complete Section C, not I, of this application as long as the wastes combusted are indicated in the table above.

FORM 5	MDEQ
FORM 5	MDEQ

		CONTROL PERMIT											
Ma	nuf	acturing Pr	ocesses			Section	E						
1.		nission Point l											
	A. B.		Designation (Ref.: N	o.): AA-014	(CDK) Kiln	#1	_						
	D.	Process Descri	puon: <u>Conunuous Di</u>	rect-rired Lumber Kiin	(CDK), KIIII	#1							
	C.	Manufacturer:	USNR	D. Model:	High T	emp CFC							
	E.	E. Max. Design Capacity (specify units): 100 MMBF/yr Equivalent to: 30.92 tons/hr											
	F.	Status:	Operating \(\sum \) Pro	oposed U	Inder Constru	ection							
	G.	G. Operating Schedule (Actual): 24 hrs/day 7 days/week 50 weeks/yr											
	Н.		tion, reconstruction, or rees) or date of anticipa	most recent modification ted construction:	June 2026 ((mod)							
2.	Ra	w Material In	put										
		MATERIAL / Lumber	QUANTITY/HR AVERAGE 10.00 MBF	QUANITITY/HR MAXIMUM 11.42 MBF	QUANTIT MAXI 100 M	MUM							
	Naw	Lumber	10.00 MBF	11.42 MDI	100 101	INIDI							
2	D												
3.	Pr(oduct Output											
		MATERIAL	QUANTITY/HR AVERAGE	QUANITITY/HR MAXIMUM	QUANTIT MAXI								
	Dry	Lumber	10.00 MBF	11.42 MBF	100 M	IMBF							

FORM 5	MDEQ
--------	------

		CONTROL PERMIT											
Ma	nuf	acturing Pi	rocesses			Section E							
1.	Em	ission Point	Description										
	A.	Emission Poin	t Designation (Ref.: 1	No.): <u>AA-019</u>									
	В.	Process Descri	ption: <u>Continuous D</u>	Pirect-Fired Lumber Kiln	(CDK), Kiln #2) <u>-</u>							
	C.	Manufacturer:	TBD	D. Model:	TBD								
	C.	Manufacturer.	TDD	D. Wodel.	ТВВ								
	Е.	Max. Design C	Capacity (specify unit Equivalent		ons/hr								
	F.	Status:	Operating \(\sum \) P	roposed U	Inder Constructi	ion							
	G.	Operating Sche	dule (Actual): 24	hrs/day 7 day	ys/week5	0 weeks/yr							
	Н.		ction, reconstruction, or arces) or date of anticip	r most recent modification atted construction:	June 2026								
2.	Ra	w Material I	nput										
		MATERIAL	QUANTITY/HR AVERAGE	QUANITITY/HR MAXIMUM	QUANTITY/ MAXIMI	UM							
	Raw	Lumber	10.00 MBF	11.42 MBF	100 MM	BF							
3.	Pro	duct Output	-										
		,	_										
		MATERIAL	QUANTITY/HR AVERAGE	QUANITITY/HR MAXIMUM	QUANTITY/ MAXIMI								
	Dry	Lumber	10.00 MBF	11.42 MBF	100 MM								

FORM 5	MDEQ
--------	------

				CONTROL PH	CRMIT	
Ma	nuf	acturing Pr	ocesses :		Sectio	n E
1.	Em	nission Point	Description			
	A. B.		t Designation (Ref.: N ption: <u>Continuous Di</u>	o.): AA-020 rect-Fired Lumber Kiln	(CDK), Kiln #3	
	C. E.	Manufacturer: Max. Design C	TBD Capacity (specify units) Equivalent t	· -	TBD	_
	F.	Status:	Operating 🔀 Pro	oposed U	nder Construction	
	G.	Operating Scheo	dule (Actual): 24	hrs/day 7 day	ys/week <u>50</u> we	eks/yr
	Н.		etion, reconstruction, or a	most recent modification ted construction:	June 2026	_
2.	Ra	w Material II	nput			
		MATERIAL / Lumber	QUANTITY/HR AVERAGE 10.00 MBF	QUANITITY/HR MAXIMUM 11.42 MBF	QUANTITY/YEAR MAXIMUM 100 MMBF	
2						<u> </u>
3.	Pr(oduct Output				
		MATERIAL	QUANTITY/HR AVERAGE	QUANITITY/HR MAXIMUM	QUANTITY/YEAR MAXIMUM	
	Dry	Lumber	10.00 MBF	11.42 MBF	100 MMBF	

FORM 5	MDEQ
--------	------

				CONTROL PI	ERMIT
Ma	nuf	acturing Pi	rocesses		Section E
1.	Em	ission Point	Description		
	A. B.		t Designation (Ref.: Niption: <u>Continuous Di</u>	rect-Fired Lumber Kiln	(CDK), Kiln #4
	C. E.	Manufacturer: Max. Design C	Capacity (specify units		TBD ons/hr
	F.	Status:	Operating Pro	oposed U	Inder Construction
	G.	Operating Scheo	dule (Actual): 24	hrs/day 7 da	ys/week <u>50</u> weeks/yr
	Н.		ction, reconstruction, or arces) or date of anticipa	most recent modification ted construction:	June 2027
2.	Ra	w Material II	nput		
		MATERIAL / Lumber	QUANTITY/HR AVERAGE 10.00 MBF	QUANITITY/HR MAXIMUM 11.42 MBF	QUANTITY/YEAR MAXIMUM 100 MMBF
2					
3.	Pr(oduct Output	,		
		MATERIAL	QUANTITY/HR AVERAGE	QUANITITY/HR MAXIMUM	QUANTITY/YEAR MAXIMUM
	Dry	Lumber	10.00 MBF	11.42 MBF	100 MMBF

FORM 5	MDEQ
--------	-------------

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL

FO	KM	5	IVI	D.	FQ	<u> </u>	Q	<u>U</u> AL	ΙΤΥ	API	CO1						PO)LL	ıUΤ	ION	N	
Ma	nufa	icti	urin	g P	roce	esses	<u> </u>												Sec	ctio	n	E
1.	Emi	issi	on P	oint	Des	cript	ion															
	B.	Pro the sepa	cess I dry lu arates	Desci umbe	ription or plant the w	signat n: Pno ner as ood an hanic	euma well : nd de	tic cor as hog eposits	nvey gged	ance mat	syst erials	em. and	l trai	nspo oad	orts ing	to a bin	cyc or ii	lon	e w		<u> </u>	_
	C.	Ma	nufac	turer	: <u>T</u>	BD					D.	M	Iode	:		_TI	BD_					
	Е.	Ma	x. Des	sign	Capa	city (s		y unit valent				bs/h	r (D		Γ) ns/h	r	_					
	F.	Stat	tus:		Ope	rating		P	ropo	sed				Uı	ndei	Co	nstr	ucti	on			
	G.	Ope	erating	Sch	edule ((Actua	ıl): -	24		hrs/d	ay _	7		day	s/w	eek	_	5	0	_ W6	eek	s/yr
						recon or da							icati	on -	Jur	ne 20	026				_	
2.	Rav	v M	later	ial l	npu	t																
			ERIA		Ç		TITY/ RAGI tons			-	AXIN 55 to	MUN			Ç	N.	NTI IAX 35,4	IMU		AR		
2	Duo	d a	4.0	4	1																	
3.	Pro	auc	et Ou	tpu	I.T																	
			ERIA		Ç		RAG			•	NITI AXIN	MUN			Ç	M	ΙΑΧ	IMU		AR		
	Plane	ed Lu	umber			44	tons				55 to	ons				38	35,4	40 t	ons			

FORM 5	MDEQ
--------	------

10				Q01123	CONTROL	PERMIT		
Ma	nufact	uring Pr	ocesse	S			Section	\mathbf{E}
1.	Emissi	on Point D	Descrip	tion				
			C	`	No.): Planer Mill utting to length finish	ned dry lumber		_
	E. Ma	tus: 🗌 (Operating	Equivalent g Pr	roposed	tons/hr Under Constru		
	H. Dat	e of construct	tion, reco	nstruction, or	hrs/day 7 most recent modificat ated construction:		50 week	cs/yr
2.	Raw M	laterial In	put					
		TERIAL ry Lumber	AVI	TTITY/HR ERAGE MBF/hr	QUANITITY/HR MAXIMUM 100 MBF/hr	MAXI	ΓΥ/YEAR IMUM IBF/year	
3.	Produc	et Output						

MATERIAL	QUANTITY/HR	QUANITITY/HR	QUANTITY/YEAR
	AVERAGE	MAXIMUM	MAXIMUM
Finished Lumber	75 MBF	100 MBF	400 MMBF
Planer Shavings	12 tons	18 tons	60,000 tons
Fines	2 tons	3 tons	9,000 tons

FORM 5	MDEQ
--------	------

			. ~			CON	TROL	PERM	ΛIΤ			
Ma	nufac	turing Pr	ocesses	<u> </u>						Sec	tion	E
1.		sion Point I										
	, F	· · · · · · · ·	D :	·	. T . \	G	11					
	A. E	mission Point	Designat	non (Rei.: I	No.):	Sawmi	111					_
	B. Pi	rocess Descrip	otion: <u>De</u>	barking an	<u>d sawi</u>	ng of gr	een lum	<u>ıber</u>				
		r C .	TDD			Ъ) (1	1	TDD			
	C. M	lanufacturer:	TBD			D.	Mode	1:	TBD			
	E. M	Iax. Design C					/hr					
				Equivalent	to: <u>1</u>	89		_ tons/	hr			
	F. St	tatus: 🔲 (Operating	g \triangleright P:	ropose	d		Unde	er Consti	ruction		
	G 0		1 (4)	1) 24	1	. 1	_	• ,	•	5 0		,
	G. O	perating Sched	ule (Actua	ii): <u>24</u>	hr	s/day _		days/v	veek _	50	week	is/yr
		ate of construc							2026			
	(10	or existing sour	rces) or da	ite of anticip	ated co	nstructio	on:	_Ju	ine 2026	<u> </u>		
2.	Raw	Material In	put									
	3.4.4	TERIAL	OLIANI	TITY/IID		I I A NIITI	TV/IID		OI I A NITI		VD.	
	IVIA	MIEKIAL	_	TITY/HR ERAGE	Q	UANITI MAXIN			QUANT! MAX	II Y / Y E F IMUM	1K	
	Pine Lo	ogs	189	tons/hr		189 tor	ns/hr		1,653,3	36 tons/y	r	
3.	Produ	act Output										
	MA	TERIAL	QUAN	TITY/HR	Q	UANITI	TY/HR		QUANT]	ITY/YEA	AR	

MATERIAL	QUANTITY/HR	QUANITITY/HR	QUANTITY/YEAR
	AVERAGE	MAXIMUM	MAXIMUM
Green Lumber	75 MBF	100 MBF	400 MMBF
Bark	20 tons	30 tons	108,000 tons
Chips/Sawdust	70 tons	110 tons	365,000 tons

FORM 5

MDEQ

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT

PERMIT Tank Summary Section H Emission Point Description *Note: Sections 3-7 below do not have to be completed if all of the required information is provided elsewhere,* such as in a report generated by EPA's TANKS software, and attached to the application. Emission Point Designation (Ref. No.): В. Product(s) Stored: Diesel Fuel **Under Construction** C. Status: Operating Proposed Date of construction, reconstruction, or most recent modification (for existing sources) or date of anticipated construction: 2. Tank Data Tank Specifications: 1. Design capacity 10000 gallons 2. True vapor pressure at storage temperature: 0.006 psia @ ٥F 3. Maximum true vapor pressure (as defined in §60.111b) psia @ ٥F 4. Reid vapor pressure at storage temperature: psia @ ٥F Density of product at storage temperature: 7.1 5. lb/gal 6. Molecular weight of product vapor at storage temp. 130 lb/lbmol Tank Orientation: Vertical Horizontal C. Type of Tank: Fixed Roof External Floating Roof **Internal Floating Roof** Variable Vapor Space Pressure Other: \boxtimes Is the tank equipped with a Vapor Recovery System? Yes No If yes, describe below and include the efficiency. Closest City: Ε. Jackson, MS Meridian, MS Tupelo, MS Mobile, AL New Orleans, LA Memphis, TN Baton Rouge, LA Is an EPA TANKS report included for this tank in the application? \square Yes No

FORM 5 | MDEQ

						PERMIT	Ľ	
Ta	nk	Sun	nmary					Section H
3. Horizontal Fixed Roof Tank								
	A. B. C. D. E. F. G.	Shel Shel Wor Max Is the	l Length: l Diameter: king Volume: imum Throughput: e tank heated? e tank underground? l Color/Shade:		27 8 1000 12000 Yes Yes			Aluminum/Diffuse
			Gray/Light		Gray	/Medium		Red/Primer
	Н.	Shel	l Condition:	Good		☐ Poor		
4.	I. Vertical Fixed Roof Tank							
	A.	Dim 1. 2. 3. 4. 5. 6. 7. 8.	ensions: Shell Height: Shell Diameter: Maximum Liquid Heig Average Liquid Height Working Volume: Turnovers per year: Maximum throughput: Is the tank heated?		Yes	feet feet feet feet gal gal/yr No		
	B.	1.	Characteristics: Shell Color/Shade: White/White Gray/Light			Aluminum/Specular Gray/Medium		Aluminum/Diffuse Red/Primer
		2.	Shell Condition:		Good	Poor		
	C.	Root 1.	f Characteristics: Roof Color/Shade: White/White Gray/Light			Aluminum/Specular Gray/Medium		Aluminum/Diffuse Red/Primer
		2.	Roof Condition:		Good	Poor		
		3.	Type:		Cone	☐ Dome		
		4.	Height:	1	feet			

MDEQ

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT

			FERMIT
Ta	nk	Sun	nmary Section H
5.			al Floating Roof Tank
J•	1111		ar i touting 1001 runk
	A.	Tank	c Characteristics:
	11.	1.	Diameter: feet
		2.	Tank Volume: gal
		3.	Turnovers per year:
		4.	Maximum Throughput: gal/yr
		5.	Number of Columns:
		<i>6</i> .	Self-Supporting Roof?
		7.	Effective Column Diameter:
		, ·	☐ 9"x7" Built-up Column ☐ 8" Diameter Pipe ☐ Unknown
		8.	Internal Shell Condition:
		0.	☐ Light Rust ☐ Dense Rust ☐ Gunite Lining
		9.	External Shell Color/Shade:
		· .	☐ White/White ☐ Aluminum/Specular ☐ Aluminum/Diffuse
			☐ Gray/Light ☐ Gray/Medium ☐ Red/Primer
		10.	External Shell Condition: Good Poor
		11.	Roof Color/Shade:
			☐ White/White ☐ Aluminum/Specular ☐ Aluminum/Diffuse
			☐ Gray/Light ☐ Gray/Medium ☐ Red/Primer
		10	
		12.	Roof Condition: Good Poor
	B.	Dim	Soal Systems
	Ъ.	1.	Seal System: Primary Seal:
		1.	Primary Seal:
		2.	Secondary Seal: Shoe-mounted Rim-mounted None
		2.	Secondary Sear. Since incurred Trim incurred 1 rone
	C.	Deck	k Characteristics:
	٠.	1.	Deck Type:
		2.	Deck Fitting Category:
6.	Ex	tern	al Floating Roof Tank
	A.	Tank	c Characteristics
		1.	Diameter: feet
		2.	Tank Volume: gal
		3.	Turnovers per year:
		4.	Maximum Throughput: gal/yr
		5.	Internal Shell Condition:
			☐ Light Rust ☐ Dense Rust ☐ Gunite Lining

FORM 5 | MDEQ

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL

								~
ank	Sun	nmary	у					Section
Ex	xterna	al Floa	ting Roo	f Tank (c	ontinued)			
A. Tank Characteristics (conto 6. Paint Color/Shade:			olor/Shade:	atinued):	Aluminum/Specu	ar 🔲	Aluminum	n/Diffuse
		☐ G	ray/Light		Gray/Medium		Red/Prime	er
	7.	Paint C	ondition:		Good	☐ Poo	r	
B. Roof Characteristics1. Roof Type:				☐ Ponto	oon	☐ Doı	ıble Deck	
	2.	Roof Fi	tting Catego	ory:	\Box Ty	pical	☐ Detail	l
C. Tank Construction and Ri 1. Tank Construction:				im-Seal Syst		elded	☐ Rivete	ed
2. Primary Seal: ☐ Mechanical Shoe ☐ Liquid-mounted ☐ Vap								
				hoe	☐ Liquid-mou	inted	☐ Vapor	-mounted
	3.	☐ M Second		hoe Shoe-m	_		_	
Po		Second N	Iechanical S ary Seal		_		_	
Po A.	olluta	Second N N nt Em	Iechanical S ary Seal one		_		_	
	olluta	Second N N N Rt Em	Iechanical S ary Seal one	Shoe-m	_		ted [
	olluta Fixed	Second N N N N N N N N N N N N N	Iechanical S ary Seal one	Shoe-ma	ounted [] Rim-moun	ess (tons/yr)	Weather shield Total Emissions
	Fixed Pollu	Second N N N N N N N N N N N N N	Iechanical S ary Seal one	Shoe-ma	ounted g Loss (tons/yr)	Rim-moun	ess (tons/yr)	Weather shield Total Emissions (tons/yr)
	Fixed Pollu	Second N N N M A Roof E Itant ¹	Iechanical S ary Seal one	Shoe-many Working	ounted g Loss (tons/yr)	Rim-moun	ess (tons/yr)	Weather shield Total Emissions (tons/yr)
A. B.	Fixed Pollu	Second N N N M A Roof E Itant ¹	Iechanical S ary Seal one issions missions:	Shoe-many Working	ounted g Loss (tons/yr) 0.0011	Rim-moun	ess (tons/yr)	Total Emissions (tons/yr) 0.0021
A. B.	Fixed Pollu VOC	Second N N N M A Roof E Itant ¹	f Emissions: Rim Seal Loss	Working Withdrawa Loss	g Loss (tons/yr) 0.0011 al Deck Fitting Loss	Breathing Lo 0.000 Deck Seam Loss	ess (tons/yr)	Total Emissions (tons/yr) 0.0021 oss² Total Emissions
A. B.	Fixed Pollu VOC	Second N N N M A Roof E Itant ¹	f Emissions: Rim Seal Loss	Working Withdrawa Loss	g Loss (tons/yr) 0.0011 al Deck Fitting Loss	Breathing Lo 0.000 Deck Seam Loss	ess (tons/yr)	Total Emissions (tons/yr) 0.0021 oss² Total Emissions

^{2.} Landing losses should be determined according to the procedures in *Organic Liquid Storage Tanks* chapter of EPA's AP-42 emission factors. If the roof is not landed at least once/yr, enter "NA".

MDEQ

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT

Tank Summary Section H Emission Point Description *Note: Sections 3-7 below do not have to be completed if all of the required information is provided elsewhere,* such as in a report generated by EPA's TANKS software, and attached to the application. Emission Point Designation (Ref. No.): В. Product(s) Stored: Gasoline **Under Construction** C. Status: Operating Proposed Date of construction, reconstruction, or most recent modification (for existing sources) or date of anticipated construction: 2. Tank Data Tank Specifications: 2000 1. Design capacity gallons 2. True vapor pressure at storage temperature: 5.2 ٥F psia @ 3. Maximum true vapor pressure (as defined in §60.111b) psia @ ٥F 4. Reid vapor pressure at storage temperature: psia @ ٥F Density of product at storage temperature: 5. 5.6 lb/gal 6. Molecular weight of product vapor at storage temp. 66 lb/lbmol Tank Orientation: Vertical Horizontal C. Type of Tank: Fixed Roof External Floating Roof **Internal Floating Roof** Variable Vapor Space Pressure Other: \boxtimes Is the tank equipped with a Vapor Recovery System? Yes No If yes, describe below and include the efficiency. Closest City: E. Jackson, MS Meridian, MS Tupelo, MS Mobile, AL New Orleans, LA Memphis, TN Baton Rouge, LA Is an EPA TANKS report included for this tank in the application? \square Yes No

MDEQ

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT

						PERMIT	
Ta	nk	Sun	nmary				Section H
3.			ntal Fixed Roof Tai	nk			
	A. B. C. D. E. F. G.	Shell Shell Work Max Is the	l Length: l Diameter: king Volume: imum Throughput: e tank heated? e tank underground? l Color/Shade:		7 5 2000 5000 Yes Yes Alum	S	Aluminum/Diffuse
		\boxtimes	Gray/Light		Gray	/Medium	Red/Primer
	Н.	Shel	l Condition:	Good		Poor	
4.	Ve	rtica	l Fixed Roof Tank				
	A.	1. 2. 3. 4. 5. 6. 7. 8.	ensions: Shell Height: Shell Diameter: Maximum Liquid Heigh Average Liquid Height: Working Volume: Turnovers per year: Maximum throughput: Is the tank heated?	t:	Yes	feet feet feet feet gal gal/yr No	
	В.	Shell 1.	Characteristics: Shell Color/Shade: White/White Gray/Light			Aluminum/Specular Gray/Medium	Aluminum/Diffuse Red/Primer
		2.	Shell Condition:		Good	Poor	
	C.	Roof	Characteristics: Roof Color/Shade: White/White Gray/Light			Aluminum/Specular Gray/Medium	Aluminum/Diffuse Red/Primer
		2.	Roof Condition:	\Box (Good	☐ Poor	
		3.	Type:		Cone	☐ Dome	
		4.	Height:	f	eet		

MDEQ

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT

			FERMIT
Ta	nk	Sun	nmary Section H
5.			al Floating Roof Tank
J•	1111		ar i touting 1001 runk
	A.	Tank	c Characteristics:
	11.	1.	Diameter: feet
		2.	Tank Volume: gal
		3.	Turnovers per year:
		4.	Maximum Throughput: gal/yr
		5.	Number of Columns:
		<i>6</i> .	Self-Supporting Roof?
		7.	Effective Column Diameter:
		, ·	☐ 9"x7" Built-up Column ☐ 8" Diameter Pipe ☐ Unknown
		8.	Internal Shell Condition:
		0.	☐ Light Rust ☐ Dense Rust ☐ Gunite Lining
		9.	External Shell Color/Shade:
		· .	☐ White/White ☐ Aluminum/Specular ☐ Aluminum/Diffuse
			☐ Gray/Light ☐ Gray/Medium ☐ Red/Primer
		10.	External Shell Condition: Good Poor
		11.	Roof Color/Shade:
			☐ White/White ☐ Aluminum/Specular ☐ Aluminum/Diffuse
			☐ Gray/Light ☐ Gray/Medium ☐ Red/Primer
		10	
		12.	Roof Condition: Good Poor
	B.	Dim	Soal Systems
	Ъ.	1.	Seal System: Primary Seal:
		1.	Primary Seal:
		2.	Secondary Seal: Shoe-mounted Rim-mounted None
		2.	Secondary Sear. Since incurred Trim incurred 1 rone
	C.	Deck	k Characteristics:
	٠.	1.	Deck Type:
		2.	Deck Fitting Category: Typical Detail
6.	Ex	tern	al Floating Roof Tank
	A.	Tank	c Characteristics
		1.	Diameter: feet
		2.	Tank Volume: gal
		3.	Turnovers per year:
		4.	Maximum Throughput: gal/yr
		5.	Internal Shell Condition:
			☐ Light Rust ☐ Dense Rust ☐ Gunite Lining

FORM 5 | MDEQ

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL

				PERMIT					
ank	Sun	ımary					Section H		
Ex	terna	l Floating Room	f Tank (con	tinued)					
A. Tank Characteristics (cont 6. Paint Color/Shade: White/White			<u></u>	uminum/Specul	ar 🔲	Aluminum	/Diffuse		
		☐ Gray/Light	☐ Gr	ay/Medium		Red/Prime	r		
	7.	Paint Condition:	☐ Go	ood	☐ Poor	r			
B.	Roof 1.	Characteristics Roof Type:	☐ Pontoon		☐ Dou	ble Deck			
	2.	Roof Fitting Catego	ory:	☐ Ty _l	pical	☐ Detail			
C.	Tank 1.	Construction and Rank Construction:	im-Seal System		lded	☐ Rivete	ed		
	2. Primary Seal: ☐ Mechanical Shoe ☐ Liquid-mounted ☐ Vapor-								
3. Secondary Seal None Shoe-mounted Rim-mounted Weather shield									
Po	llutai	nt Emissions							
A.	Fixed Pollu	l Roof Emissions: tant ¹	Working Lo	oss (tons/yr)	Breathing Lo	ss (tons/yr)	Total Emissions (tons/yr)		
	VOC		0.0)2	0.1	3	0.15		
В.	Float	ing Roof Emissions:							
	lutant ¹	Rim Seal Loss (tons/yr)	Withdrawal Loss (tons/yr)	Deck Fitting Loss (tons/yr)	Deck Seam Loss (tons/yr)	Landing Lo (tons/yr)			
1 Δ	All regu	lated air pollutants inc	luding hazardous	air pollutants em	itted from this so	ource should be	e listed in accordance		
		rmit Application Instru							

Application Instructions.

^{2.} Landing losses should be determined according to the procedures in *Organic Liquid Storage Tanks* chapter of EPA's AP-42 emission factors. If the roof is not landed at least once/yr, enter "NA".

FORM 5 MDEQ

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT

Cyc	lone	es	Section L2
1.	Cyc	clone Description	
	A. B.	Emission Point Designation (Ref. No.): AA-022 Equipment Description (include the process(es) that the cyclone(s) controls em Low Pressure Pneumatic conveyance system with quad-pak cyclone.	nissions from):
	C. E.	Manufacturer: Heumann Environmental D. Model: HEC-229 Status: □ Operating □ Proposed □ Under Construct	-24.200-V-4 ion
2.	Cyc	clone Data	
	A.	Cyclone Type: Conventional Migh Efficiency Multiclone Dother	r:
	B.	Efficiency (PM): 99.99 % C. Gas Viscosity:	0.000189 poise
	D.	Pressure Drop: 9.6 - 13 in. H ₂ O E. Inlet air flow rate:	98,000 acfm
	F.	Pollutant particle diameter: <u>Varies</u> microns G. Baffles/Louvers?	☐ Yes ⊠ No
	Н.	Cyclone Dimensions:	
		1.Inlet height:50ft2.Inlet width:3.Cylinder diameter:6.75ft4.Cylinder height5.Cone height:18ft6.Outlet pipe diameter:7.Dust exit diameter:2ft	
	I.	Is wet spray used?	
		1.No. of nozzles:2.Liquid used:3.Flow rate:gpm4.Make-up rate:gpm	
	J.	Fan Location: Downstream (direct emissions) Downstream (au	ixiliary stack)
	K.	☐ Upstream (no cap/vertical emissions) ☐ Upstream (fixed cap/diffuse emissions) ☐ Upstream (wind respondent cap/horizontal emissions) ☐ How is the collected dust stored, handled, and disposed of?	,
		Metered out of cyclone hopper through rotary airlock, belt conveyed to truck loading bottom doors into truck, transported off-site for sale	oin, flow through

FORM 5 MDEQ

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT

Applicable Requirements and Status

Section N

zi zamimar, or rependanci requirement	1.	Summary	of App	plicable	Req	(uiremen	its
---------------------------------------	----	---------	--------	----------	-----	----------	-----

Provide a list of all applicable federal standards for which your facility is or will be subject to, as well as a list of all Construction Permits establishing limits or restrictions issued to your facility. The specific emission standards and limitations applicable to each emission point shall be provided on the following pages (Parts 2 and 3).

ŀ	ed	ler	al	K	egu	ul	ati	on	s:

40 CFR Part	63	Subpart	DDDD			
	52.21	-				
						
State Constru	ction Permits					
		MM/DD/		PSD	PSD Avoidance ³	Other
Permit to Cons	truct issued:	06/21/20			\boxtimes	
		Mod 06/04	/2018			

¹ Any Construction Permits containing requirements that are currently applicable to the facility should be addressed in this section.

² If the permit has been modified, give the most recent modification date.

³ Because permits are issued on a pollutant-by-pollutant basis, a PSD permit may be significant for one pollutant while also containing PSD avoidance limits for another pollutant. Therefore, you may check multiple boxes for each permit.

FORM 5	MDEQ
--------	-------------

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT

Applicable Requirements and Status

Section N

2. Current Applicable Requirements

List all applicable state and federal requirements to the level of detail needed to identify each applicable emission standard and/or work practice standard and the applicable test methods or monitoring used to demonstrate compliance with each applicable requirement. Applicable provisions from any relevant Permit to Construct shall also be listed. Provide the compliance status as of the day the application is signed.

EMISSION POINT NO.	APPLICABLE REQUIREMENT (Regulatory citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING	COMPLIANCE STATUS (In/Out) ^{1,2}
Facility	11 Miss. Admin Code Pt. 2, R.1.3.B	Opacity	≤40% Opacity	EPA Reference Method 9	In
	11 Miss. Admin Code Pt. 2, R.1.3.F(1)	PM	$E=4.1(p^{0.67})$	Engineering Calculations	In
AA-014	40 CFR 63 Subpart DDDD	HAP	N/A	Initial Notification	In
	11 Miss. Admin Code Pt. 2, R.1.4.B(1)	SO2	≤ 500 ppm	Wood Residue Fuel	In
		_			

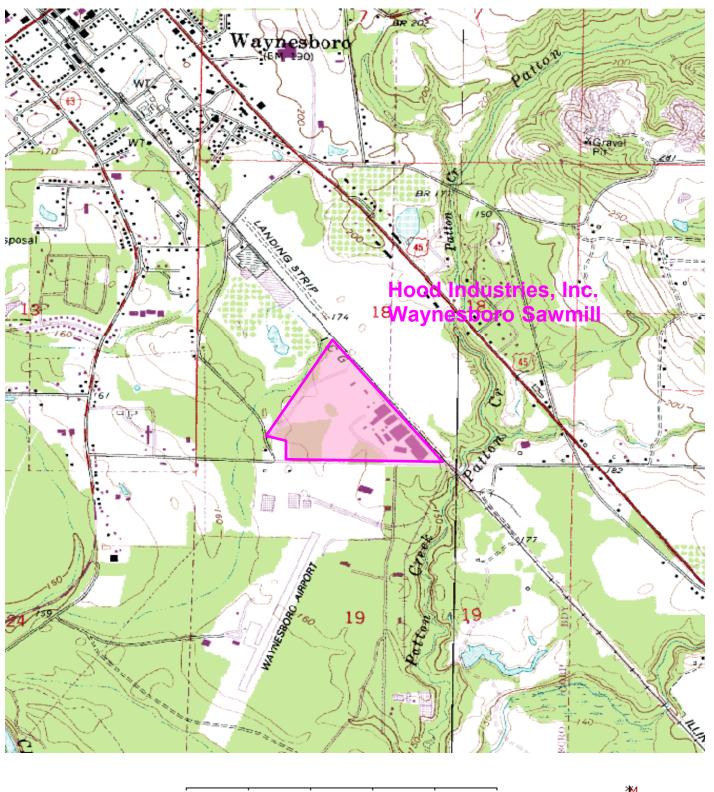
¹ Per 11 Miss. Admin. Code Pt. 2, R. 6.2.C(8)(b)(1) for Title V sources, by specifying that the source is in compliance with the applicable requirement(s), I (the applicant) am certifying that I will continue to operate and maintain this source to assure compliance for the duration of the permit term.

² Per 11 Miss. Admin. Code Pt. 2, R. 6.2.C(8)(b)(3) for Title V sources, by specifying that the source is out of compliance with the applicable requirement(s), I (the applicant) am submitting a schedule, attached herein, which includes a description of the problems and proposed solutions in accordance with 11 Miss. Admin. Code Pt. 2, R. 6.2.C(8)(c).

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT

Applicable Requirements and Status

Section N

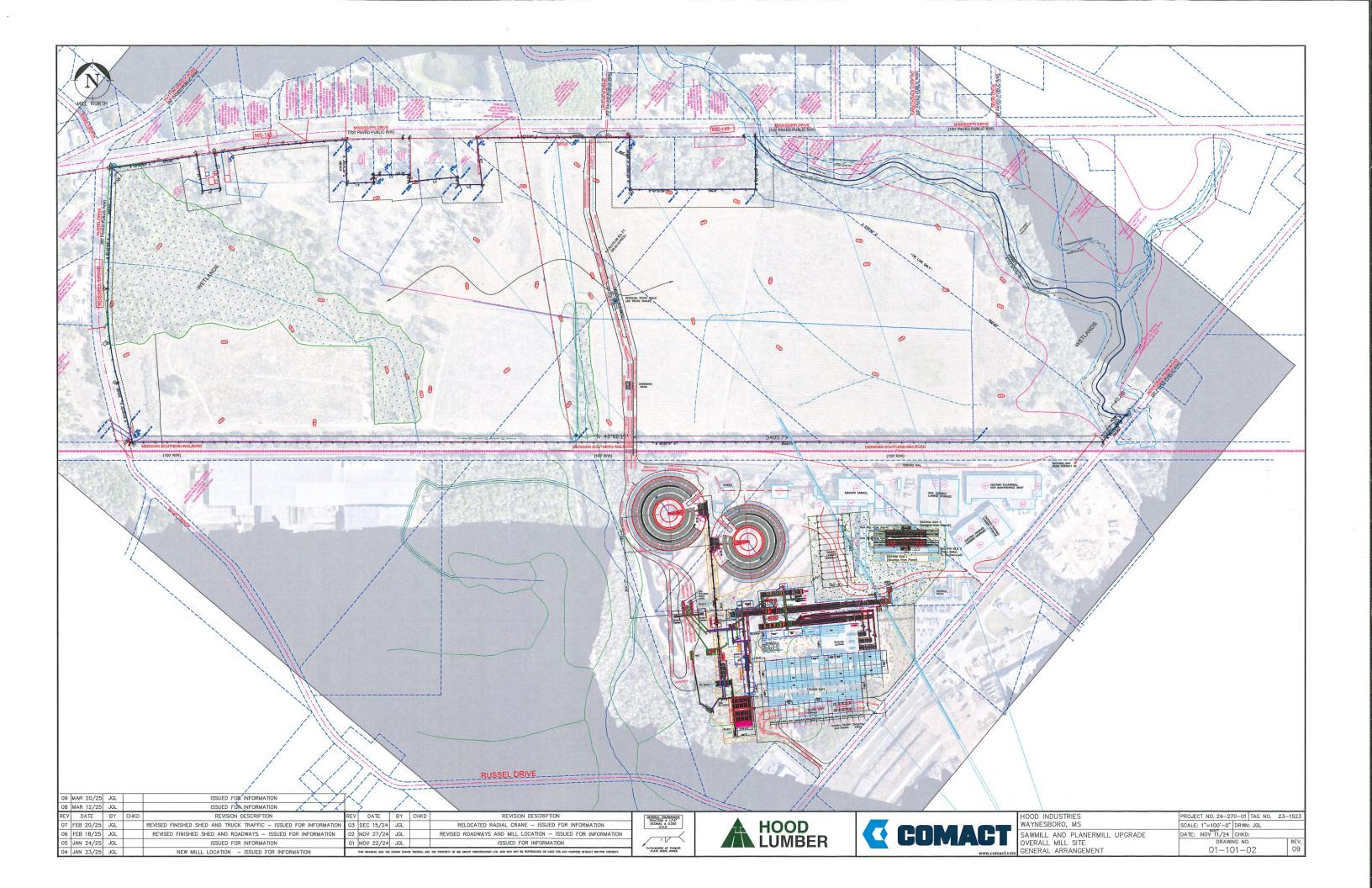

3. Future Applicable Requirements

List all future applicable state and federal requirements, including emission limits, operating restrictions, etc., and the applicable test methods or monitoring to be used to demonstrate compliance with each applicable requirement. Applicable provisions from any Permit to Construct for which certification of construction has not yet been submitted shall also be listed.

EMISSION POINT NO.	FUTURE APPLICABLE REQUIREMENT (Regulation citation)	POLLUTANT	LIMITS/ REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING	COMPLIANCE DATE ¹
Facility	11 Miss. Admin Code Pt. 2, R.1.3.B	PM	≤40% Opacity	EPA Reference Method 9	Upon Startup
	11 Miss. Admin Code Pt. 2, R.1.3.F(1)		$E=4.1(p^{0.67})$	Engineering Calculations	Upon Startup
AA-014,	40 CFR 63 Subpart DDDD	HAP	N/A	Initial Notification	Upon Startup
AA-019,	11 Miss. Admin Code Pt. 2,	PM	$E = 0.8808 * I^{-0.1667}$	Engineering Calculations	Upon Startup
AA-020,	R.1.3.D(1)(b)				
AA-021					

¹ Per 11 Miss. Admin. Code Pt. 2, R. 6.2.C(8)(b)(2). for Title V sources, I (the applicant) am certifying that I will meet future applicable requirements which will become effective during the permit term on a timely basis.

Figure 1



USGS Waynesboro (MS) Quadrangle Projection is UTM Zone 16 NAD83 Datum

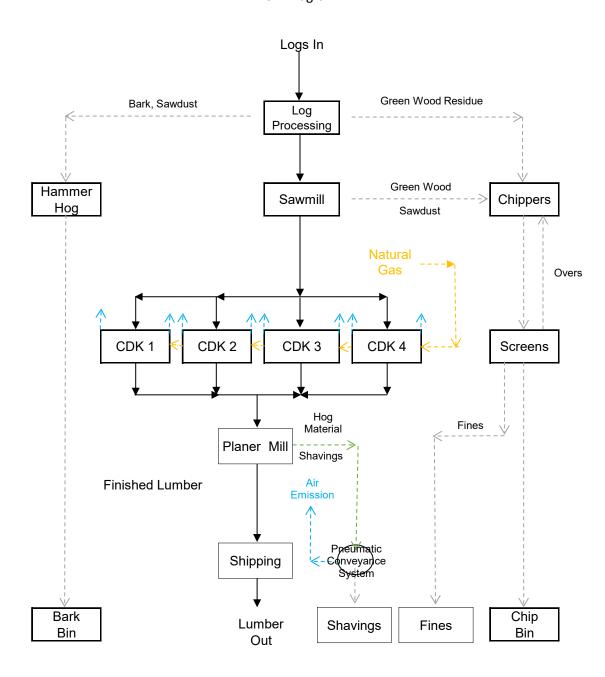


Figure 2

Figure 3

Hood Industries, Inc. Waynesboro, Mississippi Flow Diagram

Legend

-----> Mechanical Conveyance

Air Emission

Exhibit 2

Hood Industries, Inc.

Waynesboro, Mississippi Wayne County Agency Interest #7876

Maximum Potential/Allowable Emissions Calculations for Permit to Construct Application

Prepared by:

H. M. Rollins Company, Inc. 608 34th Street Gulfport MS 39501 (228) 832-1738

May 23, 2025

Revised July 22, 2025

Hood Industries, Inc. Waynesboro, Mississippi Summary of Criteria Pollutant Maximum Potential Emissions

Hourly Emission Rates

Pollutant	AA-014 Kiln 1 Total	AA-019 Kiln 2 Total	AA-020 Kiln 3 Total	AA-021 Kiln 4 Total	AA-022 PCS	Gasoline Storage Tank Total	Diesel Storage Tank Total	FUG- Log Prep	FUG- Roads
PM	0.0838								1.5985
TPM-10	0.5864					0.0000			0.3197
TPM-2.5	0.5864	0.5864	0.5864	0.5864	1.1088	0.0000	0.0000	2.7838	0.0784
SOx	0.0265	0.0265	0.0265	0.0265	0.0000	0.0000	0.0000	0.0000	0.0000
CO	3.7061	3.7061	3.7061	3.7061	0.0000	0.0000	0.0000	0.0000	0.0000
NOx	3.1572	3.1572	3.1572	3.1572	0.0000	0.0000	0.0000	0.0000	0.0000
VOC	50.5708	50.5708	50.5708	50.5708	0.0000	0.0333	0.0005	0.0000	0.0000
GHG	5266.4384	5266.4384	5266.4384	5266.4384					

Annual Emission Rates

	AA-014 Kiln 1	AA-014 Kiln 1	AA-014 Kiln 1	AA-014 Kiln 1	AA-022	Gasoline Storage Tank	Diesel Storage Tank	FUG-	FUG-	TOTALS
Pollutant	Total	Total	Total	Total	PCS	Total	Total	Log Prep	Roads	TPY
PM	0.3670	0.3670	0.3670	0.3670	26.8761			48.7735	7.0013	84.1189
TPM-10	2.5684	2.5684	2.5684	2.5684	13.1255			24.3865	1.4003	49.1859
TPM-2.5	2.5684	2.5684	2.5684	2.5684	4.8565			12.1930	0.3436	27.6667
SOx	0.1161	0.1161	0.1161	0.1161						0.4644
CO	16.2327	16.2327	16.2327	16.2327						64.9308
NOx	13.8285	13.8285	13.8285	13.8285						55.3140
VOC	221.5001	221.5001	221.5001	221.5001		0.1460	0.0021			886.1485
GHG	23067	23067	23067	23067						92268

Hood Industries, Inc. Waynesboro, Mississippi Summary of Hazardous Air Pollutant Maximum Potential Emissions

	AA-014	AA-014	AA-019	AA-019	AA-020	AA-020	AA-021	AA-021	
	Kiln 1	Kiln 1	Kiln 2	Kiln 2	Kiln 3	Kiln 3	Kiln 4	Kiln 4	TOTALS
Pollutant	Drying	Combust	Drying	Combust	Drying	Combust	Drying	Combust	TPY
1,3-Butadiene									0.0000
1,4-Dichlorobenzene		0.0000		0.0000		0.0000		0.0000	0.0000
Acetaldehyde	1.9999		1.9999		1.9999		1.9999		7.9996
Acrolein	0.2002		0.2002		0.2002		0.2002		0.8008
Arsenic		0.0000		0.0000		0.0000		0.0000	0.0000
Barium		0.0009		0.0009		0.0009		0.0009	0.0036
Benzene	0.0000	0.0004	0.0000	0.0004	0.0000	0.0004	0.0000	0.0004	0.0016
Chromium, total		0.0000		0.0000		0.0000		0.0000	0.0000
Formaldehyde	3.2500	0.0145	3.2500	0.0145	3.2500	0.0145	3.2500	0.0145	13.0580
Methanol	9.0000		9.0000		9.0000		9.0000		36.0000
Methyl isobutyl ketone	0.0000		0.0000		0.0000		0.0000		0.0000
Naphthalene									0.0000
n-Hexane		0.3478		0.3478		0.3478		0.3478	1.3912
Nickel (and compounds)		0.0004		0.0004		0.0004		0.0004	0.0016
Phenol	0.5002		0.5002		0.5002		0.5002		2.0008
POM/PAH (exclude naphths)									0.0000
Propionaldehyde	0.2002		0.2002		0.2002		0.2002		0.8008
Propylene									0.0000
Styrene	0.0000		0.0000		0.0000		0.0000		0.0000
Toluene	0.0000	0.0004	0.0000	0.0004	0.0000	0.0004	0.0000	0.0004	0.0016
Xylene	0.0000		0.0000		0.0000		0.0000		0.0000
Zinc (and compounds)		0.0057		0.0057		0.0057		0.0057	0.0228
TOTAL:	15.1505	0.3701	15.1505	0.3701	15.1505	0.3701	15.1505	0.3701	62.0824

Hood Industries, Inc. Waynesboro, Mississippi Production Information for Maximum Potential to Emit (MPTE) Air Emissions Calculations

Kiln Information

Annual Production, BF Annual Operating Hours, hr Avg. Lumber Production, MBF/hr NG Burner Capacity, MMBTU/hr MAX Annual MMBTUs per kiln Heat Content of Fuel, BTU/scf MAX Annual Fuel Usage, MMscf MAX Hourly Fuel Use, MMscf/hr MAX Hourly Fuel Use, scf/hr Avg. Hourly Heat Input, MMBTU/hr Avg. Hourly Heat Input, MMscf/hr Avg. Hourly Heat Input, scf/hr

Kiln 1	Kiln 2	Kiln 3	Kiln 4	TOTALS
100,000,000	100,000,000	100,000,000	100,000,000	400,000,000
8,760	8,760	8,760	8,760	8,760
11.42	11.42	11.42	11.42	45.66
45.00	45.00	45.00	45.00	
394,200	394,200	394,200	394,200	1,576,800
1,020	1,020	1,020	1,020	NA
386.471	386.471	386.471	386.471	1,545.882
0.04412	0.04412	0.04412	0.04412	NA
44,120	44,120	44,120	44,120	NA
35.00	35.00	35.00	35.00	
0.0441	0.0441	0.0441	0.0441	NA
44,118	44,118	44,118	44,118	NA

Other Production Information

Logs Needed, tons:	1,653,336	Planer Mill Hours:
Logs Utilization Rate, tons/MBF:	4.13	Sawmill Hours:

Natural Gas Burner NOx Emission Rate

Volume Flue Gas (scf) per MMBtu Natural Gas Burned at 0% Excess Air:	8,900
Excess Air, %:	30%
Total Volume Flue Gas, scf:	11,570
NOx Concentration in Burner Setup, ppmv:	50
NO2 volume/MMBtu, scf/MMBtu:	0.5785
Volume (scf) per lb-mole:	379.3
NO2 lb-moles:	0.001525
NO2 Weight, lb/lb-mole:	46.0055
NOx Emission Factor, lb/MMBtu:	0.070158
NOx Emission Factor, lb/MMscf (at 1020 Btu/scf):	71.56

8,760

8,760

Hood Industries, Inc. Waynesboro, Mississippi Emission Calculations for Kilns

		Kiln Crite	ria Pollutan	t Emissions			
Source	Permit	- W				Emissi	on Rates
Description	Emission Point	Pollutant	Notes	Emission Factor	Units	(lb/hr)	(tpy)
		TSP	1	0	lb/MBF	0.0000	0.0000
K-1		FPM-10	1	0	lb/MBF	0.0000	0.0000
Lumber Drying	AA-014	FPM-2.5	1	0	lb/MBF	0.0000	0.0000
Lumber Drying		PM-CON	1	0.022	lb/MBF	0.2511	1.0998
		VOC	2	4.43	lb/MBF	50.5708	221.5001
		TSP	4	1.9	lb/ MMscf	0.0838	0.3670
		FPM-10	4	1.9	lb/ MMscf	0.0838	0.3670
K-1		FPM-2.5	4	1.9	lb/ MMscf	0.0838	0.3670
Natural Gas	AA-014	PM-CON	4	5.7	lb/ MMscf	0.2515	1.1016
Combustion		SOx	4	0.6	lb/ MMscf	0.0265	0.1161
		NOx	3	71.56	lb/ MMscf	3.1572	13.8285
		CO	3	84	lb/ MMscf	3.7061	16.2327
		TSP	1	0	lb/MBF	0.0000	0.0000
K-2		FPM-10	1	0	lb/MBF	0.0000	0.0000
	AA-019	FPM-2.5	1	0	lb/MBF	0.0000	0.0000
Lumber Drying		PM-CON	1	0.022	lb/MBF	0.2511	1.0998
		VOC	2	4.43	lb/MBF	50.5708	221.5001
		TSP	4	1.9	lb/ MMscf	0.0838	0.3670
		FPM-10	4	1.9	lb/ MMscf	0.0838	0.3670
K-2		FPM-2.5	4	1.9	lb/ MMscf	0.0838	0.3670
Natural Gas	AA-019	PM-CON	4	5.7	lb/ MMscf	0.2515	1.1016
Combustion		SOx	4	0.6	lb/ MMscf	0.0265	0.1161
		NOx	3	71.56	lb/ MMscf	3.1572	13.8285
	=	CO	3	84	lb/ MMscf	3.7061	16.2327
		TSP	1	0	lb/MBF	0.0000	0.0000
		FPM-10	1	0	lb/MBF	0.0000	0.0000
K-3	AA-020	FPM-2.5	1	0	lb/MBF	0.0000	0.0000
Lumber Drying	-	PM-CON	1	0.022	lb/MBF	0.2511	1.0998
		VOC	2	4.43	lb/MBF	50.5708	221.5001
		TSP	4	1.9	lb/ MMscf	0.0838	0.3670
		FPM-10	4	1.9	lb/ MMscf	0.0838	0.3670
K-3		FPM-2.5	4	1.9	lb/ MMscf	0.0838	0.3670
Natural Gas	AA-020	PM-CON	4	5.7	lb/ MMscf	0.2515	1.1016
Combustion		SOx	4	0.6	lb/ MMscf	0.0265	0.1161
		NOx	3	71.56	lb/ MMscf	3.1572	13.8285
		CO	3	84	lb/ MMscf	3.7061	16.2327
		TSP	1	0	lb/MBF	0.0000	0.0000
14.4		FPM-10	1	0	lb/MBF	0.0000	0.0000
K-4 Lumber Drying	AA-021	FPM-2.5	1	0	lb/MBF	0.0000	0.0000
		PM-CON	1	0.022	lb/MBF	0.2511	1.0998
		VOC	2	4.43	lb/MBF	50.5708	221.5001
		TSP	4		lb/ MMscf	0.0838	0.3670
		FPM-10	4		lb/ MMscf	0.0838	0.3670
K-4		FPM-2.5	4	1.9	lb/ MMscf	0.0838	0.3670
Natural Gas	AA-021	PM-CON	4		lb/ MMscf	0.2515	1.1016
Combustion		SOx	4		lb/ MMscf	0.0265	0.1161
	_	NOx	3		lb/ MMscf	3.1572	13.8285
		СО	3		lb/ MMscf	3.7061	16.2327

Notes

¹ NCDENR Wood Kiln Emission Calculator factor sheet for softwood steam heated kilns

² BACT from MDEQ Permit issued to Gloster Forest Products, Gloster, MS (includes VOC from NG combustion)

³ AP-42, Table 1.4-1, Emission Factors for NOx and CO from Natural Gas Combustion

⁴ AP-42, Table 1.4-2, Emission Factors for Criteria Pollutants and Greenhouse Gases from Natural Gas Combustion

Hood Industries, Inc. Waynesboro, Mississippi Emission Calculations for Kilns

Source	Permit	D.II.	*	Emission		Emission	Rates
Description	Emission Point	Pollutant	*	Factor	Units	(lb/hr)	(tpy)
		Acetaldehyde	1	0.04	lb/MBF	0.45660	1.999
		Acrolein	1		lb/MBF	0.04570	0.200
K-1	AA-014	Formaldehyde	1		lb/MBF	0.74200	3.250
Lumber Drying		Methanol	1		lb/MBF	2.05480	9.000
	-	Phenol	1		lb/MBF	0.11420	0.500
		Propionaldehyde	1		lb/MBF	0.04570	0.200
	-	1,4-Dichlorobenzene	2		lb/ MM scf	0.00000	0.000
	-	Arsenic (and compounds)	3		lb/ MM scf	0.00000	0.000
	-	Barium (and compounds)	3		lb/ MM scf	0.00020	0.000
K-1	-	Benzene	2		lb/ MM scf	0.00010	0.000
Natural Gas	AA-014	Chromium	3		lb/ MM scf lb/ MM scf	0.00000	0.000
Combustion	-	Formaldehyde n-Hexane	2		lb/ MM scf	0.00330	0.014
	-	Nickel (and compounds)	3		lb/ MM scf	0.00010	0.000
	-	Toluene	2		lb/ MM scf	0.00010	0.000
	-	Zinc (and compounds)	3		lb/ MM scf	0.0010	0.005
		Acetaldehyde	1		Ib/MBF	0.45660	1.999
	ŀ	Acrolein	1		Ib/MBF	0.04570	0.200
K-2		Formaldehyde	1		lb/MBF	0.74200	3.250
Lumber Drying	AA-019	Methanol	1		lb/MBF	2.05480	9.000
206		Phenol	1		lb/MBF	0.11420	0.500
		Propionaldehyde	1		lb/MBF	0.04570	0.200
		1,4-Dichlorobenzene	2		lb/ MM scf	0.00000	0.000
		Arsenic (and compounds)	3	0.0002	lb/ MM scf	0.00000	0.000
	ľ	Barium (and compounds)	3	0.004	lb/ MM scf	0.00020	0.000
W 2		Benzene	2	0.002	lb/ MM scf	0.00010	0.000
K-2	AA-019	Chromium	3	0.001	lb/ MM scf	0.00000	0.000
Natural Gas		Formaldehyde	2	0.075	lb/ MM scf	0.00330	0.014
Combustion		n-Hexane	2	1.8	lb/ MM scf	0.07940	0.347
		Nickel (and compounds)	3	0.002	lb/ MM scf	0.00010	0.000
		Toluene	2	0.003	lb/ MM scf	0.00010	0.000
		Zinc (and compounds)	3	0.029	lb/ MM scf	0.00130	0.005
		Acetaldehyde	1	0.04	lb/MBF	0.45660	1.999
	_	Acrolein	1	0.004	lb/MBF	0.04570	0.200
K-3	AA-020	Formaldehyde	1	0.065	lb/MBF	0.74200	3.250
Lumber Drying	78.020	Methanol	1		lb/MBF	2.05480	9.000
	-	Phenol	1		lb/MBF	0.11420	0.500
		Propionaldehyde	1		lb/MBF	0.04570	0.200
	_	1,4-Dichlorobenzene	2		lb/ MM scf	0.00000	0.000
		Arsenic (and compounds)	3		lb/ MM scf	0.00000	0.000
		Barium (and compounds)	3		lb/ MM scf	0.00020	0.000
K-3	-	Benzene	2		lb/ MM scf	0.00010	0.000
Natural Gas	AA-020	Chromium	3		lb/ MM scf	0.00000	0.000
Combustion		Formaldehyde	2		lb/ MM scf	0.00330	0.014
		n-Hexane Nickel (and compounds)	3		lb/ MM scf lb/ MM scf	0.07940 0.00010	0.347
		Toluene	2		lb/ MM scf	0.00010	0.000
		Zinc (and compounds)	3		lb/ MM scf	0.00010	0.000
		Acetaldehyde	1		Ib/MBF	0.45660	1.999
	-	Acetaidenyde	1		Ib/MBF	0.4560	0.200
K-4		Formaldehyde	1		Ib/MBF	0.74200	3.250
K-4 Lumber Drying	AA-021	Methanol	1		Ib/MBF	2.05480	9.000
	-	Phenol	1		Ib/MBF	0.11420	0.500
		Propionaldehyde	1		lb/MBF	0.04570	0.200
		1,4-Dichlorobenzene	2		lb/ MM scf	0.00000	0.000
		Arsenic (and compounds)	3		lb/ MM scf	0.00000	0.000
		Barium (and compounds)	3		lb/ MM scf	0.00020	0.000
	-	Benzene	2		lb/ MM scf	0.00010	0.000
K-4		Chromium	3		lb/ MM scf	0.00000	0.000
Natural Gas	AA-021	Formaldehyde	2		lb/ MM scf	0.00330	0.014
Combustion		n-Hexane	2		lb/ MM scf	0.07940	0.347
		Nickel (and compounds)	3		lb/ MM scf	0.00010	0.000
		Toluene	2		lb/ MM scf	0.00010	0.000
		Zinc (and compounds)	3		lb/ MM scf	0.00130	0.005

^{*}Notes

¹ US EPA PCWP MACT ICR Provisional Emissions Calculations Tool, September 22, 2017

² AP-42, Table 1.4-3, Emission Factors for Speciated Organic Compounds from NG Consumption

³ AP-42, Table 1.4-4, Emission Factors for metals from Natural Gas Combustion

Hood Industries, Inc.

Waynesboro, Mississippi

Emission Calculations for Pneumatic Conveyance System

Source ID: AA-022
S Operating Hours: 8,760

Maximum Capacity, BF/yr: 400,000,000
Raw Material Throughput, BF/hr: 45,662
Density, Pine, Ib/BF: 2.5
Planer Throughput, tons/hr: 57.08

	Emission	PCS	² Cyclone	Building	Emis	sions
	Factor	Loading	Efficiency	Enclosure	Hourly	Annual
Pollutant	lb/ton thru	lb/hour	%	%	lb/hr	tons/yr
PM	4.3	245.4440	95	50	6.1361	26.8761
PM10	2.1	119.8680	95	50	2.9967	13.1255
PM2.5	0.777	44.3512	95	50	1.1088	4.8565

¹ Calculation Basis from SCDHEC Wood Working Emissions for Millwork Dry Wood Output EF workbook

² Cyclone Efficiency conservatively estimated based on manufacturer data for QuadPak cyclone

Hood Industries, Inc. Waynesboro, Mississippi Emission Calculations for Log Prep

Source ID: Sawmill Fugitives

Sawmill Operating Hours: 8,760 hr/yr
Annual Log Usage: 1,653,336 tons log/yr
Hourly Throughput: 189 tons log/hr

Log Debarking (LD-1)						
Pollutant	Emission Factor ¹	Emis	sions			
Pollutarit	(lb/ton)	(lb/hr)	(tpy)			
PM	0.024	4.5297	19.8401			
PM10	0.012	2.2648	9.9198			
PM2.5	0.006	1.1324	4.9599			

Log Bucking (LB-1)						
Pollutant	Emission Factor ¹	Emis	sions			
Pollutarit	(lb/ton)	(lb/hr)	(tpy)			
PM	0.035	6.6058	28.9334			
PM10	0.0175	3.3029	14.4667			
PM2.5	0.00875	1.6514	7.2331			

Log Preparation Fugitives Total								
Pollutant	Emissions							
	(lb/hr)	(tpy)						
PM	11.1355	48.7735						
PM10	5.5677	24.3865						
PM2.5	2.7838	12.1930						

Notes

1 EPA Region 10 Particulate Matter Potential to Emit Emissions for Activites at Sawmills, Excluding Boilers, Located in the Pacific Northwest Indian Country, May 2014

Hood Industries, Inc. Waynesboro, Mississippi Emission Calculations for Process Weight Equation

 $E = 4.1*P^{0.67}$ where E = allowable maximum PM emission rate

Source ID: Sawmill Fugitives

Sawmill Process Weight Rate (P): 189 tons log/hr

E= 137.3 lb/hr PM

Source ID: Planer Mill

Planer Mill Process Weight Rate (P): 150 tons log/hr

E= 117.7 lb/hr PM

Hood Industries, Inc. Waynesboro, Mississippi Emission Calculations for Paved-Unpaved Roads

			Unpaved
Truck Material	Truck Route	Paved Miles	Miles
Logs	A,B,B,A	0.876	0
Shavings	A,C,C,A	1.146	0
Chips	A,C,C,A	1.146	0
Bark	A,C,C,A	1.146	0
Green Sawdust	A,C,C,A	1.146	0
Finished Lumber	D	0.084	0

Road	Paved/	Length
Segment	Unpaved	(mi)
Α	Paved	0.337
В	Paved	0.101
С	Paved	0.236
D	Paved	0.084

					VMT/year		
	Annual	Throughput	Truck Wt	Trucks/		Unpaved	
Truck Material	Throughput	Units	(tons)	Year ⁶	Paved Roads	Roads	
Logs	1,653,336	tpy	25	66133	57933	0	
Shavings	72,581	tpy	25	2903	3327	0	
Chips	544,443	tpy	25	21778	24957	0	
Bark	132,267	tpy	25	5291	6063	0	
Green Sawdust	834,934	tpy	25	33397	38273	0	
Finished Lumber	400,000	MBF/ yr	NA	20000	1680	0	

Unpaved Roads Emission Calculations^{2,3}

	$E = k (s/12)^{a} (W/3)^{b}$ $E_{ext} = E[(365-P)/365]$				E= Site specific emission factor (lb/VMT) E _{ext} = extrapolated for natural mitigation (lb/VMT)		
				s=	0.08	Surface material silt content (%)	
k= Pollutant specific constant				W=	27.5	Mean vehicle weight ² (tons)	
k(TSP)=	4.9	E _{ext} =	0.2835	a=	0.9	(for PM10/PM2.5)	
k(PM10)=	1.5	E _{ext} =	0.0319	a=	0.7	(for TSP)	
k(PM2.5)=	0.15	E _{ext} =	0.0032	b=	0.45		
				P=	105	# of days with at least 0.1 inches of rain	

	Unpaved Road Emissions							
Truck Material	TSF)	PM	110	PM2.5			
Truck Material	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)		
Logs	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Shavings	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Chips	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Bark	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Green Sawdust	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Finished Lumber	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		
Total	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000		

Hood Industries, Inc. Waynesboro, Mississippi Emission Calculations for Paved-Unpaved Roads

Paved Roads Emissions Calculations^{2,5}

E _{ext} = [l	k(sL) ^{0.91} x(W) ^{1.0}	⁾²][1-P/(4N)]		$\rm E_{\rm ext}$ = Annual average emission factor (same units as $\rm k$			
				W=	Mean vehicle weight ² (tons)		
k= P	ultipliers for paved	roads	N=	365	Number of days		
k(TSP)=	0.011	E _{ext} =	0.1885	$sL^7=$	0.6	road surface silt loading (g/m²)	
k(PM10)=	0.0022 E _{ext} =		0.0377	P=	105	# of days with at least	
k(PM2.5)=	0.00054	E _{ext} =	0.0093	,-	103	0.1 inches of rain	

	Paved Road Emissions								
Truck Material	TSF)	PM	10	PM2.5				
Truck Material	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)			
Logs	1.2770	5.4590	0.2493	1.0918	0.0612	0.2680			
Shavings	0.0561	0.3135	0.0143	0.0627	0.0035	0.0154			
Chips	0.4205	2.3517	0.1074	0.4703	0.0264	0.1154			
Bark	0.1022	0.5713	0.0261	0.1143	0.0064	0.0280			
Green Sawdust	0.6449	3.6065	0.1647	0.7213	0.0404	0.1770			
Finished Lumber 0.3862 0.1		0.1583	0.0072	0.0317	0.0018	0.0078			
Total	1.6099	7.0013	0.3197	1.4003	0.0785	0.3436			

		Total Road Emissions						
Truck Material	TS	Р	PIV	110	PM	PM2.5		
Truck Material	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)		
Logs	1.2770	5.4590	0.2493	1.0918	0.0612	0.2680		
Shavings	0.0561	0.3135	0.0143	0.0627	0.0035	0.0154		
Chips	0.4205	2.3517	0.1074	0.4703	0.0264	0.1154		
Bark	0.1022	0.5713	0.0261	0.1143	0.0064	0.0280		
Green Sawdust	0.6449	3.6065	0.1647	0.7213	0.0404	0.1770		
Finished Lumber	0.3862	0.1583	0.0072	0.0317	0.0018	0.0078		
Total	1.6099	7.0013	0.3197	1.4003	0.0785	0.3436		

Notes

- 1 Truck Routes
- 2 Assuming maximum operations of 8760 hr/yr
- Load weight based on average of 15 ton empty trucks and 40 ton (maximum allowable weight) full trucks
- 4 AP-42, Chapter 13.2.2, Unpaved Roads.
- 5 AP-42, Chapter 13.2.1, Paved Roads.
- Trucks/yr based on annual throughput divided by haul weight. Finished lumber throughput divided by 20 MBF/truck.
 - Average road surface silt loading, based on testing of similar competitor
- 7 operations. Value represents highest of silt loading values publicly available from lumber mill paved haul roads

Eq. 1-1
$$L_T$$
= L_S + L_W

L _T =	total routine losses, lb/yr	L _T =	291.967
L _S =	standing losses, lb/yr, see Equation 1-2	L _S =	251.801
$L_w =$	working losses, lb/yr, see Equation 1-35	L _w =	40.16599

See following pages for calculation of standing and working losses.

Tank Information

				breather vent	breather vent	Min	Max
		Length/		pressure	vaccum	Liquid	Liquid
Horizontal	Thruput	Height	Diameter	setting,	setting,	Height	Height
/ Vertical	gals/yr	ft	ft	psig	psig	ft	ft
Horizontal	5,000	7	5	0.03	-0.03	0.00	

Table 7.1-2 Properties of Selected Petroleum Liquids

							Product
	Vapor	Liquid	Liquid	VP A	VP B	True VP	Factor
Liquid Stored	MW	MW	Density	Constant	Constant	@ 60F	K_{P}
Gasoline (RVP10)	66	92	5.6	11.724	5237.3	5.2	1

Table 7.1-6 Paint Solar Absorptance

Surface	Shade or	Reflective Condition			
Color	Type	New	Average	Aged	
Gray	Light	0.54	0.58	0.63	

Table 7.1-7 Meteorological Data

	T_{AN}	T_AX			
Location	°F	°F	V	1	P_A
Meridian, MS	53	75.6	5.8	1421	14.53

Calculation of Standing Loss Emissions

Eq. 1-4	L _S =	365 K_E $(\frac{\pi}{4}D^2)$ H_{VO} K_S W_V		
	L _S =	standing losses, lb/yr	L _S =	251.801
	K _E =	vapor space expansion factor, per day	K _E =	0.257421
	D=	tank diameter, ft, see Equation 1-14 for horizontal tanks	D=	6.675581
	H _{VO} =	vapor space outage, ft, see Equation 1-16	H _{VO} =	1.963495
	K _S =	vented vapor saturation factor, dimensionless, see Equation 1-21	$K_S =$	0.648871
	$W_V =$	stock vapor density, lb/ft ³ , see Equation 1-22	$W_V =$	0.060099
	365	days/year		
Eq. 1-5	K _E =	$\frac{\Delta T_{V}}{\Delta T_{LA}} + \frac{\Delta PV - \Delta PB}{P_{A} - PVA}$		
	K _E =	vapor space expansion factor, per day	K _E =	0.257421
	$\Delta T_V =$	average daily vapor temperature range, °R; see Note 1	$\Delta T_V =$	32.3036
	$\Delta P_V =$	average daily vapor pressure range, psi; see Note 2	$\Delta P_V =$	1.892644
	$\Delta P_B =$	breather vent pressure setting range, psi; see Note 3	$\Delta P_B =$	0.06
	P _A =	atmospheric pressure, psia	P _A =	14.53
	P _{VA} =	vapor pressure at avg. daily liquid surface temp. psia	P _{VA} =	5.2
	T _{LA} =	average daily liquid surface temperature, °R see Note 3, Eq. 1-22	T _{LA} =	529.6044
Eq. 1-7	$\Delta T_V =$	$0.7 \ \Delta T_A$ + $0.02\alpha I$ (uninsulated tank)		
	$\Delta T_V =$	average daily vapor temperature range, °R; see Note 1	$\Delta T_V =$	32.3036
	$\Delta T_A =$	average daily ambient temperature range, ${}^{\circ}R$	$\Delta T_A =$	22.6
	α=	average tank surface solar absorbance, dimensionless, Table 7.1-6	α=	0.58
	l=	average daily total insolation factor, BTU/ft ² d, Table 7.1-7	l=	1421
Eq. 1-9	$\Delta P_V =$	P _{VX} - P _{VN}		
	$\Delta P_V =$	average daily vapor pressure range, psia	$\Delta P_V =$	1.892644
	P _{VX} =	vapor pressure at the average daily maximum liquid surface temp. Note 5	P _{VX} =	7.267802
	P _{VN} =	vapor pressure at the average daily minimum liquid surface temp. Note 5	P _{VN} =	5.375158

Calculation of Standing Loss Emissions

Eq. 1-10	ΔP _B =	P _{BP} - P _{BV}		
	$\Delta P_B =$	breather vent pressure setting range, psig	$\Delta P_B =$	0.06
	P _{BP} =	breather vent pressure setting, psig (assume 0.03 psig if unknown)	P _{BP} =	0.03
	P _{BV} =	breather vent vacuum setting, psig (assume -0.03 psig if unknown)	P _{BV} =	-0.03
Eq. 1-11	$\Delta T_A =$	T _{AX} - T _{AN}		
	$\Delta T_A =$	average daily ambient temperature range °R	$\Delta T_A =$	22.6
	$T_{AX} =$	average daily maximum ambient temperature range ${}^{\circ}$ R	T _{AX} =	535.3
	T _{AN} =	average daily minimum ambient temperature range ${}^{\circ}R$	T _{AN} =	512.7
Eq. 1-28	T _{LA} =	$0.4T_{AA}$ + $0.6T_{B}$ + $0.005\alpha I$		
	T _{LA} =	average daily liquid surface temperature, °R	T _{LA} =	529.6044
	T _{AA} =	average daily ambient temperature, °R	T _{AA} =	524
	T _B =	liquid bulk temperature, R°R	$T_B =$	526.4725
	α=	average tank surface solar absorbance, dimensionless, Table 7.1-6	α=	0.58
	l=	average daily total insolation factor, BTU/ft ² d, Table 7.1-7	l=	1421
Eq. 1-14	D _E =	$\sqrt{rac{LD}{rac{\pi}{4}}}$		
	D _E =	effective tank diameter, ft	D _E =	6.675581
	L=	length of the horizontal tank, ft	L=	7
	D=	diameter of a vertical cross-section of the horizontal tank, ft	D=	5
Eq. 1-15	H _E =	π/4*D		
	H _E =	effective height of an equivalent upright cylinder, ft	H _E =	3.926991
	D=	diameter of a vertical cross-section of the horizontal tank, ft	D=	5

Calculation of Standing Loss Emissions

Eq. 1-16	H _{VO} =	H _E / 2 (for horizontal tanks)		
	H _{VO} =	vapor space outage, ft	H _{VO} =	1.963495
	H _E =	effective height of an equivalent uprigth cylinder, ft	H _E =	3.926991
Eq. 1-21	K _S =	$\frac{1}{1 + 0.053PVAH_{VO}}$		
	K _S =	vented vapor saturation factor, dimensionless	K _S =	0.648871
	H _{VO} =	vapor space outage, ft	H _{VO} =	1.963495
	P _{VA} =	vapor pressure at avg. daily liquid surface temp. psia	P _{VA} =	5.2
Eq. 1-22	W _v =	$\frac{M_V P_{VA}}{RT_{\mathit{V}}}$		
	w _v =	vapor density, lb/ft ³	W _v =	0.060099
	$M_V=$	vapor molecular weight, lb/lb-mole	M _V =	66
	P _{VA} =	vapor pressure at avg. daily liquid surface temp. psia	P _{VA} =	5.2
	R=	the ideal gas content, 10.731 psia ft³/lb-mole °R	R=	10.731
	T _V =	average vapor temperature, °R	T _V =	532.1594
Eq. 1-33	T _V =	0.7T _{AA} + 0.3T _B + 0.009αI		
	$T_V =$	average vapor temperature, R° (uninsulated tank)	$T_V =$	532.1594
	T _{AA} =	average daily ambient temperature, °R	T _{AA} =	524
	$T_B =$	liquid bulk temperature, R°R	$T_B =$	526.4725
	α=	average tank surface solar absorbance, dimensionless, Table 7.1-6	α=	0.58
	l=	average daily total insolation factor, BTU/ft ² d, Table 7.1-7	l=	1421
Eq. 1-31	T _B =	T _{AA} + 0.003αI		
	T _B =	liquid bulk temperature, R°R	T _B =	526.4725
	T _{AA} =	average daily ambient temperature, °R	T _{AA} =	524
	α=	average tank surface solar absorbance, dimensionless, Table 7.1-6	α=	0.58
	l=	average daily total insolation factor, BTU/ft ² d, Table 7.1-7	l=	1421

Calculation of Standing Loss Emissions

Eq. 1-30
$$T_{AA} = \frac{T_{AX} + TAN}{2}$$

$$T_{AA}$$
= average daily ambient temperature, $^{\circ}$ R T_{AX} = average daily maximum ambient temperature, $^{\circ}$ R T_{AN} = average daily minimum ambient temperature, $^{\circ}$ R

$$T_{AX} = 535.3$$
 $T_{AN} = 512.7$

524

T_{AA}=

Figure 7.1-17
$$T_{LX}$$
= T_{LA} + $0.25\Delta T_V$
 T_{LN} = T_{LA} - $0.25\Delta T_V$

$T_{LX} =$	average daily maximum liquid surface temperature. °R
$T_{LN}=$	average daily minimum liquid surface temperature. ${}^{\circ}R$
T _{LA} =	average daily liquid surface temperature, °R
$\Delta T_{V} =$	average daily vapor temperature range. °R: see Note 1

$T_{LX}=$	537.6803
T _{LN} =	521.5285
T _{LA} =	529.6044

7.267802

5.375158 537.6803

521.5285

11.7245237.3

$$T_V$$
= average daily vapor temperature range, $^\circ$ R; see Note 1 ΔT_V = 32.3036

Eq. 1-25
$$P_{VX} = e^{(A - \frac{B}{TLX})}$$
 (daily max)

$$P_{VN} = e^{(A - \frac{B}{TLN})}$$
 (daily min)

P _{VX} =	vapor pressure at the average daily maximum liquid surface temp. Note 5	P _{VX} =
P _{VN} =	vapor pressure at the average daily minimum liquid surface temp. Note 5	P _{VN} =
$T_{LX} =$	average daily maximum liquid surface temperature. °R	T _{LX} =
$T_{LN}=$	average daily minimum liquid surface temperature. °R	$T_{LN}=$
A=	constant in the vapor pressure equation, dimensionless	A=
B=	constant in the vapor pressure equation, °R	B=

Hood Industries, Inc. Waynesboro, Mississippi

Calculation of Emissions from Gasoline Tank

Calculation of Working Loss Emissions

Eq. 1-35	L _w =	V_{Q}	K_N	K _P	W_{V}	K _B			
	L _w =	working lo	osses, lb/yr					L _w =	40.16599
	$V_Q =$	net worki	ng loss thro	oughput, ft	³ /yr			V _Q =	668.3333
	$K_N =$	working lo	oss turnove	er (saturatio	on) factor, o	dimensionless		K _N =	1
	K _P =	working lo	oss produc	t factor, dir	mensionless	;		K _P =	1
	$W_V =$	vapor der	nsity, lb/ft ³	, see Equat	tion 1-22 (fro	om standing lo	sses calculation	s) $W_V =$	0.060099
	K _B =	vent setti	ng correcti	on factor, o	dimensionle	ss (assume K _B =	=1)	K _B =	1
Eq. 1-38	V _Q =	(ΣH _{QI})	$\pi/4 D^2$						
	V _Q =	net worki	ng loss thro	oughput, ft	³/yr			V _Q =	668.3333
	ΣH _{QI} =	annual su	m of increa	ases in liqui	id level, ft/y	r		ΣH _{QI} =	19.09524
Eq. 1-36	N=	ΣΗ _{QI} / (Η _{L)}	₍ - H _{LN})						
	N=	number o	of turnovers	s per year,	dimensionle	ess		N=	4.862562
	ΣH _{QI} =	annual su	m of increa	ases in liqui	id level, ft/y	r		ΣH _{QI} =	19.09524
	H _{LX} =	maximum	n liquid heig	ght, ft	(Horizor	ntal tanks = $\pi/4$	1*D)	H _{LX} =	3.926991
	H _{LN} =	minimum	liquid heig	ht, ft				H _{LN} =	0.00
Eq. 1-37	ΣH _{QI} =	(5.614Q)	/ ((π/4)D²)						
	ΣH _{QI} =	annual su	m of increa	ases in liqui	id level, ft/y	r		ΣH _{QI} =	19.09524
	Q=	annual ne	et throughp	ut, bbl/yr (42 gallons=	1 bbl)		Q=	119.0476
	D=	D _E =	effective	tank diam	eter, ft			D_E =	6.675581

Eq. 1-1
$$L_T$$
= L_S + L_W

$$L_T$$
= total routine losses, lb/yr
$$L_S$$
= standing losses, lb/yr, see Equation 1-2 L_S = 1.93259
$$L_W$$
= working losses, lb/yr, see Equation 1-35 L_W = 2.190872

See following pages for calculation of standing and working losses.

Tank Information

				breather			
				vent	breather	Min	Max
		Length/		pressure	vent	Liquid	Liquid
Horizontal	Thruput	Height	Diameter	setting,	vaccum	Height	Height
/ Vertical	gals/yr	ft	ft	psig	setting, psig	ft	ft
Horizontal	120,000	27	8	0.03	-0.03	0.00	

Table 7.1-2 Properties of Selected Petroleum Liquids

							Product
	Vapor	Liquid	Liquid	VP A	VP B	True VP	Factor
Liquid Stored	MW	MW	Density	Constant	Constant	@ 60F	K_P
No. 2 Fuel Oil (Diesel)	130	188	7.1	12.101	8907	0.006	1

Table 7.1-6 Paint Solar Absorptance

Surface	Shade or	Ref	lective Condi	tion
Color	Type	New	Average	Aged
Gray	Light	0.54	0.58	0.63

Table 7.1-7 Meteorological Data

	I AN	I AX			
Location	°F	°F	V	1	P_A
Meridian, MS	53	75.6	5.8	1421	14.53

Eq. 1-4	L _S =	365 K_E $(\frac{\pi}{4}D^2)$ H_{VO} K_S W_V		
	L _S =	standing losses, lb/yr	L _S =	1.93259
	K _E =	vapor space expansion factor, per day	K _E =	0.057183
	D=	tank diameter, ft, see Equation 1-14 for horizontal tanks	D=	16.58372
	H _{VO} =	vapor space outage, ft, see Equation 1-16	H _{VO} =	3.141593
	$K_S =$	vented vapor saturation factor, dimensionless, see Equation 1-21	$K_S =$	0.999002
	$W_v =$	stock vapor density, lb/ft ³ , see Equation 1-22	$W_V =$	0.000137
	365	days/year		
Eq. 1-5	K _E =	$\frac{\Delta T_{V}}{\Delta T_{LA}} + \frac{\Delta PV - \Delta PB}{P_{A} - PVA}$		
	K _E =	vapor space expansion factor, per day	K _E =	0.057183
	$\Delta T_V =$	average daily vapor temperature range, °R; see Note 1	$\Delta T_V =$	32.3036
	$\Delta P_V =$	average daily vapor pressure range, psi; see Note 2	$\Delta P_V =$	0.004619
	$\Delta P_B =$	breather vent pressure setting range, psi; see Note 3	$\Delta P_B =$	0.06
	P _A =	atmospheric pressure, psia	P _A =	14.53
	P _{VA} =	vapor pressure at avg. daily liquid surface temp. psia	P _{VA} =	0.006
	T _{LA} =	average daily liquid surface temperature, °R see Note 3, Eq. 1-22	T _{LA} =	529.6044
Eq. 1-7	$\Delta T_V =$	$0.7 \ \Delta T_A$ + $0.02\alpha I$ (uninsulated tank)		
	$\Delta T_V =$	average daily vapor temperature range, °R; see Note 1	$\Delta T_V =$	32.3036
	$\Delta T_A =$	average daily ambient temperature range, °R	$\Delta T_A =$	22.6
	α=	average tank surface solar absorbance, dimensionless, Table 7.1-6	α=	0.58
	l=	average daily total insolation factor, BTU/ft ² d, Table 7.1-7	l=	1421
Eq. 1-9	ΔP _V =	P _{VX} - P _{VN}		
	$\Delta P_V =$	average daily vapor pressure range, psia	ΔP _V =	0.004619
	P _{VX} =	vapor pressure at the average daily maximum liquid surface temp. Note 5	P _{VX} =	0.011509
	P _{VN} =	vapor pressure at the average daily minimum liquid surface temp. Note 5	P _{VN} =	0.00689

Eq. 1-10	$\Delta P_B =$	P _{BP} - P _{BV}		
	$\Delta P_B =$	breather vent pressure setting range, psig	$\Delta P_B =$	0.06
	P _{BP} =	breather vent pressure setting, psig (assume 0.03 psig if unknown)	P _{BP} =	0.03
	P _{BV} =	breather vent vacuum setting, psig (assume -0.03 psig if unknown)	P _{BV} =	-0.03
Eq. 1-11	$\Delta T_A =$	T _{AX} - T _{AN}		
	$\Delta T_A =$	average daily ambient temperature range °R	$\Delta T_A =$	22.6
	$T_{AX} =$	average daily maximum ambient temperature range ${}^{\circ}$ R	T _{AX} =	535.3
	T _{AN} =	average daily minimum ambient temperature range ${}^{\circ}R$	T _{AN} =	512.7
Eq. 1-28	T _{LA} =	0.4T _{AA} + 0.6T _B + 0.005αI		
	T _{LA} =	average daily liquid surface temperature, °R	T _{LA} =	529.6044
	T _{AA} =	average daily ambient temperature, °R	T _{AA} =	524
	$T_B =$	liquid bulk temperature, R °R	T _B =	526.4725
	α=	average tank surface solar absorbance, dimensionless, Table 7.1-6	α=	0.58
	l=	average daily total insolation factor, BTU/ft ² d, Table 7.1-7	l=	1421
Eq. 1-14	D _E =	$\sqrt{rac{LD}{\pi}}$		
	D _E =	effective tank diameter, ft	D _E =	16.58372
	L=	length of the horizontal tank, ft	<u> </u> =	27
	D=	diameter of a vertical cross-section of the horizontal tank, ft	D=	8
Eq. 1-15	H _E =	π/4*D		
	H _E =	effective height of an equivalent upright cylinder, ft	H _E =	6.283185
	D=	diameter of a vertical cross-section of the horizontal tank, ft	D=	8

Eq. 1-16	H _{VO} =	H _E / 2 (for horizontal tanks)		
	H _{VO} =	vapor space outage, ft	H _{VO} =	3.141593
	H _E =	effective height of an equivalent uprigth cylinder, ft	H _E =	6.283185
Eq. 1-21	K _S =	$\frac{1}{1 + 0.053PVAH_{VO}}$		
	K _S =	vented vapor saturation factor, dimensionless	K _S =	0.999002
	H _{VO} =	vapor space outage, ft	H _{VO} =	3.141593
	P _{VA} =	vapor pressure at avg. daily liquid surface temp. psia	P _{VA} =	0.006
Eq. 1-22	W _v =	$\frac{M_{\nu}P_{\nuA}}{RT_{\nu}}$		
	$W_v =$	vapor density, lb/ft ³	$W_v =$	0.000137
	$M_V=$	vapor molecular weight, lb/lb-mole	M _V =	130
	P _{VA} =	vapor pressure at avg. daily liquid surface temp. psia	P _{VA} =	0.006
	R=	the ideal gas content, 10.731 psia ft³/lb-mole°R	R=	10.731
	$T_V =$	average vapor temperature, °R	T _V =	532.1594
Eq. 1-33	T _V =	0.7T _{AA} + 0.3T _B + 0.009al		
	$T_V =$	average vapor temperature, R $^{\circ}$ (uninsulated tank)	$T_V =$	532.1594
	T _{AA} =	average daily ambient temperature, °R	T _{AA} =	524
	$T_B =$	liquid bulk temperature, R°R	T _B =	526.4725
	α=	average tank surface solar absorbance, dimensionless, Table 7.1-6	α=	0.58
	l=	average daily total insolation factor, BTU/ft ² d, Table 7.1-7	l=	1421

Eq. 1-31	T _B =	T _{AA} + 0.003al		
	T _B =	liquid bulk temperature, R°R	T _B =	526.4725
	T _{AA} =	average daily ambient temperature, °R	T _{AA} =	524
	α=	average tank surface solar absorbance, dimensionless, Table 7.1-6	α=	0.58
	l=	average daily total insolation factor, BTU/ft ² d, Table 7.1-7	l=	1421
Eq. 1-30	T _{AA} =	$\frac{T_{AX} + TAN}{2}$		
	T _{AA} =	average daily ambient temperature, $^{\circ}$ R	T _{AA} =	524
	T _{AX} =	average daily maximum ambient temperature, °R	T _{AX} =	535.3
	T _{AN} =	average daily minimum ambient temperature, ${}^{\circ}R$	T _{AN} =	512.7
Figure 7.1-17	T _{LX} = T _{LN} =	T_{LA} + $0.25\Delta T_V$ T_{LA} - $0.25\Delta T_V$		
	T _{LX} =	average daily maximum liquid surface temperature. °R	T _{LX} =	537.6803
	T _{LN} =	average daily minimum liquid surface temperature. °R	T _{LN} =	521.5285
	T _{LA} =	average daily liquid surface temperature, °R	T _{LA} =	529.6044
	ΔT _V =	average daily vapor temperature range, °R; see Note 1	$\Delta T_V =$	32.3036
Eq. 1-25	P _{VX} =	$e^{(A-\frac{B}{TLX})}$ (daily max)		
	P _{VN} =	$e^{(A-\frac{B}{TLN})}$ (daily min)		
	P _{VX} =	vapor pressure at the average daily maximum liquid surface temp. Note 5	P _{VX} =	0.011509
	P _{VN} =	vapor pressure at the average daily minimum liquid surface temp. Note 5	P _{VN} =	0.00689
	$T_{LX} =$	average daily maximum liquid surface temperature. °R	T _{LX} =	537.6803
	$T_{LN}=$	average daily minimum liquid surface temperature. °R	$T_{LN}=$	521.5285
	A=	constant in the vapor pressure equation, dimensionless	A=	12.101
	B=	constant in the vapor pressure equation, °R	B=	8907

Calculation of Working Loss Emissions

Eq. 1-35	L _w =	V_{Q}	K_N	K_{P}	W_{V}	K_{B}			
	L _w =	working lo	osses, lb/	yr				L _w =	2.190872
	V _Q =	net worki	ng loss th	roughput, 1	ft ³ /yr			V _Q =	16040
	$K_N =$	working lo	oss turno	ver (saturat	ion) factor,	dimensionless		$K_N =$	1
	K _P =	working lo	oss produ	ict factor, d	imensionles	5		K _P =	1
	$W_V =$	vapor der	nsity, lb/f	t ³ , see Equa	ation 1-22 (fr	om standing losse	s calculations)	$W_V =$	0.000137
	K _B =	vent setti	ng correc	tion factor,	dimensionle	ess (assume K _B =1)		K _B =	1
Eq. 1-38	V _Q =	(ΣH _{QI})	π/4 D ²						
	V _Q =	net worki	ng loss th	roughput, f	ft³/yr			V _Q =	16040
	ΣH _{QI} =	annual su	m of incr	eases in liqu	uid level, ft/y	ır		ΣH _{Ql} =	74.25926
Eq. 1-36	N=	ΣH _{QI} / (H _{L)}	(- H _{LN})						
	N=	number o	of turnove	ers per year	, dimensionl	ess		N=	11.81873
	ΣH _{QI} =	annual su	m of incr	eases in liqu	uid level, ft/y	/r		ΣH _{QI} =	74.25926
	H _{LX} =	maximum	ı liquid he	eight, ft	(Horizo	ntal tanks = π/4*D)	H _{LX} =	6.283185
	H _{LN} =	minimum	liquid he	ight, ft				H _{LN} =	0.00
Eq. 1-37	ΣH _{QI} =	(5.614Q)	/ ((π/4)D ²	2)					
	ΣH _{QI} =	annual su	m of incr	eases in liqu	uid level, ft/y	/r		ΣH _{QI} =	74.25926
	Q=	annual ne	t through	nput, bbl/yr	(42 gallons=	: 1 bbl)		Q=	2857.143
	D=	D _E =	effectiv	e tank dian	neter, ft			D _E =	16.58372

Hood Industries, Inc. Waynesboro, Mississippi Greenhouse Gas Emissions

Emission Factors and Global Warming Potentials (GWP) from 40 CFR 98 (Tables A-1, C-1 and C-2)

		E	mission Factor	S,	Emission Factors,			
			kg/MMBtu			lb/MMBtu		
Pollutant	GWP	Wood	Nat'l Gas	Diesel	Wood	Nat'l Gas	Diesel	
CO2	1	93.8	53.02	73.96	206.829	116.909	163.082	
N2O	298	0.0036	0.0001	0.0006	0.008	0.000	0.001	
CH4	25	0.0072	0.001	0.003	0.016	0.002	0.007	

Emissions from Natural Gas Fired Continuous Dry Kilns

	Kiln 1	Kiln 2	Kiln 3	Kiln 4
Maximum Potential Natural Gas Usage, Mscf/yr:	386,471	386,471	386,471	386,471
Maximum Potential Natural Gas Usage, MMBtu/yr:	394,200	394,200	394,200	394,200

				Emissions, tons							
	Pollutant	Emission Factor, lb/MMBtu	Kiln 1	Kiln 2	Kiln 3	Kiln 4	Total All Kilns tons				
ľ	CO2	116.909	23,043	23,043	23,043	23,043	92,172				
ľ	N2O	0.0002	0.0435	0.0435	0.0435	0.0435	0.1740				
ĺ	CH4	0.002	0.4346	0.4346	0.4346	0.4346	1.7384				
		TOTALS:	23,043	23,043	23,043	23,043	92,174				

			CO2e Emis	ssions, tons		
Pollutant	GWP	Kiln 1	Kiln 2	Kiln 3	Kiln 4	Total CO2e tons
CO2	1	23,043	23,043	23,043	23,043	92,172
N2O	298	13	13	13	13	52
CH4	25	11	11	11	11	44
•	TOTALS:	23,067	23,067	23,067	23,067	92,268

Notes:

Emission factors from Tables C-1 and C-2 to 40 CFR Part 98, Dec 9, 2016.

Exhibit 3

Hood Industries, Inc. Waynesboro, Mississippi Wayne County Agency Interest #7876

PSD Applicability Determination for Mill Modernization Project

Prepared by:

H. M. Rollins Company, Inc. 608 34th Street Gulfport MS 39501 (228) 832-1738

May 23, 2025 Revised July 22, 2025

Hood Industries, Inc.

Waynesboro, Mississippi

PSD Applicability Determination - Future Potential to Past Actual Emissions

		ANNUAL PAST ACTUAL EMISSIONS REPORTED TO MDEQ, TONS							
	PM	PM10	PM2.5	SO2	CO	NOX	VOC	GHG	
2023	95.58	83.89	55.92	4.66	180.27	52.63	306.2		
2022	87.57	77.18	52.71	3.8	145.1	38.91	311.47		
2021	88.21	77.11	52.63	3.38	163.81	35.62	322.24		
2020	89.2	81.15	55.71	3.96	181.33	39.53	317.52		
2019	97.45	88.66	60.66	4.17	193.73	42.2	352.12		
2018	110.7	100.75	68.37	4.25	187.97	42.7	349.8	84,331	
2017	112.8	102.25	69.56	4.22	188.1	42.7	362.98	86,496	
2016	101.04	96.92	66.83	4.3	182.96	41.7	299.35		
2015	119.14	110.52	73.26	5.37	614.16	49.69	296.96		

		TWO-YEAR AVERAGE PAST ACTUAL EMISSIONS, TONS							
	PM	PM10	PM2.5	SO2	CO	NOX	VOC	GHG	
2022-2023	91.5750	80.5350	54.3150	4.2300	162.6850	45.7700	308.8350		
2021-2022	87.8900	77.1450	52.6700	3.5900	154.4550	37.2650	316.8550		
2020-2021	88.7050	79.1300	54.1700	3.6700	172.5700	37.5750	319.8800		
2019-2020	93.3250	84.9050	58.1850	4.0650	187.5300	40.8650	334.8200		
2018-2019	104.0750	94.7050	64.5150	4.2100	190.8500	42.4500	350.9600		
2017-2018	111.7500	101.5000	68.9650	4.2350	188.0350	42.7000	356.3900	85,414	
2016-2017	106.9200	99.5850	68.1950	4.2600	185.5300	42.2000	331.1650		
2015-2016	110.0900	103.7200	70.0450	4.8350	398.5600	45.6950	298.1550		

		TWO-YEAR AVERAGE PAST ACTUAL EMISSIONS USED , TONS								
	PM	PM10	PM2.5	SO2	CO	NOX	VOC	GHG		
2017-2018	111.7500	101.5000	68.9650	4.2350	188.0350	42.7000	356.3900	85,414		

Notes Green font in Two-Year Average table indicates highest past actual emissions by pollutant For ease of analysis, years 2017-2018 were used for all pollutants CY2017 and CY2018 Emissions Calculations submitted for AEIs attached

		POST-PROJECT MAXIMUM POTENTIAL EMISSIONS, TONS								
	PM PM10 PM2.5 SO2 CO NOX VOC GHG									
TOTA	L 84.1189	49.1859	27.6667	0.4644	64.9308	55.3140	886.1485	92,268		

	PROJECT CHANGE IN EMISSIONS, TONS										
	PM PM10 PM2.5 SO2 CO NOX VOC GHG										
CHANGE	-27.63	-52.31	-41.30	-3.77	-123.10	12.61	529.76	6,854			
SER	25	15	10	40	100	40	40	75,000			
PSD?	NO	NO	NO	NO	NO	NO	PSD	NO			

	OZONE AMBIENT AIR IMPACT ANALYSIS - SIGNIFICANCE LEVEL = 1.0							
POLL	MERP, TPY	INC, TPY	INC/MERP	DETERMINATION				
NOX	190	12.61	0.07					
VOC	2307	529.76	0.23					
			0.30	NO FURTHER ANALYSIS REQ				

Hood Industries, Inc. Waynesboro, MS Calculation of Future Annual Emissions

Lumber Drying Emissions Number of Kilns: 4

Kiln Production Capacity, MBF/year: 100000 Hours: 8760

						All Kilns
	Emission		Average	Per Kiln Annual	Annual	
Pollutant	Factor	Units	Note	lb/hr	tons/year	tons/year
PM	0	lb/MBF	1	0.0000	0.0000	0.0000
PM10	0.022	lb/MBF	1	0.2511	1.0998	4.3992
PM2.5	0.022	lb/MBF	1	0.2511	1.0998	4.3992
VOC (as WPP1)	4.43	lb/MBF	2	50.5708	221.5001	886.0004

Natural Gas Combustion Emissions

Kiln Burner Capacity, MMBtu/hr:

Natural Gas Heat Content, Btu/scf:

Gas Usage Capacity, MMscf/hr:

0.04412

						All Kilns
	Emission			Average	Per Kiln Annual	Annual
Pollutant	Factor	Units	Note	lb/hr	tons/year	tons/year
PM	1.9	lb/MMscf	3	0.0838	0.3670	1.4680
PM10	7.6	lb/MMscf	3	0.3353	1.4686	5.8744
PM2.5	7.6	lb/MMscf	3	0.3353	1.4686	5.8744
SO2	0.6	lb/MMscf	3	0.0265	0.1161	0.4644
CO	84	lb/MMscf	3	3.7061	16.2327	64.9308
NOX	71.56	lb/MMscf	4	3.1572	13.8285	55.3140

Total Kiln Emissions

		All Kilns
	Per Kiln Annual	Annual
Pollutant	tons/year	tons/year
PM	0.3670	1.4680
PM10	2.5684	10.2736
PM2.5	2.5684	10.2736
SO2	0.1161	0.4644
CO	16.2327	64.9308
NOX	13.8285	55.3140
VOC	221.5001	886.0004

¹ North Carolina Environmental Quality Emission Estimation Spreadsheet.

 $^{2\,}$ BACT from MDEQ Permit issued to Gloster Forest Products, Gloster, MS

³ AP-42 Chapter 1.4, Natural Gas Combustion

⁴ NG Burner Information

Hood Industries, Inc. Waynesboro, MS Calculation of Future Annual Emissions

Pneumatic Conveyance System

Maximum Capacity, BF/yr:	400,000,000
Raw Material Throughput, BF/hr:	45,662
Density, Pine, lb/BF:	2.5
Planer Throughput, tons/hr:	57.08

	Emission	PCS	² Cyclone	Building	Total PCS	Emissions
	Factor	Loading	Efficiency	Enclosure	Hourly	Annual
Pollutant	lb/ton thru	lb/hour	%	%	lb/hr	tons/yr
PM	4.3	245.4440	95	50	6.1361	26.8761
PM10	2.1	119.8680	95	50	2.9967	13.1255
PM2.5	0.777	44.3512	95	50	1.1088	4.8565

¹ Calculation Basis from SCDHEC Wood Working Emissions for Millwork Dry Wood Output EF workbook

Fugitive Emissions

Log Prep Fugitives (Debarking/Bucking (Sawing) from PTC MPTE Calculations Exhibit)

Pollutant	tons/year
PM	48.7735
PM10	24.3865
PM2.5	12.1930

Plant Roads Fugitives (from PTC MPTE Calculations Exhibit)

Pollutant	tons/year
PM	7.0013
PM10	1.4003
PM2.5	0.3436

Insignificant Sources - Tanks

Pollutant	Gasoline	Diesel	Total
VOC	0.1460	0.0021	0.1481

Total Facility Annual Emissions

Pollutant	tons/year
PM	84.1189
PM10	49.1859
PM2.5	27.6667
SO2	0.4644
CO	64.9308
NOX	55.3140
VOC	886.1485

² Cyclone Efficiency conservatively estimated based on manufacturer data for QuadPak cyclone

Hood Industries, Inc. Waynesboro, Mississippi Future Greenhouse Gas Emissions

Emission Factors and Global Warming Potentials (GWP) from 40 CFR 98 (Tables A-1, C-1 and C-2)

		Emission Factors,			Emission Factors,			
		kg/MMBtu			lb/MMBtu			
Pollutant	GWP	Wood Nat'l Gas Diesel			Wood	Nat'l Gas	Diesel	
CO2	1	93.8	53.02	73.96	206.829	116.909	163.082	
N2O	298	0.0036	0.0001	0.0006	0.008	0.000	0.001	
CH4	25	0.0072	0.001	0.003	0.016	0.002	0.007	

Emissions from Natural Gas Fired Continuous Dry Kilns

	Kiln 1	Kiln 2	Kiln 3	Kiln 4
Maximum Potential Natural Gas Usage, Mscf/yr:	386,471	386,471	386,471	386,471
Maximum Potential Natural Gas Usage, MMBtu/yr:	394,200	394,200	394,200	394,200

			Emissions, tons						
Pollutant	Emission Factor, Ib/MMBtu	Kiln 1	Kiln 2	Kiln 3	Kiln 4	Total All Kilns tons			
CO2	116.909	23,043	23,043	23,043	23,043	92,172			
N2O	0.0002	0.0435	0.0435	0.0435	0.0435	0.1740			
CH4	0.002	0.4346	0.4346	0.4346	0.4346	1.7384			
	TOTALS:	23,043	23,043	23,043	23,043	92,174			

Pollutant	GWP	Kiln 1	Kiln 2	Kiln 3	Kiln 4	Total CO2e tons
CO2	1	23,043	23,043	23,043	23,043	92,172
N2O	298	13	13	13	13	52
CH4	25	11	11	11	11	44
	TOTALS:	23,067	23,067	23,067	23,067	92,268

Notes:

Emission factors from Tables C-1 and C-2 to 40 CFR Part 98, Dec 9, 2016.

Hood Industries, Inc. Waynesboro, Mississippi

Annual Air Emissions Estimate

CY2017

June 25, 2018

Hood Industries, Inc. Waynesboro, Mississippi Summary of Annual Air Emissions

										Calen	ıdar Year:	2017
		AA-007	AA-008	AA-009	AA-011				AA-016			
	AA-001	Planer	Hog	Solid	Steam	AA-013	AA-014	AA-015	CDF		IA-000	Total
	100 MMBtuH	Mill with	Trimmer with	Fuel Silo	Heat Lumber	BDF Lumber	CDF Lumber	CDF Silo	Surge Bin	Fugitive	Insign- ificant	Total Emissions
Criteria Air Pollutant	Boiler	Cyclone	Cyclone	Cyclone	Kiln #2	Kiln	Kiln	Cyclone	Cyclone	Emissions	Activities	Tons/year
PM	58.92	4.19	4.19	3.27	1.97	8.61	2.14	4.19	4.19	19.03	2.10	112.80
PM10	53.02	1.68	1.68	1.31	1.77	7.75	1.07	1.68	1.68	10.73	2.10	84.47
PM2.5	31.81	0.84	0.84	0.65	1.65	7.25	0.93	0.84	0.84	5.52	0.61	51.78
PM-Condensable	2.87				3.99	8.75	2.17					17.78
SO2	4.22										0.00	4.22
NOX	37.14					2.34	3.21				0.01	42.70
CO	161.38					11.27	15.45				0.00	188.10
VOC	17.56	No Data	No Data	No Data	128.11	98.71	118.28	0.00	0.00	0.00	0.32	362.98
		AA-007	AA-008	AA-009	AA-011				AA-016			
Hazardous	AA-001	Planer	Hog	Solid	Steam	AA-013	AA-014	AA-015	CDF		IA-000	
Air	100 MMBtuH	Mill with	Trimmer with	Fuel Silo	Heat Lumber	BDF Lumber	CDF Lumber	CDF Silo	Surge Bin	Fugitive	Insign- ificant	Total Emissions
Pollutant	Boiler	Cyclone	Cyclone	Cyclone	Kiln #2	Kiln	Kiln	Cyclone	Cyclone	Emissions	Activities	Tons/year
2-Butanone (MEK)	0.0009	-,	-,									0.0009
Acenaphthylene	0.0002											0.0002
Acenaphthene	0.0008											0.0008
Acetaldehyde	0.1401										0.0000	0.1401
Acrolein	0.6752										0.0000	0.6752
Anthracene	0.0005											0.0005
Benzene	0.7090										0.0024	0.7114
Benzo(a)pyrene	0.0004											0.0004
Carbazole	0.0003											0.0003
Carbon tetrachloride	0.0076											0.0076
Chlorobenzene	0.0056											0.0056
Chloroform	0.0047											0.0047
Cyclohexane	0.0000										0.0003	0.0003
Ethyl benzene	0.0052										0.0002	0.0054
Fluoranthene	0.0003											0.0003
Fluorene	0.0006											0.0006
Formaldehyde	0.7428				0.4767	2.3646	1.2583				0.0000	4.8424
Hexane	0.0000										0.0021	0.0021
Isooctane	0.0000										0.0029	0.0029
m,p-Xylene	0.0000										0.0008	0.0008
Methanol	0.0000				6.2565	3.6731	5.0333					14.9629
Naphthalene	0.0164											0.0164
o-Xylene	0.0042											0.0042
Phenanthrene	0.0012											0.0012
Phenol	0.0086											0.0086
Propionaldehyde	0.0103											0.0103
Styrene	0.3207											0.3207
Toluene	0.1553										0.0028	0.1581
Trichloroethene	0.0051											0.0051
Vinyl Chloride	0.0030											0.0030
Chlorine	0.1334											0.1334
Hydrogen Chloride	0.0485											0.0485
Antimony	0.0013											0.0013
Arsenic	0.0037											0.0037
Beryllium	0.0002											0.0002
Chromium	0.0007 0.0035											0.0007
Chromium Cobalt	0.0035											0.0035 0.0011
Lead	0.0011											0.0011
Manganese	0.0081											0.0061
Mercury	0.2701											0.2701
Nickel	0.0056											0.0056
Phosphorus	0.0036											0.0036
Selenium	0.0046											0.0046
Total VOC HAPs	2.8190	0.0000	0.0000	0.0000	6.7332	6.0377	6.2916	0.0000	0.0000	0.0000	0.0115	21.8930
Total Non-VOC HAPs	0.4814	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.4814
TOTAL HAPs	3.3004	0.0000	0.0000	0.0000	6.7332	6.0377	6.2916	0.0000	0.0000	0.0000	0.0115	22.3744
	J.0007	0.0000	0.0000	0.0000	0.1002	0.0011	0.2010	0.0000	0.0000	0.0000	0.0110	22.0177

Hood Industries, Inc. Waynesboro, Mississippi PM-2.5 Emission Factor Determinations

Where actual data or other emission factors for PM-2.5 do not exist, the following factors are used. These factors were developed from PM-2.5 emissions data provided to two wood products facilities by the Mississippi Department of Environmental Quality as a result of CY2002 PM and PM10 emissions reporting. MDEQ used EPA's PM Calculator to estimate the PM-2.5 emissions for the facilities. The reported emissions were used to create factors which represent PM-2.5 emission rates as a percentage of PM emission rates.

	Emissions	Emissions, tons/year					
			PM-2.5				
			as				
Emissions Unit	PM	PM-2.5	%PM				
Wood-fired Boiler	66.4	50.47	76%				
Veneer Dryer	14	4.11	29%				
Plywood Sander/Cyclone	0.7	0.1	14%				
Dry Veneer Cyclone	4.9	0.93	19%				
Log Yard Fines Cyclone	4.6	0.87	19%				
Log Yard Chip Discharge	2.9	0.55	19%				
Layup/Pressing	12.3	10.2	83%				
Fugitive Dust	5.6	1.83	33%				
Planer Mill Shavings Cyclone	3.4	0.68	20%				
Hog Trimmer Cyclone	3.4	0.68	20%				
Steam Heated Lumber Kiln	2.3	2.15	93%				
Other Fugitives	5.1	1.5	29%				

PM-Condensables

This facility has no site-specific data on PM Condensables. For sources that have PM emissions that are expected to be condensable in nature, all estimated PM-2.5 emissions are considered to be PM-Condensable.

Hood Industries, Inc. Waynesboro, Mississippi Lumber Kiln Emission Factors

The US EPA *Compilation of Air Pollutant Emission Factors, AP-42*, Fifth Edition, Volume 1 contains no emission factors for air pollutant emissions from lumber kilns. The emissions from lumber kilns are reported to be VOCs (primarily alpha and beta pinenes), some hazardous air pollutants (methanol and formaldehyde), and some quantity of filterable particulate matter.

Emission Factors

St	eam-Heate	ed	Direct-Fire	d Batch Ki	<u>l</u> n	Direct-Fire	d Continuc	us Kiln
FPM:	0.067	lb/MBF ¹	FPM:	0.375	lb/MBF ³	FPM:	0.068	lb/MBF ⁵
FPM-10:	0.0603	lb/MBF ¹	FPM-10:	0.3375	lb/MBF ³	FPM-10:	0.034	lb/MBF ⁶
FPM-2.5:	0.056	lb/MBF ¹	FPM-2.5:	0.316	lb/MBF ³	FPM-2.5:	0.030	lb/MBF ⁷
CPM:	0.134	lb/MBF ²	СРМ:	0.381	1.016 times FPM ⁸	CPM:	0.069	lb/MBF ⁸
CO:	0	lb/MBF ¹	CO:	0.491	lb/MBF ³	CO:	0.73	lb/MBF ⁹
NOx:	0	lb/MBF ¹	NOx:	0.102	lb/MBF ³	NOx:	0.28	lb/MBF ⁹
SO2:	0	lb/MBF	SO2:	0.025	lb/MBF ⁴	SO2:	0.025	lb/MBF ⁴
VOC as VOC:	4.3	lb/MBF ¹¹	VOC as VOC:	4.3	lb/MBF ¹¹	VOC as VOC:	3.76	lb/MBF ⁹
Methanol:	0.21	lb/MBF ¹⁰	Methanol:	0.16	lb/MBF ¹⁰	Methanol:	0.16	lb/MBF ⁹
Formaldehyde:	0.016	lb/MBF ¹⁰	Formaldehyde:	0.103	lb/MBF ¹⁰	Formaldehyde:	0.04	lb/MBF ⁹

¹ Emission factor from Test #5, Weyerhaeuser Corp., Mountain Pine, AR. PM10 = 90% of PM; PM2.5 = 93.5% of PM10.

² Emission factor from March 18, 1994 NCASI Letter to EPA Re: Lumber Kiln Test Reports

³ Emission test conducted by GP at Cross City, FL. PM10 = 90% of PM; PM2.5 = 93.5% of PM10.

⁴ US EPA AP-42, Section 1.6

⁵ Based on Preliminary Determination by GEPD for Simpson Lumber Company, LLC, Meldrum, GA, based on emissions tests conducted at Bibler Brothers Lumber Company, Russelville, AR. Filterable PM factor = 0.068 lb/MBF.

⁶ GEPD Permit No. 2421-107-0011-V-02-3 issued to Rayonier Wood Products LLC - Swainsboro Sawmill: PM10 = 50% of PM.

⁷ Based on relationship of PM10 to PM2.5 in US EPA AP-42 Section 1.6: PM2.5 = 87% of PM10.

⁸ Condensable PM emission factor based on unpublished NCASI data referenced in West Fraser, Opelika, AL Permit Application, which recommends 1.016 ratio of PM-CON to FPM.

⁹ Based on unpublished and published NCASI test results as published in the NCDAQ Air Permit Review/Preliminary Determination for the Weyerhauser, Plymouth, NC, application.

¹⁰ Technical Bulletin No. 845, May 2002, by the National Council for Air and Stream Improvement (NCASI) developed emission rates from lumber kilns for the following pollutants:

¹¹ MDEQ-Supplied Emission Factor, assumed to be NCASI EF of 3.5 lb/MBF VOC as C times 1.22 to get to VOC as VOC

Hood Industries, Inc. Waynesboro, Mississippi Data Sheet and Summary of Actual Emissions for Title V Fee Purposes

Calendar Year: INPUT DATA AND TEST RESULTS: 2017 MMBtu/hr 100 4,190 Boiler Rated Capacity Operating Hours, Planer Cyclone Hours/yr Boiler Operating Hours 8,075 Operating Hours, Hog/Trimmer 4,190 Hours/yr Hours/yr Average Steaming Rate 27,177 Operating Hours, BDK Silo Cyclone 3,273 Lb/hr Hours/yr Logs Used 692,180 Operating Hours, CDK Silo Cyclone 4,190 Tons/yr Hours/yr Operating Hours, Sawmill 4,182 Operating Hours, CDK Surge Bin Cyclone 4,190 Hours/yr Hours/yr Operating Hours, Emergency Generator 6.2 Hours/yr Lumber Dried, Total 168,415 **MBF** DF Kiln EFs **Boiler Test Data** Steam Kiln #2 59.585 **MBF** 0.375 PM0.349 lb/MMBtu (test average) MBF SO₂ 45,914 NA Batch Direct-Fired Kiln Continuous Direct-Fired Kiln 62,916 NO_x **MBF** 0.102 VOC 0.104 0.104 lb/MMBtu (2001 test) CO Gasoline used, gallons: 2,403 lb/MMBtu (test average) 0.491 0.956 133,375 Diesel used, gallons: SpWt, lb/gal: 0 6.6 VOC emissions, tpy 0.0 Air line anti-freeze used, gallons:

Air line anti-freeze is Methanol, a HAP and a VOC.

Calculation of Emissions from Wood/Bark Fired Industrial Boilers

Company: Hood Industries, Inc Waynesboro, MS								
Boiler identification: Boiler #1 (Gaskell Wood-Fired)								
Maximum firing rate, MMBtu/hr	100	Calendar Year:	2017					
Allowable operating hours	8760	Average firing rate, MMBtu/hr	41.81					
Assumed thermal efficiency, %	65	Actual operating hours	8,075					

Emission Factors, pounds per MM Btu of heat input

<u>Criteria Pollutants</u>		Emission Factor Source
Particulate Matter (PM) (filterable)	0.349	Test Data (last 3 years)
Particulate Matter <10 microns (PM-10) (filterable)	0.3141	90% of PM
Particulate Matter <2.5 microns (PM-2.5) (filterable)	0.18846	54% of PM
Particulate Matter - Condensable	0.017	AP-42 S 1.6, 9/03
Sulfur Dioxide (SO2)	0.025	AP-42 S 1.6 9/03
Nitrogen Oxides (NOx)	0.22	AP-42 S 1.6 9/03
Carbon Monoxide (CO)	0.956	Test Data
Volatile Organic Cmpds (VOC) (as C by Method 25)	0.104	Test Data

Hazardous Air Pollutants (HAPs)

Hazardous Air Foliatants (HAFS)	
2-Butanone (MEK)	5.4
Acenaphthylene	9.1
Acenapthene	5.0
Acetaldehyde	8.3
Acrolein	4.0
Anthracene	3.0
Benzene	4.2
Benzo(a)pyrene	2.6
Carbazole	1.8
Carbon tetrachloride	4.5
Chlorobenzene	3.3
Chloroform	2.8
Ethylbenzene	3.1
Fluoranthene	1.6
Fluorene	3.4
Formaldehyde	4.4
Naphthalene	9.7
o-Xylene	2.5
Phenanthrene	7.0
Phenol	5.1
Propionaldehyde	6.1
Styrene	1.9
Toluene	9.2
Trichloroethene	3.0
Vinyl Chloride	1.8
Chlorine	7.9
Hydrogen Chloride	2.8
Antimony	7.9
Arsenic	2.2
Beryllium	1.1
Cadmium	4.1
Chromium, total	2.1
Cobalt	6.5
Lead (Pb)	4.8
Manganese	1.6
Mercury	6.8

5.40E-06	AP-42 S 1.6, 9/03
9.10E-07	AP-42 S 1.6, 9/03
5.00E-06	AP-42 S 1.6, 9/03
8.30E-04	AP-42 S 1.6, 9/03
4.00E-03	AP-42 S 1.6, 9/03
3.00E-06	AP-42 S 1.6, 9/03
4.20E-03	AP-42 S 1.6, 9/03
2.60E-06	AP-42 S 1.6, 9/03 AP-42 S 1.6, 9/03
4.50E-05	AP-42 S 1.6, 9/03
	AP-42 S 1.6, 9/03
2.80E-05	AP-42 S 1.6, 9/03
3.10E-05	AP-42 S 1.6, 9/03
1.60E-06	AP-42 S 1.6, 9/03
3.40E-06	AP-42 S 1.6, 9/03
4.40E-03	AP-42 S 1.6, 9/03
9.70E-05	AP-42 S 1.6, 9/03
2.50E-05	AP-42 S 1.6, 9/03
7.00E-06	AP-42 S 1.6, 9/03
5.10E-05	AP-42 S 1.6, 9/03 AP-42 S 1.6, 9/03
6.10E-05	AP-42 S 1.6, 9/03
	AP-42 S 1.6, 9/03
9.20E-04	AP-42 S 1.6, 9/03
3.00E-05	AP-42 S 1.6, 9/03
1.80E-05	AP-42 S 1.6, 9/03
7.90E-04	AP-42 S 1.6, 9/03
2.87E-04	Test Data AP-42 S 1.6, 9/03
7.90E-06	AP-42 S 1.6, 9/03
2.20E-05	AP-42 S 1.6, 9/03
1.10E-06	AP-42 S 1.6, 9/03
	AP-42 S 1.6, 9/03
2.10E-05	AP-42 S 1.6, 9/03
6.50E-06	AP-42 S 1.6, 9/03 AP-42 S 1.6, 9/03
4.80E-05	AP-42 S 1.6, 9/03
1.60E-03	AP-42 S 1.6, 9/03
	Test Data
	AP-42 S 1.6, 9/03
	AP-42 S 1.6, 9/03
2.80E-06	AP-42 S 1.6, 9/03

Calculated	Emissions
Average hourly emission rates, pounds per hour	Actual annual emission rate, tons per year
14.59	58.92
13.13	53.02
7.88	31.81
0.71	2.87
1.0452757	4.22
9.1984258	37.14
39.971341 4.3483467	161.38 17.56
4.3483467	17.50
2.26E-04	0.0009
3.80E-05	0.0002
2.09E-04	0.0008
3.47E-02	0.1401
1.67E-01	0.6752
1.25E-04	0.0005
1.76E-01	0.7090
1.09E-04	0.0004
7.53E-05	0.0003
1.88E-03	0.0076

(VOC) (VOC) (VOC)

()		0.000
(VOC)	3.47E-02	0.1401
(VOC)	1.67E-01	0.6752
(VOC)	1.25E-04	0.0005
(VOC)	1.76E-01	0.7090
(VOC)	1.09E-04	0.0004
(VOC)	7.53E-05	0.0003
(VOC)	1.88E-03	0.0076
(VOC)	1.38E-03	0.0056
(VOC)	1.17E-03	0.0047
(VOC)	1.30E-03	0.0052
(VOC)	6.69E-05	0.0003
(VOC)	1.42E-04	0.0006
(VOC)	1.84E-01	0.7428
(VOC)	4.06E-03	0.0164
(VOC)	1.05E-03	0.0042
(VOC)	2.93E-04	0.0012
(VOC)	2.13E-03	0.0086
(VOC)	2.55E-03	0.0103
(VOC)	7.94E-02	0.3207
(VOC)	3.85E-02	0.1553
(VOC)	1.25E-03	0.0051
(VOC)	7.53E-04	0.0030
	3.30E-02	0.1334
	1.20E-02	0.0485
	3.30E-04	0.0013
	9.20E-04	0.0037
	4.60E-05	0.0002
	1.71E-04	0.0007
	8.78E-04	0.0035
	2.72E-04	0.0011
	0.0020069	0.0081
	6.69E-02	0.2701
	2.87E-05	0.0001
	1.38E-03	0.0056
	1.13E-03	0.0046
	1.17E-04	0.0005
Tota	2.8191	
Total No	n-VOC HAP	0.4814
		· · · · · · · · · · · · · · · · · · ·

- 1. HAPs shown are those with potential annual emission rates of greater than 0.0001 tons/year.
- 2. PM-10 and PM-2.5 emission rates estimated based on relationship of factors from AP-42, Section 1.6, Table 1.6-1, for boilers with mechanical collectors burning bark and wet wood.

Nickel Phosphorous Selenium Notes:

Hood Industries, Waynesboro Historic Boiler Test Data

Test Date	Rated Capacity, MMBtu/hr	Firing Rate, MMBtu/hr	% of capac.	Steam rate M lb/hr	Efficiency @ 1000 Btu/lb	Stack temp. °F	Flow rate, ACFM	Moisture Content, Bws, dimensionless	02, %	Excess air, %	Flow rate, Qstd	PM grain/scf	PM lb/hr	Calculated Test Result PM lb/MMBtu	CO, lb/MMBtu	HCL, lb/MMBtu	HG, lb/MMBtu
12/8/1997	130	103.84	0.80		ND	446	62,795				31,347		43.69	0.421			
11/16/1998	130	87.44	0.67		ND	438	61,603				30,051	0.272	80.69	0.923			
12/21/1999	100	96.12	0.96		ND	437	65,797	0.137	11.6	121.6	33,486	0.226	64.93	0.676			
10/24/2000	100	83.44	0.83	64.3	77.1	450	62,462	0.125	12.5	147.9	32,146	0.264	72.9	0.874			
9/24/2001	100	98.75	0.99		ND	450	61,406	0.146	10.4	98.3	30,521	0.197	51.82	0.525			
10/15/2002	100	117.33	1.17	56.0	47.7	451	64,211	0.216	7.8	59.9	28,951	0.300	75.82	0.646			
10/14/2003	100	108.87	1.09	55.6	51.1	438	61,283	0.166	9.1	77.3	29,832	0.237	60.6	0.557			
10/5/2004	100	87.72	0.88	58	66.1	493	63,497	0.175	11.1	116.2	28,837	0.288	71.47	0.815			
10/4/2005	100	109.25	1.09	53	48.5	460	69,579	0.162	10.2	95.4	33,494	0.211	60.83	0.557			
6/16/2006	100	97.19	0.97	50	51.4	448	67,890	0.133	11.6	125.2	34,391	0.195	57.95	0.596			
8/28/2007	100	92.57	0.93	50	54.0	451	66,442	0.154	11.5	123.1	32,636	0.190	53.19	0.575			
9/11/2008	100	94.99	0.95	50	52.6	460	70,216	0.146	11.9	132.0	34,731	0.210	62.7	0.660			
8/28/2009	100	96.38	0.96	49.7	51.6	471	65,029	0.169	10.5	99.2	30,283	0.184	47.82	0.496			
8/26/2010	100	97.23	0.97	49.2	50.6	485	70,085	0.149	11.4	120.0	33,446	0.092	26.48	0.272			
8/23/2011	100	93.42	0.93	46.4	49.7	496	65,542	0.168	10.8	107.1	30,413	0.122	31.84	0.341			
10/8/2012	100	93.31	0.93	46.9	50.2	492	64,132	0.180	10.4	100.8	29,175	0.140	35.07	0.376			
9/27/2013	100	98.85	0.99	45.3	45.9	503	69,450	0.159	10.8	105.0	31,949	0.137	37.651	0.381			
9/18/2014	100	88.87	0.89	44.7	50.3	516	67,722	0.144	11.7	124.9	31,529	0.157	42.592	0.479			
8/25/2015	100	84.35	0.84	49.9	59.1	535	52,178	0.166	8.9	74.0	23,073	0.124	24.955	0.296	1.255	5.12E-04	7.79E-07
8/12/2016	100	89.65	0.9	46.7	52.1	528	50,651	0.187	7.7	57.7	21,949	0.129	24.37	0.272	0.657	6.23E-05	5.95E-07
					53.6							A	verages:	0.537	0.956	2.87E-04	6.87E-07

Last 3 Year Averages: 0.349 0.956 2.87E-04 6.87E-07

Hood Industries, Inc. Waynesboro, Mississippi Calculation of VOC and HAP-VOC Emissions

Volatile Organic Compound Emissions Calendar Year:								
Emission Point Description an	d ID No.	Operating Levels	Operating Level Units	Conversion Factor	Conversion Factor Units	Emission Factor	Emission Factor Units	Emissions, tons/yr
Wood-fired Steam Boiler	AA-001		See the b	oiler emissio	n spreadsheet	attached	•	17.56
Planer Cyclone	AA-007	4,190	hr/yr	None	NA	No Data	lb/hr	No Data
Hog/Trimmer Cyclone	AA-008	4,190	hr/yr	None	NA	No Data	lb/hr	No Data
Solid Fuel Silo Cyclone	AA-009	3,273	hr/yr	None	NA	No Data	lb/hr	No Data
Steam Dry Kiln #2	AA-011	59,585	MBF	None	NA	4.3	lb/MBF	128.11
Batch DF Lumber Kiln	AA-013	45,914	MBF	None	NA	4.3	lb/MBF	98.71
Continuous DF Kiln	AA-014	62,916	MBF	None	NA	3.76	lb/MBF	118.28
CDF Silo Cyclone	AA-015	4,190	hr/yr	None	NA	No Data	lb/hr	No Data
CDF Surge Bin Cyclone	AA-016	4,190	hr/yr	None	NA	No Data	lb/hr	No Data
Air-line anti-freeze		See the "Summary" spreadsheet attached						0.00
Insignificant Activities	ivities IA-000 See the "Insignificant" spreadsheet attached						0.32	
То	tal Calcula	ted VOC E	missions	as C as m	easured by	RM 25A,	tons/year:	362.98

The emissions from the boiler are taken from the boiler emission spreadsheet attached, and are based on data from the most recent compliance test. The emissions from the lumber dry kilns are calculated using the actual annual production taken from corporate production records and the emission factors presented in the Title V permit application, as shown herein.

Hazardous Air Pollutant (HAP) Emissions which are also VOC emissions

	· /		
Wood-fired Steam Boiler	AA-001	See the "Boiler" spreadsheet attached	2.82
Planer Cyclone	AA-007	No Data	No Data
Hog/Trimmer Cyclone	AA-008	No Data	No Data
Solid Fuel Silo Cyclone	AA-009	No Data	No Data
Steam Dry Kiln #2	AA-011	See the table below	6.73
Batch DF Lumber Kiln	AA-013	See the table below	6.04
Continuous DF Kiln	AA-014	See the table below	6.29
CDF Silo Cyclone	AA-015	No Data	No Data
CDF Surge Bin Cyclone	AA-016	No Data	No Data
Air-line anti-freeze		See the "Summary" spreadsheet attached	0.00
Insignificant Activities	IA-000	See the "Insignificant" spreadsheet attached	0.01
	-	Total of the HAP-VOC emissions, tons/year:	21.89

Steam-Heated Lumber Kilns

Pollutant	Emission Factor, lb/MBF	Kiln 2 HAPs, lbs/yr	Kiln 2 HAPs, tons/yr
Formaldehyde	0.016	953	0.5
Methanol	0.210	12,513	6.3
		· ·	

Sum 0.226

Direct-Fired Lumber Kiln

Pollutant	Emission Factor, lb/MBF	BDK HAPs, lbs/yr	BDK HAPs, tons/yr	Emission Factor, lb/MBF	CDK HAPs, lbs/yr	CDK HAPs, tons/yr
Formaldehyde	0.103	4,729	2.4	0.040	2,517	1.3
Methanol	0.160	7,346	3.7	0.160	10,067	5.0
Sum	0.263			0.200		

Total
HAPs,
tons/yr
4.1
15.0

Sum of the HAP VOC emissions from the kilns, tons 19.06239

Hood Industries, Inc. Waynesboro, Mississippi Calculation of Actual PM Emissions

				Caler	ndar Year:	2017
Emission Point Description and ID	No.	Operating Results	Operating Units	PM Emission Factor	Emission Factor Units	Estimated Particulate Matter Emissions, tpy
Wood-fired Steam Boiler	AA-001	See wood co	mbustion	spreadsheet	ts attached.	58.92
Planer Cyclone	AA-007	4,190.0	hours	2	lb/hr	4.19
Hog/Trimmer Cyclone	AA-008	4,190.0	hours	2	lb/hr	4.19
Solid Fuel Silo Cyclone	AA-009	3,273.0	hours	2	lb/hr	3.27
Steam Dry Kiln #2	AA-011	59,585.3	MBF	0.066	lb/MBF	1.97
Batch DF Lumber Kiln	AA-013	45,913.7	MBF	0.375	lb/MBF	8.61
Continuous DF Kiln	AA-014	62,916.0	MBF	0.068	lb/MBF	2.14
CDF Silo Cyclone	AA-015	4,190.0	hours	2	lb/hr	4.19
CDF Surge Bin Cyclone	AA-016	4,190.0	hours	2	lb/hr	4.19
Insignificant Activities (see sheet)						2.10
_		Total Calcu	lated PM	Emission	s, tons/yr:	93.76

Emission Point Description and ID	No.	Operating Results	Operating Units	PM-CON Emission Factor	Emission Factor Units	Estimated Condensable Particulate Matter Emissions, tpy
Wood-fired Steam Boiler	AA-001	See wood co	mbustion	spreadshee	ts attached.	0.00
Planer Cyclone	AA-007	4,190.0	hours	NA	lb/hr	ND
Hog/Trimmer Cyclone	AA-008	4,190.0	hours	NA	lb/hr	ND
Solid Fuel Silo Cyclone	AA-009	3,273.0	hours	NA	lb/hr	ND
Steam Dry Kiln #2	AA-011	59,585.3	MBF	0.134	lb/MBF	3.99
Batch DF Lumber Kiln	AA-013	45,913.7	MBF	0.381	lb/MBF	8.75
Continuous DF Kiln	AA-014	62,916.0	MBF	0.069	lb/MBF	2.17
CDF Silo Cyclone	AA-015	4,190.0	hours	NA	lb/hr	ND
CDF Surge Bin Cyclone	AA-016	4,190.0	hours	NA	lb/hr	ND
Insignificant Activities (see sheet)						0.00
		Total Calcu	lated PM	l Emission	s, tons/yr:	14.91

These emissions were calculated using emission factors and production and hour data as shown. Emissions from the boiler were calculated on the wood combustion spreadsheets attached.

Filterable PM, PM-10, PM-2.5 and PM-CON emissions from the lumber kilns are estimated using information presented in the Title V Operating Permit application.

Emissions from the wood residue handling system were calculated using the factors shown (FIRE) and the actual hours of operation.

Hood Industries, Inc. Waynesboro, Mississippi Calculation of Fugitive Emissions from the Sawmill Processes

Calendar Year: 2017

The emissions from this source are comprised of fugitive emissions from the following equipment:

Log Saws Boiler Fuel Hog Band mill Planer

Chippers (4) Trim Hog Gang saws(1) Chip screens(3)

Edgers (2) Twin band saws Trimmers (2)

Emission Factor Information:

		Logs		Tons of logs	Lumber Production	Log Consumption
	Sawmill	Used,	Lumber,	used per	Rate,	Rate,
Year	Hours	tons	MBF	MBF	MBF/hr	tons/hr
2000	3,645	628,218	138,528	4.53	38.00	172.35
2001	4,090	545,447	134,966	4.04	33.00	133.36
2002	4,210	584,956	141,047	4.15	33.50	138.94
2003	4,340	638,431	143,214	4.46	33.00	147.10
2004	3,786	658,416	156,024	4.22	41.21	173.91
2005	3,349	604,933	153,575	3.94	45.86	180.63
2006	3,797	669,329	167,116	4.01	44.01	176.28
2007	4,160	602,963	146,321	4.12	35.17	144.94
2008	2,672	427,711	97,427	4.39	36.46	160.07
2009	1,941	353,655	84,312	4.19	43.44	182.20
2010	2,248	416,898	98,399	4.24	43.77	185.45
2011	2,441	461,974	109,954	4.20	45.04	189.26
2012	2,487	485,500	117,185	4.14	47.12	195.22
2013	2,319	460,402	114,715	4.01	49.47	198.53
2014	2,384	465,963	115,588	4.03	48.48	195.45
2015	2,765	509,008	127,597	3.99	46.15	184.09
2016	2,969	537,046	133,928	4.01	45.11	180.88
2017	4,182	692,180	168,415	4.11	40.27	165.51
			Average:	4.15	41.62	172.46

■ For an emission factor, use the sum of the log debarking factor at FIRE 6.2 for SCC code 30700801 and 10% of the log sawing factor from the same source at code 30700802. The log sawing factor was reduced because the sawing operations are conducted inside buildings which serve to minimize any release to the ambient air. The sum of these factors is 0.055 lb of PM per ton of logs processed. The sum of the PM-10 factors is 0.031 lb of PM-10 per ton of log processed.

Calculation of Actual Emissions For Reporting Year:

		_	-	-	
u	N/I	-m	NIC	C1/	ns:
г	IVI		IJЭ	ЭIV	nio.

Average hourly rate =	165.51	tons/hr x	0.055	lb PM/ton =	9.10	lbs PM/hr
Actual annual rate =	9.10	lbs PM/hr x	4,182	hours =	19.03	tons/year

PM-10 Emissions:

Average hourly rate =	165.51	tons/hr x	0.031	lb PM/ton =	5.13	lbs PM/hr
Actual annual rate =	5.13	lbs PM/hr x	4,182	hours =	10.73	tons/year

Hood Industries, Inc. Waynesboro, Mississippi Emissions from Insignificant Activities and Fugitives

								Calend	lar Year:	2017
							HAP	HAP		1
Insignificant Activities Listed in the	Amount				VOC,	VOC,	(VOC),	(VOC),	PM,	PM,
Title V Permit Application	Used	Units	Turnovers	Emissions Estimating Methods	pounds	tons	pounds	tons	pounds	tons
2000 gal Gasoline tank	2,403	gals	1.202	Use TANKS	614.6	0.31	23.14	0.01		
10000 gal Diesel fuel tank	133,375	gals	13.338	Use TANKS	9.28	0.00	0	0.00		
1000 gal Hydraulic Oil tank 4	3,000	gals	3.000	Use TANKS	0.62	0.00	0	0.00		
2000 gal Hyd Oil tank 2	12,500	gals	3.125	Use TANKS; (as diesel fuel)	1.39	0.00	0	0.00		
2000 gal Lube Oil tank 3	12,500	gals	3.125	Use TANKS; (as diesel fuel)	1.39	0.00	0	0.00		
4500 gal Used Oil tank 5	8,000	gals	0.889	Use TANKS; (as diesel fuel)	2.96	0.00	0	0.00		
Maintenance Room Vent Cyclone	4,190	hours	NA	Use default value of 1 lb/hr (PM)					4190	2.10
	•	<u> </u>	•	Totals:	630.24	0.3151	23.14	0.0116	4190	2.095

H. M. Rollins Co., Inc. Gulfport, Mississippi

Hood Industries, Inc. Waynesboro, Mississippi Emissions from Insignificant Activities and Fugitives

						Da	ita for caler	ndar year:	2017
					HAP VOCs				
Insignificant Activities Listed in the Title V Permit Application	Hexane Emissions, pounds	Benzene Emissions, pounds	IsoOctane Emissions, pounds	Toluene Emissions, pounds	Ethyl benzene Emissions, pounds	Xylene Emissions, pounds	Cyclo- Hexane Emissions, pounds		
2000 gal Gasoline tank	4.28	4.82	5.83	5.56	0.38	1.61	0.66		
10000 gal Diesel fuel tank									
1000 gal Hydraulic Oil tank 4									
2000 gal Hyd Oil tank 2									
2000 gal Lube Oil tank 3									
4500 gal Used Oil tank 5									
Maintenance Room Vent Cyclone									
Total Emissions, lbs:	4.28	4.82	5.83	5.56	0.38	1.61	0.66	0	0
Total Emissions, tons:	0.0021	0.0024	0.0029	0.0028	0.0002	0.0008	0.0003	0.0000	0.0000

Hood Industries, Inc. Waynesboro, Mississippi Calculation of Emissions from RICE Engines

Calendar Year: 2017

Emergency Generator

Rated Horsepower = 135 Hours of Operation = 6.2

Emission Factors for Uncontrolled Gasoline and Diesel Industrial Engines (English Units), AP-42, 5th Edition, Table 3.3-1.

	Diesel Fuel	Rated	Emissions			
Pollutant	Factors (lbs/hp-hr)	Power (hp)	Maximum (lbs/hr)	Annual (tons/yr)		
Particulates	0.0022	135	0.30	0.001		
SO2	0.0021	135	0.28	0.001		
NOx	0.0310	135	4.19	0.013		
CO	0.0067	135	0.90	0.003		
VOC	0.0025	135	0.33	0.001		

	Diesel Fuel	Fuel	Emissions			
HAP	Factors (lbs/MMBtu)	Feed MMBtu/hr	Maximum (lbs/hr)	Annual (tons/yr)		
Acetaldehyde	7.67E-04	0.945	0.0007	0.0000		
Acrolein	9.25E-05	0.945	0.0001	0.0000		
Benzene	9.33E-04	0.945	0.0009	0.0000		
Formaldehyde	1.18E-03	0.945	0.0011	0.0000		
Toluene	4.09E-04	0.945	0.0004	0.0000		
Xylene	2.85E-04	0.945	0.0003	0.0000		

Hood Industries Waynesboro, Mississippi Calculation of Emissions of Greenhouse Gases (GHGs)

Emission Factors and Global Warming Potentials (GWP) from 40 CFR 98 (Tables A-1, C-1 and C-2)

		Emission	Factors,	Emission	Factors,
		kg/M	MBtu	lb/MI	MBtu
		Wood		Wood	
		Residual	Diesel	Residual	Diesel
Pollutant	GWP	Fuels	Fuel	Fuels	Fuel
CO2	1	93.8	73.96	206.8290	163.082
CH4	25	0.032	0.003	0.0706	0.007
N2O	298	0.0042	0.0006	0.0093	0.001

Emissions from Wood-Fired Boiler and Direct-Fired Kiln

Boiler 1 CY Heat Input:		_		_	337,624	MMBtu/yr
Kiln 4 CY Heat Input:	35.0	MMBtu/hr x	6,546.0	hrs =	229,110	MMBtu/yr
Kiln 5 CY Heat Input:	40.0	MMBtu/hr x	6,294.0	hrs =	251,760	MMBtu/yr

	Emissions by Pollutant			Total CO2e Emissions			
	Boiler 1	Kiln 4	Kiln 5	Boiler 1	Kiln 4	Kiln 5	
Pollutant	tons	tons	tons	tons	tons	tons	
CO2	34,915	23,693	26,036	34,915	23,693	26,036	
CH4	11.911	8.083	8.882	298	202	222	
N2O	1.563	1.061	1.166	466	316	347	
				35,679	24,212	26,605	

Emissions from Internal Combustion Engines

		Fuel Feed,	
	Horsepower	MMBtu/hr	Hours/Year
Emergency Generator	135	0.945	6.2

	Eme	Emergency Generator							
	Annual	CO2e	Total						
	Emissions,	EF,	CO2e						
Pollutant	tons	lb/MMBtu	tons						
CO2	0.4754	163.082	0.4754						
CH4	0.0000	0.165	0.0005						
N2O	0.0000	0.394	0.0011						
		163.6414	0.4771						

Total Greenhouse Gas Emissions from the Facility

		Boiler	/Kilns	Other (nor	n-biomass)		
Pollutant	GWP	Total tons	Total CO2e tons	Total tons	Total CO2e tons	Total tons	Total CO2e tons
CO2	1	84,644	84,644	0	0	84,645	84,645
CH4	25	28.876	722	0.00	0.00	28.9	722
N2O	298	3.790	1,129	0.00	0.00	3.8	1,129
•			86,495		0	84,677	86,496

Hood Industries, Inc. Waynesboro, Mississippi

Annual Air Emissions Estimate

CY2018

June 26, 2019

Hood Industries, Inc. Waynesboro, Mississippi Summary of Annual Air Emissions

										Calen	dar Year:	2018
	_	AA-007	AA-008	AA-009	AA-011		_		AA-016			
	AA-001	Planer	Hog	Solid	Steam	AA-013	AA-014	AA-015	CDF		IA-000	T-4-1
	100 MMBtuH	Mill with	Trimmer with	Fuel Silo	Heat Lumber	BDF Lumber	CDF Lumber	CDF Silo	Surge Bin	Fugitive	Insign- ificant	Total Emissions
Criteria Air Pollutant	Boiler	Cyclone	Cyclone	Cyclone	Kiln #2	Kiln	Kiln	Cyclone	Cyclone	Emissions	Activities	Tons/year
ALL PM (AERR)	62.22	4.29	4.29	4.25	5.82	16.57	4.09	2.68	3.07	18.48	2.14	127.90
PM	59.33	4.29	4.29	4.25	1.92	8.22	2.03	2.68	3.07	18.48	2.14	110.70
PM10	53.40	1.72	1.72	1.70	1.73	7.40	1.02	1.07	1.23	10.42	2.14	83.55
PM2.5	32.04	0.86	0.86	0.85	1.62	6.92	0.89	0.54	0.61	5.36	0.62	51.17
PM-Condensable	2.89				3.90	8.35	2.06					17.20
SO2	4.25										0.00	4.25
NOX	37.40					2.24	3.05				0.01	42.70
CO	162.53					10.76	14.68				0.00	187.97
VOC	17.68	No Data			125.15	94.23	112.42	0.00	0.00	0.00	0.32	349.80
		AA-007	AA-008	AA-009	AA-011				AA-016			
Hazardous	AA-001 100	Planer Mill	Hog Trimmer	Solid Fuel	Steam Heat	AA-013 BDF	AA-014 CDF	AA-015 CDF	CDF Surge		IA-000 Insign-	Total
Air	MMBtuH	with	with	Silo	Lumber	Lumber	Lumber	Silo	Bin	Fugitive	ificant	Emissions
Pollutant	Boiler	Cyclone	Cyclone	Cyclone	Kiln #2	Kiln	Kiln	Cyclone	Cyclone	Emissions	Activities	Tons/year
2-Butanone (MEK)	0.0009											0.0009
Acenaphthylene	0.0002											0.0002
Acenaphthene	0.0009											0.0009
Acetaldehyde	0.1411										0.0000	0.1411
Acrolein	0.6800										0.0000	0.6800
Anthracene	0.0005											0.0005
Benzene	0.7140										0.0024	0.7164
Benzo(a)pyrene	0.0004											0.0004
Carbazole	0.0003											0.0003
Carbon tetrachloride	0.0077											0.0077
Chlorobenzene	0.0056											0.0056
Chloroform	0.0048											0.0048
Cyclohexane	0.0000										0.0003	0.0003
Ethyl benzene	0.0053										0.0002	0.0055
Fluoranthene	0.0003											0.0003
Fluorene	0.0006				0.4057	0.0570	4.4050				0.0000	0.0006
Formaldehyde	0.7480				0.4657	2.2570	1.1959				0.0000	4.6666
Hexane	0.0000										0.0021	0.0021 0.0029
Isooctane m,p-Xylene	0.0000										0.0029	0.0029
Methanol	0.0000				6.1118	3.5060	4.7837				0.0006	14.4015
Naphthalene	0.0000				0.1110	3.3000	4.7037					0.0165
o-Xylene	0.0043											0.0043
Phenanthrene	0.0043											0.0012
Phenol	0.0087											0.0087
Propionaldehyde	0.0104											0.0104
Styrene	0.3230											0.3230
Toluene	0.1564										0.0028	0.1592
Trichloroethene	0.0051											0.0051
Vinyl Chloride	0.0031											0.0031
Chlorine	0.1343											0.1343
Hydrogen Chloride	0.0488											0.0488
Antimony	0.0013											0.0013
Arsenic	0.0037											0.0037
Beryllium	0.0002											0.0002
Cadmium	0.0007											0.0007
Chromium	0.0036											0.0036
Cobalt	0.0011											0.0011
Lead	0.0082											0.0082
Manganese	0.2720											0.2720
Mercury	0.0001	ļ	ļ									0.0001
Nickel	0.0056	ļ	ļ									0.0056
Phosphorus	0.0046											0.0046
Selenium Total VOC HARa	0.0005	0.0000	0.0000	0.0000	6 5775	E 7000	E 0700	0.0000	0.0000	0.0000	0.0445	0.0005
Total VOC HAPs	2.8393	0.0000	0.0000	0.0000	6.5775	5.7630	5.9796	0.0000	0.0000	0.0000	0.0115	21.1709
Total Non-VOC HAPs TOTAL HAPs	0.4847	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.4847
TOTAL HAPS	3.3240	0.0000	0.0000	0.0000	6.5775	5.7630	5.9796	0.0000	0.0000	0.0000	0.0115	21.6556

Hood Industries, Inc. Waynesboro, Mississippi PM-2.5 Emission Factor Determinations

Where actual data or other emission factors for PM-2.5 do not exist, the following factors are used. These factors were developed from PM-2.5 emissions data provided to two wood products facilities by the Mississippi Department of Environmental Quality as a result of CY2002 PM and PM10 emissions reporting. MDEQ used EPA's PM Calculator to estimate the PM-2.5 emissions for the facilities. The reported emissions were used to create factors which represent PM-2.5 emission rates as a percentage of PM emission rates.

	Emissions	, tons/year	
			PM-2.5
			as
Emissions Unit	PM	PM-2.5	%PM
Wood-fired Boiler	66.4	50.47	76%
Veneer Dryer	14	4.11	29%
Plywood Sander/Cyclone	0.7	0.1	14%
Dry Veneer Cyclone	4.9	0.93	19%
Log Yard Fines Cyclone	4.6	0.87	19%
Log Yard Chip Discharge	2.9	0.55	19%
Layup/Pressing	12.3	10.2	83%
Fugitive Dust	5.6	1.83	33%
Planer Mill Shavings Cyclone	3.4	0.68	20%
Hog Trimmer Cyclone	3.4	0.68	20%
Steam Heated Lumber Kiln	2.3	2.15	93%
Other Fugitives	5.1	1.5	29%

PM-Condensables

This facility has no site-specific data on PM Condensables. For sources that have PM emissions that are expected to be condensable in nature, all estimated PM-2.5 emissions are considered to be PM-Condensable.

Hood Industries, Inc. Waynesboro, Mississippi Lumber Kiln Emission Factors

The US EPA *Compilation of Air Pollutant Emission Factors, AP-42*, Fifth Edition, Volume 1 contains no emission factors for air pollutant emissions from lumber kilns. The emissions from lumber kilns are reported to be VOCs (primarily alpha and beta pinenes), some hazardous air pollutants (methanol and formaldehyde), and some quantity of filterable particulate matter.

Emission Factors

Steam-Heated FPM: 0.067 lb/MBF1 FPM-10: 0.0603 lb/MBF1 FPM-2.5: 0.056 lb/MBF1 CPM: 0.134 lb/MBF2 CO: 0 lb/MBF1 NOx: 0 lb/MBF1 SO2: 0 lb/MBF			Direct-Fire	d Batch Ki	<u>l</u> n	Direct-Fire <u>d Continuo</u> us Kiln			
FPM:	0.067	lb/MBF ¹	FPM:	0.375	lb/MBF ³	FPM:	0.068	lb/MBF ⁵	
FPM-10:	0.0603	lb/MBF ¹	FPM-10:	0.3375	lb/MBF ³	FPM-10:	0.034	lb/MBF ⁶	
FPM-2.5:	0.056	lb/MBF ¹	FPM-2.5:	0.316	lb/MBF ³	FPM-2.5:	0.030	lb/MBF ⁷	
CPM:	0.134	lb/MBF ²	CPM:	0.381	1.016 times FPM ⁸	СРМ:	0.069	lb/MBF ⁸	
CO:	0	lb/MBF ¹	CO:	0.491	lb/MBF ³	CO:	0.73	lb/MBF ⁹	
NOx:	0	lb/MBF ¹	NOx:	0.102	lb/MBF ³	NOx:	0.28	lb/MBF ⁹	
SO2:	0	lb/MBF	SO2:	0.025	lb/MBF ⁴	SO2:	0.025	lb/MBF ⁴	
VOC as VOC:	4.3	lb/MBF ¹¹	VOC as VOC:	4.3	lb/MBF ¹¹	VOC as VOC:	3.76	lb/MBF ⁹	
Methanol:	0.21	lb/MBF ¹⁰	Methanol:	0.16	lb/MBF ¹⁰	Methanol:	0.16	lb/MBF ⁹	
Formaldehyde:	0.016	lb/MBF ¹⁰	Formaldehyde:	0.103	lb/MBF ¹⁰	Formaldehyde:	0.04	lb/MBF ⁹	

¹ Emission factor from Test #5, Weyerhaeuser Corp., Mountain Pine, AR. PM10 = 90% of PM; PM2.5 = 93.5% of PM10.

² Emission factor from March 18, 1994 NCASI Letter to EPA Re: Lumber Kiln Test Reports

³ Emission test conducted by GP at Cross City, FL. PM10 = 90% of PM; PM2.5 = 93.5% of PM10.

⁴ US EPA AP-42, Section 1.6

⁵ Based on Preliminary Determination by GEPD for Simpson Lumber Company, LLC, Meldrum, GA, based on emissions tests conducted at Bibler Brothers Lumber Company, Russelville, AR. Filterable PM factor = 0.068 lb/MBF.

⁶ GEPD Permit No. 2421-107-0011-V-02-3 issued to Rayonier Wood Products LLC - Swainsboro Sawmill: PM10 = 50% of PM.

⁷ Based on relationship of PM10 to PM2.5 in US EPA AP-42 Section 1.6: PM2.5 = 87% of PM10.

⁸ Condensable PM emission factor based on unpublished NCASI data referenced in West Fraser, Opelika, AL Permit Application, which recommends 1.016 ratio of PM-CON to FPM.

⁹ Based on unpublished and published NCASI test results as published in the NCDAQ Air Permit Review/Preliminary Determination for the Weyerhauser, Plymouth, NC, application.

¹⁰ *Technical Bulletin No. 845*, May 2002, by the National Council for Air and Stream Improvement (NCASI) developed emission rates from lumber kilns for the following pollutants:

¹¹ MDEQ-Supplied Emission Factor, assumed to be NCASI EF of 3.5 lb/MBF VOC as C times 1.22 to get to VOC as VOC

Hood Industries, Inc. Waynesboro, Mississippi Data Sheet and Summary of Actual Emissions for Title V Fee Purposes

Calendar Year: INPUT DATA AND TEST RESULTS: 2018 MMBtu/hr 100 4,286 Boiler Rated Capacity Operating Hours, Planer Cyclone Hours/yr **Boiler Operating Hours** 7,732 Operating Hours, Hog/Trimmer 4,286 Hours/yr Hours/yr Annual Steam Produced 221,010 kLbs Operating Hours, BDK Silo Cyclone 4,249 Hours/yr Logs Used 672,140 Operating Hours, CDK Silo Cyclone 2,680 Tons/yr Hours/yr Operating Hours, Sawmill Operating Hours, CDK Surge Bin Cyclone Hours/yr 4,305 Hours/yr 3,073 Operating Hours, Emergency Generator 6.5 Hours/yr Lumber Dried, Total 161,829 **MBF** DF Kiln EFs **Boiler Test Data** 58,207 Steam Kiln #2 **MBF** 0.375 PM0.349 lb/MMBtu (test average) MBF SO₂ 43,826 NA Batch Direct-Fired Kiln 59,796 Continuous Direct-Fired Kiln NO_x **MBF** 0.102 VOC 0.104 0.104 lb/MMBtu (2001 test) CO Gasoline used, gallons: 2,107 lb/MMBtu (test average) 0.491 0.956 Diesel used, gallons: 126,219 0 SpWt, lb/gal: 6.6 VOC emissions, tpy 0.0 Air line anti-freeze used, gallons:

Air line anti-freeze is Methanol, a HAP and a VOC.

Calculation of Emissions from Wood/Bark Fired Industrial Boilers

Company: Hood Industries, Inc Waynesboro, MS									
Boiler identification: Boiler #1 (Gaskell Wood-Fired)									
Maximum firing rate, MMBtu/hr	100	Calendar Year:	2018						
Allowable operating hours	8760	Average firing rate, MMBtu/hr	43.98						
Assumed thermal efficiency, %	65	Actual operating hours	7,732						

Emission Factors, pounds per MM Btu of heat input

Criteria Pollutants		Emission Factor Source
Particulate Matter (PM) (filterable)	0.349	Test Data (last 3 years)
Particulate Matter <10 microns (PM-10) (filterable)	0.3141	90% of PM
Particulate Matter <2.5 microns (PM-2.5) (filterable)	0.18846	54% of PM
Particulate Matter - Condensable	0.017	AP-42 S 1.6, 9/03
Sulfur Dioxide (SO2)	0.025	AP-42 S 1.6 9/03
Nitrogen Oxides (NOx)	0.22	AP-42 S 1.6 9/03
Carbon Monoxide (CO)	0.956	Test Data
Volatile Organic Cmpds (VOC) (as C by Method 25)	0.104	Test Data

Hazardous Air Pollutants (HAPs)

2-Butanone (MEK)	5.40E
Acenaphthylene	9.10E
Acenapthene	5.00E
Acetaldehyde	8.30E
Acrolein	4.00E
Anthracene	3.00E
Benzene	4.20E
Benzo(a)pyrene	2.60E
Carbazole	1.80E
Carbon tetrachloride	4.50E
Chlorobenzene	3.30E
Chloroform	2.80E
Ethylbenzene	3.10E
Fluoranthene	1.60E
Fluorene	3.40E
Formaldehyde	4.40E
Naphthalene	9.70E
o-Xylene	2.50E
Phenanthrene	7.00E
Phenol	5.10E
Propionaldehyde	6.10E
Styrene	1.90E
Toluene	9.20E
Trichloroethene	3.00E
Vinyl Chloride	1.80E
Chlorine	7.90E
Hydrogen Chloride	2.87E
Antimony	7.90E
Arsenic	2.20E
Beryllium	1.10E
Cadmium	4.10E
Chromium, total	2.10E
Cobalt	6.50E
Lead (Pb)	4.80E
Manganese	1.60E
Mercury	6.87E

0.104	Test Data		4.5734114	17.68
5.40E-06	AP-42 S 1.6, 9/03	(VOC)	2.37E-04	0.0009
	AP-42 S 1.6, 9/03	(VOC)	4.00E-05	0.0002
	AP-42 S 1.6, 9/03	(VOC)	2.20E-04	0.0009
8.30E-04	AP-42 S 1.6, 9/03	(VOC)	3.65E-02	0.1411
4.00E-03	AP-42 S 1.6, 9/03	(VOC)	1.76E-01	0.6800
3.00E-06	AP-42 S 1.6, 9/03	(VOC)	1.32E-04	0.0005
4.20E-03	AP-42 S 1.6, 9/03	(VOC)	1.85E-01	0.7140
2.60E-06	AP-42 S 1.6, 9/03	(VOC)	1.14E-04	0.0004
1.80E-06	AP-42 S 1.6, 9/03	(VOC)	7.92E-05	0.0003
4.50E-05	AP-42 S 1.6, 9/03	(VOC)	1.98E-03	0.0077
3.30E-05	AP-42 S 1.6, 9/03	(VOC)	1.45E-03	0.0056
	AP-42 S 1.6, 9/03	(VOC)	1.23E-03	0.0048
	AP-42 S 1.6, 9/03	(VOC)	1.36E-03	0.0053
1.60E-06	AP-42 S 1.6, 9/03	(VOC)	7.04E-05	0.0003
3.40E-06	AP-42 S 1.6, 9/03	(VOC)	1.50E-04	0.0006
	AP-42 S 1.6, 9/03	(VOC)	1.93E-01	0.7480
	AP-42 S 1.6, 9/03	(VOC)	4.27E-03	0.0165
	AP-42 S 1.6, 9/03	(VOC)	1.10E-03	0.0043
	AP-42 S 1.6, 9/03	(VOC)	3.08E-04	0.0012
	AP-42 S 1.6, 9/03	(VOC)	2.24E-03	0.0087
	AP-42 S 1.6, 9/03	(VOC)	2.68E-03	0.0104
	AP-42 S 1.6, 9/03	(VOC)	8.36E-02	0.3230
	AP-42 S 1.6, 9/03	(VOC)	4.05E-02	0.1564
	AP-42 S 1.6, 9/03	(VOC)	1.32E-03	0.0051
	AP-42 S 1.6, 9/03	(VOC)	7.92E-04	0.0031
	AP-42 S 1.6, 9/03		3.47E-02	0.1343
	Test Data		1.26E-02	0.0488
	AP-42 S 1.6, 9/03		3.47E-04	0.0013
	AP-42 S 1.6, 9/03		9.67E-04	0.0037
	AP-42 S 1.6, 9/03		4.84E-05	0.0002
	AP-42 S 1.6, 9/03		1.80E-04	0.0007
	AP-42 S 1.6, 9/03		9.23E-04	0.0036
	AP-42 S 1.6, 9/03		2.86E-04	0.0011
	AP-42 S 1.6, 9/03		0.0021108	0.0082
	AP-42 S 1.6, 9/03		7.04E-02	0.2720
	Test Data		3.02E-05	0.0001
	AP-42 S 1.6, 9/03		1.45E-03	0.0056
	AP-42 S 1.6, 9/03		1.19E-03	0.0046
2.80E-06	AP-42 S 1.6, 9/03		1.23E-04	0.0005
		Tot	al VOC HAP	2.8395

^{1.} HAPs shown are those with potential annual emission rates of greater than 0.0001 tons/year.

Nickel Phosphorous Selenium Notes:

0.4847

Total Non-VOC HAP

Calculated Emissions

Actual annual emission rate,

per year

tons p

59.33 53.40

32.04 2.89

4.25

37.40

162.53

pounds per hour

15.35

13.81 8.29

0.75 1.0993778

9.6745242

42.040205

Average hourly emission rates,

^{2.} PM-10 and PM-2.5 emission rates estimated based on relationship of factors from AP-42, Section 1.6, Table 1.6-1, for boilers with mechanical collectors burning bark and wet wood.

Hood Industries, Waynesboro Historic Boiler Test Data

Test Date	Rated Capacity, MMBtu/hr	Firing Rate, MMBtu/hr	% of capac.	Steam rate M lb/hr	Efficiency @ 1000 Btu/lb	Stack temp. °F	Flow rate, ACFM	Moisture Content, Bws, dimensionless	02, %	Excess air, %	Flow rate, Qstd	PM grain/scf	PM lb/hr	Calculated Test Result PM lb/MMBtu	CO, lb/MMBtu	HCL, lb/MMBtu	HG, lb/MMBtu
12/8/1997	130	103.84	0.80		ND	446	62,795				31,347		43.69	0.421			
11/16/1998	130	87.44	0.67		ND	438	61,603				30,051	0.272	80.69	0.923			
12/21/1999	100	96.12	0.96		ND	437	65,797	0.137	11.6	121.6	33,486	0.226	64.93	0.676			
10/24/2000	100	83.44	0.83	64.3	77.1	450	62,462	0.125	12.5	147.9	32,146	0.264	72.9	0.874			
9/24/2001	100	98.75	0.99		ND	450	61,406	0.146	10.4	98.3	30,521	0.197	51.82	0.525			
10/15/2002	100	117.33	1.17	56.0	47.7	451	64,211	0.216	7.8	59.9	28,951	0.300	75.82	0.646			
10/14/2003	100	108.87	1.09	55.6	51.1	438	61,283	0.166	9.1	77.3	29,832	0.237	60.6	0.557			
10/5/2004	100	87.72	0.88	58	66.1	493	63,497	0.175	11.1	116.2	28,837	0.288	71.47	0.815			
10/4/2005	100	109.25	1.09	53	48.5	460	69,579	0.162	10.2	95.4	33,494	0.211	60.83	0.557			
6/16/2006	100	97.19	0.97	50	51.4	448	67,890	0.133	11.6	125.2	34,391	0.195	57.95	0.596			
8/28/2007	100	92.57	0.93	50	54.0	451	66,442	0.154	11.5	123.1	32,636	0.190	53.19	0.575			
9/11/2008	100	94.99	0.95	50	52.6	460	70,216	0.146	11.9	132.0	34,731	0.210	62.7	0.660			
8/28/2009	100	96.38	0.96	49.7	51.6	471	65,029	0.169	10.5	99.2	30,283	0.184	47.82	0.496			
8/26/2010	100	97.23	0.97	49.2	50.6	485	70,085	0.149	11.4	120.0	33,446	0.092	26.48	0.272			
8/23/2011	100	93.42	0.93	46.4	49.7	496	65,542	0.168	10.8	107.1	30,413	0.122	31.84	0.341			
10/8/2012	100	93.31	0.93	46.9	50.2	492	64,132	0.180	10.4	100.8	29,175	0.140	35.07	0.376			
9/27/2013	100	98.85	0.99	45.3	45.9	503	69,450	0.159	10.8	105.0	31,949	0.137	37.651	0.381			
9/18/2014	100	88.87	0.89	44.7	50.3	516	67,722	0.144	11.7	124.9	31,529	0.157	42.592	0.479			
8/25/2015	100	84.35	0.84	49.9	59.1	535	52,178	0.166	8.9	74.0	23,073	0.124	24.955	0.296	1.255	5.12E-04	7.79E-07
8/12/2016	100	89.65	0.9	46.7	52.1	528	50,651	0.187	7.7	57.7	21,949	0.129	24.37	0.272	0.657	6.23E-05	5.95E-07
					53.6							A	verages:	0.537	0.956	2.87E-04	6.87E-07

Last 3 Year Averages: 0.349 0.956 2.87E-04 6.87E-07

Hood Industries, Inc. Waynesboro, Mississippi Calculation of VOC and HAP-VOC Emissions

Volatile Organic Compound	d Emissio	าร				Cale	endar Year:	2018
Emission Point Description and	Operating Levels	Operating Level Units	Conversion Factor	Conversion Factor Units	Emission Factor	Emission Factor Units	Emissions, tons/yr	
Wood-fired Steam Boiler	AA-001		See the b	oiler emissio	n spreadsheet	attached		17.68
Planer Cyclone	AA-007	4,286	hr/yr	None	NA	No Data	lb/hr	No Data
Hog/Trimmer Cyclone	AA-008	4,286	hr/yr	None	NA	No Data	lb/hr	No Data
Solid Fuel Silo Cyclone	AA-009	4,249	hr/yr	None	NA	No Data	lb/hr	No Data
Steam Dry Kiln #2	AA-011	58,207	MBF	None	NA	4.3	lb/MBF	125.15
Batch DF Lumber Kiln	AA-013	43,826	MBF	None	NA	4.3	lb/MBF	94.23
Continuous DF Kiln	AA-014	59,796	MBF	None	NA	3.76	lb/MBF	112.42
CDF Silo Cyclone	AA-015	2,680	hr/yr	None	NA	No Data	lb/hr	No Data
CDF Surge Bin Cyclone	AA-016	3,073	hr/yr	None	NA	No Data	lb/hr	No Data
Air-line anti-freeze			See the "Summary" spreadsheet attached					
Insignificant Activities	IA-000		See the	"Insignificant"	spreadsheet	attached		0.32
То	tal Calcula	ted VOC E	missions	as C as m	easured by	RM 25A,	tons/year:	349.78

The emissions from the boiler are taken from the boiler emission spreadsheet attached, and are based on data from the most recent compliance test. The emissions from the lumber dry kilns are calculated using the actual annual production taken from corporate production records and the emission factors presented in the Title V permit application, as shown herein.

Hazardous Air Pollutant (HAP) Emissions which are also VOC emissions

	· /		
Wood-fired Steam Boiler	AA-001	See the "Boiler" spreadsheet attached	2.84
Planer Cyclone	AA-007	No Data	No Data
Hog/Trimmer Cyclone	AA-008	No Data	No Data
Solid Fuel Silo Cyclone	AA-009	No Data	No Data
Steam Dry Kiln #2	AA-011	See the table below	6.58
Batch DF Lumber Kiln	AA-013	See the table below	5.76
Continuous DF Kiln	AA-014	See the table below	5.98
CDF Silo Cyclone	AA-015	No Data	No Data
CDF Surge Bin Cyclone	AA-016	No Data	No Data
Air-line anti-freeze		See the "Summary" spreadsheet attached	0.00
Insignificant Activities	IA-000	See the "Insignificant" spreadsheet attached	0.01
		Total of the HAP-VOC emissions, tons/year:	21.17

Steam-Heated Lumber Kilns

Pollutant		Emission Factor, lb/MBF	Kiln 2 HAPs, lbs/yr	Kiln 2 HAPs, tons/yr
Formaldehyde		0.016	931	0.5
Methanol		0.210	12,224	6.1
	Sum	0.226		

Direct-Fired Lumber Kiln

Pollutant	Emission Factor, lb/MBF	BDK HAPs, lbs/yr	BDK HAPs, tons/yr	Emission Factor, lb/MBF	CDK HAPs, lbs/yr	CDK HAPs, tons/yr
Formaldehyde	0.103	4,514	2.3	0.040	2,392	1.2
Methanol	0.160	7,012	3.5	0.160	9,567	4.8
Sum	0.263			0.200		

Total HAPs, tons/yr 3.9 14.4

Sum of the HAP VOC emissions from the kilns, tons 18.3201

Hood Industries, Inc. Waynesboro, Mississippi Calculation of Actual PM Emissions

				Caler	ndar Year:	2018
Emission Point Description and ID	No.	Operating Results	Operating Units	PM Emission Factor	Emission Factor Units	Estimated Particulate Matter Emissions, tpy
Wood-fired Steam Boiler	AA-001	See wood combustion spreadsheets attached.			59.33	
Planer Cyclone	AA-007	4,286.0	hours	2	lb/hr	4.29
Hog/Trimmer Cyclone	AA-008	4,286.0	hours	2	lb/hr	4.29
Solid Fuel Silo Cyclone	AA-009	4,249.0	hours	2	lb/hr	4.25
Steam Dry Kiln #2	AA-011	58,207.2	MBF	0.066	lb/MBF	1.92
Batch DF Lumber Kiln	AA-013	43,825.6	MBF	0.375	lb/MBF	8.22
Continuous DF Kiln	AA-014	59,796.2	MBF	0.068	lb/MBF	2.03
CDF Silo Cyclone	AA-015	2,680.0	hours	2	lb/hr	2.68
CDF Surge Bin Cyclone	AA-016	3,073.0	hours	2	lb/hr	3.07
Insignificant Activities (see sheet)						2.14
Total Calculated PM Emissions, tons/yr:					92.22	

Emission Point Description and ID	No.	Operating Results	Operating Units	PM-CON Emission Factor	Emission Factor Units	Estimated Condensable Particulate Matter Emissions, tpy
Wood-fired Steam Boiler	AA-001	See wood combustion spreadsheets attached.				0.00
Planer Cyclone	AA-007	4,286.0	hours	NA	lb/hr	ND
Hog/Trimmer Cyclone	AA-008	4,286.0	hours	NA	lb/hr	ND
Solid Fuel Silo Cyclone	AA-009	4,249.0	hours	NA	lb/hr	ND
Steam Dry Kiln #2	AA-011	58,207.2	MBF	0.134	lb/MBF	3.90
Batch DF Lumber Kiln	AA-013	43,825.6	MBF	0.381	lb/MBF	8.35
Continuous DF Kiln	AA-014	59,796.2	MBF	0.069	lb/MBF	2.06
CDF Silo Cyclone	AA-015	2,680.0	hours	NA	lb/hr	ND
CDF Surge Bin Cyclone	AA-016	3,073.0	hours	NA	lb/hr	ND
Insignificant Activities (see sheet)						0.00
Total Calculated PM Emissions, tons/yr:					14.31	

These emissions were calculated using emission factors and production and hour data as shown. Emissions from the boiler were calculated on the wood combustion spreadsheets attached.

Filterable PM, PM-10, PM-2.5 and PM-CON emissions from the lumber kilns are estimated using information presented in the Title V Operating Permit application.

Emissions from the wood residue handling system were calculated using the factors shown (FIRE) and the actual hours of operation.

Hood Industries, Inc. Waynesboro, Mississippi Calculation of Fugitive Emissions from the Sawmill Processes

Calendar Year: 2018

The emissions from this source are comprised of fugitive emissions from the following equipment:

Log Saws Boiler Fuel Hog Band mill Planer

Chippers (4) Trim Hog Gang saws(1) Chip screens(3)

Edgers (2) Twin band saws Trimmers (2)

Emission Factor Information:

Year	Sawmill Hours	Logs Used, tons	Lumber, MBF	Tons of logs used per MBF	Lumber Production Rate, MBF/hr	Log Consumption Rate, tons/hr
2000	3,645	628,218	138,528	4.53	38.00	172.35
2001	4,090	545,447	134,966	4.04	33.00	133.36
2002	4,210	584,956	141,047	4.15	33.50	138.94
2003	4,340	638,431	143,214	4.46	33.00	147.10
2004	3,786	658,416	156,024	4.22	41.21	173.91
2005	3,349	604,933	153,575	3.94	45.86	180.63
2006	3,797	669,329	167,116	4.01	44.01	176.28
2007	4,160	602,963	146,321	4.12	35.17	144.94
2008	2,672	427,711	97,427	4.39	36.46	160.07
2009	1,941	353,655	84,312	4.19	43.44	182.20
2010	2,248	416,898	98,399	4.24	43.77	185.45
2011	2,441	461,974	109,954	4.20	45.04	189.26
2012	2,487	485,500	117,185	4.14	47.12	195.22
2013	2,319	460,402	114,715	4.01	49.47	198.53
2014	2,384	465,963	115,588	4.03	48.48	195.45
2015	2,765	509,008	127,597	3.99	46.15	184.09
2016	2,969	537,046	133,928	4.01	45.11	180.88
2017	4,182	692,180	168,415	4.11	40.27	165.51
2018	4,305	672,140	161,829	4.15	37.59	156.13
· —————			Average:	4.15	41.40	171.60

■ For an emission factor, use the sum of the log debarking factor at FIRE 6.2 for SCC code 30700801 and 10% of the log sawing factor from the same source at code 30700802. The log sawing factor was reduced because the sawing operations are conducted inside buildings which serve to minimize any release to the ambient air. The sum of these factors is 0.055 lb of PM per ton of logs processed. The sum of the PM-10 factors is 0.031 lb of PM-10 per ton of log processed.

Calculation of Actual Emissions For Reporting Year:

DM	Emis	·cio	nc:
		งอเบ	. כווי

PM-10 Emissions:

Hood Industries, Inc. Waynesboro, Mississippi Emissions from Insignificant Activities and Fugitives

								Calend	lar Year:	2018
							HAP	HAP		
Insignificant Activities Listed in the	Amount				VOC,	VOC,	(VOC),	(VOC),	PM,	PM,
Title V Permit Application	Used	Units	Turnovers	Emissions Estimating Methods	pounds	tons	pounds	tons	pounds	tons
2000 gal Gasoline tank	2,107	gals	1.054	Use TANKS	614.6	0.31	23.14	0.01		
10000 gal Diesel fuel tank	126,219	gals	12.622	Use TANKS	9.28	0.00	0	0.00		
1000 gal Hydraulic Oil tank 4	3,000	gals	3.000	Use TANKS	0.62	0.00	0	0.00		
2000 gal Hyd Oil tank 2	12,500	gals	3.125	Use TANKS; (as diesel fuel)	1.39	0.00	0	0.00		
2000 gal Lube Oil tank 3	12,500	gals	3.125	Use TANKS; (as diesel fuel)	1.39	0.00	0	0.00		
4500 gal Used Oil tank 5	8,000	gals	0.889	Use TANKS; (as diesel fuel)	2.96	0.00	0	0.00		
Maintenance Room Vent Cyclone	4,286	hours	NA	Use default value of 1 lb/hr (PM)					4286	2.14
			•	Totals:	630.24	0.3151	23.14	0.0116	4286	2.143

H. M. Rollins Co., Inc. Gulfport, Mississippi

Hood Industries, Inc. Waynesboro, Mississippi Emissions from Insignificant Activities and Fugitives

						Da	ita for caler	ndar year:	2018
		HAP VOCs							
Insignificant Activities Listed in the Title V Permit Application	Hexane Emissions, pounds	Benzene Emissions, pounds	IsoOctane Emissions, pounds	Toluene Emissions, pounds	Ethyl benzene Emissions, pounds	Xylene Emissions, pounds	Cyclo- Hexane Emissions, pounds		
2000 gal Gasoline tank	4.28	4.82	5.83	5.56	0.38	1.61	0.66		
10000 gal Diesel fuel tank									
1000 gal Hydraulic Oil tank 4									
2000 gal Hyd Oil tank 2									
2000 gal Lube Oil tank 3									
4500 gal Used Oil tank 5									
Maintenance Room Vent Cyclone									
Total Emissions, lbs:	4.28	4.82	5.83	5.56	0.38	1.61	0.66	0	0
Total Emissions, tons:	0.0021	0.0024	0.0029	0.0028	0.0002	0.0008	0.0003	0.0000	0.0000

Hood Industries, Inc. Waynesboro, Mississippi Calculation of Emissions from RICE Engines

Calendar Year: 2018

Emergency Generator

Rated Horsepower = 135 Hours of Operation = 6.5

Emission Factors for Uncontrolled Gasoline and Diesel Industrial Engines (English Units), AP-42, 5th Edition, Table 3.3-1.

	Diesel Fuel	Rated	Emis	sions
Pollutant	Factors (lbs/hp-hr)	Power (hp)	Maximum (lbs/hr)	Annual (tons/yr)
Particulates	0.0022	135	0.30	0.001
SO2	0.0021	135	0.28	0.001
NOx	0.0310	135	4.19	0.013
CO	0.0067	135	0.90	0.003
VOC	0.0025	135	0.33	0.001

	Diesel Fuel	Fuel	Emis	sions
HAP	Factors	Feed	Maximum	Annual
	(lbs/MMBtu)	MMBtu/hr	(lbs/hr)	(tons/yr)
Acetaldehyde	7.67E-04	0.945	0.0007	0.0000
Acrolein	9.25E-05	0.945	0.0001	0.0000
Benzene	9.33E-04	0.945	0.0009	0.0000
Formaldehyde	1.18E-03	0.945	0.0011	0.0000
Toluene	4.09E-04	0.945	0.0004	0.0000
Xylene	2.85E-04	0.945	0.0003	0.0000

Hood Industries Waynesboro, Mississippi Calculation of Emissions of Greenhouse Gases (GHGs)

Emission Factors and Global Warming Potentials (GWP) from 40 CFR 98 (Tables A-1, C-1 and C-2)

			Factors,	Emission Factors,		
		kg/MMBtu		lb/MMBtu		
		Wood		Wood		
		Residual Diesel		Residual	Diesel	
Pollutant	GWP	Fuels	Fuel	Fuels	Fuel	
CO2	1	93.8	73.96	206.8290	163.082	
CH4	25	0.032	0.003	0.0706	0.007	
N2O	298	0.0042	0.0006	0.0093	0.001	

Emissions from Wood-Fired Boiler and Direct-Fired Kiln

Boiler 1 CY Heat Input:		_		_	340,016	MMBtu/yr
Kiln 4 CY Heat Input:	35.0	MMBtu/hr x	6,249.0	hrs =	218,715	MMBtu/yr
Kiln 5 CY Heat Input:	40.0	MMBtu/hr x	5,982.0	hrs =	239,280	MMBtu/yr

		Emissions by Pollutant			Tota	Total CO2e Emissions			
		Boiler 1	Kiln 4	Kiln 5	Boiler 1	Kiln 4	Kiln 5		
	Pollutant	tons	tons	tons	tons	tons	tons		
	CO2	35,163	22,618	24,745	35,163	22,618	24,745		
	CH4	11.996	7.716	8.442	300	193	211		
	N2O	1.574	1.013	1.108	469	302	330		
•					35,932	23,113	25,286		

Emissions from Internal Combustion Engines

		Fuel Feed,	
	Horsepower	MMBtu/hr	Hours/Year
Emergency Generator	135	0.945	6.5

	Eme	Emergency Generator						
	Annual	CO2e	Total					
	Emissions,	EF,	CO2e					
Pollutant	tons	lb/MMBtu	tons					
CO2	0.4970	163.082	0.4970					
CH4	0.0000	0.165	0.0005					
N2O	0.0000	0.394	0.0012					
		163.6414	0.4987					

Total Greenhouse Gas Emissions from the Facility

		Boiler	r/Kilns	Other (nor	n-biomass)		
		Total	Total CO2e	Total	Total CO2e	Total	Total CO2e
Pollutant	GWP	tons	tons	tons	tons	tons	tons
CO2	1	82,526	82,526	0	0	82,526	82,526
CH4	25	28.154	704	0.00	0.00	28.2	704
N2O	298	3.695	1,101	0.00	0.00	3.7	1,101
			84,331		0	82,558	84,331

Exhibit 4

HOOD INDUSTRIES, INC. WAYNESBORO, MISSISSIPPI

New Source Review

Prepared By: H. M. Rollins Company, Inc. P. O. Box 3471 Gulfport, Mississippi 39505 (228) 832-1738

May 23, 2025

Revised July 22, 2025

TABLE OF CONTENTS

1.0	NEW SOURCE REVIEW						
2.0	BEST	Γ AVAILABLE CONTROL TECHNOLOGY ANALYSIS					
	2.1	Control Device Review for Continuous Lumber Dry Kilns					
		2.1.1 Process Description					
		2.1.2 Emissions from the Dry Kiln					
		2.1.3 <u>Identification of Control Technologies</u>					
		2.1.4 <u>Identification of Technically Infeasible Options</u>					
		2.1.5 <u>Selection of BACT</u>					
3.0	SOU	RCE IMPACT ANALYSIS					
	3.1	Existing Air Quality					
	3.2	Air Quality Monitoring Requirements					
	3.3	Analysis of Additional Impacts					
		3.3.1 <u>Impact of Growth</u>					
		3.3.2 <u>Impact on Soils and Vegetation</u>					
		3.3.3 <u>Impact on Visibility</u>					
		3.3.4 Ozone Ambient Impact Analysis					

LIST OF APPENDICES

APPENDIX A EPA Green Book Nonattainment Area Map

1.0 NEW SOURCE REVIEW

The facility is a major source of PM and VOC located in an area that is not considered Nonattainment, as shown by EPA's map of "Counties Designated "Nonattainment" for Clean Air Act's Ambient Air Quality Standards (NAAQS)" updated as of April 30, 2025 in EPA's Green Book. A copy of this map is included in Appendix C of this application. As a result, the requirements of EPA's Prevention of Significant Deterioration (PSD) regulations apply to this project.

As stated at 40 CFR 52.21(a)(2)(iv)(a), a project is a major modification for an NSR pollutant if it causes two types of emissions increases - a significant emissions increase and a significant net emissions increase. The determination of whether a major modification is triggered by this project is found in Exhibit 3 of the Permit to Construct Application. Step 1 of the PSD Applicability Determination is the determination of whether a Significant Emissions Increase will occur. For this step, one of three tests must be conducted, depending upon the type of units involved in the project, in accordance with $\S 52.21(a)(2)(iv)(c)$ through (f).

For this project, only one existing air emissions unit, continuous dry kiln AA-014, is being retained. MDEQ has indicated that although the heating mechanism is being changed, it may still be considered as an existing unit. However, for ease of analysis, maximum potential emissions will be used for this kiln. All other emissions units will be "new". Therefore, the Actual-to-Potential test is required.

Since all units are being considered to be "new", there are no baseline emissions for existing sources. However, per the EPA Memo "Project Emissions Accounting Under the New Source Review Preconstruction Permitting Program," March 13, 2019, the

baseline actual emissions of any other units associated with the project should be included in the Step 1 determination. The baseline actual emissions from all currently existing units are therefore considered and presented in the Past Actual tables at the top of the PSD Determination worksheet.

The results of the Step 1 determination are shown on page 1 of the PSD Applicability Determination in Exhibit 3. As shown there, a significant emissions increase was determined for VOC. Therefore, a Step 2 determination is required to be conducted to see if a significant net emissions increase will occur as a result of this project.

The Step 2 determination includes emissions increases and/or decreases which have occurred during the contemporaneous period (within 5 years of the project). There have been no cases where this applies. Therefore, the Step 1 analysis remains.

The PSD Applicability Determination in Exhibit 3 shows that both a significant emissions increase and a significant net emissions increase will occur for VOC. As a result, a BACT analysis is required. That analysis is presented in section 2.0 of this document. Additionally, a Source Impact Analysis is required. This analysis is found in section 3.0.

2.0 BEST AVAILABLE CONTROL TECHNOLOGY ANALYSIS

2.1 Control Device Review for Continuous Lumber Dry Kilns

A Top-down BACT analysis was performed for the VOC emissions from the continuous lumber dry kilns.

2.1.1 Process Description

The continuous kilns are steel-frame, insulated, metal clad buildings approximately 220 feet long by 33 feet wide and approximately 22 feet tall. There are two sets of railroad rails that run through each kiln. The kiln is open on each end. Heat for drying is provided by a natural-gas burner. Multiple fans are located inside the kiln, and these fans circulate air within the kiln.

Lumber is stacked in packages and placed on kiln carts. The kiln carts are fed into the kiln and proceed slowly through. Upon exit from the kiln, the packages are unloaded and stored or transported to the Planer Mill.

2.1.2 Emissions from the Dry Kiln

As developed in Exhibit 3, significant net emission increases of volatile organic compounds (VOC) will occur from the lumber kilns. These VOC emissions are believed to be primarily alpha and beta pinenes. There is data which indicates that six hazardous air pollutants may be emitted from the wood, with the majority being methanol and formaldehyde (EPA PCWP MACT guidance document, "Development of a Provisional Emissions Calculation Tool for Inclusion in the Final PCWP ICR," September 22, 2017).

2.1.3 <u>Identification of Control Technologies</u>

Based on general process knowledge, technical literature, equipment vendor information, and the RACT/BACT/LAER Clearinghouse (RBLC) maintained by the U.S. EPA, six control options were identified. These options are:

- Incineration
- Adsorption
- Absorption
- Condensation
- Biological Treatment
- Proper Maintenance and Operation

Each option is discussed below:

• Incineration

This technology may be employed with several different approaches including direct incineration, regenerative thermal oxidation, or catalytic oxidation. These devices use the VOC laden air stream as a fuel source in addition to natural gas. High VOC content streams can see significant destruction efficiencies, as high as 99% depending on the exact characteristics of the incoming air stream and the oxidation technology used.

Adsorption

Adsorption is another technology that could be used for the control of VOC air emissions. In the adsorption process, organics are collected on the surface of a porous solid such as activated carbon or synthetic resins. As a VOC laden air stream passes through the material, it is adsorbed into the activated carbon or synthetic resin. Over time the adsorbents must be replaced or regenerated when they become saturated with VOC. These systems may produce control efficiencies in the 90% range.

Absorption

Absorption can be employed to capture VOC into a liquid substrate, most commonly water. This can be accomplished in what is typically referred to as a wet scrubber, and these devices can typically be found controlling emissions from boiler stacks, usually for PM.

Condensation

Condensation is a simple vapor-liquid equilibrium process whereby the VOC vapors are cooled and converted into a liquid. This technology is difficult to employ on its own and may need a secondary control technology as well.

Biological Treatment

Typically known as biofiltration, this technology uses microorganisms to absorb and breakdown the incoming waste stream. This technology is more common in wastewater treatment.

• Proper Maintenance and Operation

This technology employs best operating practices, proper maintenance, and proper drying techniques based on the type of lumber and wood moisture content to effectively reduce VOC emissions. This method has been demonstrated successfully in many other PSD projects in the U.S. for dry kilns.

2.1.4 <u>Identification of Technically Infeasible Options</u>

Evaluation of the feasibility of the identified technologies narrows the scope of potential BACT applications considerably.

Beyond the technical aspects of the suitability of the different BACT applications, it must first be determined how to capture the fugitive VOC stream such that it may be routed to a control device. Due to the nature of lumber kilns, which are open on both ends, creating only dispersed fugitive emissions, there is no known successful attempt to capture these fugitive releases. Irrespective of this issue, an individual analysis of each technology's suitability is below.

• Incineration

Incineration as a VOC control technology is generally done with a regenerative thermal oxidizer, RTO, or in a regenerative catalytic oxidizer, RCO. To achieve a destruction and removal efficiency of greater than 90% in an RTO, a temperature of approximately 1,500°F with a residence time of at least one second is required. With the kiln exit temperature being only 140°F and containing significant moisture, routing this air to a 1500°F RTO would create significant issues inside the device. Additionally, due to the resinous nature of the VOCs released from lumber drying, it would foul the duct work and media in the device over time. Thus, due to the resinous characteristics, the high moisture content, and very low exit temperature of the kiln exhaust, an RTO is infeasible.

In an RCO, the required temperature is typically reduced to 500°F - 800°F. While an RCO may be more suitable for this application since it operates at a much lower temperature, it is still four times higher than a typical kiln exhaust temperature. As in an RTO, the resinous nature of the VOCs released from lumber drying could foul the duct work and media in the device. The catalysts are very susceptible to fowling due to particulates or other air stream contaminants causing frequent catalyst changeouts or an additional control device upstream of the RCO. Due to the resinous nature of the VOCs, the high moisture content and low exit temperature, an RCO is infeasible.

Adsorption

Using a media such as activated carbon to adsorb the VOC into the activated carbon substrate may be accomplished at a temperature suitable with the kiln exhaust; however, the high moisture content and resinous nature of the VOCs reduces the capacity and efficiency of the carbon causing "blinding" of the carbon and in turn reduced efficiencies and frequent changeouts of the material.

Absorption

Technology such as a wet scrubber is compatible with the kiln exhaust temperature; however, this technology requires an exhaust stream that is soluble in water and the VOC in the kiln exhaust is relatively insoluble in water. A different scrubbing absorbent could be considered, but these are typically classified as VOC which conflicts with the control purpose.

Condensation

This technology can not achieve a typical EPA-required removal efficiency of 90% for pinenes, the dominant VOC in the exhaust stream, using standard condensers. A technical analysis shows that a condensing temperature of -35°F would be required, which makes this control technology infeasible, if not impossible due to the freezing of the water vapor in the system. In addition, the drying of 100 MMBF/yr of lumber removes approximately 68,500 gallons of

water in vapor form from the wood per day per kiln. All of this water would be condensed in any type of condensing control device and would become process wastewater. The sawmill industry is not allowed a discharge of process wastewater into navigable water by the National Pollutant Discharge Elimination System (NPDES) regulations found at 40 CFR Part 429, Subpart K, Sawmills and Planing Mills Subcategory. The Best Available Control Technology Economically Achievable (BACT) and the New Source Performance Standards both read: "There shall be no discharge of process wastewater pollutants into navigable waters." If a discharge was allowed, the cost of the treatment system to treat the 275,000 gallons of wastewater could be equal to or greater than the cost of the kilns themselves. That would make this alternative, if it was regulatorily feasible, economically infeasible. Condensation technology is technically infeasible due to the inability to adequately control the VOC present using this technology, the regulatory prohibition on the direct discharge of process wastewater, and the estimated prohibitive cost in designing and building a water treatment system, and the ongoing extensive monitoring and energy costs of maintaining the system.

Biological Treatment

These systems typically operate at 105°F or less causing incompatibility with the higher temperature VOC stream which would harm the micro-organisms. Additionally, the resinous VOC stream would have a tendency to fowl the biofilter. The cooling of

the VOC stream would also create more process wastewater problems similar to the condensation approach.

Irrespective of the infeasibility of capturing the fugitive emissions or the infeasibility of current technologies, a further analysis of control technologies employed at other sites utilizing dry kilns, was performed using the U.S. EPA's RACT/BACT/LAER Clearinghouse (RBLC), and it yielded no facilities that have employed any form of add-on control device on any form of dry kiln. In these cases, the permittee and permitting authority agreed that no add-on controls were feasible and any technology listed was shown as some form of "proper operation and maintenance" or "best operating practices".

2.1.5 Selection of BACT

Hood has identified six potential control technologies for the control of VOC emissions from lumber kilns. Hood believes that five of those technologies are technically infeasible, and proposes that the remaining technology, "proper operation and maintenance", be utilized as BACT for this project.

Hood will implement this BACT for VOC by developing an operation and maintenance (O&M) plan for the new kilns. The O&M Plan shall address all preventative maintenance, parametric monitoring, work practices, and manufacturer recommendations for the proper operation of the kilns. The plan shall specify the proper operating ranges and conditions, frequency of monitoring, and maintenance schedules.

Additionally, the O&M Plan shall include, but not be limited to, visual inspections, proper wet bulb operation, entrance/exit baffle inspection, greasing of kiln cartwheels and fan shafts, hydraulic oil levels, moisture content equipment calibration, and temperature probe calibration.

Numerically, Hood proposes that BACT for the kilns be set as shown below:

Pollutant	BACT	BACT Emission	Equivalent
	Determination	Limit Per Kiln	Emissions Per Kiln
VOC as WPP1	Proper Kiln Operation and Maintenance Practices	4.43 lb/MBF	221.5 TPY (at max. capacity of 100 MMBF/yr)

Emissions will be quantified using emission factors and kiln production records.

3.0 SOURCE IMPACT ANALYSIS

3.1 Existing Air Quality

The area immediately surrounding the Waynesboro sawmill is industrial in nature, with the outer lying areas being primary rural and in attainment for all regulated pollutants. Being that VOC is the only pollutant which has significant emissions increase, ozone is the pollutant that must be considered.

3.2 **Air Quality Monitoring Requirements**

The ambient air quality analysis must consider or generate air quality monitoring data to determine if emissions of the pollutant will cause or contribute to a violation of a standard. The source may be exempt from preconstruction monitoring requirements if the air quality impacts are less than de minimis monitoring concentrations.

There are no de minimis air quality levels provided for ozone. However, any net emissions increase of VOC or NOx of 100 tons or more require an ambient air impact analysis. The proposed VOC increase of 529.76 tons is greater than 100, therefore this analysis is required.

Hood proposes to use the existing air quality monitors in Meridian, MS, to determine the background air quality. The MDEQ Air Quality Data Summary for 2024 indicates that the design ozone values for monitoring from central to south Mississippi range from 54 to 58 ppb, well below the ozone standard of 70 ppb. Although the area surrounding the Waynesboro sawmill is industrial, it is much less industrialized than the area covered by the Meridian monitor. As a result, the Meridian monitor is a conservative representation of ozone levels in the area of the project.

3.3 Analysis of Additional Impacts

A PSD review must consider the additional impacts of the project on growth, soil and vegetation impacts, and visibility impairment.

3.3.1 Impact of Growth

As this mill modernization project will occur on an existing site, there will be limited to no impact on the residential, commercial, or government infrastructure as a result of this project.

3.3.2 Impact on Soils and Vegetation

The property is located within the Waynesboro Industrial Park. Other areas around the facility include some undeveloped land. Aside from the placement of a new log truck entrance road through the adjacent property purchased by Hood for this project, there is no expected significant impact on soils or vegetation.

3.3.3 Impact on Visibility

There is no Class I area within 100 km of this site. The Breton National Wildlife Refuge is located approximately 204 km from the site. MDEQ has indicated that Federal Land Managers have requested notification for projects within 300 km. However, applying post-project maximum potential emissions from the Criteria Totals tab of the calculations workbook in Exhibit 2 to the Annual Emissions/Distance (Q/D) screening tool found in the Federal Land Managers' Air Quality Related Values Work Group (FLAG) Phase I Report - Revised (2010), yields the following result:

$$Q = 0.46 (SO_2) + 55.31 (NO_X) + 49.19 (PM10) + 0 (H_2SO_4) = 104.96$$

 $Q/D = 104.96/204 = 0.515$

FLAG 2010 indicates that a Q/D value less than or equal to 10 is an indication that a project will have no adverse impact and therefore that no further analysis should be required for either ozone or visibility.

This project should not create significant impacts at off-site locations, to include Class II areas or visibility-sensitive areas/receptors such as airports, state forests and/or parks, scenic vistas, areas of special historic interest, and other sensitive areas.

This project is not expected to adversely affect visibility in the area.

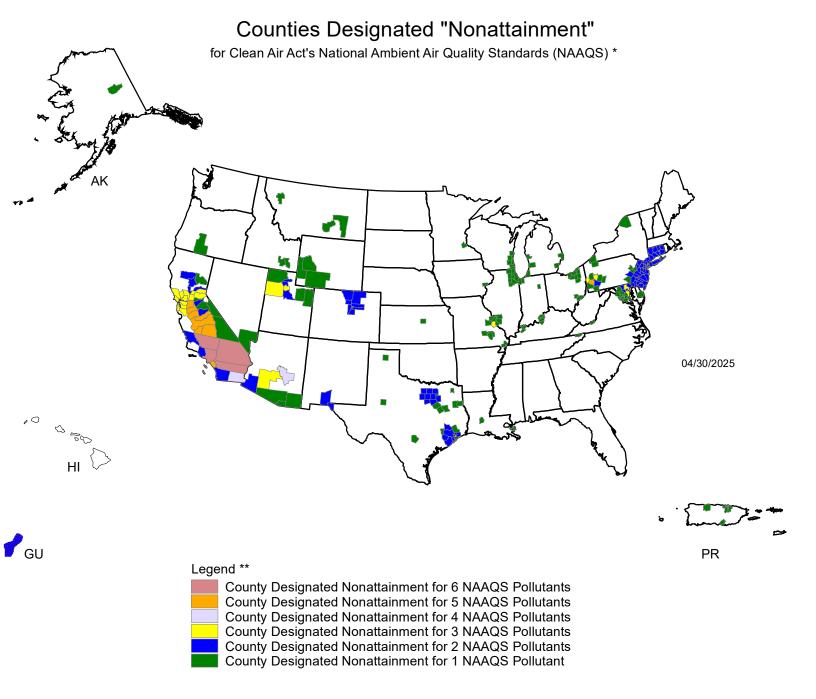
3.3.4 Ozone Ambient Impact Analysis

This project has a significant net emissions increase of VOC of greater than 100 tons. As a result, an ambient air impact analysis for Ozone is required.

Because VOC increases are above 40 tons, the project falls under Case 2 of Table III-1 of the EPA's July 2022 Guidance for Ozone and Fine Particulate Matter Permit Modeling. As such, Hood has conducted a Tier 1 Approach demonstration, following final guidance in EPA's April 2019 Memo "Guidance on the Development of Modeled Emission Rates for Precursors (MERPs) as a Tier 1 Demonstration Tool for Ozone and PM2.5 under the PSD Permitting Program." In that memo, EPA modeled hypothetical sources in various states to determine source level maximum predicted downwind impacts on 8-hr ozone.

The EPA's MERPs View Qlik application available on the EPA SCRAM website was used to derive the most conservative MERP for ozone for comparison in this analysis. Being that the Waynesboro facility is located in the South Climate Zone, all hypothetical source data from that Zone was downloaded and evaluated to select the most conservative MERPs for both VOC and NOx. The lowest values are 2307 and 190, respectively.

Using the lowest MERP identified above, which Hood believes is a worst-case representation of the project's source characteristics and the local chemical and physical environment, a Preliminary Impact Determination was conducted using the following equation:


$$\frac{NO_X Increase (tpy)}{NO_X MERP (tpy)} + \frac{VOC Increase (tpy)}{VOC MERP (tpy)} < 1$$

For this project, the equation calculates as:

$$\frac{12.61}{190} + \frac{529.76}{2307} = 0.30 < 1$$

As a value less than 1 indicates that the SIL for ozone will not be exceeded when considering the combined impacts of the precursors on 8-hour daily maximum ozone, a cumulative analysis is not required, and this project does not result in unacceptable impacts to ozone.

Appendix A

^{*} The National Ambient Air Quality Standards (NAAQS) are health standards for Carbon Monoxide, Lead (1978 and 2008), Nitrogen Dioxide, 8-hour Ozone (2008), Particulate Matter (PM-10 and PM-2.5 (1997, 2006 and 2012), and Sulfur Dioxide.(1971 and 2010)

^{**} Included in the counts are counties designated for NAAQS and revised NAAQS pollutants. Revoked 1-hour (1979) and 8-hour Ozone (1997) are excluded. Partial counties, those with part of the county designated nonattainment and part attainment, are shown as full counties on the map.

Table 4-1. Lowest, median, and highest illustrative MERP values (tons per year) by precursor, pollutant and climate zone.

Note: illustrative MERP values are derived based on EPA modeling and EPA recommended SILs from EPA's final SILs guidance (U.S. Environmental Protection Agency, 2018).

	8-hr O ₃ from NO _X		8-hr O ₃ from VOC			
Climate Zone	Lowest	Median	Highest	Lowest	Median	Highest
Northeast	209	495	5,773	2,068	3,887	15,616
Southeast	170	272	659	1,936	7,896	42,964
Ohio Valley	126	340	1,346	1,159	3,802	13,595
Upper Midwest	125	362	4,775	1,560	2,153	30,857
Rockies/Plains	184	400	3,860	1,067	2,425	12,788
South	190	417	1,075	2,307	4,759	30,381
Southwest	204	422	1,179	1,097	10,030	144,744
West	218	429	936	1,094	1,681	17,086
Northwest	199	373	4,031	1,049	2,399	15,929
	Daily PM2.5 from NO _x		Daily PM2.5 from SO ₂			
Climate Zone	Lowest	Median	Highest	Lowest	Median	Highest
Northeast	2,218	15,080	34,307	623	3,955	8,994
Southeast	1,943	8,233	23,043	367	2,475	5,685
Ohio Valley	2,570	10,119	32,257	348	3,070	16,463
Upper Midwest	2,963	10,043	29,547	454	2,482	6,096
Rockies/Plains	1,740	9,389	31,263	251	2,587	19,208
South	1,881	8,079	24,521	274	1,511	10,112
Southwest	6,514	26,322	101,456	1,508	8,730	27,219
West	1,073	8,570	34,279	188	2,236	24,596
Northwest	3,003	11,943	20,716	1,203	3,319	8,418
	Annual PM2.5 from NO _X		Annual PM2.5 from SO ₂			
Climate Zone	Lowest	Median	Highest	Lowest	Median	Highest
Northeast	10,142	47,396	137,596	4,014	21,353	41,231
Southeast	5,679	45,076	137,516	859	14,447	25,433
Ohio Valley	7,625	31,931	150,868	3,098	23,420	58,355
Upper Midwest	10,011	33,497	139,184	2,522	17,997	45,113
Rockies/Plains	9,220	39,819	203,546	2,263	16,939	106,147
South	7,453	41,577	110,478	1,781	11,890	58,612
Southwest	11,960	128,564	779,117	10,884	38,937	105,417
West	3,182	29,779	103,000	2,331	11,977	66,773
Northwest	7,942	21,928	71,569	11,276	15,507	18,263