

TITLE V AIR PERMIT APPLICATION Amite BioEnergy LLC > Gloster, MS AI No. 57796

Prepared By:

TRINITY CONSULTANTS One Galleria Blvd., Suite 1030 Metairie, Louisiana 70001 (504) 828-5845 www.TrinityConsultants.com

February 2022

Project 211902.0030

Environmental solutions delivered uncommonly well

TABLE OF CONTENTS

. AIR PERMIT APPLICATION EXECUTIVE SUMMARY 1.1. Project Background / Description	1-1 1-1
. PROCESS DESCRIPTION	2-1
2.1. Facility Operations Overview	
2.1.1. Wood Receiving and Storage	
2.1.2. Logs Processing	
2.1.3. Chip Dryer/Biomass Furnace	
2.1.4. Primary Hammermills	
2.1.5. Secondary Hammermills	
2.1.6. Starch Silo System	
2.1.7. Pellet Mills	
2.1.8. Regenerative Catalytic Oxidizer (RCO)	
2.1.9. Pellet Loadout	
2.1.10. General Activities	2-2
. EMISSIONS CALCULATION METHODOLOGY	3-1
3.1.1. Regenerative Thermal Oxidizer (RTO)	
3.1.2. Regenerative Catalytic Oxidizer (RCO)	
3.1.3. Primary Hammermill Feed Silo	
3.1.4. Primary Hammermill Pneumatic Systems 1-6	
3.1.5. Secondary Hammermill Pneumatic System	
3.1.6. Secondary Hammermill Nos. 1 & 2 Feed Silo Bin Vents	
3.1.7. Pellet Cooler Pneumatic Systems 1-6	
3.1.8. Starch Silo	
3.1.9. Pellet Storage Silo Bin Vents 1 & 2	
3.1.10. Screened Materials Return System	
3.1.11. Pellet Loading System Pneumatic System Filter	
3.1.12. Paved Roads (Fugitives)	
3.1.13. Fire Pump Engine	
3.1.14. Emergency Generator	
. OVERVIEW OF APPLICABLAREGULATIONS	4-1
4.1. Federal Regulations	
4.1.1. Compliance Assurance Monitoring (CAM)	
4.1.2. New Source Performance Standards (NSPS) – 40 CFR Part 60	
4.1.2.1. 40 CFR 60 40 CFR 60 Subpart IIII – Standards of Performance for Stationary Compres	
Internal Combustion Engines	
4.1.2.2. 40 CFR 60 Subpart A – General Provisions	
4.1.3. National Emission Standards for Hazardous Air Pollutants – 40 CFR Part 61	
4.1.4. National Emission Standards for Hazardous Air Pollutants for Source Categories – 40 CFI	
4.1.4.1. 40 CFR 63 Subpart A – General Provisions	
4.1.4.2. 40 CFR 63 Subpart ZZZZ – NESHAP for Stationary Reciprocating Internal Combustion	
4.1.4.2. 40 CFR 05 Subjart 2222 – NESHAF for Stationary Reciprocating Internal Combustion 4.1.5. Stratospheric Ozone Protection – 40 CFR Part 82	-
4.2. Mississippi State Regulations	
4.2.1. 11 Miss. Admin. Code Pt. 2, Ch. 2, Rule 2.2	
4.2.2. 11 Miss. Admin. Code Pt. 2, Ch. 2, Rule 2.2	
	т J

4.2.3. 11 Miss. Admin. Code Pt. 2, Ch. 1, Rule 1.4	
APPENDIX A: APPLICATION FOR AIR POLLUTION CONTROL PERMIT	A-2
APPENDIX B: EMISSIONS CALCULATIONS	B-1
APPENDIX C: SITE MAP	C-1
APPENDIX D: CAM PLANS - RTO & RCO	D-2
APPENDIX E: CERTIFICATE OF GOOD STANDING	E-3

Table 1-1. Facility-Wide Emissions Summary

1-1

1.1. PROJECT BACKGROUND / DESCRIPTION

Amite BioEnergy LLC (Amite) owns and operates a wood pellet manufacturing facility located in Amite County, Gloster, MS. The facility is currently permitted to operate under Permit-to-Construct No. 0080-00031, issued on November 26,2012, modified on March 21, 2014, and then modified again on March 9, 2021.

Amite is including the following revisions from the Construction Permit in this Title V application package:

- Change the annual pellet production capacity to 624,700 US ODT (oven-dried tons) from the previously permitted 771,392 ODT/year in the Construction Permit.
- > Remove the 5 gravity-feed green hammermills. They will not be constructed.
- > The 3 secondary hammermills will not be converted into dry shavings hammermills. They will remain in operation per the original design.
- > Added Bypass During Furnace Startup/Shutdown at 50 hrs/yr (AA-203b).
- > Added Bypass During Furnace Idling at 500 hrs/yr (AA-203c).
- > Added Bypass During Dryer Startup/Shutdown at 50 hrs/yr (AA-204b).

Pollutant	Currently Permitted Emissions ¹ (tpy)	Proposed Facility-wide PTE Emissions (tpy)	Change (tpy)
PM10	35.88	34.78	-1.10
PM _{2.5}	28.49	29.86	1.37
SO ₂	50.80	50.89	0.09
NOx	223.26	96.12	-127.14
CO	160.31	248.52	88.21
VOC	195.52	120.53	-74.99
Total HAPs	23.88	40.07	16.19
CO ₂ e ²	19,606	19,533	-73

Table 1-1. Facility-Wide Emissions Summary

¹ Based on Title V Application MDEQ Section B forms submitted in August 2020.

² CO₂e totals exclude biogenic CO₂e emissions.

2.1. FACILITY OPERATIONS OVERVIEW

Amite produces wood pellets from whole logs, wood chips, and clean mill and forest residuals. The raw material is delivered to the site by trucks, and the produced pellets are shipped off site by railcars. The facility comprises several process areas, such as: wood receiving and storage; wood debarking, chipping, and storage; biomass fuel sizing and storage; chip drying; hammermills; pellet mills; pellet storage; and load out.

2.1.1. Wood Receiving and Storage

The facility receives approximately 25-30 percent of the raw material as whole logs via trucks and 75-80 percent as wood chips and clean mill (saw dust) and forest residuals (chips). The wood logs are stored outdoors in piles. Trees are usually sourced within a 100-mile radius of the facility.

2.1.2. Logs Processing

The log crane transfers the whole logs to a conveyor that moves the whole logs through a debarking drum. These debarked whole logs are fed to a chipper, and the chips produced are transferred by conveyor to an outdoor storage pile(s). The bark is conveyed to a storage pile and used as fuel in the biomass furnace.

2.1.3. Chip Dryer/Biomass Furnace

Chips are transferred from chip storage and are then are dried in a single pass rotary dryer to a moisture content of approximately 11 percent and then sent through high efficiency cyclones to remove fines. Heat for the dryer is supplied by a furnace burning bark and other clean biomass (e.g., clean mill and forest residuals) which is delivered via a conveyor from the fuel storage building to the biomass furnace. The emissions from the furnace, dryer, and the cyclones (fines) are routed to a wet electrostatic precipitator (WESP) and then to a regenerative thermal oxidizer (RTO) prior to discharge to the atmosphere. The WESP and RTO control particulate, acid gas, and volatile organic compound (VOC) emissions.

2.1.4. Primary Hammermills

The dried wood chips are fed to the Hammermill Feed Silo via a conveyor. The wood chips then are conveyed to the primary hammermills, where they are ground. Each of the primary hammermills is equipped with a pneumatic system equipped with a filter to limit particulate emissions to 0.015 gr/scf. After the filters the emissions from the system are routed to the RCO (regenerative catalytic oxidizer) / RTO (regenerative thermal oxidizer) prior to discharge to the atmosphere. The RCO controls particulate, acid gas, and VOC emissions.

2.1.5. Secondary Hammermills

The secondary hammermills further reduce the size of the chips. The emissions from the system are routed to the RCO prior to discharge to the atmosphere. The RCO controls particulate, acid gas, and VOC emissions.

2.1.6. Starch Silo System

The starch silo and starch addition system add starch as a binder just upstream of the pellet mills. The starch is delivered via truck. The starch silo has a particulate matter filter to limit emissions to 0.015 gr/scf.

2.1.7. Pellet Mills

The ground wood is conveyed from the primary hammermills or the secondary hammermills to six pellet mill lines. Each line is equipped with two mills and a cooler. The ground wood is compressed by pelletizer rotating press rolls and then passed through sizing dies perforated with round holes. The high pressure of the dies and the heat of friction activates the lignin in the wood thereby bonding the ground wood into a pellet. The pellet temperature is maintained at 200 to 250 degrees Fahrenheit (F) to minimize the use of adhesives and bonding agents. The pellet mills are subsequently cooled in the pellet coolers.

The pelletizers and coolers exhaust to six air and dust extraction systems, each equipped with filters to limit particulate emissions to 0.015 gr/scf. After the filters, the emissions from the system are routed to RCO prior to discharge to the atmosphere. The RCO controls particulate, acid gas, and VOC emissions.

The pellets are then conveyed to two pellet storage silos. The silos are equipped with filters to limit the particulate emissions to 0.015 gr/scf.

2.1.8. Regenerative Catalytic Oxidizer (RCO)

The RCO controls VOC emissions from the primary hammermills, the secondary hammermills, and the pellet coolers.

2.1.9. Pellet Loadout

Pellets from the pellet silos are transferred via enclosed conveyors to the pellet loadout building. The pellets are screened prior to loadout to reduce fugitive emissions, and the loadout system is equipped with a fugitive dust capture system to minimize fugitive emissions. The fines from these two dust capture systems are pneumatically conveyed to a point between the primary hammermill and secondary hammermill feed silos for remanufacturing into wood pellets. This pneumatic system is equipped with a filter to limit particulate emissions to 0.015 gr/scf.

2.1.10. General Activities

The facility minimizes particulate emissions while receiving logs, transferring wood chips, and shipping pellets by using primarily paved roads. The facility has installed an emergency diesel generator and a diesel fire pump as backup.

3.1.1. Regenerative Thermal Oxidizer (RTO)

SO₂ emissions were calculated based on a February 2016 stack test conducted at a sister facilty in Louisiana, Morehouse BioEnergy (Morehouse). Emissions of all other pollutants were calculated based on performance test conducted at Amite in July 2021.

3.1.2. Regenerative Catalytic Oxidizer (RCO)

SO₂ emissions were calculated based on a February 2016 stack test conducted at a sister facilty in Louisiana, Morehouse BioEnergy (Morehouse). Emissions of all other pollutants were calculated based on performance test conducted at Amite in July 2021.

3.1.3. Primary Hammermill Feed Silo

 PM_{10} and $PM_{2.5}$ emissions were calculated using vendor data. VOC, Methanol, Formaldehyde, and Acetaldehyde emissions were calculated using performance test data from a sister facility, Morehouse, on February 10-16, 2016. A 25% safety factor was added to the test data to calculate emissions.

3.1.4. Primary Hammermill Pneumatic Systems 1-6

PM₁₀ and PM_{2.5} emissions were calculated using data from stack testing conducted on March 12 -15, 2019 at a sister facility, Morehouse. VOC emissions were calculated using data from stack testing conducted in November 2018 at Amite. Methanol, Formaldehyde, and Acetaldehyde emissions were calculated using performance test data from a sister facility, Morehouse, on February 10-16, 2016. A 25% safety factor was added to all test data to calculate emissions. Note that VOC emissions are routed to the RCO.

3.1.5. Secondary Hammermill Pneumatic System

PM₁₀ and PM_{2.5} emissions were calculated using data from stack testing conducted at a sister facility, Morehouse, on March 12 -15, 2019. VOC emissions were calculated using data from stack testing conducted at Amite in November 2018. Methanol, Formaldehyde, and Acetaldehyde emissions were calculated using performance test data from February 10-16, 2016 t a sister facility,Morehosuse. A 25% safety factor was added to all test data to calculate emissions. Note that VOC emissions are routed to the RCO.

3.1.6. Secondary Hammermill Nos. 1 & 2 Feed Silo Bin Vents

PM₁₀ and PM_{2.5} emissions were calculated using vendor data. VOC, Methanol, Formaldehyde, and Acetaldehyde emissions were calculated using performance test data from February 10-16, 2016 at a sister facility, Morehouse. A 25% safety factor was added to the test data to calculate emissions.

3.1.7. Pellet Cooler Pneumatic Systems 1-6

PM₁₀ and PM_{2.5} emissions were calculated using data from stack testing conducted on March 12 -15, 2019 at a sister facility, Morehouse. VOC emissions were calculated using data from stack testing

conducted in November 2018 at Amite. Methanol, Formaldehyde, and Acetaldehyde emissions were calculated using performance test data from February 10-16, 2016 at a sister facility, Morehouse. A 25% safety factor was added to all test data to calculate emissions. Note that VOC emissions are routed to the RCO.

3.1.8. Starch Silo

Emissions from the new starch silo were calculated using the exhaust flow estimated from a sister facility³ and particulate content.

3.1.9. Pellet Storage Silo Bin Vents 1 & 2

 PM_{10} and $PM_{2.5}$ emissions were calculated using vendor data. VOC, Methanol, Formaldehyde, and Acetaldehyde emissions were calculated using performance test data from February 10-16, 2016 at a sister facility, Morehouse. A 25% safety factor was added to the test data to calculate emissions.

3.1.10. Screened Materials Return System

PM₁₀ and PM_{2.5} emissions were calculated using vendor data. VOC, Methanol, Formaldehyde, and Acetaldehyde emissions were calculated using performance test data from February 10-16, 2016 at a sister facility, Morehouse. A 25% safety factor was added to the test data to calculate emissions.

3.1.11. Pellet Loading System Pneumatic System Filter

PM₁₀ and PM_{2.5} emissions were calculated using data from stack testing conducted on March 12 -15, 2019 at a sister facility, Morehouse. VOC emissions were calculated using data from stack testing conducted at Amite in November 2018. Methanol, Formaldehyde, and Acetaldehyde emissions were calculated using performance test data from February 10-16, 2016 at a sister facility, Morehouse. A 25% safety factor was added to all test data to calculate emissions.

3.1.12. Paved Roads (Fugitives)

Emissions from paved roads were calculated using an emission factor from AP-42 Section 13.2.1 – Equation 1 (1/2011) and other information from AP-42 Tables 13.2.1-1, 13.2.1-2, and 13.2.1-3.

3.1.13. Fire Pump Engine

PM₁₀, PM_{2.5}, NO_X, and VOC emissions were calculated using 40 Code of Federal Regulations (CFR) 60 Subpart IIII, Table 4. SO₂ and CO emissions were calculated using AP-42, Table 3.3-1 (1/96). Emissions of HAPs/TAPs were calculated using AP-42, Table 3.3-2 (1/96).

³ Data from LaSalle BioEnergy LLC.

3.1.14. Emergency Generator

PM₁₀, PM_{2.5}, NO_x, and VOC emissions were calculated using 40 CFR 60 Subpart IIII, Table 4. SO₂ and CO emissions were calculated using AP-42, Table 3.3-1 (1/96). Emissions of HAPs/TAPs were calculated using AP-42, Table 3.3-2 (1/96).

Amite has evaluated the applicable Federal and Mississippi State air regulations that apply to the facility as well as to individual emission units. Included below is a brief overview of the applicable regulations. For more details, refer to Appendix A – Permit Application forms.

4.1. FEDERAL REGULATIONS

4.1.1. Prevention of Significant Deterioration - 40 CFR 52.21

40 CFR Part 52 establishes the federal Prevention of Significant Deterioration (PSD) Air Quality program. Because of the installation of the RTO and RCO to control VOC emissions, Amite is a minor source under the PSD program.

4.1.2. Title V Operating Permit Program

40 CFR 70 establishes the federal Title V operating permitting program. The Title V major source threshold for a facility is 100 tpy of criteria pollutants. A facility is also considered a Title V major source if emissions of individual or total HAP exceed major source thresholds of 10 tpy or 25 tpy, respectively. Amite is a major source under Title V because criteria pollutant emissions exceed 100 tpy.

4.1.1. Compliance Assurance Monitoring (CAM)

Under 40 CFR Part 64, Compliance Assurance Monitoring (CAM), facilities are required to prepare and submit monitoring plants for certain emission units with the initial or renewal Title V operating permit application. This rule requires pollutant specific monitoring for those emission units which meet the following criteria:

- > The unit is located at a Title V air operating permit source;
- The unit is subject to an emission limitations or standard for the applicable regulated air pollutant, other than an emission limitation or standard that is exempt;
- The unit uses a control device to achieve compliance with any such emission limitation or standard; and
- > The unit has potential pre-control device emissions of applicable regulated air pollutants that are equal to or greater than the Title V major source threshold of 100 tons per year. For Amite, the following sources are subject to CAM requirements: RTO and the new RCO.

4.1.2. New Source Performance Standards (NSPS) - 40 CFR Part 60

NSPS requires new, modified, or reconstructed sources in applicable source categories to control emissions to the level achievable by the best demonstrated technology as specified in the applicable provisions. A regulatory applicability determination and a summary of potentially applicable NSPS subparts for the emission sources associated with Amite is included in the permit application.

4.1.2.1. 40 CFR 60 40 CFR 60 Subpart IIII - Standards of Performance for Stationary Compression Ignition Internal Combustion Engines

This subpart applies to the owners and operators of stationary compression ignition (CI) internal combustion engines (ICE). The facility has two sources that must comply with NSPS Subpart IIII: AA-501 – Fire Pump Engine, and AA-502 – Emergency Generator. 40 CFR Subpart IIII sets specific emissions limitations based on the engine's type, fuel, and manufacture date.

4.1.2.2. 40 CFR 60 Subpart A - General Provisions

NSPS subpart A applies to stationary sources. All affected sources subject to an NSPS are also subject to the general provisions of NSPS Subpart A unless specifically excluded by the source-specific NSPS in accordance with 40 CFR 60.1. NSPS Subpart A has the following requirements for facilities subject to a source-specific NSPS:

- Initial construction/reconstruction notification
- Initial startup notification
- Performance tests
- > Performance test date initial notification
- > General monitoring requirements
- > General recordkeeping requirements
- Semiannual monitoring system and/or excess emission reports
- > General control device and work practice requirements

None of the source-specific NSPS subparts that are applicable to the proposed project exclude NSPS Subpart A – General Provisions. Therefore, the facility is subject to Subpart A.

4.1.3. National Emission Standards for Hazardous Air Pollutants - 40 CFR Part 61

National Emission Standards for Hazardous Air Pollutants (NESHAP) were developed by the EPA to provide pollutant specific control requirements. Amite is not subject to any NESHAP Part 61 standards.

4.1.4. National Emission Standards for Hazardous Air Pollutants for Source Categories - 40 CFR Part 63

A facility can be subject to one or National Emission Standards for Hazardous Air Pollutants (NESHAPS), if the total emissions of all regulated hazardous air pollutants (HAPs) for the facility exceeds 25 tpy, or total emissions for an individual regulated HAP exceed 10 tpy. Such a source is referenced as a "major source" for the purposes of NESHAPs applicability. A facility that is not a major source is referred as "area source". It has been assumed that Amite is an area source of HAPs because HAP emissions are controlled by the RCO.

4.1.4.1. 40 CFR 63 Subpart A - General Provisions

The facility includes sources subject to individual MACT subparts, and consequently is subject to the requirements of Subpart A. These requirements include general notifications, testing requirements, and monitoring requirements.

4.1.4.2. 40 CFR 63 Subpart ZZZZ – NESHAP for Stationary Reciprocating Internal Combustion Engines

This subpart applies to stationary reciprocating internal engines (RICE). The following ICE are subject to this regulation: AA-501 – Fire Pump Engine, and AA-502 – Emergency Generator.

4.1.5. Stratospheric Ozone Protection - 40 CFR Part 82

40 CFR 82 Subpart F has requirements for facilities that own or operate refrigeration, industrial refrigeration, or comfort cooling equipment containing Class I or Class II substance containing refrigerants.

4.2. MISSISSIPPI STATE REGULATIONS

Applicability of Mississippi state regulations is addressed in the following section.

4.2.1. 11 Miss. Admin. Code Pt. 2, Ch. 2, Rule 2.2

This regulation addresses weekly observations for visible emissions.

4.2.2. 11 Miss. Admin. Code Pt. 2, Ch. 1, Rule 1.3

This regulation addresses particulate matter as related to opacity.

4.2.3. 11 Miss. Admin. Code Pt. 2, Ch. 1, Rule 1.4

This regulation limits emissions of SO₂ from fuel burning and processes.

Amite BioEnergy LLC | Trinity Consultants Initial Title V Permit Application

.....

FOR	RM 5	MDEQ				F OF ENVIRONMEN FOR AIR POLLUTI L PERMIT	
		v Interest) Inf					Section A
1. N	Name, Ad	dress, and Loo	cation of Facility				
А.	Owner/C	company Name:	Amite BioEnergy L	LC			
B.	Facility N	Name (if differen	t than A. above): <u>N</u>	I/A			
C.	Facilit	y Air Permit No.	(if known): 0080-000.	31			
D.	Agency I	interest No. (if kn	100wn): <u>57796</u>				
E.	 2. City 4. Cou 	et Address:	1763 Georgia Pacific R Gloster Amite	Road #2 3. 5. 7.	State: Zip Code: Fax No.	MS 39638	
F.	-	et Address or P.C	ent from physical addres D. Box: <u>1500 Nort</u> <u>Monroe</u> LA	ss) t <u>h 19th; Su</u> 4.		71201	
G.	1. Coll X 2. Met X 3. Latit 4. Long	Map Interpolation	Other: (<i>check one</i>) ecify coordinate system (on (Google Earth etc.) nutes/seconds):		Other:	° 11' 00'' 1°02' 00''	
H.	SIC: NAICS:	2499 32199	espond with the SIC Cod	de directly	above.)		
2. Na	ame and	Address of Fac	cility Contact				
A.	Name		ennen Beard	Tit	le:	HSE Manager	
B.	 City Zip 	et Address or P.C	D. Box: <u>1763 Geor</u> Gloster 39638 318-816-0461	rgia Pacifio 3. 5. 7.	e Road #2 State: Email: Fax No.	MS brennen.beard@c	Iraxbiomass.com

FOR	XM 5	MDEQ	MENTAL UTION				
Facility	(Agency	v Interest) Infe	ormation				Section A
3. N	lame and	d Address of Ai	r Contact (if differer	<i>it from Facility</i>	Contact)		
А.	Name		N/A	Title:			
B.	Mailing 1. Stre	Address et Address:					
	 2. City 4. Cou 			3. Sta 5. Zir	te: Code:		
		ephone No.		-	No.		
4. N	lame and	l Address of the	e Responsible Offici	ial for the Fac	lity		
The	e Responsi	ble Official is def	ined as one of the follo	owing:			
a.	business corporati overall o permit an 25 millio	function, or any c ion, or a duly auth peration of one or nd the facilities er	ent, secretary, treasurer other person who perfor orized representative o more manufacturing, p nploy more than 250 peter 1980 dollars), if aut procedures.	rms similar polic f such person if production, or op ersons or have gr	y or decision the represen erating facil oss annual s	n-making function tative is responsib lities applying for ales or expenditur	ns for the ble for the or subject to a res exceeding \$
b.	For a par	tnership or sole p	roprietorship: a general	l partner or the p	roprietor, re	spectively.	
c.	official. executive (e.g., a R command	For purposes of the officer having receiption of the degional Administration of the degional	ederal, or other public these regulations, a prinesponsibility for the overator of EPA). A principle officer, or any other natitution.	cipal executive of erall operations of cipal executive of	officer of a F of a principa fficer of a m	Federal agency inc l geographic unit ilitary facility inc	cludes the chief of the agency ludes the facility
A.	Name	Amt	per D. Bouska	Title :		VP HSE North A	merica
B.	 City Zip 	et Address	Monroe 71201 318-816-6590	1500 N 3. 5. 7.	orth 19th Sta State: Email Fax No.	L	A a@draxbiomass.com
C.	Is the per	rson above a duly	authorized representati	ive? X	Yes	Ľ	No
	If yes, ha	as written notifica Yes	tion of such authorizati			? horization is attac	ched

FC	ORM 5	MDEQ	MISSISSIPPI DEPARTMENT OF ENVIRONME QUALITY APPLICATION FOR AIR POLLUT CONTROL PERMIT	
Facili	•	y Interest) Info		Section A
5.	Type of P	ermit Applicati	ion (Check all that apply)	
	State Pe	rmit to Construc	et (i.e., non-PSD or PSD avoidance)	
		nce Review (NSI nd Nonattainmen Initial Appli		erioration
N/A	Title V (X	Operating Permit		
		requested?	: Are any modification to the permit/facility being Y e a separate sheet identifying the modification(s) and resulting change to emission	es No
		Modification	n (Specify type): Significant Minor Admini	istrative
N/A	Syntheti	ic Minor Operati Initial Appli	ing Permit (Appendix B must be completed and attached.)	
		Re-issuance requested?	: Are any modification to the permit/facility being Y	es No
		Modification	n	
N/A	State Pe	rmit to Operate a Initial Appli	a Significant Minor Source (<i>defined in APC-S-2</i> , <i>Section I.C.25</i>) acation	
		Re-issuance requested?	: Are any modification to the permit/facility being Y	es No
		Modification	n	
	True Mi	inor Determination	on d potential to emit air pollutants is below the Title V thresholds	
6.	Process/P	roduct Details		
			Materials (<i>if applicable</i>): y shavings, clean mill and forest residuals	
		All Products (<i>if a</i> od pellets	pplicable):	
		ef Description of F nufacture of wood	Principal Process(es): pellets	

FO	ORM :	5 MDEQ	MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT												
Facilit	ty (Age	ency Interest) Info	ormation				Section A								
6.	Proce	ss/Product Details	(continued)												
	D.	Maximum Throughpu	t for Raw Material(s)	(if applicable):											
]	Raw Materials		Throughput	Uni	ts								
		Logs, we	od chips, dry shavings	8	1,733,239.00	US tons	s/year								
	E.	Maximum Throughpu	t for Principal Product	t(s) (<i>if applicable</i>	e):	I									
			Product		Throughput	Uni	ts								
			Wood Pellets		660,000	US ODT									
7.	T 11	(*) = oven-dried tons													
•		ty Operating Information Number of employees		3-Mar											
				Average Ac	tual	Maximum P	otential								
	В.	Hours per day the fac	lity will operate:	24		24									
	C.	Days per week the fac	ility will operate:	7		7									
	D.	Weeks per year the fa	cility will operate:	52		52									
	E.	Months the facility w	ll operate:	12		12									
}.	Maps														
		Attach a topographica	l map of the area exte atline of the property b	-	1/2 mile beyond the	property bounda	ries. The								
	B.	Attach a site map/diag on the site, and the lo	gram showing the outlication of each signification			buildings and re	badways								

			MISSISSIPPI DEPARTMENT OF ENVIRONMEN	NTAL
F	ORM 5	MDEQ	QUALITY APPLICATION FOR AIR POLLUTI	ON
			CONTROL PERMIT	
Facil	ity (Agency	Interest) Info	ormation	Section A
9.	Zoning			
	zoni Y	ng ordinances? If	existing or proposed) located in accordance with any applicable city and/ no, please explain.	
	facil	•	existing or proposed) required to obtain any zoning variance to locate/ exys, please explain.	pand the
10.	Risk mana	gement Plan		
	m	anagement plan p	to develop and register a risk Yes X ursuant to Section 112(r), regulated under 40 CFR Part 68? as the plan submitted?	No
11.	Is confident	ial information b	eing submitted with this application?	X No
	-	-	cedures outlined in the Mississippi Code Ann. Sections 49-17-39 and 17 egulation regarding the review and reproduction of public records".	-17-27(6),
12.	MS Secret	ary of State Re	gistration / Certificate of Good Standing	
	applying package s Certificat the Missi It should renew a S	for the permit is a should include pro- te of Good Standi ssippi Secretary of be noted that for State Permit to Op	b a company that is not authorized to conduct business in Mississippi. If a corporation, limited liability company, a partnership or a business trust, bof of registration with the Mississippi Secretary of State and/or a copy on ng. The name listed on the permit will include the company name as it is of State. an application submitted in accordance with 11 Miss. Admin. Code Pt. 2 berate or in accordance with 11 Miss. Admin. Code Pt. 2, R. 6.2.A(1)(c). timely and complete, the applicant shall be registered and in good standi	the application of the company's registered with P, R. 2.8.B. to to renew a Title
			ate to conduct business in Mississippi.	ing with the

ORM 5	MDEQ		SISSIPPI DEPARTMENT OF ENVIRONMENTAL UALITY APPLICATION FOR AIR POLLUTION							
UKW 5	MDEQ	CONTROL PERMIT								
ility (Agency	v Interest) Info	ormation	Section A							
Certificati	on									
-		IDEQ, a duly authorize Section 4 of this applie	ed representative (DAR) may sign the air permit application. cation.							
this appl constitut in operat Regulatio	ication are true, c e an agreement th ion that may be n	complete, and accurate, pat the applicant assum pecessary to achieve an chat there are significan	ed after reasonable inquiry; the statements and information in , and that as a responsible official, my signature shall tes the responsibility for any alteration, additions, or changes ad maintain compliance with all applicable Rules and nt penalties for submitting false information, including the							
			March 8, 2022							
Signatur	e of Responsible	Official/DAR	Date							
	Amber D. F	Bouska	VP HSE North America							
	Printed N		Title							

Section B.0: Emission Point Descriptions & Status

This form should list all the of the Emission Points and descriptions as proposed or as otherwise identified in an existing permit. This worksheet should be updated to reflect changes to the Status of the emission points over time. Emission Point ID's should match those assigned in the current MDEQ permit. Facility ID is optional. For proposed emission points, the facility should leave the Emission Point ID blank but may complete the Facility ID (if any). Under "Status," for Emission Points that are proposed or under construction but not yet operating, indicate their status as "Proposed." For emissions points already operating or for which construction has been certified complete, indicate their status as "Operating." Include all control devices for each emission point and the pollutant(s) the device controls. Control devices may be specified in general terms (e.g., baghouse, catalytic oxidizer, fabric filter, wet ESP, etc.). When an Emission Point is removed, indicate so by changing the "Status" to "Removed." Remove the emissions on the subsequent worksheets or indicate they are removed with a "-" for all pollutants.

Emission Point ID	Facility ID	Description	Status	Control Device	Controlled Pollutant(s)	Control Device	Controlled Pollutant(s)	Control Device	Controlled Pollutant(s)
AA-102	AA-102	Log Chipper	Operating						
AA-101	AA-101	Log Debarker	Operating						
AA-201	AA-201	WESP, RTO, Burner, Dryer Furnace	Operating	RTO	VOC				
AA-203b	AA-203b	Furnace SUSD Bypass Stack	Operating						
AA-203c	AA-203c	Furnace Idling Bypass Stack	Operating						
AA-204b	AA-204b	Dryer SUSD Bypass Stack	Operating						
AA-302	AA-302	Primary Hammermill Feed Silo with bin vent	Operating						
AA-303	AA-303	Six (6) Primary Hammermill Pneumatic Systems (A-F)	Operating	RCO					
AA-307A	AA-307A	Secondary Hammermill Pneumatic System A	Operating	RCO	VOC	Baghouse	PM		
AA-307B	AA-307B	Secondary Hammermill Pneumatic System B	Operating	RCO	VOC	Baghouse	PM		
AA-307C		Secondary Hammermill Pneumatic System C	Operating	RCO	VOC	Baghouse	PM		
AA-305		Secondary Hammermill Silo 1 with bin vent	Operating			Bin Vent	PM		
AA-306	AA-306	Secondary Hammermill Silo 2 with bin vent	Operating			Bin Vent	PM		
AA-308A	AA-308A	Pellet Mill/Cooler Pneumatic System A	Operating	RCO	VOC	Baghouse	PM		
AA-308B	AA-308B	Pellet Mill/Cooler Pneumatic System B	Operating	RCO	VOC	Baghouse	PM		
AA-308C	AA-308C	Pellet Mill/Cooler Pneumatic System C	Operating	RCO	VOC	Baghouse	PM		
AA-308D	AA-308D	Pellet Mill/Cooler Pneumatic System D	Operating	RCO	VOC	Baghouse	PM		
AA-308E	AA-308E	Pellet Mill/Cooler Pneumatic System E	Operating	RCO	VOC	Baghouse	PM		
AA-308F	AA-308F	Pellet Mill/Cooler Pneumatic System F	Operating	RCO	VOC	Baghouse	PM		
AA-301	AA-301	RCO, Burner	Operating	RCO	VOC				
AA-309	AA-309	Starch Silo	Operating			Baghouse	PM		
AA-401A	AA-401A	Pellet Storage Silo No. 1 with bin vent	Operating			Baghouse	PM		
AA-401B	AA-401B	Pellet Storage Silo No. 2 with bin vent	Operating			Baghouse	PM		
AA-401C	AA-401C	Screened Materials Return System	Operating			Baghouse	PM		
AA-401D	AA-401D	Pellet Truck Loadout System	Operating			Baghouse	PM		
	1	Paved Road Fugitives	Operating						
AA-501	AA-501	250 hp Diesel Fire Pump Engine	Operating						
AA-502		402 hp Emergency Diesel Generator	Operating						
AA-304	AA-304	Dry Shavings Truck Dump	Operating						

Section B.1: Maximum Uncontrolled Emissions (under normal operating conditions)

Maximum Uncontrolled Emissions are the emissions at maximum capacity and prior to (in the absence of) pollution control, emission-reducing process equipment, or any other emission reduction. Calculate the hourly emissions using the worst case hourly emissions for each pollutant. For each pollutant, calculate the annual emissions as if the facility were operating at maximum plant capacity without pollution controls for 8760 hours per year, unless otherwise approved by the Department. List Hazardous Air Pollutants (HAP) in Section B.3 and GHGs in Section B.4. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Emissions > 0.01 TPY must be included. Please do not change the column widths on this table.

Emission Point ID	TSP	TSP ¹ (PM)		TSP ¹ (PM) PM-10 ¹		1-10 ¹	PM-2.5 ¹		SO ₂		NOx		со		voc		TRS ²		Lead		Total HAPs	
	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr		
AA-102	0.75	3.29	0.25	1.10	0.06	0.26	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
AA-101	0.04	0.19	0.02	0.09	0.005	0.02	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
AA-201	82.68	362.13	82.68	362.13	71.13	311.54	4.14	18.13	38.65	169.30	100.98	442.28	10.31	45.14	-	-	0.01	0.03	6.60	28.92		
AA-203b											19.80	0.50	0.56	0.01					1.31	0.03		
AA-203c											9.90	2.48	0.28	0.07					0.66	0.16		
AA-204b	50.91	1.27	50.91	1.27	50.91	1.27	3.47	0.09	62.48	1.56	81.00	2.02	108.77	2.72					9.75	0.24		
AA-302	0.19	0.84	0.19	0.84	0.19	0.84	-	-	-	-	-	-	1.48	6.50	-	-	-	-	0.29	1.27		
AA-303	0.52	2.27	0.52	2.27	0.38	1.68	-	-	-	-	-	-	30.37	133.04	-	-	-	-	0.78	3.44		
AA-307A	0.13	0.58	0.13	0.58	0.11	0.50	-	-	-	-	-	-	8.84	38.72	-	-	-	-	0.17	0.73		
AA-307B	0.13	0.58	0.13	0.58	0.11	0.50	-	-	-	-	-	-	8.84	38.72	-	-	-	-	0.17	0.73		
AA-307C	0.13	0.58	0.13	0.58	0.11	0.50	-	-	-	-	-	-	8.84	38.72	-	-	-	-	0.17	0.73		
AA-305	0.19	0.84	0.19	0.84	0.19	0.84	-	-	-	-	-	-	1.32	5.79	-	-	-	-	0.26	1.14		
AA-306	0.19	0.84	0.19	0.84	0.19	0.84	-	-	-	-	-	-	0.74	3.23	-	-	-	-	0.13	0.57		
AA-308A	0.25	1.11	0.25	1.11	0.20	0.88	-	-	-	-	-	-	21.26	93.13	-	-	-	-	0.09	0.41		
AA-308B	0.25	1.11	0.25	1.11	0.20	0.88	-	-	-	-	-	-	21.26	93.13	-	-	-	-	0.09	0.41		
AA-308C	0.25	1.11	0.25	1.11	0.20	0.88	-	-	-	-	-	-	21.26	93.13	-	-	-	-	0.09	0.41		
AA-308D	0.25	1.11	0.25	1.11	0.20	0.88	-	-	-	-	-	-	21.26	93.13	-	-	-	-	0.09	0.41		
AA-308E	0.25	1.11	0.25	1.11	0.20	0.88	-	-	-	-	-	-	21.26	93.13	-	-	-	-	0.09	0.41		
AA-308F	0.25	1.11	0.25	1.11	0.20	0.88	-	-	-	-	-	-	21.26	93.13	-	-	-	-	0.09	0.41		
AA-301	0.10	0.46	0.10	0.46	0.10	0.46	0.01	0.04	1.37	6.01	1.15	5.05	0.08	0.33	-	-	2.47E-08	1.08E-07	0.03	0.11		
AA-309	0.0001	0.0002	0.0001	0.0002	0.0001	0.0002	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
AA-401A	0.04	0.17	0.04	0.17	0.04	0.17	-	-	-	-	-	-	1.00	4.36	-	-	-	-	0.20	0.86		
AA-401B	0.04	0.17	0.04	0.17	0.04	0.17	-	-	-	-	-	-	1.00	4.36	-	-	-	-	0.20	0.86		
AA-401C	0.96	4.20	0.96	4.20	0.96	4.20	-	-	-	-	-	-	0.20	0.87	-	-	-	-	0.04	0.17		
AA-401D	0.17	0.74	0.17	0.74	0.13	0.55	-	-	-	-	-	-	2.21	9.67	-	-	-	-	0.39	1.69		
Truck Dump	0.01	0.04	0.01	0.04	0.001	0.01	-	-	-	-	-	-	-	-	-	-	-	-				
Paved Roads	0.66	2.87	0.66	2.87	0.16	0.71	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
AA-501	0.08	0.004	0.08	0.004	0.08	0.004	0.51	0.03	1.65	0.08	1.67	0.08	1.65	0.08	-	-	-	-	0.01	0.0003		
AA-502	0.13	0.01	0.13	0.01	0.13	0.01	0.82	0.04	2.64	0.13	2.31	0.12	2.64	0.13	-	-	-	-	0.01	0.001		
AA-304	0.01	0.04	0.01	0.04	0.001	0.006	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Totals	139.58	388.79	139.05	386.49	126.25	330.32	8.96	18.32	106.81	177.09	216.81	452.52	316.70	891.25	0.00	0.00	0.01	0.03	21.71	44.15		

¹Condensables: Include condensable particulate matter emissions in particulate matter calculations for PM-10 and PM-2.5, but not for TSP (PM).

² TRS: Total reduced sulfur (TRS) is the sum of the sulfur compounds hydrogen sulfide (H₂S), methyl mercaptan (CH₄S), dimethyl sulfide (C₂H₆S), and dimethyl disulfide (C₂H₆S₂).

³ Uncontrolled emissions from the RTO are lower for some pollutants compared to the proposed allowable emissions because the inclusion of the RTO controls CO and VOC emissions, but the combustion emissions from the RTO burner result in an increase in other pollutants.

⁴ Uncontrolled emissions from the RCO include the RCO burner only.

Section B.2: Proposed Allowable Emissions

Proposed Allowable Emissions (Potential to Emit) are those emissions the facility is currently permitted to emit as limited by a specific permit requirement or federal/state standard (e.g., a MACT standard); or the emission rate at which the facility proposes to emit considering emissions control devices, restrictions to operating rates/hours, or other requested permit limits that reduce the maximum emission rates. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. Fill all cells in this table with the emission numbers or a "-" symbol. A "-" symbol indicates that emissions of this pollutant are not expected. Additional columns may be added if there are regulated pollutants (other than HAPs and GHGs) emitted at the facility.

Emission Point ID	TSP ¹	(PM)	PN	1-10 ¹	PM	-2.5 ¹	sc	D ₂	N	Ox	co	D	vo	С	т	'RS ²	Le	ead
	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
AA-102	0.04	0.16	0.01	0.05	0.003	0.01												
AA-101	0.04	0.19	0.02	0.09	0.005	0.02												
AA-201	3.68	16.12	3.68	16.12	3.68	16.12	11.58	50.70	20.61	90.29	43.23	189.36	10.31	45.14	-	-	0.0001	0.001
AA-203b											19.80	0.50	0.56	0.01				
AA-203c											9.90	2.48	0.28	0.07				
AA-204b	50.91	1.27	50.91	1.27	50.91	1.27	3.47	0.09	62.48	1.56	81.00	2.02	108.77	2.72				
AA-302	0.19	0.84	0.19	0.84	0.19	0.84	-	-	-	-	-	-	1.48	6.50	-	-	-	-
AA-303									Emissions	captured u	nder the RC	0			1			L
AA-307A									Emissions	captured u	inder the RC	0						
AA-307B									Emissions	captured u	inder the RC	0						
AA-307C		Emissions captured under the RCO Emissions captured under the RCO																
AA-305	0.19	0.84	0.19	0.84	0.19	0.84	-	-	-	-	-	-	1.32	5.79	-	-	-	-
AA-306	0.19	0.84	0.19	0.84	0.19	0.84	-	-	-	-	-	-	0.74	3.23	-	-	-	-
AA-308A									Emissions	captured u	inder the RC	0		1				
AA-308B									Emissions	captured u	inder the RC	0						
AA-308C									Emissions	captured u	inder the RC	0						
AA-308D									Emissions	captured u	inder the RC	0						
AA-308E									Emissions	captured u	inder the RC	0						
AA-308F									Emissions	captured u	inder the RC	0						
AA-301	2.78	12.19	1.52	6.65	0.94	4.12	0.01	0.03	0.93	4.06	12.32	53.97	8.58	37.58	-	-	2.47E-08	1.08E-07
AA-309	0.0001	0.0002	0.0001	0.0002	0.0001	0.0002	-	-	-	-	-	-	-	-	-	-	-	-
AA-401A	0.04	0.17	0.04	0.17	0.04	0.17	-	-	-	-	-	-	1.00	4.36	-	-	-	-
AA-401B	0.04	0.17	0.04	0.17	0.04	0.17	-	-	-	-	-	-	1.00	4.36	-	-	-	-
AA-401C	0.96	4.20	0.96	4.20	0.96	4.20	-	-	-	-	-	-	0.20	0.87	-	-	-	-
AA-401D	0.17	0.74	0.17	0.74	0.13	0.55	-	-	-	-	-	-	2.21	9.67	-	-	-	-
Truck Dump	0.01	0.04	0.01	0.04	0.001	0.01	-	-	-	-	-	-	-	-	-	-	-	-
Paved Roads	0.66	2.87	0.66	2.87	0.16	0.71	-	-	-	-	-	-	-	-	-	-	-	-
AA-501	0.08	0.004	0.08	0.004	0.08	0.004	0.51	0.03	1.65	0.08	1.67	0.08	1.65	0.08	-	-	-	-
AA-502	0.13	0.007	0.13	0.01	0.13	0.01	0.82	0.04	2.64	0.13	2.31	0.12	2.64	0.13	-	-	-	-
AA-304	0.01	0.04	0.001	0.006														[
Totals	60.04	40.32	58.78	34.78	57.65	29.86	16.39	50.89	88.32	96.12	170.24	248.52	140.74	120.53	0.00	0.00	1.40E-04	6.14E-04

¹ Condensables: Include condensable particulate matter emissions in particulate matter calculations for PM-10 and PM-2.5, but not for TSP (PM).

² TRS: Total reduced sulfur (TRS) is the sum of the sulfur compounds hydrogen sulfide (H₂S), methyl mercaptan (CH₄S), dimethyl sulfide (C₂H₆S), and dimethyl disulfide (C₂H₆S₂).

Section B.3: Proposed Allowable Hazardous Air Pollutants (HAPs) In the table below, report the Proposed Allowable Emissions (Potential to Emit) for each HAP from each regulated emission unit if the HAP > 0.0001 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources. Use the HAP nomenclature as it appears in the Instructions. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. For each HAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "

Emission Point ID	Tota	l HAPs	Acetal	dehyde	Acro	olein	Ben	zene	Carbon Te	trachloride	Chlo	rine	Chloro	benzene	Chlor	oform	Chloro	methane
	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Chipper																		1
Debarker																		
AA-201	4.00	17.52	0.35	1.54	0.15	0.65	0.05	0.21	0.001	0.002	0.01	0.04	0.0004	0.002	0.0003	0.001	0.0003	0.001
AA-203b	1.31	0.03	2.74E-02	-	1.32E-01	3.30E-03	1.39E-01	3.47E-03	-	-	2.61E-02	6.52E-04	-	-	-	-	-	-
AA-203c	0.66	0.16	1.37E-02	3.42E-03	6.60E-02	1.65E-02	6.93E-02	1.73E-02	7.43E-04	1.86E-04	1.30E-02	3.26E-03	5.45E-04	1.36E-04	4.62E-04	1.16E-04	3.80E-04	9.49E-05
AA-204b	9.75	0.24	1.74	0.04	0.53	0.01	0.18	0.004										
AA-302	0.29	1.27	0.07	0.33	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-303								E	missions capture	d under the RCO.								
AA-307A								E	missions capture	d under the RCO.								
AA-307B								E	missions capture	d under the RCO.								
AA-305	0.26	1.14	0.07	0.30	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-306	0.13	0.57	0.03	0.15	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-308A		•		•	•	•	•	E	missions capture	under the RCO.	•		•			•		•
AA-308B								E	missions capture	d under the RCO.								
AA-308C								E	missions capture	d under the RCO.								
AA-308D								E	missions capture	d under the RCO.								
AA-308E								E	missions capture	d under the RCO.								
AA-308F								E	missions capture	under the RCO.								
AA-301	3.55	15.55	0.26	1.16	0.10	0.44	-	-	-	-	-	-	-	-	-	-	-	-
AA-309	0.00	0.00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-401A	0.20	0.86	0.05	0.22	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-401B	0.20	0.86	0.05	0.22	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-401C	0.04	0.17	0.01	0.04	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-401D	0.39	1.69	0.10	0.43	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Paved Roads	0.00	0.00	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-501	0.007	0.0003	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-502	0.005	0.0003	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Totals:	20.78	40.07	2.78	4.43	0.98	1.12	0.43	0.24	0.001	0.002	0.05	0.04	0.001	0.002	0.0008	0.002	0.0006	0.001

Emission Point ID	Dibromoet	hane (1,2-)	Dichloroet	thane (1,2-)	Dichloro	methane	Dichloropro	opane (1,2-)	Ethylb	enzene	Formal	dehyde	n-He	exane	Hydroch	loric Acid	Mercury (and	d compounds)
	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Chipper																		
Debarker																		
AA-201	0.001	0.003	0.0003	0.001	0.003	0.01	0.000	0.002	0.000	0.002	0.88	3.86	0.03	0.13	0.11	0.49	0.000	0.002
AA-203b	-	-	-	-	0.01	2.39E-04	-	-	-	-	0.15	3.63E-03	-	-	0.63	0.02	-	-
AA-203c	9.08E-04	2.27E-04	4.79E-04	1.20E-04	4.79E-03	1.20E-03	5.45E-04	1.36E-04	5.12E-04	1.28E-04	7.26E-02	1.82E-02			3.14E-01	7.84E-02	5.78E-05	1.44E-05
AA-204b											3.24	0.08						
AA-302	-	-	-	-	-	-	-	-	-	-	0.14	0.62	-	-	-	-	-	-
AA-303								E	missions captured	d under the RCO.								
AA-307A								E	missions captured	d under the RCO.								
AA-307B								E	missions captured	d under the RCO.								
AA-305	-	-	-	-	-	-	-	-	-	-	0.13	0.55	-	-	-	-	-	-
AA-306	-	-	-	-	-	-	-	-	-	-	0.06	0.28	-	-	-	-	-	-
AA-308A								E	missions captured	under the RCO.								•
AA-308B								E	missions captured	d under the RCO.								
AA-308C								E	missions captured	d under the RCO.								
AA-308D								E	missions captured	d under the RCO.								
AA-308E								E	missions captured	d under the RCO.								-
AA-308F								E	missions captured	d under the RCO.								
AA-301	-	-	-	-	-	-	-	-	-	-	0.25	1.09	0.01	0.05	0.06	0.25	-	-
AA-309	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-401A	-	-	-	-	-	-	-	-	-	-	0.09	0.41	-	-	-	-	-	-
AA-401B	-	-	-	-	-	-	-	-	-	-	0.09	0.41	-	-	-	-	-	-
AA-401C	-	-	-	-	-	-	-	-	-	-	0.02	0.08	-	-	-	-	-	-
AA-401D	-	-	-	-	-	-	-	-	-	-	0.19	0.83	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-501	-	-	-	-	-	-	-	-	-	-	0.002	0.0001	-	-	-	-	-	-
AA-502	-	-	-	-	-	-	-	-	-	-	0.001	0.0001	-	-	-	-	-	-
Totals:	0.002	0.003	0.0008	0.002	0.018	0.02	0.001	0.002	0.001	0.002	5.32	8.24	0.04	0.19	1.11	0.83	0.000	0.002

Section B.3: Proposed Allowable Hazardous Air Pollutants (HAPs) In the table below, report the Proposed Allowable Emissions (Potential to Emit) for each HAP from each regulated emission unit if the HAP > 0.0001 tpy. Each facility-wide Individual HAP total and the facility-wide Total HAPs shall be the sum of all HAP sources. Use the HAP nomenclature as it appears in the Instructions. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit. For each HAP listed, fill all cells in this table with the emission numbers or a "-" symbol. A "

Emission Point ID		lene (and hthalenes)	Ph	enol	P	AH	Proprion	aldehyde	Sty	ene	Tetrachlor	oethylene	Tol	Jene	Trichloroet	hane (1,1,1-)	Trichlor	oethylene
	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Chipper																		
Debarker																		
AA-201	0.001	0.005	0.683	2.991	0.0003	0.001	0.101	0.444	0.02	0.10	0.0004	0.002	0.01	0.05	0.0004	0.002	0.0004	0.002
AA-203b	3.20E-03	8.00E-05	-	-	-	-	-	-	0.06	1.57E-03	-	-	0.03	7.59E-04	-	-	-	-
AA-203c	1.60E-03	4.00E-04	8.42E-04	2.10E-04	4.61E-04	1.15E-04	1.01E-03	2.52E-04	3.14E-02	7.84E-03	6.27E-04	1.57E-04	1.52E-02	3.80E-03	5.12E-04	1.28E-04	4.95E-04	1.24E-04
AA-204b			0.65	0.02			0.30	0.01	0.01	0.0002			0.30	0.01				
AA-302	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-303								E	missions capture	under the RCO.								
AA-307A									missions capture									
AA-307B								E	missions capture	d under the RCO.								
AA-305	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-306	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-308A						•		E	missions capture	under the RCO.								
AA-308B								E	missions capture	d under the RCO.								
AA-308C								E	missions capture	d under the RCO.								
AA-308D								E	missions capture	d under the RCO.								
AA-308E								E	missions capture	d under the RCO.								
AA-308F								E	missions capture	d under the RCO.								
AA-301	-	-	1.58	6.93	-	-	0.24	1.06	-	-	-	-	0.00002	0.0001	-	-	-	-
AA-309	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-401A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-401B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-401C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-401D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-501	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-502	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Totals:	0.006	0.01	2.915	9.941	0.0008	0.002	0.646	1.514	0.12	0.11	0.001	0.002	0.36	0.06	0.001	0.002	0.001	0.002

Emission Point ID	Trichloroflu	oromethane	Xy	lene	Arsenic (and	l compounds)	Barium (and	compounds)	Copper (and	compounds)	Lead con	npounds	Manganese (a	nd compounds)	Nickel (and	compounds)	Phosp	phorus
	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr	lb/hr	ton/yr
Chipper																		
Debarker																		
AA-201	0.00	0.02	0.0003	0.001	0.0001	0.0003	0.000	0.002	0.0001	0.001	0.0001	0.001	0.00	0.02	0.0001	0.000	0.0001	0.0003
AA-203b	0.01	3.38E-04	-	-	-	-	0.01	1.40E-04	-	-	-	-	0.05	1.32E-03	-	-	-	-
AA-203c	6.77E-03	1.69E-03	4.13E-04	1.03E-04	3.63E-04	9.08E-05	2.81E-03	7.01E-04	8.09E-04	2.02E-04	7.92E-04	1.98E-04	2.64E-02	6.60E-03	5.45E-04	1.36E-04	4.46E-04	1.11E-04
AA-204b			0.01	0.0003														
AA-302	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-303								E	missions capture	d under the RCO.								
AA-307A								E	missions capture	d under the RCO.								
AA-307B								E	missions capture	d under the RCO.								
AA-305	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-306	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-308A								E	missions capture	d under the RCO.								
AA-308B								E	missions capture	d under the RCO.								
AA-308C								E	missions capture	d under the RCO.								
AA-308D								E	missions capture	d under the RCO.								
AA-308E								E	missions capture	d under the RCO.								
AA-308F								E	missions capture	d under the RCO.								
AA-301	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.00003	0.0001	-	-
AA-309	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-401A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-401B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-401C	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-401D	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Paved Roads	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-501	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
AA-502	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Totals:	0.03	0.02	0.0118	0.002	0.0004	0.0004	0.009	0.003	0.0010	0.001	0.0009	0.001	0.08	0.03	0.0007	0.001	0.0005	0.0005

Section B.3: Proposed Allowable Hazardous Air Pollutants (HAPs)

Emission Point ID	Zinc (and d	compounds)	Meth	anol						
	lb/hr	ton/yr	lb/hr	ton/yr						
Chipper										
Debarker										
AA-201	0.001	0.01	-	-						
AA-203b	0.014	3.47E-04								
AA-203c	0.007	0.002								
AA-204b			2.55	0.06						
AA-302	-	-	0.07	0.33						
AA-303		Emissions capture	ed under the RCO							
AA-307A		Emissions capture	ed under the RCO							
AA-307B		Emissions capture	ed under the RCO							
AA-305	-	-	0.07	0.30						
AA-306	-	-	0.03	0.15						
AA-308A		Emissions capture	ed under the RCO							
AA-308B		Emissions captured under the RCO.								
AA-308C	Emissions captured under the RCO.									
AA-308D		Emissions capture	ed under the RCO							
AA-308E		Emissions capture	ed under the RCO							
AA-308F		Emissions capture	ed under the RCO							
AA-301	-	-	2.92	12.81						
AA-309	-	-	-	-						
AA-401A	-	-	0.05	0.22						
AA-401B	-	-	0.05	0.22						
AA-401C	-	-	0.01	0.04						
AA-401D	-	-	0.10	0.43						
Paved Roads	-	-	-	-						
AA-501	-	-	-	-						
AA-502	-	-	-	-						
Totals:	0.022	0.01	5.85	14.56						

Section B.4: Greenhouse Gas Emissions

		CO ₂ (non- biogenic) ton/yr	CO ₂ (biogenic) ² ton/yr	N ₂ O ton/yr	CH ₄ ton/yr	SF ₆ ton/yr	PFC/HFC ³ ton/yr				Total GHG Mass Basis ton/yr ⁵	Total CO ₂ e ton/yr ⁶
Emission Point ID	GWPs ¹	1	1	298	25	22,800	footnote 4				t011/y1	
AA-201	mass GHG	12298.76		0.02	0.23						12299.01	
AA-201	CO ₂ e	12298.76		6.91	5.79							12311.46
A A 201	mass GHG	7174.27		0.01	0.14						7174.42	
AA-301	CO ₂ e	7174.27		4.03	3.38							7181.68
	mass GHG	14.27		0.0001	0.001						14.27	
AA-501	CO ₂ e	14.27		0.03	0.01							14.32
AA-502	mass GHG	22.95		0.0002	0.001						22.95	
AA-JUZ	CO ₂ e	22.95		0.06	0.02							23.02
								FACILITY	TOTAL	mass GHG	19,510.66	
								FACILITI	TOTAL	CO ₂ e		19,530

Applicants must report potential emission rates in SHORT TONS per year, as opposed to metric tons required by Part 98. Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit.

¹ GWP (Global Warming Potential): Applicants must use the most current GWPs codified in Table A-1 of 40 CFR part 98. GWPs are subject to change, therefore, applicants need to check 40 CFR 98 to confirm GWP values.

 2 Biogenic CO2 is defined as carbon dioxide emissions resulting from the combustion or decomposition of non-fossilized and biodegradable organic material originating from plants, animals, or micro-organisms.

³ For **HFCs** or **PFCs** describe the specific HFC or PFC compound and use a separate column for each individual compound.

⁴ For each new compound, enter the appropriate GWP for each HFC or PFC compound from Table A-1 in 40 CFR 98.

⁵ Greenhouse gas emissions on a **mass basis** is the ton per year greenhouse gas emission before adjustment with its GWP. Do not include biogenic CO_2 in this total.

⁶ CO₂e means Carbon Dioxide Equivalent and is calculated by multiplying the TPY mass emissions of the greenhouse gas by its GWP. Do not include biogenic CO₂e in this total.

Section B.5: Stack Parameters and Exit Conditions

Emission Point ID	Orientation (H- Horizontal	Rain Caps	Height Above Ground	Base Elevation	Exit Temp.	Inside Diameter or Dimensions	Velocity	Moisture by Volume		hic Position nutes/seconds)
	V=Vertical)	(Yes or No)	(ft)	(ft)	(°F)	(ft)	(ft/sec)	(%)	Latitude	Longitude
		*Note: N	/lodeling was n	ot required; th	erefore, stack	parameters are n	ot provided.			

Emission Point numbering must be consistent throughout the application package and, for existing emission points, should match any MDEQ ID's in the current permit.

¹ A WAAS-capable GPS receiver should be used and in the WGS84 or NAD83 coordinate system. Coordinates listed are in Zone 15.

FORM 5	MDEQ			PPLICATI	ENT OF ENVI ON FOR AIR I OL PERMIT	RONMENTAL POLLUTION	
Fuel Burning	g Equipment	- External Com	bustion So	urces		Sectior	n C
1. Emission	Point Descripti	on					
A. Emission	Point Designation	(Ref. No.):	AA-203a/AA	-203b/AA-203	3c		
B. Equipme	nt Description:	Wood Fired Furna	ce/Wood Fired	Furnace Bypa	uss Stack		
C. Manufact	turer: Dieffenba	acher	D.	Model Yr and	l No.: <u>N/A</u>		
	n Heat Input eating value):	165 MMBtu/	′hr	F. Nominal Input Ca		N/A MMBtu/hr	
G. For units	subject to NSPS DI	o, is the heat release rate	e > 70,000 Btu/	hr-ft3?	Yes	No	
H. Use:	Elec	trical Generation		Stea	am	X Process Hea	nt
	Space Heat	Standby/Eme	rgency	Oth	er (describe):		
I. Heat Mee	chanism:	X Direct		Indirect			
	ype (e.g., pulverized g oil, low-NOx, etc.		Spreader stok	er			
K. Additiona	al Design Controls (e.g., FGR, etc.):	N/A				
L. Status:	X Ope	rating	Prop	oosed	Under	Construction	
		ruction, or most recent nticipated construction:		or		August 2015	
2. Fuel Typ	e						
Complete the and yearly usa	-	ntifying each type of fu	el and the amou	nt used. Speci	fy the units for hea	t content, hourly usage,	
FUEL	TYPE ¹	HEAT CONTENT	% SULFUR	% ASH	MAXIMUM HOURLY USAGE	MAXIMUM YEARLY USAGE	
bior	mass	4500 BTU/lb	0.0056	3	53.35 tons	467,316 tons	
						+	
Please list any	fuel components th	hat are hazardous air pol	llutants and the	percentage in	the fuel:		
						-	
However, you	are only required to	be considered "solid w complete Section C, no					
the table abov	e.						

FC	ORM 5	MDEQ		ALITY APPL		OF ENVIRONME OR AIR POLLUT CRMIT						
Fuel	Burning H	Equipment - Ir	ternal Combustion	Engines			Section D					
1. I	Emission Po	oint Description										
A.	Emission P	Point Designation (Re	f. No.): AA-5	501								
B.	Equipment	Description:	Emergency Pump Eng	<u>gine</u>								
C.	Manufactu	rer: John Dee	re Power Systems	D.	Model Yr and N	Io.: <u>2013 JU6</u>	I-UFADR8					
E.	Maximum	Heat Input (higher h	eating value):		0.64 MM	Btu/hr						
F.	Rated Pow	er:	<u>250</u> hp	187	kW							
G.			n-Emergency		gency							
Co	omplete H thr	ough K for Recipro	cating (Piston) Internal Con	nbustion Engine	S							
H.	Displaceme	ent per cylinder:	X <10 Liters	10 to	<30 Liters	≥ 30 Liters						
I.	Engine Ign	ition Type:	Spark Ignit	tion	Χ	Compression Ignition						
J.	Engine Bui (check all t	• •	X 4-stroke	2-stroke		Rich Burn	Lean Burn					
K.	-	ntrols (e.g., catalytic culate, etc.):	converter,	N/A								
C	Complete L through M for Stationary Gas Turbines											
L.	Turbine Ty	/pe:	Simple Cycle	Rege and Power (Coge	nerative Cycle	Combined	Cycle					
М	. Controls:		Water-steam inje	-	Lean	Premix						
N.	Status:		Operating		Proposed	Under Con	struction					
0.	Engine Ma	nufactured Date:			N. Engi	ne Order Date:						
Р.	-		r engine be operated for Emer C Reliability Standard?	rgency		Yes	No					
Q.	If an emerged demand res		d for peak shaving or non-em	ergency		Yes	No					
R.		nstruction, reconstructures) or date of antic	tion, or most recent modificat	ion (for								
2.	Fuel Type											
		lowing table identify	ing each type of fuel and the a	mount used free	oify units of mas	asurement						
		TYPE	HEAT CONTENT	% SULFUR	% ASH	MAXIMUM HOURLY USAGE	MAXIMUM YEARLY USAGE					
	Ultra-Low S	Sulfur Diesel	140,000 Btu/gal	15 ppm	0.02	4.6 gal	2,290 gal					
			5			<u> </u>						
-												
							I					

I	FOI	RM 5	MDEQ			J ALITY APPL		OF ENVIRONME OR AIR POLLUT ERMIT				
Fue	B	urning H	Equipment -	Internal	Combustion				Section D			
1.		0	oint Description			8			L			
	A.	Emission F	Point Designation (Ref. No.):		AA-502						
	B.	Equipment	Description:	E	mergency Generate	or Engine						
	C.	Manufactu	rer: <u>Gener</u>	ac Industrica	l Power	D.	Model Yr and N	Io.: <u>2015 SD 3</u>	00			
	E.	Maximum	Heat Input (higher	r heating value	ue):		0.81 MM	Btu/hr				
	F.	Rated Pow	er:	402	hp	300	kW					
	G.	Use:		Non-Emerger	•		rgency					
	Com	plete H thr	ough K for Recip	procating (P	viston) Internal Co	ombustion Engine	s					
	H.	Displacem	ent per cylinder:		<10 Liters	X 10 to	<30 Liters	≥ 30 Liters				
	I.	Engine Ign	ition Type:		Spark Ig	nition	Χ	Compression Ignition				
	J.	Engine But (check all t		X	4-stroke	2-stroke		Rich Burn	Lean Burn			
	K.	-	ntrols (e.g., catalyt culate, etc.):	ic converter,	,	N/A						
	Complete L through M for Stationary Gas Turbines											
	L.	Turbine Ty	vpe:		Simple Cycle	<u> </u>	nerative Cycle	Combined	Cycle			
	M.	Controls:			Water-steam in	at and Power (Coge njection s (SCR, oxidation c	Lean	Premix				
	N.	Status:			Operating		Proposed	Under Con	struction			
	0.	Engine Ma	nufactured Date:				N. Engi	ne Order Date:				
	P.		gency engine, can esponse per the N	-	be operated for En lity Standard?	nergency		Yes	No			
	Q.	If an emerg demand res		used for pea	k shaving or non-e	mergency		Yes	No			
	R.		nstruction, reconst urces) or date of a		nost recent modific	ation (for						
2.	Fı	iel Type										
			1			. 10						
	Com	FUEL			type of fuel and the	e amount used. Spe % SULFUR	% ASH	MAXIMUM HOURLY USAGE	MAXIMUM YEARLY USAGE			
		Ultra-Low S	ulfur Diesel	140	000 Btu/gal	15 ppm	0.02	17 gal	8570 gal			
		Unia-LOW S	Junui Diesei	140,	ooo Diu/gai	15 ppm	0.02	17 gai	6570 gai			

F(ORM	5 MDEQ		DEPARTMENT OF ENVIRONME PPLICATION FOR AIR POLLUT CONTROL PERMIT	
Ma		cturing Proce			Section E
1.	Emiss	ion Point Description	n		
	A. E	Emission Point Desig	nation (Ref. No.): <u>AA-202 -</u>	Five Green Hammermills - DELETE SOU	JRCE
	B. F	Process Description:	Five Green Hammermills		
	C. M	Aanufacturer:		D. Model:	
	E. N	Aaximum Design Ca	pacity (specify units): Equivalent to:	tons/hr	
	F. S	status:	Operating Prop	Dosed Under Construct	tion
	G. (Operating Schedule (A	Actual): hrs/day	days/weekweek	s/yr
	(for existing sources)	reconstruction, or most recent modific or date of anticipated construction:	cation	
2.	Raw	Material Input			
		MATERIAL	QUANTITY/HR AVERAGE	· · · · · · · · · · · · · · · · · · ·	ANTITY/YEAR MAXIMUM
3.	Proc	luct Output			
				1	
		MATERIAL	QUANTITY/HR AVERAGE		ANTITY/YEAR MAXIMUM
		Wood	88 tons/hr	88 tons/hr 578	3,052 tons/year
	<u> </u>			I I	

FC	ORM 5	MDEQ		DEPARTMENT OF H PPLICATION FOR A CONTROL PERM	AIR POLLUT	
Ma	nufactu	iring Proce	sses			Section E
1.	Emission	Point Descripti	on			
	A. Emis	ssion Point Desig	mation (Ref. No.): AA-204a/A	AA-204b		
	B. Proc	ess Description:	Wood Chip Rotary Dryer with 1: Bypass Stack (AA-204b).	2.5 MMBTU/hr Wood Chi	p Rotary Dryer	
	C. Man	ufacturer:	Dieffenbacher	D. Model:	Rotary Dyer	
	E. Max	imum Design Ca	pacity (specify units): Equivalent to:	158	tons/hr	
	F. Statu	IS: X	Operating Prop	osed	Under Constructi	on
	G. Oper	ating Schedule (Actual): <u>24</u> hrs/day	7 days/week	52 weeks	/yr
			reconstruction, or most recent modification or date of anticipated construction:	ation	August 2015	
2.	Raw M	aterial Input				
]	MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM		NTITY/YEAR AXIMUM
		Wood	158 tons/hr	158 tons/hr	1,266	i,000 tons/year
3.	Produc	t Output				
	110000	• o alpar				
]	MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM		NTITY/YEAR AXIMUM
		Wood	88 tons/hr	53.3 tons/hr	467,	316 tons/year

FORM 5		MDEQ	MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT							
Ma	nufac	turing Proce	sses			Section E				
1.	1. Emission Point Description									
	A. En	A. Emission Point Designation (Ref. No.): AA-302								
	B. Process Description: Primary Hammermill Feed Silo with Bin Vent									
	C. Ma	nufacturer:	Hoffman	D. Model:	Dry Chip Silo					
	E. Maximum Design Capacity (specify units): Equivalent to: 88 tons/hr									
	F. Sta	tus: X	Operating Propo	sed	Under Construct	ion				
	G. Operating Schedule (Actual): <u>24 hrs/day</u> <u>7 days/week</u> <u>52 weeks/yr</u>									
	N. Date of construction, reconstruction, or most recent modification (for existing sources) or date of anticipated construction: August 2015									
2.	2. Raw Material Input									
		MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM		NTITY/YEAR IAXIMUM				
		Wood	71.31 tons/hr	71.31 tons/hr	624	,700 tons/year				
3.	Produ	ct Output								
		_								
		MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM		NTITY/YEAR IAXIMUM				
		Wood	71.31 tons/hr	71.31 tons/hr	624	,700 tons/year				
	L									

FORM 5		MDEQ	MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT							
Man	ufactu	ring Proce	sses		Section E					
1. E	1. Emission Point Description									
А	. Emis	sion Point Desig	nation (Ref. No.): AA-303 (A	-F)						
В	B. Process Description: Primary Hammermill Pneumatic System Vents (6 systems each with an emission point for a total of 6 emission points). Each system is equipped with a baghouse filter to control PM emissions. Emissions from these sources are routed to the RCO (AA-301).									
С	. Manı	ifacturer:	CPM - Roskamp	D. Model: H	M 5448					
Е	E. Maximum Design Capacity (specify units): Equivalent to: 88 tons/hr									
F.	F. Status: X Operating Proposed Under Construction									
G	G. Operating Schedule (Actual): <u>24</u> hrs/day <u>7</u> days/week <u>52</u> weeks/yr									
	N. Date of construction, reconstruction, or most recent modification (for existing sources) or date of anticipated construction: August 2015									
2.	Raw Ma	aterial Input								
	Ν	MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR MAXIMUM					
		Wood	71.31 tons/hr	71.31 tons/hr	624,700 tons/year					
3.	Product	t Output								
J.	IIouuc	louipui								
	Ν	MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR MAXIMUM					
		Wood	71.31 tons/hr	71.31 tons/hr	624,700 tons/year					
╎┠										
L										
L										

FC	FORM 5 MDEQ MISSISSIPPI DEPARTMENT OF ENVIRONMENTA QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT						
Ma		uring Proce					Section E
1.	Emission	Point Description	n				
	A. Emi	ssion Point Desig	nation (Ref. No.): AA	-304			
	B. Proc	ess Description:	Truck Dump				
	C. Man	ufacturer:			D. Model:		
	E. Max	imum Design Ca	pacity (specify units): Equivalent to			tons/hr	
	F. Statu	ıs: X	Operating	Proposed		Under Construct	ion
	G. Oper	rating Schedule (Actual): 24 hrs.	day	7 days/week	52 weeks	s/yr
			reconstruction, or most recent r or date of anticipated construct			July 2020	
2.	Raw M	aterial Input					
	- - -	MATERIAL	QUANTITY/HR AVERAGE		QUANTITY/HR MAXIMUM		NTITY/YEAR IAXIMUM
		Wood	53.35 tons/hr		53.35 tons/hr	46	7,216 tons/yr
3.	Produc	et Output					
		MATERIAL	QUANTITY/HR AVERAGE		QUANTITY/HR MAXIMUM		NTITY/YEAR IAXIMUM
		Wood	53.35 tons/hr		53.3 tons/hr	46	7,216 tons/yr

FC	ORM 5 MDEQ MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT										
Ma	nufact	uring Proces	sses				Section E				
1.	Emissio	n Point Descriptio	n								
	A. Em	ission Point Design	nation (Ref. No.):	AA-305			_				
	B. Process Description: Secondary Hammermill Feed Silo No.1 with Bin Vent										
	C. Manufacturer: Hoffman D. Model: Dry Chip Silo										
	E. Ma	ximum Design Cap	pacity (specify units) Eq	: uivalent to:	88	tons/hr					
	F. Sta	tus: X	Operating	Propo	sed	Under Construction	I				
	G. Op	erating Schedule (A	Actual):	24 hrs/day	7 days/week	52 weeks/yr	r				
			reconstruction, or mo		tion	August 2015					
2.	Raw N	Aaterial Input									
		MATERIAL		TITY/HR ERAGE	QUANTITY/HR MAXIMUM		TITY/YEAR XIMUM				
		Wood	71.31	tons/hr	71.31 tons/hr	624,70	0 tons/year				
3.	Produ	ct Output									
		MATERIAL		TITY/HR ERAGE	QUANTITY/HR MAXIMUM		TITY/YEAR XIMUM				
		Wood	71.31	tons/hr	71.31 tons/hr	624,70	0 tons/year				

FC	ORM 5 MDEQ MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT										
Ma	nufact	uring Proces	ises				Section E				
1.	Emission	n Point Descriptio	n								
	A. Em	ission Point Desig	nation (Ref. No.):	AA-306			-				
	B. Process Description: Secondary Hammermill Feed Silo No. 2 with Bin Vent										
	C. Manufacturer: Hoffman D. Model: Dry Chip Silo										
	E. Ma	ximum Design Cap	pacity (specify units): Equivaler	nt to: 88		tons/hr					
	F. Stat	us: X	Operating	Proposed		Under Construction					
	G. Ope	erating Schedule (A	Actual): 24	hrs/day	7 days/week	52 weeks/yr					
			econstruction, or most rec or date of anticipated const			August 2015					
2.	Raw N	Iaterial Input									
		MATERIAL	QUANTITY/ AVERAGI		QUANTITY/HR MAXIMUM		TTY/YEAR XIMUM				
		Wood	71.31 tons/1	ır	71.31 tons/hr	624,70) tons/year				
3.	Produ	ct Output									
		·····									
		MATERIAL	QUANTITY/ AVERAGI		QUANTITY/HR MAXIMUM		TTY/YEAR XIMUM				
		Wood	71.31 tons/1	ır	71.31 tons/hr	624,70	0 tons/year				

FO	FORM 5 MDEQ MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT						
Ma	nufa	turing Proce	sses	CONTROLIER		Section E	
1.		on Point Descripti					
	Α. Ε	mission Point Desig	mation (Ref. No.): AA-307				
	В. Р	rocess Description:	Three (3) Secondary Hammermi equipped with a baghouse filter t sources are routed to the RCO (A	o control PM emissions. E			
	C. M	anufacturer:	CPM - Roskamp	D. Model:	HM 5448		
	E. N	aximum Design Ca	pacity (specify units): Equivalent to:	88	tons/hr		
	F. S	atus: X	Operating Propo	osed	Under Construction	on	
	G. C	perating Schedule (Actual): <u>24</u> hrs/day	7 days/week	52 weeks/	yr	
			reconstruction, or most recent modification or date of anticipated construction:	ation	August 2015		
2.	Raw	Material Input					
		MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM		TTITY/YEAR AXIMUM	
		Wood	71.31 tons/hr	71.31 tons/hr	624,7	100 tons/year	
3.	Prod	uct Output					
		MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM		ITITY/YEAR AXIMUM	
		Wood	71.31 tons/hr	71.31 tons/hr		00 tons/year	

FC	ORM 5	MDEQ		DEPARTMENT OF EN PPLICATION FOR AI CONTROL PERMIT	R POLLUTION
Ma	nufact	uring Proce	sses		Section E
1.	Emissio	n Point Descripti	on		
	A. Em	ission Point Desig	gnation (Ref. No.): AA-308 (A	A though F)	
	B. Pro	cess Description:	SIx (6) Pellet Mill / Cooler Pnet with a baghouse filter to control routed to the RCO (AA-301).		
	C. Ma	nufacturer:	CPM - Roskamp	D. Model: P	ellet Cooler
	E. Ma	ximum Design Ca	pacity (specify units): Equivalent to:	528 to	ons/hr
	F. Sta	tus: X	Operating Prop	osed U	Inder Construction
	G. Op	erating Schedule (Actual): <u>24</u> hrs/day	7 days/week	52 weeks/yr
			reconstruction, or most recent modific or date of anticipated construction:	ation	August 2015
2.	Raw I	Aaterial Input			
		MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR MAXIMUM
		Wood	71.31 tons/hr	71.31 tons/hr	624,700 tons/year
3.	Produ	ct Output			
		MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR MAXIMUM
		Wood	71.31 tons/hr	71.31 tons/hr	624,700 tons/year
	1		I	1	1

FOR	FORM 5 MDEQ MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT									
Manı	ufactu	ring Proces	ses		Section E					
1. Er	mission	Point Descriptio	n							
A.	Emis	sion Point Design	nation (Ref. No.): AA-401							
В.	B. Process Description: Two (2) Pellet Storage Silos, Screened Materials Return System, and Pellet Truck Loadout System. Emissions from all sources controlled by a common baghouse.									
C.	Manı	afacturer:	Advance Conveying Technologies (A	CT) D. Model: Pello	et Silo					
E.	Maxi	mum Design Cap	pacity (specify units): Equivalent to:	88 tons	/hr					
F.	Statu	s: X	Operating Prop	Dosed Und	er Construction					
G.	Opera	ating Schedule (A	Actual): <u>24</u> hrs/day	7 days/week	52 weeks/yr					
N.			reconstruction, or most recent modific or date of anticipated construction:		August 2015					
2. H	Raw Ma	aterial Input								
	Ν	MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR MAXIMUM					
		Wood	71.31 tons/hr	71.31 tons/hr	624,700 tons/year					
3. I	Droduce	t Output								
5. I	Touuci	ulput								
	Ν	MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR MAXIMUM					
		Wood	71.31 tons/hr	71.31 tons/hr	624,700 tons/year					

FORM 5	MDEQ			OF ENVIRONMENTAL FOR AIR POLLUTION PERMIT
Baghouses/Fal	oric Filters			Section L1
1. Oxidation S	ystem Equipme	nt		
A. Emission	n Point Designat	on (Ref. No.): AA-303 (1-6)		
	• ·	nclude the process(es) that adsorpti		
				use filter to control particulate matter
emissions	s; emissions fron	these sources are routed to the RC	O (AA-301)]	
C. Manufact	turer:		D. Model:	
E. Status:	X Oper	ating Proposed	Under	Construction
2. Baghouse Da	nta			
A. Cloth Are		ft ² B. A	r to cloth ratio	acfm/ft ²
C. Type of ba	ag: Wove	n Felted I	Membrane	Other
D. Filter Mate	erial	E. M	ax. Filter Operating Ter	np°F
F. No. of con	npartments	G. No	o. of bags per compartm	ent:
H. Bag Lengt	th	ft I. Ba	g diameter	ft
J. Pressure dr	op:	in H ₂ 0 K. Ir	let air flow rate:	acfm
L. Air tempera	ature 70	°F M. E	fficiency (PM):	99 %
N. Is a pressu installed	ire measurement	device Yes	No Warning a	alarm? Yes No
O. Dirty air is	s on:	Inside of bag	Dutside of bag	
P. Time betw	een bag cleaning	(specify units):sec.		Timed Manual
Q. Method of	f cleaning	Shaking Reverse a Other:	ir Pulse Jet	
R. Are extra l	bags readily avai	able? Yes No	If yes, how ma	ny? <u>5</u>
		en to replace bags: Alarm Other:	Dust is discharged	vection Visible emissions

FORM 5	MDEQ	MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT					
Baghouses/Fal	Baghouses/Fabric Filters Section L1						
1. Oxidation S	ystem Equipme	ent					
A. Emission	n Point Designati	tion (Ref. No.): AA-307 (A, B, & C)					
B. Equipme	nt Description (in	include the process(es) that adsorption controls emissions from):					
Three (3)	Secondary Ham	nmermill Pneumatic Systems A & B (each system equipped with a baghouse filter					
to control	l particulate matt	tter emissions; emissions from these sources are routred to the RCO (AA-301).					
C. Manufact	turor.	D. Model:					
C. Manufact		D. Wout.					
E. Status:	X Oper	erating Proposed Under Construction					
2. Baghouse Da	ita						
A. Cloth Are	ea	ft^2 B. Air to cloth ratio $acfm/ft^2$					
C. Type of ba	ag: Wove	en Felted Membrane Other					
D. Filter Mate	erial	E. Max. Filter Operating Temp ^o F					
F. No. of con	npartments	G. No. of bags per compartment:					
H. Bag Lengt	h	ft I. Bag diameterft					
J. Pressure dr	op:	in H ₂ 0 K. Inlet air flow rate: acfm					
L. Air tempera	ature 70	0 °F M. Efficiency (PM): 99 %					
N. Is a pressu installed	re measurement	t device Yes No Warning alarm? Yes No					
O. Dirty air is	s on:	Inside of bag Outside of bag					
P. Time betw	een bag cleaning	g (specify units): sec Timed Manual					
Q. Method of	cleaning	Shaking Reverse air Pulse Jet Other:					
R. Are extra l	bags readily avail	ilable? Yes No If yes, how many? 5					
	C C	hen to replace bags: Alarm Internal Inspection Visible emissions Other: Dust is discharged back into the bin???					

FORM 5	MDEQ	MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION						
	,	CONTROL PERMIT						
0	Baghouses/Fabric Filters Section L1							
1. Oxidation S	ystem Equipme	ent						
A. Emission	n Point Designat	tion (Ref. No.): AA-308 (A-F)						
	-	include the process(es) that adsorption controls emissions from):						
		er Pneumatic Systems A-F (each system comprised of t2 pellet mills and						
		res are routed to the RCO (AA-301).						
C. Manufac		D. Model:						
E. Status:		erating X Proposed Under Construction (2 are proposed)						
2. Baghouse Da	ata							
A. Cloth Are	ea	ft^2 B. Air to cloth ratio $acfm/ft^2$						
C. Type of ba	ag: Wove	en Felted Membrane Other						
D. Filter Mat	erial	E. Max. Filter Operating Temp°F						
F. No. of con	npartments	G. No. of bags per compartment:						
H. Bag Lengt	th	ft I. Bag diameter ft						
J. Pressure dr		in H ₂ 0 K. Inlet air flow rate: acfm						
L. Air temper	ature 70	0 °F M. Efficiency (PM): 99 %						
N. Is a pressu installed	are measurement	t device Yes No Warning alarm? Yes No						
O. Dirty air is	s on:	Inside of bag Outside of bag						
P. Time betw	een bag cleaning	g (specify units):secTimedManual						
Q. Method of	f cleaning	Shaking Reverse air Pulse Jet Other: Pulse Jet						
R. Are extra	bags readily avai	ilable? Yes No If yes, how many? 5						
	Ū	hen to replace bags: Alarm Internal Inspection Visible emissions Other: stored, handled, and disposed of? Dust is discharged back into the bin???						

FORM 5	MDEQ	MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT	
Baghouses/Fal		Section L1	
1. Oxidation S	ystem Equipme	ent	
A. Emission	n Point Designati	tion (Ref. No.): AA-309	
	-	include the process(es) that adsorption controls emissions from):	
Starch St	orage Silo with b	bin vent (equipped with baghouse filter)	
C. Manufac	turer:	D. Model:	
E. Status:	X Oper	erating Proposed Under Construction	
2. Baghouse Da	nta		
A. Cloth Are	ea	ft^2 B. Air to cloth ratio $acfm/ft^2$	
C. Type of ba	ag: Wove	en Felted Membrane Other	
D. Filter Mat	erial	E. Max. Filter Operating Temp ^o F	
F. No. of con	npartments	G. No. of bags per compartment:	
H. Bag Lengt	ih	ft I. Bag diameterft	
J. Pressure dr	op:	in H ₂ 0 K. Inlet air flow rate: acfm	
L. Air tempera	ature 70	0 °F M. Efficiency (PM): 99 %	
N. Is a pressu installed	re measurement	t device Yes No Warning alarm? Yes No	
O. Dirty air is	s on:	Inside of bag Outside of bag	
P. Time betw	een bag cleaning	g (specify units): sec Timed Manual	
Q. Method of	f cleaning	Shaking Reverse air Pulse Jet Other:	
R. Are extra	bags readily avai	ilable? Yes No If yes, how many? 5	
		nen to replace bags: Alarm Internal Inspection Visible emissions Other:	

FORM 5	MDEQ	QUALITY APPL	ARTMENT OF ENVIRONMENTAL ICATION FOR AIR POLLUTION ONTROL PERMIT
Baghouses/Fab			Section L1
1. Oxidation S	ystem Equipme	ıt	
A. Emissior	n Point Designati	on (Ref. No.): <u>AA-401</u>	
B. Equipment	nt Description (in	clude the process(es) that adsorption contr	ols emissions from):
	-	os, Screened Materials Return System, and	Pellet Truck Loadout System
(emission	is from all source	s are controlled by a common baghouse).	
C. Manufact	turer:	D.	Model:
E. Status:	X Oper	ting Proposed	Under Construction
2. Baghouse Da	ıta		
A. Cloth Are	ea	ft^2 B. Air to clot	h ratioacfm/ft ²
C. Type of ba	ig: Wove	Felted Membrar	e Other
D. Filter Mate	erial	E. Max. Filte	r Operating Temp°F
F. No. of com	partments	G. No. of bag	s per compartment:
H. Bag Lengt	h	ft I. Bag diamet	erft
J. Pressure dr	op:	in H_20 K. Inlet air flo	ow rate: acfm
L. Air tempera	ature 70	^o F M. Efficiency	/ (PM): <u>99</u> %
N. Is a pressu installed	re measurement	levice Yes No	Warning alarm? Yes No
O. Dirty air is	s on:	Inside of bag Outside of	of bag
P. Time betw	een bag cleaning	(specify units):sec.	Timed Manual
Q. Method of		Shaking Reverse air Other:	Pulse Jet
R. Are extra b	bags readily avai	able? Yes No	If yes, how many? 5
	-	n to replace bags: Alarm Other:	Internal Inspection Visible emissions

FORM	4.5 N	IDEQ]				MENT OF EN TION FOR AI			
1010	CONTROL PERMIT									
Oxidatio	n Systems								Section L	4
1. Oxida	ation System	Equipment								
Α. Ε	Emission Point	Designation	(Ref. No.):	AA-2	201					_
В. Е	quipment Deso	cription (incl	ude t Finishe	d Pellet Ope	erations					
<u>R</u>	egenerative Th	ermal Oxidi	zer (RTO) co	ontrols emis	sions from o	<u>chip dr</u>	<u>yer</u>			
C. M.	lanufacturer:	MEGTE	2			D.	Model: Clean Sy	witch RTC)	
E. Si	atus:	X Operati	ng	Pr	oposed		Under Cor	struction		
2. Oxida	tion System I	Data								
А. Т	ype of Oxidati	on Process:								
		erative Ther erative Ther	mal Oxidizer mal Oxidizer				Catalytic Oxidizer Catalytic Oxidizer			
	fficiency: fficiency:	72.5 96	% (estimate % (estimate		-		ng pollutant(s): ng pollutant(s):	CO VOC		
C. In	let air flow ra	te: <u>2</u>	00,000	acfm						
D. C	ombustion Ch	amber Temp	erature:	Minimum	n: <u>1</u> 4	50	°F Maximu	m:	<u>1800</u> °F	7
E. M	laximum burn	er rating:	24.0	MM	Btu/hr	F.	Fuel Type:	Na	tural Gas	_
G. F	uel Usage Rate	e (specify un	its):	23,529 sc	f/hr	H.	Sulfur in Fuel:	0.02 gr	/scf wt %	
I. R	esidence Time	:	0.4 s	econds		J.	Percent Excess Ai	r:	<u>N/A</u> %	
К. С	ombustion Ch	amber Volun	ne:	3,637	ft ³					
L. V	OC Concentra	tion:	Inlet:	107	ppmv		Outlet:	4.3	ppmv	

2.	Oxi	idati	ion System Data (continued)
	M.	Cat	alyst Data (if applicable):
		1.	Catalyst type:
		2.	Catalyst volume:ft ³
		3.	How is spent catalyst disposed of?
	N.	Fla	re Data (if applicable):
		1.	Flare Type: Non-assisted Steam-assisted Air-assisted
			Other:
		2.	Net heating value of combusted gas: Btu/scf
		3.	Design exit velocity: ft/sec
		4.	Is the presence of a flare pilot flame monitored? Yes No
			If yes, please describe the monitoring:

FOI	RM 5	MDF	EQ							RONMENT POLLUTIC	
							CONT	ROL PE	RMIT		
	ion Syst	ems								Secti	on L4
1. Ox	idation Sy	ystem Equi	pment								
A.	Emissior	n Point Desi	gnation (Ref	E. No.):	AA-3	01					
B.	Equipme	nt Descripti	on (include t	Finished F	ellet Oper	rations					
			ic Oxidizer (le Pellet Coo		trols emiss	sions from	<u>the Pri</u>	<u>mary Hamn</u>	<u>hermills, th</u>	e Secondary	
C.	Manufact	turer: <u>N</u>	ESTEC Inc.				D.	2 Model: 9	08 RCOs		
E.	Status:	X	Operating	[Pro	oposed		Un	der Constru	uction	
2. Oxi	idation Sy	stem Data									
	-										
А.	Type of C	Dxidation Pr	cocess:								
		-	r ve Thermal (ve Thermal (X	-		Catalytic O Catalytic O			
В.	Efficienc Efficienc	· · · · · · · · · · · · · · · · · · ·		estimated) estimated)		-		ng pollutant ng pollutant		VOC	
C.	Inlet air f	low rate:	293,04	4 <u>2</u> 8	acfm						
D.	Combusti	ion Chambe	er Temperatu	re: I	Minimum:	. 7	/50	°F M	Aaximum:	1400	°F
E.	Maximur	n burner rat	ing:	5.0	MMB	8tu/hr	F.	Fuel Type:		Natural G	as
G.	Fuel Usag	ge Rate (spe	ecify units):	3.	13 mmBT	TU/hr	H.	Sulfur in F	Guel: (0.02 gr/scf	wt %
I.	Residence	e Time:	1	seco	onds		J.	Percent Ex	cess Air:	10	%
K.	2 Combu	stion Cham	ber Volume:		9,470	ft ³					
L.	VOC (CH	H ₄) Concent	ration: Inlet		726	ppmvd		Outlet:	2	6 ppmv	/d

	1.	Catalyst type: manganese oxide
	2.	Catalyst volume:ft ³
	3.	How is spent catalyst disposed of?
N.	Fla	re Data (if applicable):
	1.	Flare Type: Non-assisted Steam-assisted Air-assisted Other:
	2.	Net heating value of combusted gas: Btu/scf
	3.	Design exit velocity: ft/sec
	4.	Is the presence of a flare pilot flame monitored? Yes No
		If yes, please describe the monitoring:

FO	RM 5	MDEQ	MISSISSIPPI DEPARTMENT (QUALITY APPLICATION F(CONTROL PE	OR AIR POLLUTION
Electr	ostatic P	recipitators (ES		Section L6
1. E	lectrostatic	Precipitator Desc	ription	
A.	Emissior	Point Designation	(Ref. No.): <u>AA-201</u>	
B.	Equipme	nt Description (incl	ude t Finished Pellet Operations	
	Wet ESP	(WESP) controls e	missions from chip dryer	
C.	Manufact	urer: <u>B & W N</u>	1EGTEC D. Model:	Wet ESP
E.	Status:	X Operati	ng Proposed Un	nder Construction
2. El	ectrostatic	Precipitator Data		
А.	Precipitat	for Type	X Wet Dry Sing	le-stage
		Two-stage	Other:	
B.	Efficienc	y: <u>97.5</u>	% Controlling the following pollutant	(s): <u>PM</u>
C.	Inlet air f	low rate: 1	71,409 acfm	
D.	Pressure	Drop:	1 in. of H_2O	
E.	Inlet Terr	perature:	<u>248</u> °F	
F.	Total coll	ection plate area:	<u>38,301</u> ft ²	
G.	Collector	Plate Size:	Length: 19.5 ft Width:	<u>1</u> ft (diameter)
H.	Gas Visc	osity: N/A	poise	
I.	Pollutant	Resistivity:	N/A ohm-cm	
J.	Field stre		^3.7 inch voltage gap	volts
K.			ing 3 transformers/rectifier sets in parallel	
L.	No. of co	llector plates per fie	eld: <u>567</u>	

2.	Ele	ctrostatic Precipitator Data (continued)								
		Spacing between collector plates <u>12</u> in.								
	N.	No. of compartments: 1								
	0.	No. of discharge electrodes 567								
	P.	Corona Power: 210 watts/1000cfm								
	Q.	Electrical Usage: 153 kW/hr								
	R.	Cleaning Method: Plate Rapping Plate Vibrating X Washing Other:								
	S.	Rapper Frequency: min/cycle Automatic Manual								
	T.	Is flue gas conditioning required? Yes X No								
	U.	Fan location relative to precipitator: X Upstream Downstream								
	V.	How is the collected dust stored, handled, and disposed of?								
		Spent flush water containing the collected dust flows by gravity into the wet ESP sump. The wastewater is then routed to the furnace system for evaporation.								
	W.	List the electrical conditions per field:								
		FIELD NO. VOLTAGE (kV) AMPERAGE (mA) N/A								

			N	MISSISSIPPI DEPARTMENT OF ENVIRON	
FO	RM 5	MDEQ		QUALITY APPLICATION FOR AIR POLL CONTROL PERMIT	UTION
Other	· Control	Device		CONTROL I ERMIT	Section L7
1. D	escription				
A.	Emissio	n Point Designatio	on (Ref. No.):	<u>AA-302</u>	
B.	Equipme	nt Description (in	clude the proc	cess(es) that the equipment controls emissions from):	
	Primary I	Hammermill Feed	Silo with Bin	i Vent	
C.	Manufac	turer:		D. Model:	
E.	Status:	X Opera	ting	Proposed Under Construction	
2. R	elevant Dat	ta			
A.	Efficienc	y: <u>99</u>	%	Controlling the following pollutant(s): <u>PM</u>	
B.	Inlet air f	flow rate:		acfm	
C.	Pressure	Drop:		in. of H ₂ O	
D.	Inlet Ten	nperature (Water)		°F E. Outlet Temperature (Water):	°F
F.	How is a	ny generated wast	e (e.g., dust, v	wastewater, etc.) collected, stored, handled, and disposed of	?
G.	Provide a	any additional deta	uls regarding	important design and operating parameters below:	

FO	RM 5	MDEQ		ISSISSIPPI DEPARTMENT OF ENVIRON QUALITY APPLICATION FOR AIR POLL					
ru	KIVI J	MDEQ		CONTROL PERMIT	UTION				
	· Control	Device			Section L7				
1. D	escription								
A.	Emission	n Point Designation	n (Ref. No.):	AA-305					
B.	Equipme	nt Description (inc	lude the proce	ess(es) that the equipment controls emissions from):					
	Secondary Hammermill Silo No. 1 with Bin Vent								
C.	Manufac	turer.		D. Model:					
E.	Status:	X Operat	ing	Proposed Under Construction					
	elevant Dat		Ing						
2. Kt	elevant Da	la							
A.	Efficienc	y: <u>99</u>	%	Controlling the following pollutant(s): <u>PM</u>					
B.	Inlet air f	flow rate:		acfm					
C.	Pressure	Drop:		in. of H ₂ O					
D.	Inlet Ten	nperature (Water):		°F E. Outlet Temperature (Water):	°F				
F.	How is a	ny generated waste	e (e.g., dust, w	astewater, etc.) collected, stored, handled, and disposed of	?				
G.	Provide a	ny additional deta	ils regarding i	mportant design and operating parameters below:					

				ISSISSIPPI DEPARTMEN					
FO	RM 5	MDEQ		QUALITY APPLICATION CONTROL		UTION			
Other	[•] Control	Device		CONTROL		Section L7			
1. D	escription								
A.	Emissio	Point Designation	n (Ref. No.):	AA-302					
В.	Equipme	nt Description (inc	lude the proc	ess(es) that the equipment controls	emissions from):				
	Secondary Hammermill Silo No. 2 with Bin Vent								
C.	Manufac			D. Mod					
E.	Status:	X Operat	ing	Proposed	Under Construction				
2. Re	elevant Dat	a							
А.	Efficienc	y: <u>99</u>	%	Controlling the following pollutar	nt(s): PM				
B.	Inlet air f	low rate:		acfm					
C.	Pressure	Drop:		in. of H ₂ O					
D.	Inlet Ten	pperature (Water):		°F E. Outlet Temper	rature (Water):	°F			
F.	How is a	ny generated waste	e (e.g., dust, w	astewater, etc.) collected, stored, h	nandled, and disposed of	f?			
G.	Provide a	ny additional detai	ils regarding i	nportant design and operating para	ameters below:				

			Ν	MISSISSIPPI DEPARTMENT OF ENVIRON	
FO	RM 5	MDEQ		QUALITY APPLICATION FOR AIR POLL	UTION
Other	· Control	Device		CONTROL PERMIT	Section L7
	escription	Device			Section 117
А.	Emissio	n Point Designation	n (Ref. No.).	AA-309	
		-			
В.	Equipme	nt Description (inc	lude the proc	cess(es) that the equipment controls emissions from):	
	Starch Si	lo with bin vent			
C.	Manufac	turer:		D. Model:	
E.	Status:	X Operat	ing	Proposed Under Construction	
2. Re	elevant Dat	ta			
A.	Efficienc	y: <u>99</u>	%	Controlling the following pollutant(s): <u>PM</u>	
B.	Inlet air f	low rate:		acfm	
C.	Pressure	Drop:		in. of H ₂ O	
D.	Inlet Ten	nperature (Water):		°F E. Outlet Temperature (Water):	°F
F.	How is a	ny generated waste	e (e.g., dust, v	wastewater, etc.) collected, stored, handled, and disposed of	??
G.	Provide a	ny additional deta	ils regarding	important design and operating parameters below:	

			MISSISSIPPI DEPARTMENT OF ENVIRONM	
FORM 5 MDEQ		MDEQ	QUALITY APPLICATION FOR AIR POLLU CONTROL PERMIT	TION
Stack T	Festing			Section M6
1. Ap	plicable E	Emission Point Desc	ription	
A.	Emission	Point Designation (I	Ref. No.): <u>AA-201</u>	
B.	Emission	Point Description:	RTO	
C.	PM (filter	rable only), PM10/P	ndard does the monitoring demonstrate compliance? M2.5 (filterable + condensable), CO, NOx, VOCs, methanol, acetaldehyde, onaldehyde, hydrogen chloride (HCl), & phenol	-
D.	Is there a	n applicable underly	ing requirement for the recordkeeping?	
	X	Yes	No	
	•	-	nt (e.g., NSPS Subpart QQ, Permit to Construct issued, etc.)? struct No. 0080-00031 issued March 9, 2021	_
2. S	tack Test	ing Information		
А.	Applicab	nod(s) and correspon le EPA-approved tes pendix A of 40 CFR	t methods in Appendix A of 40 CFR Part 60, Appendix M of 40 CFR Part	
B.	Testing fi	requency:		<u>n 25 months of</u> revious test
C.	Has EPA	approved an alterna	tive method or has the applicant proposed an alternative test method?	ievious iest
		Yes	X No	
	If yes, pro applicable		lternative method and the date the alternative method was approved (if	

			MISSISSIPPI DEPARTMENT OF ENVIRONMI	ENTAL				
FORM 5		MDEQ	QUALITY APPLICATION FOR AIR POLLUZ	ΓΙΟΝ				
			CONTROL PERMIT					
Stack 7	Festing			Section M6				
1. Ap	plicable E	Emission Point Desci	ription					
A.	Emission	Point Designation (F	Ref. No.): <u>AA-301</u>					
B.	Emission	Point Description:	RCO	_				
C.	 C. For what emission limit or standard does the monitoring demonstrate compliance? <u>PM (filterable only), PM10/PM2.5 (filterable + condensable), CO, NOx, VOCs, methanol, acetaldehyde, formaldehyde, acrolein, propionaldehyde, hydrogen chloride (HCl), & phenol</u> 							
D.	Is there a	n applicable underlyi	ng requirement for the recordkeeping?					
	Χ	Yes	No					
	•	-	t (e.g., NSPS Subpart QQ, Permit to Construct issued, etc.)? struct No. 0080-00031 issued March 9, 2021	_				
2. S	Stack Test	ing Information						
А.	Applicab	nod(s) and correspond le EPA-approved test pendix A of 40 CFR	t methods in Appendix A of 40 CFR Part 60, Appendix M of 40 CFR Part					
B.	Testing fi	requency:		25 months of evious test				
C.	Has EPA	approved an alternat	ive method or has the applicant proposed an alternative test method?					
		Yes	X No					
	If yes, pro applicable		lternative method and the date the alternative method was approved (if					

FORM 5 MDEQ		MDEQ	MISSISSIPPI DEPARTMENT OF ENVIRONM QUALITY APPLICATION FOR AIR POLLU CONTROL PERMIT					
Stack '	Testing			Section M6				
1. Ap	oplicable E	Emission Point Desci	iption					
A.		Point Designation (R	AA-301					
В.	Emission	Point Description:	RCO					
C.	 For what emission limit or standard does the monitoring demonstrate compliance? <u>Perform apparent density testing on RCO catalytic media in grams/m3.</u> 							
D.	Is there a	n applicable underlyi	ng requirement for the recordkeeping?					
	If yes, wh		No t (e.g., NSPS Subpart QQ, Permit to Construct issued, etc.)? hstruct No. 0080-00031 issued March 9, 2021					
2. 8	Stack Test	ing Information						
A.		nod(s) and correspond ed - apparent density						
B.	Testing fi	requency:		<u>in 16 months of</u> previous test				
C.	Has EPA	approved an alternat	ive method or has the applicant proposed an alternative test method?					
		Yes	X No					
	If yes, pro applicabl		ternative method and the date the alternative method was approved (if					

FOR	FORM 5 MDEQ MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL CONTROL PERMIT								
	keeping					Section M8			
1. Ap	plicable E	mission Point De	scription						
A.	Emission	Point Designatior	(Ref. No.):	AA-000					
В.	B. Emission Point Description: FacilityWide								
	 C. For what emission limit or standard does the recordkeeping demonstrate compliance? <u>HAP Emissions (methanol, acetaldehyde, formaldehyde, acrolein, propionaldehyde, hydrogen chloride, phenol)</u> 								
D.	 D. Is there an applicable underlying requirement for the recordkeeping? X Yes No 								
	If yes, what is that requirement (e.g., NSPS Subpart QQ, Permit to Construct issued, etc.)? Condition 5.3 - Permit to Construct No. 0080-00031 issued March 9, 2021								
2. R	ecordkee	ping Information							
A.	Data/info	rmation recorded:							
	Paran	neter/Material	Units	Recordkeeping Frequency	Sampling and analysis method (e.g., EPA Method 24)				
	НА	P Emissions	US ODT/month & US ODT/year	Monthly & Rolling 12-Month Total	Calculate and record the emissions of ea HAP and all HAPs in total on a monthly a rolling 12-month total basis.				
	ODT = or	vendried tons.							
В.	Compliar	ce is determined:							
		Daily	Wee	ekly	Monthly				
	X	Other: <u>Monthly</u>	/ & Rolling 12-	<u>Mont</u> h Total					

FOI	RM 5	MDEQ	N		EPARTMENT OF ENVIRONME PLICATION FOR AIR POLLUT CONTROL PERMIT				
Record	lkeeping					Section M8			
1. Ap	plicable E	mission Point De	scription						
A.	Emission	Point Designation	(Ref. No.):	AA-200					
B.	. Emission Point Description: Wood Drying Operations								
C.	C. For what emission limit or standard does the recordkeeping demonstrate compliance? Criteria Pollutant Emissions								
D.	 D. Is there an applicable underlying requirement for the recordkeeping? X Yes No 								
	If yes, what is that requirement (e.g., NSPS Subpart QQ, Permit to Construct issued, etc.)? Condition 5.4 - Permit to Construct No. 0080-00031 issued March 9, 2021								
2. F	Recordkee	ping Information							
A.	Data/info	rmation recorded:							
	Parar	neter/Material	Units	Recordkeeping Frequency	Sampling and analysis method (e.g., EPA Method 24)				
		10/PM2.5, NOx, CO, VOCs	US ODT/month & US ODT/year	Monthly & Rolling 12-Month Total	Calculate and record the emissions of each pollutant on a monthly and on a rolling 12 month total basis.				
	ODT = o	vendried tons.							
B.	Compliar	ce is determined:							
2.		Daily	Wee	ekly	Monthly				
			& Rolling 12-		. ionuny				

FOI	RM 5	MDEQ	N		EPARTMENT OF ENVIRONME PLICATION FOR AIR POLLUT CONTROL PERMIT				
Record	dkeeping	5				Section M8			
1. Ap	plicable E	mission Point De	scription						
A.	Emission	Point Designation	(Ref. No.):	AA-300					
В.	3. Emission Point Description: Wood Pellet Operations								
C.	C. For what emission limit or standard does the recordkeeping demonstrate compliance? Criteria Pollutant Emissions								
D.	 D. Is there an applicable underlying requirement for the recordkeeping? X Yes No 								
				S Subpart QQ, Pern 080-00031 issued M	nit to Construct issued, etc.)? arch 9, 2021				
2. F	Recordkee	ping Information							
A.	Data/info	rmation recorded:							
	Parar	neter/Material	Units	Recordkeeping Frequency	Sampling and analysis method (e.g., EPA Method 24)				
		10/PM2.5, NOx, CO, VOCs	US ODT/month & US ODT/year	Monthly & Rolling 12-Month Total	Calculate and record the emissions of each pollutant on a monthly and on a rolling 12 month total basis.				
						_			
	ODT = o	vendried tons.	•						
B.	Compliar	ce is determined:							
		Daily	Wee	ekly	Monthly				
	X	Other: <u>Monthly</u>	& Rolling 12-	Month Total					

FOI	RM 5	MDEQ	N		EPARTMENT OF ENVIRONME PLICATION FOR AIR POLLUT CONTROL PERMIT				
Record	lkeeping					Section M8			
1. Ap	plicable E	mission Point De	scription						
A.	Emission	Point Designation	(Ref. No.):	AA-400					
В.	B. Emission Point Description: Finished Pellet Operations								
C.	C. For what emission limit or standard does the recordkeeping demonstrate compliance? Criteria Pollutant Emissions								
D.	 D. Is there an applicable underlying requirement for the recordkeeping? X Yes No 								
				S Subpart QQ, Pern 180-00031 issued M	nit to Construct issued, etc.)? arch 9, 2021				
2. F	Recordkee	ping Information							
A.	Data/info	rmation recorded:							
	Parar	neter/Material	Units	Recordkeeping Frequency	Sampling and analysis method (e.g., EPA Method 24)				
		10/PM2.5, NOx, CO, VOCs	US ODT/month & US ODT/year	Monthly & Rolling 12-Month Total	Calculate and record the emissions of each pollutant on a monthly and on a rolling 12 month total basis.				
	ODT = 0	vendried tons.							
B.		ce is determined:							
D.			W7-	.l.l.v	Monthly				
		Daily Other: Monthly	Wee	-	Monthly				
	<u> </u>	<u></u>							

FOI	RM 5	MDEQ	N		EPARTMENT OF ENVIRONME PLICATION FOR AIR POLLUT CONTROL PERMIT				
Record	dkeeping					Section M8			
1. Ap	plicable E	mission Point De	scription						
A.	Emission	Point Designation	(Ref. No.):	AA-500					
B.	B. Emission Point Description: Emergency Engines								
C.	C. For what emission limit or standard does the recordkeeping demonstrate compliance? Criteria Pollutant Emissions								
D.	 D. Is there an applicable underlying requirement for the recordkeeping? X Yes No 								
	If yes, what is that requirement (e.g., NSPS Subpart QQ, Permit to Construct issued, etc.)? Condition 5.4 - Permit to Construct No. 0080-00031 issued March 9, 2021								
2. F	Recordkee	ping Information							
A.	Data/info	rmation recorded:							
	Parar	neter/Material	Units	Recordkeeping Frequency	Sampling and analysis method (e.g., EPA Method 24)				
		10/PM2.5, NOx, CO, VOCs	US ODT/month & US ODT/year	Monthly & Rolling 12-Month Total	Calculate and record the emissions of each pollutant on a monthly and on a rolling 12 month total basis.				
	ODT = 0	vendried tons.							
B.	Compliar	ce is determined:							
		Daily	Wee	ekly	Monthly				
			& Rolling 12-		• •				

FORM 5	MDEQ			EPARTMENT OF ENVIRONM PLICATION FOR AIR POLLU CONTROL PERMIT					
Recordkeepin					Section M8				
1. Applicable l	Emission Point Descr	ription							
A. Emissior	n Point Designation (F	Ref. No.):	AA-201						
D Emission	Point Description:	RTO							
B. Emissior	r Politi Description.	KIU			_				
C. For what	C. For what emission limit or standard does the recordkeeping demonstrate compliance?								
	tion chamber temperat			onsulae comphance.					
D. In these of			. f						
D. Is there a	an applicable underlyi	ng requirement	for the recordkeep	ing !					
Χ	Yes	No							
If yes, w	hat is that requiremen	t (e.g., NSPS S	ubpart QQ, Permit	to Construct issued, etc.)?					
Conditio	n 5.11 - Permit to Cor	nstruct No. 008	0-00031 issued Ma	rch 9, 2021					
2. Recordkee	eping Information								
A. Data/info	ormation recorded:								
Para	ameter/Material	Units	Recordkeeping Frequency	Sampling and analysis method (e.g., EPA Method 24)					
Con	bustion chamber temperature	Degrees F	3-hour block average	Continuously monitor & record the com chamber temperature.	oustion				
B. Complia	nce is determined:								
·		<u> </u>	—	1					
	Daily	Wee	kly	Monthly					
X	Other: As specifie	ed above							

FOR	M 5	MDEQ	M		EPARTMENT OF ENVIRONM PLICATION FOR AIR POLLU CONTROL PERMIT				
	keeping					Section M8			
. App	olicable E	mission Point Desc	ription						
A . 1	Emission	Point Designation (I	Ref. No.):	AA-301					
B . 1	Emission	Point Description:	RCO						
-	Linibbion	rome Description.				_			
C. 1	C. For what emission limit or standard does the recordkeeping demonstrate compliance?								
		on chamber tempera							
D .	Is there a	n applicable underlyi	ng requirement	for the recordkeer	ing?				
r				Ĩ	C				
L	Χ	Yes	No						
	•	at is that requirement 5.11 - Permit to Co		· · ·	to Construct issued, etc.)?				
-	Condition		listi uct 110. 008	0-00031 Issued Ma	licii 9, 2021				
Re	ocordkoo	oing Information							
A.		rmation recorded: meter/Material	Units	Recordkeeping Frequency	Sampling and analysis method (e.g., EPA Method 24)				
		bustion chamber	Degrees F	3-hour block	Continuously monitor & record the comb	oustion			
-	1	temperature	Degrees I	average	chamber temperature.				
-									
-									
_									
-									
-	a								
В.	Complian	ce is determined:							
[Daily	Wee	kly	Monthly				
٦	X	Other: As specifie	ed above						
-									

FOR	RM 5	MDEQ			EPARTMENT OF ENVIRONME PLICATION FOR AIR POLLUT CONTROL PERMIT			
	keeping					Section M8		
1. Apj	plicable E	mission Point Descr	iption					
A.	Emission	Point Designation (R	ef. No.):	AA-201				
В.	Emission	Point Description:	RTO					
	C. For what emission limit or standard does the recordkeeping demonstrate compliance? Opacity							
D.	 D. Is there an applicable underlying requirement for the recordkeeping? X Yes No 							
	If yes, what is that requirement (e.g., NSPS Subpart QQ, Permit to Construct issued, etc.)? Condition 5.12 - Permit to Construct No. 0080-00031 issued March 9, 2021							
2. R	ecordkee	ping Information						
A.	Data/info	rmation recorded:						
	Para	meter/Material	Units	Recordkeeping Frequency	Sampling and analysis method (e.g., EPA Method 24)			
		Opacity	%	Weekly	Use EPA Test Method 22 on the exhaust weekly. If visible emissions are detected, immediately perfrom and record a visible emission evaluation (VEE) in accordance EPA Test Method 9.	with		
В.	B. Compliance is determined: Daily X Weekly Monthly Other:							
		• • •						

FORM 5 MDEQ MISSISSIPPI DEPARTMENT OF ENVIRO QUALITY APPLICATION FOR AIR POLICION CONTROL PERMIT				PLICATION FOR AIR POLLU				
Record	dkeeping					Section M8		
1. Ap	oplicable E	mission Point Descr	iption					
A.	Emission	Point Designation (R	ef. No.):	AA-301				
В.	. Emission Point Description: <u>RCO</u>							
C.	C. For what emission limit or standard does the recordkeeping demonstrate compliance? Opacity							
D.	 D. Is there an applicable underlying requirement for the recordkeeping? X Yes No 							
	If yes, what is that requirement (e.g., NSPS Subpart QQ, Permit to Construct issued, etc.)? Condition 5.12 - Permit to Construct No. 0080-00031 issued March 9, 2021							
2. F	Recordkee	ping Information						
А.	Data/info	rmation recorded:						
	Para	meter/Material	Units	Recordkeeping Frequency	Sampling and analysis method (e.g., EPA Method 24)			
		Opacity	%	Weekly	Use EPA Test Method 22 on the exhaust weekly. If visible emissions are detected immediately perfrom and record a visible emission evaluation (VEE) in accordance EPA Test Method 9.	l, e		
В.	B. Compliance is determined: Daily X Weekly Monthly Other:							

FORM 5	MDEQ	MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT							
Recordkeepin	-				Section M8				
1. Applicable	Emission Point Descri	iption							
A. Emissio	n Point Designation (R	ef. No.):	AA-201						
B. Emissio	B. Emission Point Description: WESP - RTO Control System								
	C. For what emission limit or standard does the recordkeeping demonstrate compliance? Secondary Voltage								
D. Is there	an applicable underlyin Yes	ng requirement	for the recordkeep	ing?					
If yes, w	X Yes No If yes, what is that requirement (e.g., NSPS Subpart QQ, Permit to Construct issued, etc.)? Condition 5.14 - Permit to Construct No. 0080-00031 issued March 9, 2021								
2. Recordke	eping Information								
A. Data/inf	formation recorded:								
Par	rameter/Material	Units	Recordkeeping Frequency	Sampling and analysis method (e.g., EPA Method 24)					
Se	condary Voltage	Volts	3-hour block average	Continuously monitor & record the seco voltage.	ndary				
B. Complia	ance is determined:		—						
X	Daily Other: <u>As required</u>	Wee based on the a	-	Monthly					

FORM 5 MDEQ MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT								
					Section M8			
oplicable E	mission Point Descri	ption						
Emission	Point Designation (R	ef. No.):	AA-203b	& AA203c				
Emission	Point Description:	Furnace l	Bypass Stack		_			
C. For what emission limit or standard does the recordkeeping demonstrate compliance? Bypass Hours								
Is there a	n applicable underlyin	g requirement	for the recordkeep	ing?				
Χ	Yes	No						
Recordkee	oing Information							
Para	meter/Material	Units	Recordkeeping Frequency	Sampling and analysis method (e.g., EPA Method 24)				
Hours t	ypass stack is used	Hours	As needed	Monitor & record date, time, & duration of every start-up & shurtdown period that resulting in emissions being diverted to th bypass stack. Also, record the total durati start-up & shutdown periods in hours/yea based on a rolling 12-month total.	ne on of			
Complian	ce is determined:			·				
	-	Wee	kly	Monthly				
X	Other: <u>As required</u>	based on the	<u>abov</u> e.					
	Image: state stat	Ikeeping oplicable Emission Point Designation (Remission Point Description: Emission Point Description: For what emission limit or stand Bypass Hours Is there an applicable underlyin X Yes If yes, what is that requirement Condition 5.15 - Permit to Con Recordkeeping Information Data/information recorded: Hours bypass stack is used Hours bypass stack is used Compliance is determined: Daily	RM 5 MDEQ Ikceping pplicable Emission Point Description Eurission Point Description: Emission Point Description: Furnace I For what emission limit or standard does the Bypass Hours Bypass Hours Is there an applicable underlying requirement X Yes No If yes, what is that requirement (e.g., NSPS S Condition 5.15 - Permit to Construct No. 008 Condition 5.15 - Permit to Construct No. 008 Recordkeeping Information Data/information recorded: Hours Hours bypass stack is used Hours Compliance is determined:	RM 5 MDEQ QUALITY AP Ikceping	RM 5 MDEQ QUALITY APPLICATION FOR AIR POLLUT CONTROL PERMIT Ikeeping			

FOR	RM 5	MDEQ	N		EPARTMENT OF ENVIRONMI PLICATION FOR AIR POLLU CONTROL PERMIT				
	lkeeping					Section M8			
1. Ap	plicable E	mission Point Descri	iption						
А.	A. Emission Point Designation (Ref. No.): AA-204b								
B.	B. Emission Point Description: Wood Chip Rotary Dryer Bypass								
	C. For what emission limit or standard does the recordkeeping demonstrate compliance? Bypass Hours								
D.		n applicable underlyin		for the recordkeep	ing?				
	Χ	Yes	No						
		at is that requirement a 5.15 - Permit to Con			to Construct issued, etc.)? arch 9, 2021				
2. R	ecordkee	ping Information							
A.	Data/info	rmation recorded:							
	Para	meter/Material	Units	Recordkeeping Frequency	Sampling and analysis method (e.g., EPA Method 24)				
	Hours t	ypass stack is used	Hours	As needed	Monitor & record date, time, & duration every start-up & shurtdown period that resulting in emissions being diverted to the bypass stack. Also, record the total durati start-up & shutdown periods in hours/year based on a rolling 12-month total.	he ion of			
B.	Compliar	ce is determined:							
		Daily	Wee	ekly	Monthly				
	X	Other: <u>As required</u>	based on the	<u>abov</u> e.					

FOF	RM 5	MDEQ			EPARTMENT OF ENVIRONM PLICATION FOR AIR POLLU CONTROL PERMIT				
	lkeeping					Section M8			
1. Ap	plicable E	Emission Point Descri	iption						
А.	Emission	Point Designation (R	ef. No.):	AA-203b					
B.	Emission Point Description: Furnace Bypass Stack								
C.	. For what emission limit or standard does the recordkeeping demonstrate compliance? Idle mode hours								
D.	Is there a	n applicable underlyin	g requirement	for the recordkeep	ing?				
	X	Yes	No						
	If yes, what is that requirement (e.g., NSPS Subpart QQ, Permit to Construct issued, etc.)? Condition 5.16 - Permit to Construct No. 0080-00031 issued March 9, 2021								
2. R	lecordkee	ping Information							
А.	Data/info	rmation recorded:							
	Para	meter/Material	Units	Recordkeeping Frequency	Sampling and analysis method (e.g., EPA Method 24)	L			
	Hours b	oypass stack is used	Hours	As needed	Monitor & record date, time, & duration every period the furnace operates in idl Also, record the total duration of all idle periods in hours/year based on a rolling month total.	le mode. e mode			
B.	Compliar	nce is determined:							
		Daily	Wee	kly	Monthly				
	X	Other: <u>As required</u>	based on the	<u>abov</u> e.					

FOR	RM 5	MDEQ	M		EPARTMENT OF ENVIRONN PLICATION FOR AIR POLL CONTROL PERMIT				
Record	lkeeping					Section M8			
1. Ap	plicable E	mission Point Descr	iption						
A.	Emission	Point Designation (R	ef. No.):	AA-204a					
B.	Emission Point Description: Wood Chip Rotary Dryer								
C.	C. For what emission limit or standard does the recordkeeping demonstrate compliance? Dried wood chips throughput from Wood Chip Rotary Dryer								
D.	·	n applicable underlyin Yes	ng requirement	t for the recordkeep	ing?				
		at is that requirement 5.17 - Permit to Cor			to Construct issued, etc.)? rch 9, 2021				
2. R	Recordkee	ping Information							
A.	Data/info	rmation recorded:							
	Para	meter/Material	Units	Recordkeeping Frequency	Sampling and analysis metho (e.g., EPA Method 24)	d			
		out of dried wood n Chip Dryer	ODT (oven- dried tons)	Monthly & rolling 12-month basis	Monitor & record the throughput of dr wood chips from the dryer on a montly a rolling 12-month total basis				
B.	Complian	ce is determined:							
		Daily	Wee	ekly	Monthly				
	X	Other: <u>As required</u>	l based on the	<u>abov</u> e.					

FOI	RM 5	MDEQ			EPARTMENT OF ENVIRONME PLICATION FOR AIR POLLUT CONTROL PERMIT			
	dkeeping					Section M8		
1. Ap	oplicable E	Emission Point Descr	ription					
А.	Emission	Point Designation (F	Ref. No.):	AA-300				
В.	Emission Point Description: Wood Pellet Operations							
C.	 For what emission limit or standard does the recordkeeping demonstrate compliance? Keep records of weekly inspections for each baghouse & any maintenance performed. 							
D.		n applicable underlyi		for the recordkeep	ing?			
	Χ	Yes	No					
		nat is that requiremen n 5.18 - Permit to Con			to Construct issued, etc.)? rch 9, 2021			
2. F	Recordkee	ping Information						
А.	Data/info	rmation recorded:						
	Para	meter/Material	Units	Recordkeeping Frequency	Sampling and analysis method (e.g., EPA Method 24)			
	Bahgouse maintena	e inspections & nce	Each occurrence	Weely	Keep records of weekly baghouse inspect and any maintenance performed.	ions		
						_		
B.	Compliar	nce is determined:						
		Daily Other:	X Wee	kly	Monthly			
		Guiei.						

FO	RM 5	MDEQ			EPARTMENT OF ENVIRONME PLICATION FOR AIR POLLUT CONTROL PERMIT			
	dkeeping					Section M8		
1. Al	pplicable E	mission Point Descr	iption					
А.	Emission	Point Designation (R	ef. No.):	AA-400				
B.	Emission	Point Description:	Finished	Pellet Operations		_		
C.	C. For what emission limit or standard does the recordkeeping demonstrate compliance? Keep records of weekly inspections for each baghouse & any maintenance performed.							
D.		n applicable underlyi		for the recordkeep	ing?			
2. 1	If yes, wh Condition	Yes nat is that requirement to 5.18 - Permit to Cor ping Information			to Construct issued, etc.)? rch 9, 2021			
		rmation recorded:						
	Para	meter/Material	Units	Recordkeeping Frequency	Sampling and analysis method (e.g., EPA Method 24)			
	Bahgouse maintena	e inspections & nce	Each occurrence	Weely	Keep records of weekly baghouse inspect and any maintenance performed.	ions		
В.		ice is determined: Daily Other:	X Wee	kly	Monthly			

FOF	RM 5	MDEQ			EPARTMENT OF ENVIRONN PLICATION FOR AIR POLL CONTROL PERMIT				
	lkeeping					Section M8			
1. Ap	plicable E	mission Point Descr	iption						
A.	Emission	Point Designation (R	ef. No.):	AA-300					
B.	Emission	Point Description:	Wood Pe	llet Operations					
C.	C. For what emission limit or standard does the recordkeeping demonstrate compliance? Keep records of baghouse daily differential pressure drop readings.								
D.	_	n applicable underlyin Yes	ng requirement	for the recordkeep	ing?				
	X Yes No If yes, what is that requirement (e.g., NSPS Subpart QQ, Permit to Construct issued, etc.)? Condition 5.19 - Permit to Construct No. 0080-00031 issued March 9, 2021								
2. R	Recordkee	ping Information							
А.	Data/info	rmation recorded:							
	Para	meter/Material	Units	Recordkeeping Frequency	Sampling and analysis metho (e.g., EPA Method 24)	d			
		al pressure drop & ance for corrective	Inches of water	Daily	Keep records of baghouse daily differe pressure drop readings & any correctiv measures to return to the recommended pressure drop (if needed).	/e			
B.	X	ce is determined: Daily Other:	Wee	kly	Monthly				

FORM	A 5 MDEQ	M		EPARTMENT OF ENVIRONN PLICATION FOR AIR POLLU CONTROL PERMIT					
Recordk					Section M8				
1. Appli	cable Emission Point Descr	iption							
A. E	mission Point Designation (R	ef. No.):	AA-400						
B. E	mission Point Description:	Finished	Pellet Operations						
	C. For what emission limit or standard does the recordkeeping demonstrate compliance? Keep records of baghouse daily differential pressure drop readings.								
_	there an applicable underlyin		for the recordkeep	ing?					
If	X Yes No If yes, what is that requirement (e.g., NSPS Subpart QQ, Permit to Construct issued, etc.)? Condition 5.19 - Permit to Construct No. 0080-00031 issued March 9, 2021								
2. Rec	ordkeeping Information								
A. D	ata/information recorded:								
	Parameter/Material	Units	Recordkeeping Frequency	Sampling and analysis metho (e.g., EPA Method 24)	d				
m	ifferential pressure drop & aintenance for corrective easures	Inches of water	Daily	Keep records of baghouse daily differe pressure drop readings & any correctiv measures to return to the recommended pressure drop (if needed).	e				
	ompliance is determined:			1]				
	Daily Other:	Wee	kly	Monthly					

FOF	RM 5	MDEQ	M		EPARTMENT OF ENVIRONN PLICATION FOR AIR POLL CONTROL PERMIT			
	lkeeping					Section M8		
1. Ap	plicable E	mission Point Descr	iption					
A.	Emission	Point Designation (R	ef. No.):	AA-300				
B.	Emission	Point Description:	Wood Pe	llet Operations				
C.	C. For what emission limit or standard does the recordkeeping demonstrate compliance? Keep records of total wood pellet production in ODT.							
D.	Is there as	n applicable underlyi	ng requirement	for the recordkeep	ing?			
	X	Yes	No					
	If yes, what is that requirement (e.g., NSPS Subpart QQ, Permit to Construct issued, etc.)? Condition 5.20 - Permit to Construct No. 0080-00031 issued March 9, 2021							
2. R	ecordkee	ping Information						
A.	Data/info	rmation recorded:						
	Para	meter/Material	Units	Recordkeeping Frequency	Sampling and analysis metho (e.g., EPA Method 24)	od		
	Wood Pe	llet Production	ODT (oven- dried tons)	Monthly & Rolling 12-month Total	Keep records of total wood pellet prod on a monthly basis & rolling 12-month basis.			
	L							
B.	Complian	ice is determined:						
	_	Daily	Wee	kly	Monthly			
	X	Other: As included	l above					

FOF	FORM 5 MDEQ MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT							
Record	lkeeping	5				Section M8		
1. Ap	plicable E	mission Point Descri	iption					
А.	Emission	Point Designation (R	ef. No.):	AA-500				
В.	Emission	Point Description:	Emergen	cy Engines (AA-50	1, AA-502)	<u> </u>		
C.	C. For what emission limit or standard does the recordkeeping demonstrate compliance? Keep records of hours of operation for each engine and the purpose of the operating hours.							
D.	Is there a	n applicable underlyin	ig requirement	for the recordkeep	ing?			
	X	Yes	No					
	If yes, what is that requirement (e.g., NSPS Subpart QQ, Permit to Construct issued, etc.)? Condition 5.22 - Permit to Construct No. 0080-00031 issued March 9, 2021							
2. R	Recordkee	ping Information						
А.	Data/info	rmation recorded:						
	Para	meter/Material	Units	Recordkeeping Frequency	Sampling and analysis method (e.g., EPA Method 24)	i		
	Hours of	operation	Hours	Monthly	Keep records of monthly hours of opera each engine & the purpose of the opera hours as emergency, maintenance, testi other non-emergency use.	ting		
B.	Complian	ice is determined:						
		Daily	Wee	ekly X	Monthly			
		Other:						

FORM 5 MDEQ MISSISSIPPI DEPARTMENT OF ENV QUALITY APPLICATION FOR AIR CONTROL PERMIT								
Record	dkeeping	5				Section M8		
1. Ap	oplicable E	Emission Point Desc	ription					
A.	A. Emission Point Designation (Ref. No.): AA-200, AA-300, AA-400, AA-500							
B.	B. Emission Point Description: Wood Drying Operations, Wood Pellet Operations, Finished Pellet Operations, Emergency Engines							
C.		emission limit or sta Oxides ≤ 245 tons/ye		recordkeeping dem	onstrate compliance?			
D.	Is there a	n applicable underlyi	ng requirement	for the recordkeep	ing?			
	X	Yes	No					
	•	at is that requiremen Construct issued Ma		A	to Construct issued, etc.)?			
		ping Information						
	Para	meter/Material	Units	Recordkeeping Frequency	Sampling and analysis method (e.g., EPA Method 24)	I		
		Heat Input	MMBtu/hr	Continuous	Process knowledge and emission calcu	lations		
В.	Complian	ice is determined:						
		Daily	Wee	kly	Monthly			
	X	Other: Rolling 12	-month total					
		Guier. Konnig 12	monui totai					

FOF	FORM 5 MDEQ			MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT					
	lkeeping					Section M8			
1. Ap	plicable E	mission Point Descr	iption						
А.	Emission	Point Designation (R	ef. No.):	AA-000					
B.	Emission Point Description: Facility								
C.	C. For what emission limit or standard does the recordkeeping demonstrate compliance? Opacity ≤ 40%								
D.		n applicable underlyin		for the recordkeepin	g?				
	X Yes No If yes, what is that requirement (e.g., NSPS Subpart QQ, Permit to Construct issued, etc.)? Permit to Construct issued March 9, 2021; Conditions 3.1 & 3.2								
2. R	ecordkee	ping Information							
А.	Data/info	rmation recorded:							
	Para	meter/Material	Units	Recordkeeping Frequency	Sampling and analysis method (e.g., EPA Method 24)	1			
	Visu	al Observations	%	Weekly	EPA Method 22				
		Opacity	%	As needed based on visual observations	EPA Method 9				
B.	B. Compliance is determined: Daily X Weekly Monthly								
		Other:							

FOR	RM 5	MDEQ	MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT					
	lkeeping					Section M8		
1. Ap	plicable E	mission Point Descu	ription					
А.	A. Emission Point Designation (Ref. No.): AA-000							
B.	Emission Point Description: Facility Wide							
C.	For what emission limit or standard does the recordkeeping demonstrate compliance? Particulate Matter – $E = 4.1 * p^{0.67}$ where E is the emission rate in lbs/MMBTU and p is the process weight input in tons/hr							
D.	Is there a	n applicable underlyi	ng requiremen	t for the recordkeepir	g?			
	X	Yes	No					
	If yes, what is that requirement (e.g., NSPS Subpart QQ, Permit to Construct issued, etc.)? Permit to Construct issued March 9, 2021; Condition 3.3							
2. R	Recordkee	ping Information						
A.	Data/info	rmation recorded:						
	Para	meter/Material	Units	Recordkeeping Frequency	Sampling and analysis metho (e.g., EPA Method 24)	od		
	P	rocess weight	tons/hr	Continuous	Process knowledge, input records emission calculations	, and		
B.	Compliar	ce is determined:						
		Daily	We	ekly	Monthly			
	X	Other: <u>3-hour bloc</u>	ck averages					

FOR	AM 5 MDEQ	EPARTMENT OF ENVIRONME PLICATION FOR AIR POLLUT CONTROL PERMIT						
Record					Section M8			
1. App	plicable Emission Point D	escription						
A	Emission Point Designation	on (Ref. No.):	AA-200, AA-	300, AA-400, AA-500				
B. 1	B. Emission Point Description: Wood Drying Operations, Wood Pellet Operations, Finished Pellet Operations, Emergency Engines							
	C. For what emission limit or standard does the recordkeeping demonstrate compliance? $VOC \le 245 \text{ tons/year}$							
D.	Is there an applicable under	erlying requiremen	t for the recordkeep	ing?				
[X Yes	No						
	If yes, what is that require Permit to Construct issued			to Construct issued, etc.)?				
-								
	ecordkeeping Informatio			Sampling and analysis method	_			
	Parameter/Material	Units	Recordkeeping Frequency	(e.g., EPA Method 24)				
	Throughput	tons/hr	Continuous	Process knowledge and emission calculat	ions			
D	Compliance is determined							
В.								
	Daily	Wee	ekly	Monthly				
[X Other: Rolling	g 12-month total						

FO	RM 5	MDEQ			EPARTMENT OF ENVIRONM PLICATION FOR AIR POLLU CONTROL PERMIT			
	dkeeping					Section M8		
1. Ap	pplicable E	mission Point Descr	iption					
A.	Emission	Point Designation (R	ef. No.):	AA-200, AA-	300, AA-400, AA-500			
В.	Emission	Point Description:		rying Operations, W cy Engines	ood Pellet Operations, Finished Pellet C	Operations,		
C.		emission limit or star s/year Particulate Ma			onstrate compliance? PM10, PM2.5), filterable PM			
D.		n applicable underlyin		for the recordkeep	ing?			
	X Yes No If yes, what is that requirement (e.g., NSPS Subpart QQ, Permit to Construct issued, etc.)? Permit to Construct issued March 9, 2021; Condition 3.6							
2. I	Recordkee	ping Information						
А.	Data/info	rmation recorded:						
	Para	meter/Material	Units	Recordkeeping Frequency	Sampling and analysis method (e.g., EPA Method 24)	1		
		Throughput	tons/hr	Continuous	Process knowledge and emission calcu	lations		
B.	 B. Compliance is determined: Daily Weekly Monthly X Other: Rolling 12-month total 							

FO	RM 5	MDEQ	MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION					
Record	dkeeping				CONTROL PERMIT	Section M8		
		Cmission Point Desci	ription			Section 1918		
		Point Designation (F		AA-200, AA-	300, AA-400, AA-500			
В.	Emission	Point Description:		rying Operations, W cy Engines	Vood Pellet Operations, Finished Pellet Op	erations,		
C.		emission limit or star 5 tons/year	ndard does the	recordkeeping dem	onstrate compliance?	_		
D.	Is there a	n applicable underlyi	ng requirement	t for the recordkeep	ing?			
	Χ	Yes	No					
		at is that requiremen Construct issued Ma			to Construct issued, etc.)?			
2. I	Recordkee	ping Information						
А.	Data/info	rmation recorded:						
	Para	meter/Material	Units	Recordkeeping Frequency	Sampling and analysis method (e.g., EPA Method 24)			
	Car	bon Monoxide	tons/hr	Continuous	Process knowledge and emission calcula	ations		
			-					
B.	Compliar	ice is determined:						
		Daily	Wee	ekly	Monthly			
	Χ	Other: Rolling 12	-month total					

FORM	15 MDEQ	MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT					
Recordke					Section M8		
1. Applic	able Emission Point Descr	iption					
A. Em	ission Point Designation (R	ef. No.):	AA-000				
B. Em	ission Point Description:	Facility V	Vide				
	what emission limit or star $Ps \le 9.0$ tpy (individual), 2		recordkeeping dem	onstrate compliance?			
D. Is t	here an applicable underlyin	ng requirement	t for the recordkeep	ing?			
X	Yes	No					
	res, what is that requirement rmit to Construct issued Ma			to Construct issued, etc.)?			
2. Reco	rdkeeping Information						
A. Da	ta/information recorded:						
	Parameter/Material	Units	Recordkeeping Frequency	Sampling and analysis metho (e.g., EPA Method 24)	d		
	HAPs	tons/yr	Continuous	Process knowledge and emission calc	ulations		
B. Co	mpliance is determined:						
	Daily Weekly Monthly						
X	Other: <u>12-month r</u>	olling total					

FOI	RM 5	MDEQ	N		EPARTMENT OF ENVIRONME PLICATION FOR AIR POLLUT CONTROL PERMIT	
	dkeeping					Section M8
1. Ap	oplicable E	Emission Point Descri	ption			
А.	Emission	Point Designation (Re	ef. No.):	AA-203b, AA	-204b, AA-203c	
В.	Emission	Point Description:	Furnace,	Dryer		_
C.	For what Bypass H	emission limit or standours	dard does the	recordkeeping demo	onstrate compliance?	_
D.	_	n applicable underlyin Yes [g requirement	for the recordkeep	ing?	
		at is that requirement Construct issued Mar			to Construct issued, etc.)?	
2. F	Recordkee	ping Information				
		rmation recorded:		Recordkeeping	Sampling and analysis method	_
	Para	meter/Material	Units	Frequency	(e.g., EPA Method 24)	
		, PM, PM10, PM2.5, VOC, HAPs	Hours	Monthly	For start-ups & shutdowns, bypass emissi 50 hours	
		, PM, PM10, PM2.5, VOC, HAPs	Hours	Monthly	While in idle mode, bypass emissions ≤ hours	500
		, PM, PM10, PM2.5, VOC, HAPs	Hours	Monthly	Bypass hours during dryer start-ups δ shutdowns ≤ 50 hrs/yr	è.
	L			1		
B.		nce is determined:	Wee	kly	Monthly	
		•	g 12-month tot			

FOF	RM 5	MDEQ	MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT					
	lkeeping					Section M8		
1. Ap	plicable E	mission Point Descri	ption					
А.	Emission	Point Designation (R	ef. No.):	AA-501				
B.	Emission	Point Description:	250 HP I	Diesel Emergency Pu	mp			
C.		emission limit or stan s/year for maintenance		recordkeeping demoi	astrate compliance?			
D.	<u> </u>	n applicable underlyin Yes	g requirement	for the recordkeepin	g?			
		at is that requirement Construct issued Mar			Construct issued, etc.)? t IIII			
2. R	Recordkee	ping Information						
A.	Data/info	rmation recorded:						
		meter/Material	Units	Recordkeeping Frequency	Sampling and analysis metho (e.g., EPA Method 24)	d		
	-	on times and reasons for operation	Hours	Continuous	Non-resettable hour meter			
B.	B. Compliance is determined: Daily Weekly Monthly							
	X	Other: <u>Annually (C</u>	Calendar Year	Basis)				

FOI	RM 5	MDEQ	MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT					
Record	dkeeping					Section M8		
1. Ap	oplicable E	mission Point Descri	iption					
A.	Emission	Point Designation (Re	ef. No.):	AA-502				
В.	Emission	Point Description:	402 HP I	Diesel Emergency Ge	nerator			
C.		emission limit or stands of operation per year			-			
D.		n applicable underlyin Yes	ng requiremen No	t for the recordkeepir	ıg?			
	If yes, wh	L	(e.g., NSPS S		Construct issued, etc.)?			
2. R	Recordkee	ping Information						
		rmation recorded:						
	Para	meter/Material	Units	Recordkeeping Frequency	Sampling and analysis metho (e.g., EPA Method 24)	d		
	-	n times and reasons or operation	Hours	Continuous	Non-resettable hour meter			
B.	B. Compliance is determined: Daily Weekly Monthly							
	X	Other: <u>Annually (C</u>	Calendar Year	Basis)				

				TMENT OF ENVIR	
FORM 5	MDEQ	QU		ATION FOR AIR PO	OLLUTION
Applicable Rec	uirements and	Status	CON	TROL PERMIT	Section N
	Applicable Requi				Section IV
Provide a list	of all applicable fee	leral standards for whi	ch your facility is or w	ill be subject to,	
		on Permits establish A.			
		ges (F Finished Pellet C	s applicable to each en Operations	lission point shall	
Federal Regu					
40 CFR Part		<u>i0</u> i3	Subpart	IIII ZZZZ	
	0				
State Constru	ction Permits ¹ :				
		MM/DD/YY ²	PSD	PSD Avoidance ³	Other
Permit to Con	struct issued:	March 21, 2014		X	X
		March 9, 2021		X	X
			-		
			-		
			-		
¹ Any Constru section.	ction Permit contai	ning requirements that	are currently appplica	ble to the facility should be	e addressed in this
² If the permit	has been modified,	give the most recent r	nodification date.		

³ Because permits are issued on a pollutant-by-pollutant basis, a PSD permit may be significant for one pollutant while also containing PSD avoidance limits for another pollutant. Therefore, you may check multiple boxes for each permit.

FORM 5	MDEQ	MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT					
Applicable Requ	irements and Status				Section N		
2. Current Appli	cable Requirements						
				is, etc., and the applicable test methods o rom state requirements. Provide the com	pliance status as of the		
EMISSION POINT NO.	APPLICABLE REQUIREMENT (Regulatory citation)	POLLUTANT	LIMITS/REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING	COMPLIANCE STATUS (In/Out) ^{1,2}		
AA-000 (Facility)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.1.3 F(1)	Particulate Matter	$E = 4.1 (p)^{0.67}$	Process knowledge, fuel records, and emissions calculations	In		
AA-000 (Facility)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.1.3.A. & B.	Opacity	≤ 40% opacity	Visual observations, if needed, EPA Method 22	In		
AA-000 (Facility)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R2.2.B(10) (Major Source Avoidance Limits)	HAPs	9.0 tpy (Individual) 24.0 tpy (Total) (Rolling 12-Month Total)	Process knowledge, fuel records, and emissions calculations	In		
AA-000 (Facility)	11 Miss. Admin. Code Pt. 2, R. 2.2.B(11)	NA	Maintain all records required for a period of 5 years.	Recordkeeping	In		
		PM (filterable only)	245 tpy (Rolling 12-Month Total)				
AA-200 (Wood Drying Operations) AA-300 (Wood Pellet Operations)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code	PM ₁₀ /PM _{2.5} (filterable + condensable)	245 tpy (Rolling 12-Month Total)	Process knowledge and emissions			
AA-400 (Finished Pellet Operations)	Pt. 2, R.2.2.B(10) (PSD Avoidance Limits)	NO _x	245 tpy (Rolling 12-Month Total)	calculations	In		
AA-500 (Emergency Engines)	· ·	СО	245 tpy (Rolling 12-Month Total)				
		VOCs	245 tpy (Rolling 12-Month Total)				
to operate and maintain this 2]Per APC-S-6, Section II.C.	8.b(1) for Title V sources, by specifying source to assure compliance for the durat 8.b(3) for Title V sources, by specifying des a description of the problems and pro	ion of the permit to that the source is c	erm. out of compliance with the applicable req	uirement(s), I (the applicant) am submit			

FORM 5	MDEQ	MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT				
Applicable Requ	uirements and Status				Section N	
2. Current App	licable Requirements					
			ng emission limits, operating restrictions, e t. Clearly identify federal regulations fron		ance status as of the day	
EMISSION POINT NO.	APPLICABLE REQUIREMENT (Regulatory citation)	POLLUTANT	LIMITS/REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING	COMPLIANCE STATU: (In/Out) ^{1,2}	
AA-201 (WESP/RTO)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(10)	PM / PM ₁₀ / PM _{2.5,} VOCs, HAPs	Always Operate the WESP / RTO When the Wood Chip Rotary Dryer and the Green Hammermills are in Operation	Operating records	In	
	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(10)	HAPs	Maintian 90% control efficiency for the RTO, measured as VOCs	Performance testing and emissions calculations using emission factor developed from testing.	In	
AA-203a (165 MMBTU/hr Wood-Fired Furnace)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(10)	Fuel Restriction	Combust only uncontaminated wood waste	Operating records	In	
AA-204a (Wood Chip Rotary Dryer)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(10)		Limit throughput to 578,708 ODT/year on a rolling 12-month total basis	Monthly throughput records and rolling 12-month total throughput calculations	In	
AA-203b, AA-204b (165 MMBTU/hr Wood Fired Furnace Bypass Stack, 12.5 MMBTU.hr Wood Chip Rotary Dryer Bypass Stack	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(10)	CO, NO _x , PM / PM ₁₀ / PM _{2.5,} VOCs, HAPs	Start-Up and Shutdown Requirements : Limit Bypass Emissions for ≤ 100 Hours; Idle Mode Requirements : Limit Bypass Emissions for ≤ 500 Hours; (Rolling 12-Month Total Basis)	Operating records and rolling 12- month total bypass hours calculations	In	

Der APC-S-6, Section II.C.8.b(1) for Title V sources, by specifying that the source is in compliance with the applicable requirement(s), I (the applicant) am certifying that I will continue to operate and maintain this source to assure compliance for the duration of the permit term.

2 Per APC-S-6, Section II.C.8.b(3) for Title V sources, by specifying that the source is out of compliance with the applicable requirement(s), I (the applicant) am submitting a schedule, attached herein, which includes a description of the problems and proposed solutions in accordance with APC-S-6, Section II.C.8.c.

FORM 5	MDEQ	MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AII POLLUTION CONTROL PERMIT				
Applicable Red	quirements and Status				Section N	
2. Current Ap	plicable Requirements					
			emission limits, operating restrictions, etc. ify federal regulations from state requirement		of the day the application is	
EMISSION POINT NO.	APPLICABLE REQUIREMENT (Regulatory citation)	POLLUTANT	LIMITS/REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING	COMPLIANCE STATU (In/Out) ^{1,2}	
AA-300 & AA-400 (Wood Pellet Operations & Finished Pellet Operations)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(10)	PM / PM ₁₀ / PM _{2.5}	Always Operate a Baghouse When a Corresponding Process Unit is in Active Operation	Operating Records	In	
AA-500 (Emergency Engines AA-501 & 502)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.1.3.D(1)(a)	РМ	Limit PM emissions to 0.6 lbs/MMBTU per hour heat input	Emissions calculations	In	
	Construction Permit Issued on March 9, 2021 and 40 CFR Part 60, Subpart IIII – Standards of Performance for Stationary Compression Ignition Combustion Engines (40 CFR 60.4200(a)(2), Subpart IIII)	NMHC+NOx, CO, PM(filterable)	Comply with provisions	N/A	In	
	Construction Permit Issued on March 9, 2021 40 CFR 60.4207(b), Subpart IIII 40 CFR 80.510(b), Subpart I	Diesel Fuel Requirements	Use diesel fuel with a 15 ppm Maximum Sulfur Content; and 40 Minimum Cetane Index or 35% Maximum Aromatic Content	Fuel Purchase Records	In	
	Construction Permit Issued on March 9, 2021 40 CFR 60.4211(f)(1)-(3), Subpart IIII	Hours of operation	Limit hours of operations to 100 Hours / Calendar Year for Maintenance and Testing and 50 Hours / Calendar Year for Non-Emergency Situations	Operating Records	In	

operate and maintain this source to assure compliance for the duration of the permit term. 2)Per APC-S-6, Section II.C.8.b(3) for Title V sources, by specifying that the source is out of compliance with the applicable requirement(s), I (the applicant) am submitting a schedule, attached herein, which includes a description of the problems and proposed solutions in accordance with APC-S-6, Section II.C.8.c.

FORM 5	MDEQ	MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT				
Applicable 1	Requirements and Stat	us			Section N	
2. Current	t Applicable Requirements					
			ing emission limits, operating restrictions, etc nt. Clearly identify federal regulations from st			
EMISSION POINT NO.	APPLICABLE REQUIREMENT (Regulatory citation)	POLLUTANT	LIMITS/REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING	COMPLIANCE STATUS	
AA-500 (Emergency Engines AA-501 & 502)	Construction Permit Issued on March 9, 2021 40 CFR 63, Subpart ZZZZ – National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines 40 CFR 63.6590(c)(1), Subpart ZZZZ	HAPs	Comply with provisions.	N/A	In	
AA-501(250-hp Diesel Emergency Firewater Pump)	40 CFR 60.4205(c), 60.4206, and 60.4211(c), Subpart IIII	NMHC+NOx, PM(filterable)	Purchase certified engine.	N/A	In	
AA-502 (402-hp Diesel Emergency Generator)	40 CFR 60.4205(b), 60.4202(a)(2), 60.4206, and 60.4211(c), Subpart IIII	NMHC+NOx, CO, PM(filterable)	Purchase certified engine.	N/A	In	
AA-500 (Emergency Engines AA-501 & 502)	40 CFR 60.4211(a), Subpart IIII	Work Practice	Comply with the work practices in 40 CFR 60.4211(a).	N/A	In	

MISSISSIDDI DEDA DIMENTO E ENVIDONMENTA LOUALITY ADDI ICATION EOD A D

Der APC-S-6, Section II.C.8.b(1) for Title V sources, by specifying that the source is in compliance with the applicable requirement(s), I (the applicant) am certifying that I will continue to operate and maintain this source to assure compliance for the duration of the permit term.

2 Per APC-S-6, Section II.C.8.b(3) for Title V sources, by specifying that the source is out of compliance with the applicable requirement(s), I (the applicant) am submitting a schedule, attached herein, which includes a description of the problems and proposed solutions in accordance with APC-S-6, Section II.C.8.c.

FORM 5

Pellet Operations),

AA-400 (Finished

Pellet Operations)

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR **POLLUTION CONTROL PERMIT**

Inspection records

In

Applicable Requirements and Status

MDEQ

Section N

Current	Annlicable	Requirements
 Curtent	applicable	negun emento

2. Current Applicable Requirements									
		-	ing emission limits, operating restrictions, etc. nt. Clearly identify federal regulations from st		-				
EMISSION POINT NO.	APPLICABLE REQUIREMENT (Regulatory citation)	POLLUTANT	LIMITS/REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING	COMPLIANCE STATU (In/Out) ^{1,2}				
AA-201 (WESP)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(11)	Secondary Voltage (volts)	Install, calibrate, monitor, operate, and inspect continuous monitoring/ recording system for secondary voltage.	Recordkeeping for secondary voltage in volts	In				
AA-201 (RTO)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(11)	Temperature (F)		Recordkeeping for temperature in degrees F	In				
AA-201 (RTO)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(11)	PM/PM10/PM2. 5	Establish the secondary voltage range for the WESP.	Operating records	In				
AA-201 (RTO)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(11)	Secondary Voltage (volts)	Continuously monitor and record the secondary voltage (in volts) for the WESP based on a 3-hour block average.	Operating records	In				
AA-201 (RTO)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(11)	Opacity	Conduct weekly visible emission observations/evaluations.	Operating records	In				
AA-204a (Wood Chip Rotary Dryer)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(11)		Monitor the throughput of wood chips dried on a monthly and rolling 12-month total.	Monthly throughput records and rolling 12-month total throughput calculations	In				
AA-300 (Wood	Construction Permit Issued on March								

DPer APC-S-6, Section II.C.8.b(1) for Title V sources, by specifying that the source is in compliance with the applicable requirement(s), I (the applicant) am certifying that I will continue to operate and maintain this source to assure compliance for the duration of the permit term.

weekly.

 $PM / PM_{10} /$

 $PM_{2.5}$

Conduct an inspection on each baghouse

2]Per APC-S-6, Section II.C.8.b(3) for Title V sources, by specifying that the source is out of compliance with the applicable requirement(s), I (the applicant) am submitting a schedule, attached herein, which includes a description of the problems and proposed solutions in accordance with APC-S-6, Section II.C.8.c.

Construction Permit Issued on March

9, 2021 and 11 Miss. Admin. Code

Pt. 2, R.2.2.B(11)

FORM 5	MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT										
Applicable Requirements and Status Section N											
2. Current	2. Current Applicable Requirements										
	List all applicable state and federal requirements, including emission limits, operating restrictions, etc., and the applicable test methods or monitoring used to demonstrate compliance with each applicable requirement. Clearly identify federal regulations from state requirements. Provide the compliance status as of the day the application is signed.										
EMISSION POINT NO.	APPLICABLE REQUIREMENT (Regulatory citation)	POLLUTANT	OLLUTANT LIMITS/REQUIREMENTS TEST MET M		COMPLIANCE STATUS (In/Out) ^{1,2}						
AA-300 (Wood Pellet Operations), AA-400 (Finished Pellet Operations)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(11)	Opacity	Monitor and record the differential pressure drop across each baghouse daily (in inches of water).	Operating records	In						
AA-000 (Facility)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(11)	Report	Submit a Semi-Annual Monitoring Report by January 31 & July 31 for the preceding 6-month period.	Submittal of Semi-Annual Monitoring Report	In						
AA-500 (Emergency Engines AA-501 & 502)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(11)	Report	Submit Annual Monitoring Report on hours of operation and inlcude with Semi-Annual Monitoring Report.	Submittal of Annual Monitoring Report	In						
AA-000 (Facility)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.1.3 F(1)	PM / PM ₁₀ / PM _{2.5}	Develop & implement a Dust Management Plan	Compliance with plan	In						

DPer APC-S-6, Section II.C.8.b(1) for Title V sources, by specifying that the source is in compliance with the applicable requirement(s), I (the applicant) am certifying that I will continue to operate and maintain this source to assure compliance for the duration of the permit term.

2]Per APC-S-6, Section II.C.8.b(3) for Title V sources, by specifying that the source is out of compliance with the applicable requirement(s), I (the applicant) am submitting a schedule, attached herein, which includes a description of the problems and proposed solutions in accordance with APC-S-6, Section II.C.8.c.

FORM 5	FORM 5 MDEQ MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR A POLLUTION CONTROL PERMIT								
Applicable Requ	irements and Status				Section N				
2. Future Applie	cable Requirements								
	demonstrate compliance with each app the application is signed.	-	ing emission limits, operating restrictions, nt. Clearly identify federal regulations from		5				
EMISSION POINT NO.	FUTURE APPLICABLE REQUIREMENT (Regulatory citation)	POLLUTANT	LIMITS/REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING	COMPLIANCE DATE				
AA-300 (Wood Pellet Operations)	Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(10)	Wood Pellet Production	Limit wood pellet production to 624,700 US ODT/year on a rolling 12-month total basis	Monthly production records and rolling 12-month total production calculations	In				
AA-301 (RCO)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(10) VOCs, HAPs Always Operate the RCO When the Primary Hammermills, the Dry Shaving Hammermills, Pellet Mills / Pellet Coolers are in Operation		Operating Records	In					
AA-301 (RCO)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(10)	HAPs	Maintain 95% control efficiency, measured as VOCs	Performance testing and emissions calculations using emission factor developed from testing.	In				
AA-000 (Facility)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.1.3 F(1)	HAPs	Calculate emissions on a monthly and rolling 12-month total. Comply with limits of 9.0 tpy (individual HAP) and 24.0 tpy (total HAPs).	Emissions calculations	In				
AA-200 (Wood Drying Operations) AA-300 (Wood Pellet Operations) AA-400 (Finished Pellet Operations) AA-500 (Emergency Engines)	200 (Wood Drying rations) 200 (Wood Drying rations) 300 (Wood Pellet rations) Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(11) CO, NO _x , PM / PM ₁₀ / PM _{2.5} , VOCs Calculate emissions on a monthly and rolling 12-month total. Comply with the limit of 245 tpy for each pollutant.		Emissions calculations	In					

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL OUAL ITY APPLICATION FOR AIR

operate and maintain this source to assure compliance for the duration of the permit term.

2 Per APC-S-6, Section II.C.8.b(3) for Title V sources, by specifying that the source is out of compliance with the applicable requirement(s), I (the applicant) am submitting a schedule, attached herein, which includes a description of the problems and proposed solutions in accordance with APC-S-6, Section II.C.8.c.

FORM 5	MDEQ	MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT							
Applicable Requ	irements and Status				Section N				
2. Future Applie	cable Requirements								
			ing emission limits, operating restrictions, nt. Clearly identify federal regulations fro						
EMISSION POINT NO.	FUTURE APPLICABLE REQUIREMENT (Regulatory citation)	POLLUTANT	LIMITS/REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING	COMPLIANCE DATE ¹				
AA-301 (RCO)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(11)	Temperature (F)	Install, calibrate, monitor, operate, and inspect continuous monitoring/ recording system for combustion chamber temperature.	Recordkeeping for temperature in degrees F	In				
AA-201 (RTO); AA-301 (RCO)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(10)	PM (filterable only), PM10/PM2.5 (filterable + condensable), CO, HAPs, NO _x , VOCs	Conduct initial performance testing using EPA-approved methods while the average wood chip throughput and/or the average wood pellet production is at no less than ninety percent (90%) of the maximum permitted equipment production capacity (in oven-dried tons per hour).	Initial Performance Testing	In				
AA-201 (RTO); AA-301 (RCO)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(10)	PM (filterable only), PM10/PM2.5 (filterable + condensable), CO, HAPs, NO _x , VOCs	Conduct subsequent performance testing using EPA-approved methods no later than twenty-five (25) months after the previously completed performance test while the average wood chip throughput and/or the average wood pellet production is at no less than ninety percent (90%) of the maximum permitted equipment production capacity (in oven-dried tons per hour).	Subsequent Performance Testing	No later than 25 months after the previous performance test				
operate and maintain this so 2 Per APC-S-6, Section II.C	surce to assure compliance for the duration	n of the permit term that the source is o	out of compliance with the applicable requ						

FORM 5 MDEQ MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT									
Applicable Requ	uirements and Status				Section N				
2. Future Appli	cable Requirements								
			ling emission limits, operating restrictions, nt. Clearly identify federal regulations fro						
EMISSION POINT NO.	FUTURE APPLICABLE REQUIREMENT (Regulatory citation)	POLLUTANT	LIMITS/REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING	COMPLIANCE DATE ¹				
AA-300 (Wood Pellet Operations)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(11)	Wood Pellet Production	Monitor and record the total production of wood pellets in ODT both on a monthly basis and a rolling 12-month total basis.	Production records	In				
AA-301 (RCO)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(11)	VOCs, HAPs	Monitor the effective life of the catalytic media in the RCO by determining the apparent density (in grams per cubic centimeter) and percent saturation no later than 16 months after the initial start up. Thereafter, perform subsequent apparent density testing no later than 16 months after the previously completed test.	Test results	Within 16 months of start- up of RCO and every 16 months thereafter				
AA-201 (RTO); AA-301 (RCO)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(11)	PM / PM10 / PM2.5, CO, HAPs, NO _x , VOCs	Submit site-specific emission factors for review and approval.	Submittal of emission factors	In				
operate and maintain this so	C.8.b(1) for Title V sources, by specifying purce to assure compliance for the duration C.8.b(3) for Title V sources, by specifying	n of the permit terr	n.						

²Per APC-S-6, Section II.C.8.b(3) for Title V sources, by specifying that the source is out of compliance with the applicable herein, which includes a description of the problems and proposed solutions in accordance with APC-S-6, Section II.C.8.c.

FORM 5	FORM 5MDEQMISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AI POLLUTION CONTROL PERMIT									
Applicable Requi	rements and Status				Section N					
2. Future Applica	ble Requirements									
	demonstrate compliance with each app the application is signed.		ing emission limits, operating restrictions, nt. Clearly identify federal regulations fro							
EMISSION POINT NO.	FUTURE APPLICABLE REQUIREMENT (Regulatory citation)	POLLUTANT	LIMITS/REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING	COMPLIANCE DATE ¹					
AA-301 (RCO)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(11)	Test Results	Submit the Apparent Density Testing Results no later than 30 days after testing.	Test results	No later than 30 days after testing is complete					
AA-204a (Wood Chip Rotary Dryer)	11 Miss. Admin. Code Pt. 2, R.2.2.B(10)	DriedWood Chip Throughput	Limit throughput to 660,000 US ODT/year on a rolling 12-month total basis	Monthly production records and rolling 12-month total production calculations	In					
AA-203b (165 MMBTU/hr Wood Fired Furnace Bypass Stack)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(11)	Hours of Duration	Monitor and record the date, time, and duration of every period that the furnace operates in idle mode. Additionally, calculate and record the total duration of all idle mode periods for the furnace in hours per year based on a rolling 12- month total. During any period that the furnace operates in idle mode, monitor the volume of wood waste fed into the furnace and calculate the hourly heat input rate based on a 3-hour block average.	Operating Records	In					
operate and maintain this sour 2 Per APC-S-6, Section II.C.8	ce to assure compliance for the duration	n of the permit tern that the source is c	out of compliance with the applicable requ							

FORM 5	MDEQ	MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AIR POLLUTION CONTROL PERMIT								
Applicable Requi	rements and Status				Section N					
2. Future Applicable Requirements										
List all applicable state and federal requirements, including emission limits, operating restrictions, etc., and the applicable test methods or monitoring used to demonstrate compliance with each applicable requirement. Clearly identify federal regulations from state requirements. Provide the compliance status as of the day the application is signed.										
EMISSION POINT NO.	FUTURE APPLICABLE REQUIREMENT (Regulatory citation)	POLLUTANT	LIMITS/REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING	COMPLIANCE DATE ¹					
AA-203b (165 MMBTU/hr Wood Fired Furnace Bypass Stack)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(11)	Hours of Duration	Monitor and record the date, time, and duration of every period that the furnace operates in idle mode. Additionally, calculate and record the total duration of all idle mode periods for the furnace in hours per year based on a rolling 12- month total. During any period that the furnace operates in idle mode, monitor the volume of wood waste fed into the furnace and calculate the hourly heat input rate based on a 3-hour block average.	Operating Records	In					
AA-203b, AA-204b (165 MMBTU/hr Wood Fired Furnace Bypass Stack, 12.5 MMBTU.hr Wood Chip Rotary Dryer Bypass Stack)	A-203b, AA-204b (165 IMBTU/hr Wood Fired urnace Bypass Stack, 12.5 IMBTU.hr Wood Chip otary Dryer Bypass Stack) Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(11) Hours of Duration		Monitor and record the date, time, and duration of every start-up and shutdown period experienced by the furnace and/or the dryer that resulted in emissions being diverted to the corresponding bypass stacks. Additionally, record the total respective duration of start-up and shutdown periods for the furnace and the dryer in hours per year based on a rolling 12- month total.	Operating Records	In					
AA-201 (RTO); AA-301 (RCO)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(11)	Test Results	Submit Performance Test Results no later than 60 days after completion of the test.	Submittal of test results	In					
operate and maintain this sour 2 Per APC-S-6, Section II.C.8	ce to assure compliance for the duration	n of the permit term that the source is o	out of compliance with the applicable requ							

FORM 5	FORM 5 MDEQ MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY APPLICATION FOR AID POLLUTION CONTROL PERMIT										
Applicable Requirements and StatusSection N											
2. Future Applicable Requirements											
List all applicable state and federal requirements, including emission limits, operating restrictions, etc., and the applicable test methods or monitoring used to demonstrate compliance with each applicable requirement. Clearly identify federal regulations from state requirements. Provide the compliance status as of the day the application is signed.											
EMISSION POINT NO.	FUTURE APPLICABLE REQUIREMENT (Regulatory citation)	POLLUTANT	LIMITS/REQUIREMENTS	TEST METHOD/ COMPLIANCE MONITORING	COMPLIANCE DATE ¹						
AA-201 (RTO); AA-301 (RCO)	01 Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(11) PM / PM10 / PM2.5, CO, PM / PM10 / PM2.5, CO, HAPs, NO _x , VOCs Establish site-specific emission factors for PM, PM10, PM2.5, NOX, CO, VOCs, methanol, acetaldehyde, formaldehyde, acrolein, propionaldehyde, hydrogen chloride (HCl), and phenol in pounds per oven- dried tons using both the test results and applicable throughput data collected during the initial performance testing event.		Emission factors calculated using initial performance test data and throughput data	Following initial performance test							
AA-201 (RTO); AA-301 (RCO)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(11)	Combustion Chamber Temperature	Continuously monitor and record the combustion chamber temperature (in degrees Fahrenheit) based on a 3-hour block average.	Operating Records	In						
AA-201 (RTO); AA-301 (RCO)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(11)	Protocol, 10-day Notification	Submit Performance Tesing Protocol within 30 days of performing testing and 10-day Notification of Performance Testing.	Submittal of protocol & 10-day notification	Prior to subsequent performance tests						
AA-201 (RTO); AA-301 (RCO)	Construction Permit Issued on March 9, 2021 and 11 Miss. Admin. Code Pt. 2, R.2.2.B(11)		Perform and record a weekly visible emission observation in accordance with EPA Test Method 22 on the exhaust of each control system during daylight hours and during representative operating conditions.	Operating Records	In						
operate and maintain this sou 2]Per APC-S-6, Section II.C.	rce to assure compliance for the duration	n of the permit tern that the source is c	out of compliance with the applicable requ								

MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL
QUALITY APPLICATION FOR AIR POLLUTION
CONTROL PERMIT

Insignificant Activities (for Title V facilities only)

List of Insignificant Activities

FORM 5 MDEQ

List all insignificant activities identified in 11 Miss. Admin. Code Pt. 2, R. 6.7., with the exception of those in 11 Miss. Admin. Code Pt. 2, R.6.7.A.

- 1. Road dust from truck traffic on paved roads
- 2. Ultra low sulfur diesel (ULSD) tank 10,000 gallon rated capacity
- 3. Bark and wood residues conveyors
- 4. Bark and wood residues hog

Emissions Information

2

List the total emissions for each regulated pollutant from the combined insignificant activities listed above in accordance with the Permit Application Instructions (*calculations not needed unless requested by DEQ*).

POLLUTANT	POTENTIAL TO EMIT				
	lb/hr	tons/yr			
PM	2.6	11.5			
PM ₁₀	0.5	2.1			
PM _{2.5}	0.12	0.5			
VOC	0.0007	0.003			

APPENDIX B: EMISSIONS CALCULATIONS

Amite BioEnergy LLC | Trinity Consultants Initial Title V Permit Application

.....

			Potential-to-Emit Summary (After Adding RCO)													
Emission Point	Description	PM _{2.5} (tpy)	PM ₁₀ (tpy)	SO ₂ (tpy)	NO _x (tpy)	CO (tpy)	VOC (tpy)	CO ₂ e (tpy)	Methanol (tpy)	Formadehyde (tpy)	Acetaldehyde (tpy)	Acrolein (tpy)	Phenol (tpy)	Propionaldehyde (tpy)	HCl (tpy)	Total HAPs (tpy)
AA-102	Log Chipper	0.01	0.05													
AA-101	Log Debarker	0.02	0.09													
AA-201	WESP, RTO, Burner, Dryer Furnace	16.12	16.12	50.70	90.29	189.36	45.14	12,312	6.92	3.86	1.54	0.65	2.991	0.444	0.49	17.52
AA-203b	Furnace SUSD Bypass Stack					0.50	0.01			0.004	0.001	0.003	4.21E-05	5.03E-05	0.02	0.03
AA-203c	Furnace Idling Bypass Stack					2.48	0.07			0.02	0.003	0.02	2.10E-04	2.52E-04	0.08	0.16
AA-204b	Dryer SUSD Bypass Stack	1.27	1.27	0.09	1.56	2.02	2.72			0.08	0.04	0.01	0.016	0.008		0.24
AA-302	Primary Hammermill Feed Silo with bin vent	0.84	0.84				6.50		0.33	0.62	0.33					1.27
AA-305	Secondary Hammermill Silo 1 with bin vent	0.84	0.84				5.79		0.30	0.55	0.30					1.14
AA-306	Secondary Hammermill Silo 2 with bin vent	0.84	0.84				3.23		0.15	0.28	0.15					0.57
AA-301	RCO, Burner	4.12	6.65	0.03	4.06	53.97	37.58	7,182	12.81	1.09	1.16	0.44	6.93	1.06		15.55
AA-309	Starch Silo	0.0002	0.0002													
AA-401A	Pellet Storage Silo No. 1 with bin vent	0.17	0.17				4.36		0.22	0.41	0.22					0.86
AA-401B	Pellet Storage Silo No. 2 with bin vent	0.17	0.17				4.36		0.22	0.41	0.22					0.86
AA-401C	Screened Materials Return System	4.20	4.20				0.87		0.04	0.08	0.04					0.17
AA-401D	Pellet Truck Loadout System	0.55	0.74				9.67		0.43	0.83	0.43					1.69
AA-304	Truck Dump	0.01	0.038													
	Paved Roads (Fugitives)	0.71	2.87													
AA-501	250 hp Diesel Fire Pump Engine	0.004	0.004	0.03	0.08	0.08	0.08	15.00		0.0001	0.0001	8.09E-06				0.0003
AA-502	402 hp Emergency Diesel Generator	0.01	0.01	0.04	0.13	0.12	0.13	24.00		0.0002	0.0001	1.30E-05				0.0006
	Total Emissions	29.86	34.78	50.89	96.12	248.52	120.53	19,533.00	21.41	8.24	4.43	1.12	9.941	1.514	0.58	40.07

Notes:

Emissions from the RCO burner, 6 primary hammermills, 3 secondary hammermills, and 6 pellet coolers are routed to the RCO emission point included above.

Bypas stack scenarios (AA-203b, AA-203c, and AA-204b) have been included for startup and shutdown scenarios for the biomass furnace and rotary dryer, as well as idling for the biomass furnace.

COMPANY	FACILITY NAME	
Amite BioEnergy LLC	Wood Pellet Manufacturing Facility	
DESCRIPTIVE NAME OF EMISSION POINT	Short Name	Emissions Point ID
Log Debarker	DBK	AA-101

Debarker Emission Factors

Emission Factor (lb/ton of logs debarked)							
PM^{1}	$\mathbf{PM_{10}}^2$	$PM_{2.5}^{3}$					
0.00018	8.25E-05	1.98E-05					

Per manufacturer's guarantee dated February 12, 2013 at a sister facility.

² The emission factor for PM_{10} is determined based on the ratio of the PM_{10} to PM emissions from TCEQ *Draft Wood Industry Emission Factors* guidance document, dated May 9, 2005.

³ The emission factor for $PM_{2.5}$ is determined based on the ratio of the $PM_{2.5}$ to PM emissions from the chipper. The PM_{10} and $PM_{2.5}$ emissions from the chipper were provided from the manufacturer and is representative of emissions at a similar facility.

Debarker Emissions

Emission Point ID No.	Description	Process Rate ¹ (metric tons/hr)	Hours of Operation ² (hrs/yr)	PM	PTE (lb/hr) PM ₁₀	PM _{2.5}	Annu PM	al Emissions PM ₁₀	⁴ (tpy) PM _{2.5}
AA-101	Debarking Operations	220	8,760	0.044	0.02	4.80E-03	0.19	0.09	0.02

¹ Based on maximum design rate at a similar facility.

2 Assuming continuous operations.

³ PTE Emissions (lb/hr) = Process Rate (metric tons/hr) * 1.102 (tons/metric ton) * Emission Factor (lb/ton of logs debarked)

Hourly PM Emissions (lb/hr) =	220 metric tons	1.102 tons	0.00018 lb	=	0.04 lb/hr
_	hr	metric ton	tons of logs debarked		

⁴ Annual Emissions (tpy) = Hourly Emissions (lb/hr) * Hours of Operation (hrs/yr) * 1 ton / 2,000 lb

Annual PM Emissions (tpy) =	0.04 lb	8,760 hrs	1 ton	=	0.19 tpy
	hr	yr	2,000 lb		

COMPANY	FACILITY NAME		
Amite BioEnergy LLC	Wood Pellet Manufacturing Facility		
DESCRIPTIVE NAME OF EMISSION POINT Short Name		Emissions Point ID	
Log Chipper CHIP		AA-102	

Hours of Operation ¹	8,760	hrs/yr
Partial Enclosure	95	%
Control Factor ²		

¹ Based on a similar facility located in Woodville, Texas and Urania, Louisiana.

² Assumed control factor for partial enclosure of source.

Chipper Emissions

Emission Point				(lb/hr)	Annual Emissions ³ (tpy)		
ID No.	Description	Pollutant	Uncontrolled ¹	Controlled ²	Uncontrolled	Controlled	
AA-102	Chipper	PM PM ₁₀ PM _{2.5}	0.75 0.25 0.06	0.04 0.01 3.00E-03	3.29 1.10 0.26	0.16 0.05 0.01	

¹ Per manufacturer's guarantee dated July 8, 2011.

² Hourly Controlled Emissions (lb/hr) = Hourly Uncontrolled Emissions (lb/hr) * (1 - (Partial Enclosure Control Factor (%) / 100))

PM Controlled Hourly Emissions (lb/hr) =	0.75 lb	(1 - (95% / 100))	=	0.04 lb/hr			
	hr						
³ Annual Emissions (tpy) = Hourly Emissions (lb/hr) * Hours of Operation (hrs/yr) * 1 ton / 2,000 lb							
PM Uncontrolled Annual Emissions (tpy) =	0.75 lb	8,760 hrs	1 ton	=	3.29 tpy		
	hr	yr	2,000 lb				

COMPANY	FACILITY NAME	
Amite BioEnergy LLC	Wood Pellet Manufacturing Facility	
DESCRIPTIVE NAME OF EMISSION POINT Short Name		Emissions Point ID
Chip Dryer/Biomass Furnace System	RTO	AA-201

The RTO stack exhausts controlled process VOC and PM emissions from the chip dryer as well as controlled combustion emissions from the biomass furnace. PM emissions are controlled with a wet electrostatic

precipitator (WESP). VOC emissions from these sources are controlled by the RTO. Combustion emissions from the RTO's gas burner also exhaust out of the stack.

Operating Data	
Dryer Capacity ¹	467,316 ODT*/yr
Operating hours ¹	8,760 hrs/yr
Operating hours ¹	8,760 hrs/yr

*ODT = oven dried ton (U.S.) of chips

Emission Totals:						
			Emissio	n Rates		
Pollutant	Emission Factor	Reference	PTE	Annual		
			(lb/hr)	(tons/yr)		
Criteria Pollutants						
PM _{2.5}	0.0690 lb/ODT	See Note 7	3.68	16.12		
PM	0.0690 lb/ODT	See Note 7	3.68	16.12		
SO	0.2170 lb/ODT	See Note 3	11.58	50.70		
NOx	0.3864 lb/ODT	See Note 7	20.61	90.29		
CO	0.8104 lb/ODT	See Note 7	43.23	189.36		
VOC Total	0.1932 lb/ODT	See Note 7	10.31	45.14		
Hazardous/Toxic Air Pol						
Acetaldehyde	0.0066 lb/ODT	See Note 7	0.352	1.542		
Acrolein	0.0028 lb/ODT	See Note 7	0.149	0.654		
Benzene	0.0009 lb/ODT	See Note 2	0.049	0.215		
Carbon tetrachloride	0.0000 lb/ODT	See Note 2	0.001	0.002		
Chlorine	0.0002 lb/ODT	See Note 2	0.009	0.040		
Chlorobenzene	0.0000 lb/ODT	See Note 2	0.0004	0.002		
Chloroform	0.0000 lb/ODT	See Note 2	0.0003	0.001		
Chloromethane	0.0000 lb/ODT	See Note 2	0.0003	0.001		
1,2-Dibromoethane	0.0000 lb/ODT	See Note 2	0.001	0.003		
1,2-Dichloroethane	0.0000 lb/ODT	See Note 2	0.0003	0.001		
Dichloromethane	0.0001 lb/ODT	See Note 2	0.003	0.015		
1,2-Dichloropropane	0.0000 lb/ODT	See Note 2	0.0004	0.002		
Ethyl benzene	0.0000 lb/ODT	See Note 2	0.0004	0.002		
Formaldehyde	0.0165 lb/ODT	See Note 7	0.880	3.855		
n-Hexane	0.001 lb/ODT	See Note 2	0.0300	0.131		
Hydrochloric acid	0.0021 lb/ODT		0.112	0.491		
Mercury (and		See Note 2	0.0004	0.002		
compounds)	7.67E-06 lb/ODT	See Note 2	0.0004	0.002		
Methanol	0.0296 lb/ODT	See Note 7	1.579	6.916		
	0.0200 10/001		1.07.0	0.010		
Naphthalene (and Methylnaphthalenes)	2.12E-05 lb/ODT	See Note 2	0.001	0.005		
Phenol	0.0128 lb/ODT	See Note 7	0.683	2.991		
Polynuclear Aromatic Hydrocarbons	6.12E-06 lb/ODT	See Note 2	0.0003	0.001		
Proprionaldehyde	0.0019 lb/ODT	See Note 7	0.101	0.444		
Styrene	4.16E-04 lb/ODT	See Note 2	0.0222	0.444 0.097		
Tetrachloroethylene	4.16E-04 lb/OD1 8.32E-06 lb/ODT	See Note 2 See Note 2	0.0222	0.097		
Toluene	2.01E-04 lb/ODT	See Note 2	0.0004	0.002		
1,1,1-Trichloroethane	6.79E-06 lb/ODT	See Note 2	0.0004	0.047		
Trichloroethylene	6.57E-06 lb/ODT	See Note 2	0.0004	0.002		
Trichlorofluoromethane		See Note 2	0.0004	0.002		
Xylene	5.48E-06 lb/ODT	See Note 2	0.0048	0.021		
Луюнь	5.40L-00 ID/OD1		0.0003	0.001		

COMPANY	FACILITY NAME	
Amite BioEnergy LLC	Wood Pellet Manufacturing Facility	
DESCRIPTIVE NAME OF EMISSION POINT	Short Name	Emissions Point ID
Chip Dryer/Biomass Furnace System	RTO	AA-201

The RTO stack exhausts controlled process VOC and PM emissions from the chip dryer as well as controlled combustion

emissions from the biomass furnace. PM emissions are controlled with a wet electrostatic

precipitator (WESP). VOC emissions from these sources are controlled by the RTO. Combustion emissions from the RTO's gas burner also exhaust out of the stack.

Operating Data	
Dryer Capacity ¹	467,316 ODT*/yr
Operating hours ¹	8,760 hrs/yr
	-, ,

*ODT = oven dried ton (U.S.) of chips

Hazardous/Toxic Air Po	Hazardous/Toxic Air Pollutants					
Arsenic (and compounds)	1.20E-06 lb/ODT	See Note 2	0.0001	0.0003		
Barium (and compounds)	9.31E-06 lb/ODT	See Note 2	0.0005	0.0022		
Copper (and compounds)	2.68E-06 lb/ODT	See Note 2	0.0001	0.0006		
Lead Compounds	2.63E-06 lb/ODT	See Note 2	0.0001	0.0006		
Manganese (and compounds)	8.76E-05 lb/ODT	See Note 2	0.0047	0.0205		
Nickel (and compounds)	1.81E-06 lb/ODT	See Note 2	0.0001	0.0004		
Phosphorus	1.48E-06 lb/ODT	See Note 2	0.0001	0.0003		
Zinc (and compounds)	2.30E-05 lb/ODT	See Note 2	0.0012	0.0054		
		Total HAP Emissions	4.00	17.52		
Greenhouse Gas Emiss	Greenhouse Gas Emissions					
CO e	-	See Note 2	-	12,312		

REFERENCE/NOTES

1. Based on production information provided Josh Jones (Drax Biomass) to Sharon Killian (Trinity) via email.

2. Emissions are the sum from the following individual components: Biomass furnace combustion of wood product and RTO burner combustion of natural gas. Calculation of individual components are attached. Note that biogenic emissions have not been included.

3. SO_2 emission rates are based on the results of February 2016 stack testing at a sister facility (Drax Morehouse BioEnergy). Note that due to high variance in the three tests conducted for SO_2 , Drax has chosen the highest reported hourly emissions as a conservative estimate. These emissions have also been scaled up to account for a 25% safety factor. Therefore, the new Ib/ODT for these pollutants has been calculated based on the annual PTE after scaling up.

4. PM_{10/2.5} emissions are based on a March 2019 engineering test at a sister facility (Drax Morehouse BioEnergy). These emissions have been scaled up to account for a 25% safety factor. Therefore, the new Ib/ODT for these pollutants has been calculated based on the annual PTE after scaling up.

5. CO and NO_x emissions are based on a December 2015 stack test for the RTO stack. These emissions have been scaled up to account for a 25% safety factor. Therefore, the new Ib/ODT for these pollutants has been calculated based on the annual PTE after scaling up.

6. VOC and Formaldehyde emissions are based on stack testing performed at the site in November 2018. A 25% safety factor has been added to the test results for conservatism. Stack testing emissions account for an effective RTO control efficiency of 90%. Therefore, the new lb/ODT for these pollutants has been calculated based on the annual PTE after scaling up.

7. From July 2021 Performance Test.

Amite BioEnergy LLC		Wood Pellet Manufacturing Facility			
DESCRIPTIVE NAME		Short Name	Emissions Point ID)
	Biomass Furnace Emissions (INCLUDED FOR COMPLETENESS ONLY, EMISSIONS		AA-201		
ACCOUNTED		RTO		AA-201	
	onder the official states of the states of t				
Operating Data					
Furnace capacity ¹	0	165 MMBtu/hr			
WESP control efficiency	/2	97.5 %			
RTO control efficiency ²		90.0 %			
HCI control efficiency ³		45.0 %			
Operating hours ¹		8,760 hrs/yr			
Emission Totals:					
				Emiss	ion Rates ^{4,8}
Pollutant	Emission Factor	Reference		PTE	Annual
	Emission actor	Reference		(lb/hr)	(tons/yr)
Criteria Pollutants				(,	(10.10, j.)
PM _{2.5}	0.43 lb/MMBtu	AP-42; Tab	le 1.6-1	1.77	7.77
PM	0.50 lb/MMBtu	AP-42; Tab	le 1.6-1	2.06	9.03
SO	0.025 lb/MMBtu	AP-42; Tab	le 1.6-2	4.13	18.07
NOx	0.22 lb/MMBtu	AP-42; Tab	le 1.6-2	36.30	158.99
СО	0.60 lb/MMBtu	AP-42; Tab	le 1.6-2	9.90	43.36
VOC Total	0.017 lb/MMBtu	AP-42; Tab	le 1.6-3	0.28	1.23
Hazardous/Toxic Air Pol					
Acetaldehyde	0.00083 lb/MMBtu	AP-42; Tab		0.01	0.06
Acrolein	0.004 lb/MMBtu	AP-42; Tab		0.07	0.290
Benzene	0.0042 lb/MMBtu	AP-42; Tab		0.07	0.30
Carbon tetrachloride Chlorine	0.000045 lb/MMBtu	AP-42; Tab		0.001	0.003
Chlorobenzene	0.00079 lb/MMBtu 0.000033 lb/MMBtu	AP-42; Tab AP-42; Tab		0.01 0.001	0.06 0.002
Chloroform	0.000028 lb/MMBtu	AP-42; Tab AP-42; Tab		0.0005	0.002
Chloromethane	0.000023 lb/MMBtu	AP-42; Tab		0.0004	0.002
1,2-Dibromoethane	0.000055 lb/MMBtu	AP-42; Tab		0.001	0.002
1,2-Dichloroethane	0.000029 lb/MMBtu	AP-42; Tab		0.0005	0.002
Dichloromethane	0.00029 lb/MMBtu	AP-42; Tab	le 1.6-3	0.005	0.02
1,2-Dichloropropane	0.000033 lb/MMBtu	AP-42; Tab	le 1.6-3	0.001	0.002
Ethylbenzene	0.000031 lb/MMBtu	AP-42; Tab		0.001	0.002
Formaldehyde	0.0044 lb/MMBtu	AP-42; Tab		0.07	0.32
Hydrochloric acid*	0.019 lb/MMBtu	AP-42; Tab	le 1.6-3	1.72	7.55
Mercury (and compounds)	0.0000035 lb/MMBtu	AP-42; Tab	le 1.6-4	0.0006	0.003
Naphthalene	0.000097 lb/MMBtu	AP-42; Tab		0.002	0.01
Phenol	0.000051 lb/MMBtu	AP-42; Tab	le 1.6-3	0.001	0.004
Polynuclear Aromatic Hydrocarbons	See Below	See Be		0.0005	0.002
Propionaldehyde	0.000061 lb/MMBtu	AP-42; Tab		0.001	0.004
Styrene Tetrachloroethane	0.0019 lb/MMBtu	AP-42; Tab AP-42; Tab		0.03	0.14
Toluene	0.000038 lb/MMBtu 0.00092 lb/MMBtu	AP-42, Tab AP-42; Tab		0.001 0.02	0.003 0.07
1,1,1-Trichloroethane	0.000031 lb/MMBtu	AP-42; Tab		0.001	0.002
Trichloroethylene	0.00003 lb/MMBtu	AP-42; Tab		0.0005	0.002
Trichlorofluoromethane	0.00041 lb/MMBtu	AP-42; Tab		0.01	0.03
Xylene	0.000025 lb/MMBtu	AP-42; Tab		0.0004	0.002
Arsenic	0.000022 lb/MMBtu	AP-42; Tab		0.0001	0.0004
Barium	0.00017 lb/MMBtu	AP-42; Tab	le 1.6-4	0.001	0.003
Copper	0.000049 lb/MMBtu	AP-42; Tab		0.0002	0.001
Lead	0.000048 lb/MMBtu	AP-42; Tab		0.0002	0.001
Manganese	0.0016 lb/MMBtu	AP-42; Tab		0.01	0.03
Nickel	0.000033 lb/MMBtu	AP-42; Tab		0.0001	0.001
Phosphorus Zinc (and compounds)	0.000027 lb/MMBtu 0.00042 lb/MMBtu	AP-42; Tab AP-42; Tab		0.0001	0.0005
		AF-42, 180	ic 1.0 -1	0.002	0.01 Trinity Consulta

FACILITY NAME

COMPANY

COMPANY		FACILITY NAME
Amite BioEnergy LLC		Wood Pellet Manufacturing Facility
DESCRIPTIVE NAME OF EMISSION POINT Biomass Furnace Emissions (INCLUDED FOR	Short Name	Emissions Point ID
COMPLETENESS ONLY, EMISSIONS ACCOUNTED UNDER RTO)	RTO	AA-201
Operating Data		
Furnace capacity ¹	165 MMBtu/hr	
WESP control efficiency ²	97.5 %	
RTO control efficiency ²	90.0 %	
HCI control efficiency ³	45.0 %	
Operating hours ¹	8,760 hrs/yr	

Polynuclear Aromatic Hydrocarbons Emissions:					
				Emission Rates ⁴	
Pollutant	Emissio	on Factor	Reference	PTE	Annual
				(lb/hr)	(tons/yr)
Acenaphthene	9.1E-07	lb/MMBtu	AP-42; Table 1.6-1	1.50E-05	6.58E-05
Acenaphthylene	5.0E-06	lb/MMBtu	AP-42; Table 1.6-1	8.25E-05	3.61E-04
Acetophenone	3.2E-09	lb/MMBtu	AP-42; Table 1.6-2	5.28E-08	2.31E-07
Anthracene	3.0E-06	lb/MMBtu	AP-42; Table 1.6-2	4.95E-05	2.17E-04
Benzo(a)anthracene	6.5E-08	lb/MMBtu	AP-42; Table 1.6-2	1.07E-06	4.70E-06
Benzo(a)pyrene	2.6E-06	lb/MMBtu	AP-42; Table 1.6-3	4.29E-05	1.88E-04
Benzo(b)fluoranthene	1.0E-07	lb/MMBtu	AP-42; Table 1.6-3	1.65E-06	7.23E-06
Benzo(e)pyrene	2.6E-09	lb/MMBtu	AP-42; Table 1.6-3	4.29E-08	1.88E-07
Benzo(g,h,i)perylene	9.3E-08	lb/MMBtu	AP-42; Table 1.6-3	1.53E-06	6.72E-06
Benzo(j,k)fluoranthene	1.6E-07	lb/MMBtu	AP-42; Table 1.6-3	2.64E-06	1.16E-05
Benzo(k)fluoranthene	3.6E-08	lb/MMBtu	AP-42; Table 1.6-3	5.94E-07	2.60E-06
2-Chloronaphthalene	2.4E-09	lb/MMBtu	AP-42; Table 1.6-3	3.96E-08	1.73E-07
Chrysene	3.8E-08	lb/MMBtu	AP-42; Table 1.6-3	6.27E-07	2.75E-06
Dibenzo(a,h)anthracene	9.1E-09	lb/MMBtu	AP-42; Table 1.6-3	1.50E-07	6.58E-07
Fluoranthene	1.6E-06	lb/MMBtu	AP-42; Table 1.6-3	2.64E-05	1.16E-04
Fluorene	3.4E-06	lb/MMBtu	AP-42; Table 1.6-3	5.61E-05	2.46E-04
Indeno(1,2,3,c,d)pyrene	8.7E-08	lb/MMBtu	AP-42; Table 1.6-3	1.44E-06	6.29E-06
2-Methylnaphthalene	1.6E-07	lb/MMBtu	AP-42; Table 1.6-3	2.64E-06	1.16E-05
Perylene	5.2E-10	lb/MMBtu	AP-42; Table 1.6-3	8.58E-09	3.76E-08
Phenanthrene	7.0E-06	lb/MMBtu	AP-42; Table 1.6-3	1.16E-04	5.06E-04
Pyrene	3.7E-06	lb/MMBtu	AP-42; Table 1.6-3	6.11E-05	2.67E-04
	Тс	otal		0.0005	0.002

Greenhouse Gases						
		Biogenic GHG Mass Emission Rates ⁶	Biogenic CO	D ₂ e Emission Rates ⁶		
Pollutant	Emission Factor ⁵	Annual	GWP ⁷	Annual		
		(tons/yr)		(tons/yr)		
CO ₂	113.73 lb/MMBtu	0.00	1	0		
CH ₄	0.00873 lb/MMBtu	6.31	25	157.729		
N ₂ O CO e	0.00436 lb/MMBtu	3.15	298	938.99		
CO e				1,097		

REFERENCE/NOTES

1. Provided by facility.

2. Manufacturer guarantee.

3. HCl control efficiency based on engineering judgment.

4. ER_{avg/max} (lb/hr) = Furnace capacity (MMBtu/hr) x EF (lb/MMBtu) x((100-Control factor)/100)

 ER_{ann} (tons/yr) = (ER_{avg} (lbs/hr) x Operating Time (hrs))/2000 lbs/ton 5. 40 CFR 98 Subpart C Table C-1, C-2 and AP-42, Section 10.6-2 (lb/ODT)

6. Emission rates (ER) calculated as specified in 40 CFR 98.33(a)(1)(iii) and 40 CFR 98.33(c)(1)(ii) and in accordance with 98.33(b)(1)(v) as follows: GHG: ER (tons/yr) = (Total) Firing Rate (MMBtu/hr) x Emission Factor (Ib/MMBtu) x Operating Hours / 2000 lbs/ton

CO2e: ER (tons/yr) = GHG Mass Emission Rate x GWP

7. GWPs based on 40 CFR 98, Table A-1.

8. PM_{10/2.5}, CO, SO₂, NOx, and VOC emissions are included for representativeness. The total emissions out of the RTO stack have been accounted for in the overall RTO emissions estimate (AA-201).

COMPANY				FACILITY NAME		
Amite BioEnergy LLC				Wood Pellet Manufacturing Facility		
DESCRIPTIVE NAME	OF EMISSION POINT	EMISSION POINT ID	E	Emissions Point	ID	
By-pass During Furnace Startup/Shutdown		Furnace SUSD Bypass Stack		AA-203b		
Operating Data						
Furnace capacity ¹		33.0 MMBtu/hr				
RTO control efficiency ²		0.0 %				
Operating hours ¹		50 hrs/yr				
Emission Totals:						
				Emission	Rates ^{3,4}	
Pollutant	Emission Factor	Reference		PTE	Annual	
				(lb/hr)	(tons/yr)	
Criteria Pollutants						
CO	0.60 lb/MMBtu	AP-42; Table 1	.6-2	19.80	0.50	
VOC Total	0.017 lb/MMBtu	AP-42; Table 1	.6-3	0.56	0.01	

Hazardous/Toxic Air Pol	Hazardous/Toxic Air Pollutants					
Acetaldehyde	0.00083 lb/MMBtu	AP-42; Table 1.6-3	0.03	0.0007		
Acrolein	0.004 lb/MMBtu	AP-42; Table 1.6-3	0.13	0.0033		
Benzene	0.0042 lb/MMBtu	AP-42; Table 1.6-3	0.14	0.0035		
Carbon tetrachloride	0.000045 lb/MMBtu	AP-42; Table 1.6-3	0.001	0.0000		
Chlorine	0.00079 lb/MMBtu	AP-42; Table 1.6-3	0.03	0.0007		
Chlorobenzene	0.000033 lb/MMBtu	AP-42; Table 1.6-3	0.001	0.0000		
Chloroform	0.000028 lb/MMBtu	AP-42; Table 1.6-3	0.001	0.0000		
Chloromethane	0.000023 lb/MMBtu	AP-42; Table 1.6-3	0.001	0.0000		
1,2-Dibromoethane	0.000055 lb/MMBtu	AP-42; Table 1.6-3	0.002	0.0000		
1,2-Dichloroethane	0.000029 lb/MMBtu	AP-42; Table 1.6-3	0.001	0.0000		
Dichloromethane	0.00029 lb/MMBtu	AP-42; Table 1.6-3	0.01	0.0002		
1,2-Dichloropropane	0.000033 lb/MMBtu	AP-42; Table 1.6-3	0.001	0.0000		
Ethylbenzene	0.000031 lb/MMBtu	AP-42; Table 1.6-3	0.001	0.0000		
Formaldehyde	0.0044 lb/MMBtu	AP-42; Table 1.6-3	0.15	0.0036		
Hydrochloric acid*	0.019 lb/MMBtu	AP-42; Table 1.6-3	0.63	0.0157		
Mercury (and compounds)	0.0000035 lb/MMBtu	AP-42; Table 1.6-4	1.16E-04	0.0000		
Naphthalene	0.000097 lb/MMBtu	AP-42; Table 1.6-3	0.003	0.0001		
Phenol	0.000051 lb/MMBtu	AP-42; Table 1.6-3	0.002	0.0000		
Polynuclear Aromatic	See Below	See Below	9.23E-04	0.0000		
Hydrocarbons			9.232-04			
Propionaldehyde	0.000061 lb/MMBtu	AP-42; Table 1.6-3	0.002	0.0001		
Styrene	0.0019 lb/MMBtu	AP-42; Table 1.6-3	0.06	0.0016		
Tetrachloroethane	0.000038 lb/MMBtu	AP-42; Table 1.6-3	0.001	0.0000		
Toluene	0.00092 lb/MMBtu	AP-42; Table 1.6-3	0.03	0.0008		
1,1,1-Trichloroethane	0.000031 lb/MMBtu	AP-42; Table 1.6-3	0.001	0.0000		
Trichloroethylene	0.00003 lb/MMBtu	AP-42; Table 1.6-3	0.001	0.0000		
Trichlorofluoromethane	0.00041 lb/MMBtu	AP-42; Table 1.6-3	0.01	0.0003		
Xylene	0.000025 lb/MMBtu	AP-42; Table 1.6-3	0.001	0.0000		
Arsenic	0.000022 lb/MMBtu	AP-42; Table 1.6-4	0.001	0.0000		
Barium	0.00017 lb/MMBtu	AP-42; Table 1.6-4	0.01	0.0001		
Copper	0.000049 lb/MMBtu	AP-42; Table 1.6-4	0.002	0.0000		
Lead	0.000048 lb/MMBtu	AP-42; Table 1.6-4	0.002	0.0000		
Manganese	0.0016 lb/MMBtu	AP-42; Table 1.6-4	0.05	0.0013		
Nickel	0.000033 lb/MMBtu	AP-42; Table 1.6-4	0.001	0.0000		
Phosphorus	0.000027 lb/MMBtu	AP-42; Table 1.6-4	0.001	0.0000		
Zinc (and compounds)	0.00042 lb/MMBtu	AP-42; Table 1.6-4	0.01	0.0003		

COMPANY		FACILITY NAME
Amite BioEnergy LLC		Wood Pellet Manufacturing Facility
DESCRIPTIVE NAME OF EMISSION POINT	EMISSION POINT ID	Emissions Point ID
By-pass During Furnace Startup/Shutdown	Furnace SUSD Bypass Stack	AA-203b
Operating Data		
Furnace capacity ¹	33.0 MMBtu/hr	
RTO control efficiency ²	0.0 %	
Operating hours ¹	50 hrs/yr	

Polynuclear Aromatic Hydrocarbons Emissions:						
	Emission Factor			Emission	Emission Rates ^{3,4}	
Pollutant			Reference	PTE	Annual	
				(lb/hr)	(tons/yr)	
Acenaphthene	9.1E-07	lb/MMBtu	AP-42; Table 1.6-1	3.00E-05	7.51E-07	
Acenaphthylene	5.0E-06	lb/MMBtu	AP-42; Table 1.6-1	1.65E-04	4.13E-06	
Acetophenone	3.2E-09	lb/MMBtu	AP-42; Table 1.6-2	1.06E-07	2.64E-09	
Anthracene	3.0E-06	lb/MMBtu	AP-42; Table 1.6-2	9.90E-05	2.48E-06	
Benzo(a)anthracene	6.5E-08	lb/MMBtu	AP-42; Table 1.6-2	2.15E-06	5.36E-08	
Benzo(a)pyrene	2.6E-06	lb/MMBtu	AP-42; Table 1.6-3	8.58E-05	2.15E-06	
Benzo(b)fluoranthene	1.0E-07	lb/MMBtu	AP-42; Table 1.6-3	3.30E-06	8.25E-08	
Benzo(e)pyrene	2.6E-09	lb/MMBtu	AP-42; Table 1.6-3	8.58E-08	2.15E-09	
Benzo(g,h,i)perylene	9.3E-08	lb/MMBtu	AP-42; Table 1.6-3	3.07E-06	7.67E-08	
Benzo(j,k)fluoranthene	1.6E-07	lb/MMBtu	AP-42; Table 1.6-3	5.28E-06	1.32E-07	
Benzo(k)fluoranthene	3.6E-08	lb/MMBtu	AP-42; Table 1.6-3	1.19E-06	2.97E-08	
2-Chloronaphthalene	2.4E-09	lb/MMBtu	AP-42; Table 1.6-3	7.92E-08	1.98E-09	
Chrysene	3.8E-08	lb/MMBtu	AP-42; Table 1.6-3	1.25E-06	3.14E-08	
Dibenzo(a,h)anthracene	9.1E-09	lb/MMBtu	AP-42; Table 1.6-3	3.00E-07	7.51E-09	
Fluoranthene	1.6E-06	lb/MMBtu	AP-42; Table 1.6-3	5.28E-05	1.32E-06	
Fluorene	3.4E-06	lb/MMBtu	AP-42; Table 1.6-3	1.12E-04	2.81E-06	
Indeno(1,2,3,c,d)pyrene	8.7E-08	lb/MMBtu	AP-42; Table 1.6-3	2.87E-06	7.18E-08	
2-Methylnaphthalene	1.6E-07	lb/MMBtu	AP-42; Table 1.6-3	5.28E-06	1.32E-07	
Perylene	5.2E-10	lb/MMBtu	AP-42; Table 1.6-3	1.72E-08	4.29E-10	
Phenanthrene	7.0E-06	lb/MMBtu	AP-42; Table 1.6-3	2.31E-04	5.78E-06	
Pyrene	3.7E-06	lb/MMBtu	AP-42; Table 1.6-3	1.22E-04	3.05E-06	
	Тс	otal		0.0009	2.31E-05	

REFERENCE/NOTES

1. Conservative assumption. Furnace capacity during startup-shutdown operations is estimated to be no more than 20% (33 MMbtu/hr) of furnace max firing rate while also being no less than 10% (16.5 MMBtu/hr) of furnace max firing rate (165 MMBtu/hr).

2. RTO is assumed to be down for maintenance.

3. ER_{avg/max} (lb/hr) = Furnace capacity (MMBtu/hr) x EF (lb/MMBtu) x((100-Control factor)/100)

 ER_{ann} (tons/yr) = (ER_{avg} (Ibs/hr) x Operating Time (hrs))/2000 Ibs/ton

4. CO, and VOC, and HAP emissions are included because these two pollutants are specifically controlled by the RTO. GHG pollutants are expected to have higher emissions during normal operations due to higher furnace capacity, and those emissions have already been included under the RTO emissions point ID (AA-201).

COMPANY				FACILITY NAME	
Amite BioEnergy LLC			Wood Pellet Manufacturing Facility		ring Facility
DESCRIPTIVE NAME	OF EMISSION POINT	EMISSION POINT ID		Emissions Point I	D
By-pass During Furnace Idling		Furnace Idling Bypass Stack	AA-203c		
Operating Data					
Furnace capacity ¹		16.5 MMBtu/hr			
RTO control efficiency ²		0.0 %			
Operating hours ¹		500 hrs/yr			
Emission Totals:					
				Emission	Rates ^{3,4}
Pollutant	Emission Factor	Reference		PTE	Annual
				(lb/hr)	(tons/yr)
Criteria Pollutants					
CO	0.60 lb/MMBtu	AP-42; Table 1	.6-2	9.90	2.48
VOC Total	0.017 lb/MMBtu	AP-42; Table 1	.6-3	0.28	0.07

Hazardous/Toxic Air Pol	llutants			
Acetaldehyde	0.00083 lb/MMBtu	AP-42; Table 1.6-3	0.01	0.0034
Acrolein	0.004 lb/MMBtu	AP-42; Table 1.6-3	0.07	0.0165
Benzene	0.0042 lb/MMBtu	AP-42; Table 1.6-3	0.07	0.0173
Carbon tetrachloride	0.000045 lb/MMBtu	AP-42; Table 1.6-3	0.001	0.0002
Chlorine	0.00079 lb/MMBtu	AP-42; Table 1.6-3	0.01	0.0033
Chlorobenzene	0.000033 lb/MMBtu	AP-42; Table 1.6-3	0.001	0.0001
Chloroform	0.000028 lb/MMBtu	AP-42; Table 1.6-3	0.000	0.0001
Chloromethane	0.000023 lb/MMBtu	AP-42; Table 1.6-3	0.000	0.0001
1,2-Dibromoethane	0.000055 lb/MMBtu	AP-42; Table 1.6-3	0.001	0.0002
1,2-Dichloroethane	0.000029 lb/MMBtu	AP-42; Table 1.6-3	0.000	0.0001
Dichloromethane	0.00029 lb/MMBtu	AP-42; Table 1.6-3	0.00	0.0012
1,2-Dichloropropane	0.000033 lb/MMBtu	AP-42; Table 1.6-3	0.001	0.0001
Ethylbenzene	0.000031 lb/MMBtu	AP-42; Table 1.6-3	0.001	0.0001
Formaldehyde	0.0044 lb/MMBtu	AP-42; Table 1.6-3	0.07	0.0182
Hydrochloric acid*	0.019 lb/MMBtu	AP-42; Table 1.6-3	0.31	0.0784
Mercury (and compounds)	0.0000035 lb/MMBtu	AP-42; Table 1.6-4	5.78E-05	0.0000
Naphthalene	0.000097 lb/MMBtu	AP-42; Table 1.6-3	0.002	0.0004
Phenol	0.000051 lb/MMBtu	AP-42; Table 1.6-3	0.001	0.0002
Polynuclear Aromatic	See Below	See Below	4.61E-04	0.0001
Hydrocarbons				
Propionaldehyde	0.000061 lb/MMBtu	AP-42; Table 1.6-3	0.001	0.0003
Styrene	0.0019 lb/MMBtu	AP-42; Table 1.6-3	0.03	0.0078
Tetrachloroethane	0.000038 lb/MMBtu	AP-42; Table 1.6-3	0.001	0.0002
Toluene	0.00092 lb/MMBtu	AP-42; Table 1.6-3	0.02	0.0038
1,1,1-Trichloroethane	0.000031 lb/MMBtu	AP-42; Table 1.6-3	0.001	0.0001
Trichloroethylene	0.00003 lb/MMBtu	AP-42; Table 1.6-3	0.000	0.0001
Trichlorofluoromethane	0.00041 lb/MMBtu	AP-42; Table 1.6-3	0.01	0.0017
Xylene	0.000025 lb/MMBtu	AP-42; Table 1.6-3	0.000	0.0001
Arsenic	0.000022 lb/MMBtu	AP-42; Table 1.6-4	0.000	0.0001
Barium	0.00017 lb/MMBtu	AP-42; Table 1.6-4	0.00	0.0007
Copper	0.000049 lb/MMBtu	AP-42; Table 1.6-4	0.001	0.0002
Lead	0.000048 lb/MMBtu	AP-42; Table 1.6-4	0.001	0.0002
Manganese	0.0016 lb/MMBtu	AP-42; Table 1.6-4	0.03	0.0066
Nickel	0.000033 lb/MMBtu	AP-42; Table 1.6-4	0.001	0.0001
Phosphorus	0.000027 lb/MMBtu	AP-42; Table 1.6-4	0.000	0.0001
Zinc (and compounds)	0.00042 lb/MMBtu	AP-42; Table 1.6-4	0.01	0.0017

COMPANY	FACILITY NAME	
Amite BioEnergy LLC	C	Wood Pellet Manufacturing Facility
DESCRIPTIVE NAME OF EMISSION POINT	EMISSION POINT ID	Emissions Point ID
By-pass During Furnace Idling	By-pass During Furnace Idling Furnace Idling Bypass Stack	
Operating Data		
Furnace capacity ¹	16.5 MMBtu/hr	
RTO control efficiency ²	0.0 %	
Operating hours ¹	500 hrs/yr	

Polynuclear Aromatic Hydrocarbons Emissions:					
				Emission	Rates ^{3,4}
Pollutant	Emission Factor		Reference	Avg	Annual
				(lb/hr)	(tons/yr)
Acenaphthene	9.1E-07	lb/MMBtu	AP-42; Table 1.6-1	1.50E-05	3.75E-06
Acenaphthylene	5.0E-06	lb/MMBtu	AP-42; Table 1.6-1	8.25E-05	2.06E-05
Acetophenone	3.2E-09	lb/MMBtu	AP-42; Table 1.6-2	5.28E-08	1.32E-08
Anthracene	3.0E-06	lb/MMBtu	AP-42; Table 1.6-2	4.95E-05	1.24E-05
Benzo(a)anthracene	6.5E-08	lb/MMBtu	AP-42; Table 1.6-2	1.07E-06	2.68E-07
Benzo(a)pyrene	2.6E-06	lb/MMBtu	AP-42; Table 1.6-3	4.29E-05	1.07E-05
Benzo(b)fluoranthene	1.0E-07	lb/MMBtu	AP-42; Table 1.6-3	1.65E-06	4.13E-07
Benzo(e)pyrene	2.6E-09	lb/MMBtu	AP-42; Table 1.6-3	4.29E-08	1.07E-08
Benzo(g,h,i)perylene	9.3E-08	lb/MMBtu	AP-42; Table 1.6-3	1.53E-06	3.84E-07
Benzo(j,k)fluoranthene	1.6E-07	lb/MMBtu	AP-42; Table 1.6-3	2.64E-06	6.60E-07
Benzo(k)fluoranthene	3.6E-08	lb/MMBtu	AP-42; Table 1.6-3	5.94E-07	1.49E-07
2-Chloronaphthalene	2.4E-09	lb/MMBtu	AP-42; Table 1.6-3	3.96E-08	9.90E-09
Chrysene	3.8E-08	lb/MMBtu	AP-42; Table 1.6-3	6.27E-07	1.57E-07
Dibenzo(a,h)anthracene	9.1E-09	lb/MMBtu	AP-42; Table 1.6-3	1.50E-07	3.75E-08
Fluoranthene	1.6E-06	lb/MMBtu	AP-42; Table 1.6-3	2.64E-05	6.60E-06
Fluorene	3.4E-06	lb/MMBtu	AP-42; Table 1.6-3	5.61E-05	1.40E-05
Indeno(1,2,3,c,d)pyrene	8.7E-08	lb/MMBtu	AP-42; Table 1.6-3	1.44E-06	3.59E-07
2-Methylnaphthalene	1.6E-07	lb/MMBtu	AP-42; Table 1.6-3	2.64E-06	6.60E-07
Perylene	5.2E-10	lb/MMBtu	AP-42; Table 1.6-3	8.58E-09	2.15E-09
Phenanthrene	7.0E-06	lb/MMBtu	AP-42; Table 1.6-3	1.16E-04	2.89E-05
Pyrene	3.7E-06	lb/MMBtu	AP-42; Table 1.6-3	6.11E-05	1.53E-05
	Тс	otal		0.0005	1.15E-04

REFERENCE/NOTES

1. Conservative assumption. Furnace capacity during idling was previously permitted for 5 MMbtu/hr. Drax is requesting that this capacity be updated to be no more than 10% (16.5 MMBtu/hr) of furnace max firing rate (165 MMBtu/hr).

2. RTO is assumed to be down for maintenance.

3. ER_{avg/max} (lb/hr) = Furnace capacity (MMBtu/hr) x EF (lb/MMBtu) x((100-Control factor)/100)

 ER_{ann} (tons/yr) = (ER_{avg} (lbs/hr) x Operating Time (hrs))/2000 lbs/ton

4. CO, and VOC, and HAP emissions are included because these two pollutants are specifically controlled by the RTO. GHG pollutants are expected to have higher emissions during normal operations due to higher furnace capacity, and those emissions have already been included under the RTO emissions point ID (AA-201).

COMPANY		FACILITY NAME
Amite BioEnergy LLC	Wood Pellet Manufacturing Facility	
DESCRIPTIVE NAME OF EMISSION POINT	Short Name	Emissions Point ID
By-pass During Dryer Startup/Shutdown	Dryer SUSD Bypass Stack	AA-204b

The RTO stack exhausts controlled process VOC and PM emissions from the chip dryer as well as controlled combustion

emissions from the biomass furnace. PM emissions are controlled with a wet electrostatic

precipitator (WESP). VOC emissions from these sources are controlled by the RTO. Combustion emissions from the RTO's gas burner also exhaust out of the stack.

Operating Data	
Dryer Capacity ¹	23 ODT*/hr
Operating hours ¹	50 hrs/yr

*ODT = oven dried ton (U.S.) of chips

Emission Totals:				
			Emissio	on Rates
Pollutant	Emission Factor	Reference	Hourly	Annual
			(lb/hr)	(tons/yr)
Criteria Pollutants				
PM _{2.5}	2.20 lb/ODT	See Note 2	50.91	1.27
PM	2.20 lb/ODT	See Note 2	50.91	1.27
SO	0.15 lb/ODT	See Note 3	3.47	0.09
NOx	2.70 lb/ODT	See Note 2	62.48	1.56
CO	3.50 lb/ODT	See Note 2	81.00	2.02
VOC Total	4.70 lb/ODT	See Note 2	108.77	2.72
Hazardous/Toxic Air Po	llutants			
Acetaldehyde	0.08 lb/ODT	See Note 4	1.74	0.04
Acrolein	2.30E-02 lb/ODT	See Note 4	0.53	0.01
Benzene	7.60E-03 lb/ODT	See Note 4	0.18	0.00
Cumene	2.00E-03 lb/ODT	See Note 4	0.05	0.00
Formaldehyde	0.140 lb/ODT	See Note 4	3.24	0.08
Methylene Chloride	1.80E-03 lb/ODT	See Note 4	0.04	0.001
Methanol	0.110 lb/ODT	See Note 4	2.55	0.06
Methyl Isobutyl Ketone	6.90E-03 lb/ODT	See Note 4	0.16	0.004
Phenol	2.80E-02 lb/ODT	See Note 4	0.65	0.02
Proprionaldehyde	1.30E-02 lb/ODT	See Note 4	0.30	0.01
Styrene	3.60E-04 lb/ODT	See Note 4	0.01	0.00
Toluene	1.30E-02 lb/ODT	See Note 4	0.30	0.01
Xylene	4.80E-04 lb/ODT	See Note 4	0.01	0.00
		Total HAP Emissions	9.75	0.24

REFERENCE/NOTES

1. Based on dryer feed rate information provided Josh Jones (Drax Biomass) to Sharon Killian (Trinity) via email on December 14, 2021. At 25% feed rate, the capacity is 16.53 ODT/hr. therefore, at 35% feed rate, the capacity is calaculated as 23 ODT/hr.

2. Emission factors for PM, CO, VOC, and NOx are based on AP-42 Chapter 10.6. Emissions have been conserv atively estimated based on SCC 3-07-006-25 assuming inlet moisture content > 50%, dry basis.

3. SO_2 emission rates are based on the results of February 2016 stack testing at a sister facility (Drax Morehouse BioEnergy). Note that due to high variance in the three tests conducted for SO_2 , Drax has chosen the highest reported hourly emissions as a conservative estimate. These emissions have also been scaled up to account for a 25% safety factor. Therefore, the new Ib/ODT for these pollutants has been calculated based on the annual PTE after scaling up.

4. HAP emissions are based on AP-42 Chapter 10.6, Table 10.6.2-3. Emissions have been conservatively estimated based on SCC 3-07-006-25 assuming inlet moisture content > 50%, dry basis. GHG pollutants are expected to have higher emissions during normal operations due to higher furnace capacity, and those emissions have already been included under the RTO emissions point ID (AA-201).

COMPANY		FACILITY NAME
Amite BioEnergy LLC		Wood Pellet Manufacturing Facility
DESCRIPTIVE NAME OF EMISSION POINT	Short Name	Emissions Point ID
Natural Gas RTO Burner (INCLUDED FOR COMPLETENESS ONLY, EMISSIONS ACCOUNTED UNDER RTO)	RTO	AA-201

Operating Data	
Burner capacity ¹	24 MMBtu/hr
Natural gas HHV ²	1,020 Btu/scf
Operating hours ¹	8,760 hrs/yr

Emission Totals:						
			Emiss	ion Rates ^{3,7}		
Pollutant	Emission Factor	Reference	PTE	Annual		
			(lb/hr)	(tons/yr)		
Criteria Pollutants						
PM _{2.5}	7.6 lb/10 ⁶ scf	AP 42; Table 1.4-2	0.18	0.78		
PM	7.6 lb/10 ⁶ scf	AP 42; Table 1.4-2	0.18	0.78		
SO	0.6 lb/10 ⁶ scf	AP 42; Table 1.4-2	0.01	0.06		
NOx	100 lb/10 ⁶ scf	AP 42; Table 1.4-1	2.35	10.31		
CO	84 lb/10 ⁶ scf	AP 42; Table 1.4-1	1.98	8.66		
VOC Total	5.5 lb/10 ⁶ scf	AP 42; Table 1.4-2	0.13	0.57		
Hazardous/Toxic Air P	Hazardous/Toxic Air Pollutants					
Formaldehyde	0.075 lb/10 ⁶ scf	AP 42; Table 1.4-3	0.002	0.01		
n-Hexane	1.8 lb/10 ⁶ scf	AP 42; Table 1.4-3	0.04	0.19		

Greenhouse Gases						
Pollutant		GHG Mass Emission Rates ⁵		CO ₂ e Emission Rates ⁶		
	Emission Factor ⁴	Emission Factor ⁴ Annual GWP ⁶		Annual		
		(tons/yr)		(tons/yr)		
CO ₂	53.06 kg/MMBtu	12298.76	1	12,299		
CH₄	0.001 kg/MMBtu	0.23	25	5.790		
N ₂ O	0.0001 kg/MMBtu	0.02	298	6.91		
CO e						

REFERENCE/NOTES

Provided by facility.
 AP-42; Chapter 1.4 - Natural Gas Combustion.

3. ER_{avg/max} (lb/hr) = Furnace capacity (MMBtu/hr) x (EF (lb/10⁶ scf)/HHV (Btu/scf))

ER_{ann} (tons/yr) = (ER_{avg} (lbs/hr) x Operating Time (hrs))/2000 lbs/ton

4. Emission factor based on 40 CFR 98, Tables C-1 and C-2, for Petroleum (Natural Gas).

5. Emission rates (ER) calculated as specified in 40 CFR 98.33(a)(1)(iii) and 40 CFR 98.33(c)(1)(iii) and in accordance with 98.33(b)(1)(v) as follows:

GHG: ER (tons/yr) = (Total) Firing Rate (MMBtu/hr) x (Emission Factor (kg/10⁶ Btu) x 1000 g/kg / 453.59 g/lb) x Operating Hours (hr/yr)/ 2000 lbs/ton

CO₂e: ER (tons/yr) = GHG Mass Emission Rate x GWP

6. GWPs based on 40 CFR 98, Table A-1.

7. PM10/2.5, CO, SO2, NOx, and VOC emissions are included for representativeness. The total emissions out of the RTO stack have been accounted for in the overall RTO emissions estimate (AA-201).

COMPANY		FACILITY NAME
Amite BioEnergy LLC		Wood Pellet Manufacturing Facility
DESCRIPTIVE NAME OF EMISSION POINT	Short Name	Emissions Point ID
Primary Hammermill Feed Silo with bin vent	HFS	AA-302
Operating Data		7
Exhaust flow ¹	1,500 acfm	-
Annual throughput ¹	624,700 ODT*/yr	
Potential maximum hourly throughput ¹	71.31 ODT*/hr	

77 °F

8,760 hr/yr

*ODT = oven dried ton (U.S.) of chips

Exhaust temperature¹ Operating hours¹

Emission Totals:				
			Emissio	on Rates
Pollutant	Emission Factor	Reference	PTE	Annual
			(lb/hr)	(tons/yr)
PM _{2.5}	0.015 gr/scf	Vendor guarantee	0.19	0.84
PM	0.015 gr/scf	Vendor guarantee	0.19	0.84
VOC Total	0.021 lb/ODT	Based on scaled-up stack test results ²	1.48	6.50
Methanol	0.0010 lb/ODT	Based on scaled-up stack test results ²	0.07	0.33
Formaldehyde	0.0020 lb/ODT	Based on scaled-up stack test results ²	0.14	0.62
Acetaldehyde	0.0010 lb/ODT	Based on scaled-up stack test results ²	0.07	0.33

REFERENCE/NOTES

1. Based on production information provided Josh Jones (Drax Biomass) to Sharon Killian (Trinity) on February 16, 2022 via email.

2. Stack testing conducted at a sister facility (Drax Morehouse BioEnergy) on February 10-16, 2016. These emissions have been scaled up to account for a 25% safety factor.

3. PM Emission rates (ER) calculated as follows:

PM $ER_{avg/max}$ (lb/hr) = ((EF (gr/scf) x Exhaust Flow (acfm)) x (60 min/hr) x (1 lb/7000 gr) x (Standard Temp (°R)/Actual Temp (°R)) PM ER_{ann} (tons/yr) = (PM ER_{avg} (lbs/hr) x Operating hours) x (1 ton/2000 lbs)

4. VOC/TAP ER calculated as follows:

 $VOC/TAP_{ann} (tons/yr) = (Annual throughput (ODT/yr) x EF (lb/ODT))/(1 ton/2000 lbs)$ $VOC/TAP_{avg} (lb/hr) = (VOC/TAP_{ann} (tons/yr) x (2000 lbs/ton))/Operating hours (hr/yr)$ $VOC/TAP_{max} (lb/hr) = Potential max hourly throughput (ODT/hr) x EF (lb/ODT)$

COMPANY		FACILITY NAME
Amite BioEnergy LLC		Wood Pellet Manufacturing Facility
DESCRIPTIVE NAME OF EMISSION POINT	Short Name	Emissions Point ID
Primary Hammermill Pneumatic System Vents 1 through 6 <i>(INCLUDED FOR</i> <i>COMPLETENESS ONLY, EMISSIONS</i> <i>ACCOUNTED UNDER RCO)</i>	HPS1-HPS6	AA-303
Operating Data		
Exhaust flow per vent ¹	9.000 acfm	

Exhaust flow per vent	9,000 actm
Annual throughput per vent ¹	104,117 ODT*/yr
Maximum hourly throughput per vent ¹	11.89 ODT*/hr
Number of Vents	6
Operating hours ¹	8,760 hr/yr

Emission Totals:				
			Emissic	n Rates⁵
Pollutant	Emission Factor	Reference	PTE	Annual
			(lb/hr)	(tons/yr)
PM _{2.5}	0.005 lb/ODT	Based on scaled-up stack test results ³	0.38	1.68
PM	0.007 lb/ODT	Based on scaled-up stack test results ³	0.52	2.27
VOC Total	0.43 lb/ODT	Based on scaled-up stack test results ⁴	30.37	133.04
Methanol	0.0027 lb/ODT	Based on scaled-up stack test results ²	0.19	0.84
Formaldehyde	0.0056 lb/ODT	Based on scaled-up stack test results ²	0.40	1.75
Acetaldehyde	0.0027 lb/ODT	Based on scaled-up stack test results ²	0.19	0.84

REFERENCE/NOTES

1. Based on production information provided Josh Jones (Drax Biomass) to Sharon Killian (Trinity) on February 16, 2022 via email.

2. Stack testing conducted at a sister facility (Drax Morehouse BioEnergy) on February 10-16, 2016. These emissions have been scaled up to account for a 25% safety factor.

3. PM emission rates calculated based on March 2019 engineering testing of the hammermills at a sister facility (Drax Morehouse BioEnergy) with an additional 25% safety factor.

PM ER_{ann} (tons/yr) = (PM ER_{avg} (lbs/hr) x Operating hours) x (1 ton/2000 lbs)

4. VOC emission rates calculated based on November 2018 engineering testing of the hammermills at the site with an additional 25% safety factor. As the hammermills are permitted under a single emission point ID (AA-004), the hourly emissions have been estimated as the sum of the 3-hr average hourly stack tested emissions for each vent.

VOC ER_{ann} (tons/yr) = (VOC ER_{avg} (lbs/hr) x Operating hours) x (1 ton/2000 lbs)

5. TAP ER calculated as follows:

TAP_{ann} (tons/yr) = (Annual throughput (ODT/yr) x EF (lb/ODT))/(1 ton/2000 lbs)

COMPANY		FACILITY NAME
Amite BioEnergy LL		Wood Pellet Manufacturing Facility
DESCRIPTIVE NAME OF EMISSION POINT	Short Name	Emissions Point ID
Truck Dump	DSTD	AA-304
Operating Data		
Potential maximum hourly throughput ¹	150 MTPH	
Annual throughput through source ¹	467,316 ODT*/yr	
Potential average hourly throughput ¹	53.35 ODT*/hr	
Moisture Content ²	8 %	
Operating hours ¹	8,760 hr/yr	

Emission Totals:				
			Emissi	on Rates
Pollutant	Emission Factor	Reference	PTE	Annual
			(lb/hr)	(tons/yr)
PM ₁₀	1.61E-04 lb/ODT	AP-42, Section 13.2.4	0.01	0.04
PM _{2.5}	2.44E-05 lb/ODT	AP-42, Section 13.2.4	0.001	0.006

REFERENCE/NOTES 1. Based on production information provided by Josh Jones (Drax Biomass) to Sharon Killian (Trinity) via email.

2. Moisture Content is based on similar information for pine and hardwood dry shavings at other pellet mills in Mississippi.

3. PM emission rates calculated based on AP-42, Section 13.2.4 - Aggregate Handling and Storage Piles, Equation 13.2.1, (11/06). Wind speed assumed to be no more than 5 mph for the area assuming calm winds.

COMPANY	FACILITY NAME	
Amite BioEnergy LLC		Wood Pellet Manufacturing Facility
DESCRIPTIVE NAME OF EMISSION POINT	Short Name	Emissions Point ID
Secondary Hammermill Silo 1 with Bin Vent	SHFS1	AA-305
Operating Data		
Exhaust flow ¹	1,500 acfm	
Annual throughput through source ¹	416,467 ODT*/yr	
Potential maximum hourly throughput ¹	47.54 ODT*/hr	
Exhaust temperature ¹	77 °F	

8,760 hr/yr

Operating hours¹ *ODT = oven dried ton (U.S.) of chips

Exhaust temperature¹

Emission Totals:	Emission Totals:					
			Emission Rates			
Pollutant	Emission Factor	Reference	PTE	Annual		
			(lb/hr)	(tons/yr)		
PM _{2.5}	0.015 gr/scf	Vendor guarantee	0.19	0.84		
PM	0.015 gr/scf	Vendor guarantee	0.19	0.84		
VOC Total	0.0278 lb/ODT	Based on scaled up stack test results ²	1.32	5.79		
Methanol	0.0014 lb/ODT	Based on scaled up stack test results ²	0.07	0.30		
Formaldehyde	0.0027 lb/ODT	Based on scaled up stack test results ²	0.13	0.55		
Acetaldehyde	0.0014 lb/ODT	Based on scaled up stack test results ²	0.07	0.30		

REFERENCE/NOTES

1. Provided by facility. It is assumed that the No.1 feed silo bin vent will store up to 66.6% of the total feed throughput.

2. Stack testing conducted at a sister facility (Drax Morehouse BioEnergy) on February 10-16, 2016. These emissions have been scaled up to account for a 25% safety factor.

3. PM Emission rates (ER) calculated as follows:

PM ER_{avg/max} (lb/hr) = ((EF (gr/scf) x Exhaust Flow (acfm)) x (60 min/hr) x (1 lb/7000 gr) x (Standard Temp (°R)/Actual Temp (°R)) PM ER_{ann} (tons/yr) = (PM ER_{avg} (lbs/hr) x Operating hours) x (1 ton/2000 lbs)

4. VOC/TAP ER calculated as follows:

VOC/TAP_{ann} (tons/yr) = (Annual throughput (ODT/yr) x EF (lb/ODT))/(1 ton/2000 lbs) VOC/TAP_{avg} (lb/hr) = (VOC/TAP_{ann} (tons/yr) x (2000 lbs/ton))/Operating hours (hr/yr) VOC/TAP_{max} (lb/hr) = Potential max hourly throughput (ODT/hr) x EF (lb/ODT)

COMPANY		FACILITY NAME
Amite BioEnergy LL	_C	Wood Pellet Manufacturing Facility
DESCRIPTIVE NAME OF EMISSION POINT	Short Name	Emissions Point ID
Secondary Hammermill Silo 2 with Bin Vent	SHFS2	AA-306
Operating Data		
Operating Data Exhaust flow ¹ Annual throughput through source ¹	1,500 acfm 208,233 ODT*/yr	
Exhaust flow ¹	,	

8,760 hr/yr

*ODT = oven dried ton (U.S.) of chips

Emission Totals:					
			Emissio	on Rates	
Pollutant	Emission Factor	Reference	PTE	Annual	
			(lb/hr)	(tons/yr)	
PM _{2.5}	0.015 gr/scf	Vendor guarantee	0.19	0.84	
PM	0.015 gr/scf	Vendor guarantee	0.19	0.84	
VOC Total	0.0278 lb/ODT	Based on scaled up stack test results ²	0.74	3.23	
Methanol	0.0014 lb/ODT	Based on scaled up stack test results ²	0.03	0.15	
Formaldehyde	0.0027 lb/ODT	Based on scaled up stack test results ²	0.06	0.28	
Acetaldehyde	0.0014 lb/ODT	Based on scaled up stack test results ²	0.03	0.15	

REFERENCE/NOTES

Operating hours¹

1. Provided by facility. It is assumed that the No.2 feed silo bin vent will store up to 33.3% of the total feed throughput.

2. Stack testing conducted at a sister facility (Drax Morehouse BioEnergy) on February 10-16, 2016. These emissions have been scaled up to account for a 25% safety factor.

3. PM Emission rates (ER) calculated as follows:

 $PM \ ER_{avg/max} (lb/hr) = ((EF (gr/scf) x \ Exhaust Flow (acfm)) x (60 \ min/hr) x (1 \ lb/7000 \ gr) x (Standard Temp (°R)/Actual Temp (°R)) \\ PM \ ER_{ann} (tons/yr) = (PM \ ER_{avg} (lbs/hr) x \ Operating hours) x (1 \ ton/2000 \ lbs)$

4. VOC/TAP ER calculated as follows:

VOC/TAP_{ann} (tons/yr) = (Annual throughput (ODT/yr) x EF (lb/ODT))/(1 ton/2000 lbs)

 $\label{eq:VOC/TAP} VOC/TAP_{avg} \mbox{ (lb/hr)} = (VOC/TAP_{ann} \mbox{ (tons/yr)} \mbox{ x (2000 lbs/ton))} / \mbox{Operating hours (hr/yr)}$

VOC/TAP_{max} (lb/hr) = Potential max hourly throughput (ODT/hr) x EF (lb/ODT)

COMPANY		FACILITY NAME
Amite BioEnergy LLC		Wood Pellet Manufacturing Facility
DESCRIPTIVE NAME OF EMISSION POINT	Short Name	Emissions Point ID
Secondary Hammermill Pneumatic System No. 1 (INCLUDED FOR COMPLETENESS ONLY, EMISSIONS ACCOUNTED UNDER RCO)	SHPS1	AA-307A
Operating Data]
Exhaust flow ¹	9,000 acfm	
Average Annual throughput ¹	64,228 ODT/yr	
Maximum Annual throughput ¹	208,233 ODT*/yr	
Maximum hourly throughput ¹	23.77 ODT*/hr	
Operating hours ¹	8,760 hr/yr	

Emission Totals:					
			Emissic	on Rates⁵	
Pollutant	Emission Factor	Reference	PTE	Annual	
			(lb/hr)	(tons/yr)	
PM _{2.5}	0.005 lb/ODT	Based on stack test results ³	0.11	0.50	
PM	0.006 lb/ODT	Based on stack test results ³	0.13	0.58	
VOC Total	0.35 lb/ODT	Based on stack test results ⁴	8.84	38.72	
Methanol	0.0017 lb/ODT	Based on stack test results ²	0.04	0.186	
Formaldehyde	0.0032 lb/ODT	Based on stack test results ²	0.08	0.358	
Acetaldehyde	0.0017 lb/ODT	Based on stack test results ²	0.04	0.186	

REFERENCE/NOTES

1. Based on production information provided by Josh Jones (Drax Biomass) to Sharon Killian (Trinity) on February 16, 2022 via email.

2. Stack testing conducted at a sister facility (Drax Morehouse BioEnergy) on February 10-16, 2016.

3. PM emission rates calculated based on March 2019 engineering testing of the hammermills at a sister facility (Drax Morehouse BioEnergy) with an additional 25% safety factor.

PM ER_{ann} (tons/yr) = (PM ER_{avg} (lbs/hr) x Operating hours) x (1 ton/2000 lbs)

4. VOC emission rates calculated based on November 2018 engineering testing of the secondary hammermills at the site with an additional 25% safety factor.

VOC ER_{ann} (tons/yr) = (VOC ER_{avg} (lbs/hr) x Operating hours) x (1 ton/2000 lbs)

5. TAP ER calculated as follows:

 $\mathsf{TAP}_{\mathsf{ann}} \; (\mathsf{tons/yr}) = (\mathsf{Annual throughput} \; (\mathsf{ODT/yr}) \; x \; \mathsf{EF} \; (\mathsf{lb/ODT})) / (1 \; \mathsf{ton/2000 \; lbs})$

 $\mathsf{TAP}_{\mathsf{avg}} \; (\mathsf{Ib/hr}) = (\mathsf{VOC/TAP}_{\mathsf{ann}} \; (\mathsf{tons/yr}) \; x \; (2000 \; \mathsf{lbs/ton})) \\ / \mathsf{Operating hours} \; (\mathsf{hr/yr}) \;$

COMPANY		FACILITY NAME
Amite BioEnergy LLC		Wood Pellet Manufacturing Facility
DESCRIPTIVE NAME OF EMISSION POINT	Short Name	Emissions Point ID
Secondary Hammermill Pneumatic System No. 2 (INCLUDED FOR COMPLETENESS ONLY, EMISSIONS ACCOUNTED UNDER RCO)	SHPS2	AA-307B
Operating Data		1

Exhaust flow ¹	9,000 acfm
Average Annual throughput ¹	64,228 ODT/yr
Maximum Annual throughput ¹	208,233 ODT*/yr
Maximum hourly throughput ¹	23.77 ODT*/hr
Operating hours ¹	8,760 hr/yr

Emission Totals:					
			Emissio	on Rates⁵	
Pollutant	Emission Factor	Reference	PTE	Annual	
			(lb/hr)	(tons/yr)	
PM _{2.5}	0.005 lb/ODT	Based on stack test results ³	0.11	0.50	
PM	0.006 lb/ODT	Based on stack test results ³	0.13	0.58	
VOC Total	0.35 lb/ODT	Based on stack test results ⁴	8.84	38.72	
Methanol	0.0017 lb/ODT	Based on stack test results ²	0.04	0.186	
Formaldehyde	0.0032 lb/ODT	Based on stack test results ²	0.08	0.358	
Acetaldehyde	0.0017 lb/ODT	Based on stack test results ²	0.04	0.186	

REFERENCE/NOTES

1. Based on production information provided Josh Jones (Drax Biomass) to Sharon Killian (Trinity) on February 16, 2022 via email.

2. Stack testing conducted at a sister facility (Drax Morehouse BioEnergy) on February 10-16, 2016.

3. PM emission rates calculated based on March 2019 engineering testing of the hammermills at a sister facility (Drax Morehouse BioEnergy) with an additional 25% safety factor.

PM ER_{ann} (tons/yr) = (PM ER_{avg} (lbs/hr) x Operating hours) x (1 ton/2000 lbs)

4. VOC emission rates calculated based on November 2018 engineering testing of the secondary hammermills at the site with an additional 25% safety factor.

VOC ER_{ann} (tons/yr) = (VOC ER_{avg} (lbs/hr) x Operating hours) x (1 ton/2000 lbs)

5. TAP ER calculated as follows:

 $\label{eq:TAP_ann} TAP_{ann} (tons/yr) = (Annual throughput (ODT/yr) x EF (lb/ODT))/(1 ton/2000 lbs) \\ TAP_{avg} (lb/hr) = (VOC/TAP_{ann} (tons/yr) x (2000 lbs/ton))/Operating hours (hr/yr) \\$

COMPANY		FACILITY NAME
Amite BioEnergy LLC		Wood Pellet Manufacturing Facility
DESCRIPTIVE NAME OF EMISSION POINT	Short Name	Emissions Point ID
Secondary Hammermill Pneumatic Sysem No. 3 (INCLUDED FOR COMPLETENESS ONLY, EMISSIONS ACCOUNTED UNDER RCO)	SHPS3	AA-307c
Operating Data		1
Exhaust flow ¹	9,000 acfm	
Average Annual throughput ¹	64,228 ODT/yr	
Maximum Annual throughput ¹	208,233 ODT*/yr	
Maximum hourly throughput ¹	23.77 ODT*/hr	
Operating hours ¹	8,760 hr/yr	

Emission Totals:					
			Emissio	on Rates⁵	
Pollutant	Emission Factor	Reference	PTE	Annual	
			(lb/hr)	(tons/yr)	
PM _{2.5}	0.005 lb/ODT	Based on stack test results ³	0.11	0.50	
PM	0.006 lb/ODT	Based on stack test results ³	0.13	0.58	
VOC Total	0.35 lb/ODT	Based on stack test results ⁴	8.84	38.72	
Methanol	0.0017 lb/ODT	Based on stack test results ²	0.04	0.186	
Formaldehyde	0.0032 lb/ODT	Based on stack test results ²	0.08	0.358	
Acetaldehyde	0.0017 lb/ODT	Based on stack test results ²	0.04	0.186	

REFERENCE/NOTES

1. Based on production information provided Josh Jones (Drax Biomass) to Sharon Killian (Trinity) on February 16, 2022 via email.

2. Stack testing conducted at a sister facility (Drax Morehouse BioEnergy) on February 10-16, 2016.

3. PM emission rates calculated based on March 2019 engineering testing of the hammermills at a sister facility (Drax Morehouse BioEnergy) with an additional 25% safety factor.

 $\mathsf{PM}\;\mathsf{ER}_{\mathsf{ann}}\;(\mathsf{tons/yr}) = (\mathsf{PM}\;\mathsf{ER}_{\mathsf{avg}}\;(\mathsf{lbs/hr})\;x\;\mathsf{Operating\;hours})\;x\;(1\;\mathsf{ton/2000\;lbs})$

4. VOC emission rates calculated based on November 2018 engineering testing of the secondary hammermills at the site with an additional 25% safety factor.

VOC ER_{ann} (tons/yr) = (VOC ER_{avg} (lbs/hr) x Operating hours) x (1 ton/2000 lbs) 5. TAP ER calculated as follows:

 TAP_{ann} (tons/yr) = (Annual throughput (ODT/yr) x EF (lb/ODT))/(1 ton/2000 lbs)

 $\mathsf{TAP}_{\mathsf{avg}} \; (\mathsf{lb/hr}) = (\mathsf{VOC/TAP}_{\mathsf{ann}} \; (\mathsf{tons/yr}) \; x \; (2000 \; \mathsf{lbs/ton})) / \mathsf{Operating} \; \mathsf{hours} \; (\mathsf{hr/yr})$

COMPANY		FACILITY NAME
Amite BioEnergy LLC		Wood Pellet Manufacturing Facility
DESCRIPTIVE NAME OF EMISSION POINT Short Name		Emissions Point ID
Pellet Cooler Pneumatic System No.1 (INCLUDED FOR COMPLETENESS ONLY, EMISSIONS ACCOUNTED UNDER RCO)	PC1	AA-308A

Operating Data	
Exhaust flow ¹	17,887 acfm
Annual throughput through source ¹	104,117 ODT*/yr
Potential maximum hourly throughput ¹	11.89 ODT*/hr
Operating hours ¹	8,760 hr/yr

Emission Totals:					
			Emissio	on Rates⁵	
Pollutant	Emission Factor	Reference	PTE	Annual	
			(lb/hr)	(tons/yr)	
PM _{2.5}	0.016 lb/ODT	Based on scaled up stack test results ³	0.20	0.88	
PM	0.02 lb/ODT	Based on scaled up stack test results ³	0.25	1.11	
VOC Total	1.79 lb/ODT	Based on scaled up stack test results ⁴	21.26	93.13	
Methanol	0.0020 lb/ODT	Based on scaled up stack test results ²	0.02	0.10	
Formaldehyde	0.0040 lb/ODT	Based on scaled up stack test results ²	0.05	0.21	
Acetaldehyde	0.0020 lb/ODT	Based on scaled up stack test results ²	0.02	0.10	

REFERENCE/NOTES

1. Based on production information provided by Josh Jones (Drax Biomass) to Sharon Killian (Trinity) via email on February 16, 2021. It is assumed that there will be equal distribution of throughput to the 6 exisitng pellet coolers (1 for every 2 pellet mills).

2. Stack testing conducted at a sister facility (Drax Morehouse BioEnergy) on February 10-16, 2016. These emissions have been scaled up to account for a 25% safety factor.

3. PM emission rates calculated based on March 2019 engineering testing of the pellet coolers at a sister facility (Drax Morehouse BioEnergy) adjusted for the change in production and number of pellet coolers with an additional 25% safety factor.

PM ER_{ann} (tons/yr) = (PM ER_{avg} (lbs/hr) x Operating hours) x (1 ton/2000 lbs)

4. VOC emission rates calculated based on November 2018 engineering testing of the pellet coolers at the site adjusted for the change in production and number of pellet coolers with an additional 25% safety factor. The average of the stack test results for each cooler was used to estimate the emissions.

VOC ER_{ann} (tons/yr) = (VOC ER_{avg} (lbs/hr) x Operating hours) x (1 ton/2000 lbs) 5. TAP ER calculated as follows:

TAP_{ann} (tons/yr) = (Annual throughput (ODT/yr) x EF (lb/ODT))/(1 ton/2000 lbs)

COMPANY		FACILITY NAME
Amite BioEnergy LLC		Wood Pellet Manufacturing Facility
DESCRIPTIVE NAME OF EMISSION POINT	Short Name	Emissions Point ID
Pellet Cooler Pneumatic System No.2 (INCLUDED FOR COMPLETENESS ONLY, EMISSIONS ACCOUNTED UNDER RCO)	PC2	AA-308B

Operating Data	
Exhaust flow ¹	17,887 acfm
Annual throughput through source ¹	104,117 ODT*/yr
Potential maximum hourly throughput ¹	11.89 ODT*/hr
Operating hours ¹	8,760 hr/yr

Emission Totals:					
			Emissic	n Rates⁵	
Pollutant	Emission Factor	Reference	PTE	Annual	
			(lb/hr)	(tons/yr)	
PM _{2.5}	0.016 lb/ODT	Based on scaled up stack test results ³	0.20	0.88	
PM	0.02 lb/ODT	Based on scaled up stack test results ³	0.25	1.11	
VOC Total	1.79 lb/ODT	Based on scaled up stack test results ⁴	21.26	93.13	
Methanol	0.0020 lb/ODT	Based on scaled up stack test results ²	0.02	0.10	
Formaldehyde	0.0040 lb/ODT	Based on scaled up stack test results ²	0.05	0.21	
Acetaldehyde	0.0020 lb/ODT	Based on scaled up stack test results ²	0.02	0.10	

REFERENCE/NOTES

1. Based on production information provided by Josh Jones (Drax Biomass) to Sharon Killian (Trinity) via email on February 16, 2021. It is assumed that there will be equal distribution of throughput to the 6 exisiting pellet coolers (1 for every 2 pellet mills).

2. Stack testing conducted at a sister facility (Drax Morehouse BioEnergy) on February 10-16, 2016. These emissions have been scaled up to account for a 25% safety factor.

3. PM emission rates calculated based on March 2019 engineering testing of the pellet coolers at a sister facility (Drax Morehouse BioEnergy) adjusted for the change in production and number of pellet coolers with an additional 25% safety factor.

PM ER_{ann} (tons/yr) = (PM ER_{avg} (lbs/hr) x Operating hours) x (1 ton/2000 lbs)

4. VOC emission rates calculated based on November 2018 engineering testing of the pellet coolers at the site adjusted for the change in production and number of pellet coolers with an additional 25% safety factor. The average of the stack test results for each cooler was used to estimate the emissions.

VOC ER_{ann} (tons/yr) = (VOC ER_{avg} (lbs/hr) x Operating hours) x (1 ton/2000 lbs)

5. TAP ER calculated as follows:

 TAP_{ann} (tons/yr) = (Annual throughput (ODT/yr) x EF (lb/ODT))/(1 ton/2000 lbs)

COMPANY		FACILITY NAME	
Amite BioEnergy LLC		Wood Pellet Manufacturing Facility	
DESCRIPTIVE NAME OF EMISSION POINT	Short Name	Emissions Point ID	
Pellet Cooler Pneumatic System No.3 (INCLUDED FOR COMPLETENESS ONLY, PC3 EMISSIONS ACCOUNTED UNDER RCO)		AA-308C	

Operating Data	
Exhaust flow ¹	17,887 acfm
Annual throughput through source ¹	104,117 ODT*/yr
Potential maximum hourly throughput ¹	11.89 ODT*/hr
Operating hours ¹	8,760 hr/yr

Emission Totals:					
			Emissio	on Rates ⁵	
Pollutant	Emission Factor	Reference	PTE	Annual	
			(lb/hr)	(tons/yr)	
PM _{2.5}	0.016 lb/ODT	Based on scaled up stack test results ³	0.20	0.88	
PM	0.02 lb/ODT	Based on scaled up stack test results ³	0.25	1.11	
VOC Total	1.79 lb/ODT	Based on scaled up stack test results ⁴	21.26	93.13	
Methanol	0.0020 lb/ODT	Based on scaled up stack test results ²	0.02	0.10	
Formaldehyde	0.0040 lb/ODT	Based on scaled up stack test results ²	0.05	0.21	
Acetaldehyde	0.0020 lb/ODT	Based on scaled up stack test results ²	0.02	0.10	

REFERENCE/NOTES

1. Based on production information provided by Josh Jones (Drax Biomass) to Sharon Killian (Trinity) via email on February 16, 2021. It is assumed that there will be equal distribution of throughput to the 6 exisiting pellet coolers (1 for every 2 pellet mills).

2. Stack testing conducted at a sister facility (Drax Morehouse BioEnergy) on February 10-16, 2016. These emissions have been scaled up to account for a 25% safety factor.

3. PM emission rates calculated based on March 2019 engineering testing of the pellet coolers at a sister facility (Drax Morehouse BioEnergy) adjusted for the change in production and number of pellet coolers with an additional 25% safety factor.

PM ER_{ann} (tons/yr) = (PM ER_{avg} (lbs/hr) x Operating hours) x (1 ton/2000 lbs)

4. VOC emission rates calculated based on November 2018 engineering testing of the pellet coolers at the site adjusted for the change in production and number of pellet coolers with an additional 25% safety factor. The average of the stack test results for each cooler was used to estimate the emissions.

VOC ER_{ann} (tons/yr) = (VOC ER_{avg} (lbs/hr) x Operating hours) x (1 ton/2000 lbs)

5. TAP ER calculated as follows:

 $TAP_{ann} (tons/yr) = (Annual throughput (ODT/yr) x EF (lb/ODT))/(1 ton/2000 lbs)$

COMPANY		FACILITY NAME	
Amite BioEnergy L	Wood Pellet Manufacturing Facility		
DESCRIPTIVE NAME OF EMISSION POINT Short Name		Emissions Point ID	
Pellet Cooler Pneumatic System No.4 (INCLUDED FOR COMPLETENESS ONLY, EMISSIONS ACCOUNTED UNDER RCO)	PC4	AA-308D	

Operating Data	
Exhaust flow ¹	17,887 acfm
Annual throughput through source ¹	104,117 ODT*/yr
Potential maximum hourly throughput ¹	11.89 ODT*/hr
Operating hours ¹	8,760 hr/yr

Emission Totals:					
			Emission Rates ⁵		
Pollutant	Emission Factor	Reference	PTE	Annual	
			(lb/hr)	(tons/yr)	
PM _{2.5}	0.016 lb/ODT	Based on scaled up stack test results ³	0.20	0.88	
PM	0.02 lb/ODT	Based on scaled up stack test results ³	0.25	1.11	
VOC Total	1.79 lb/ODT	Based on scaled up stack test results ⁴	21.26	93.13	
Methanol	0.0020 lb/ODT	Based on scaled up stack test results ²	0.02	0.10	
Formaldehyde	0.0040 lb/ODT	Based on scaled up stack test results ²	0.05	0.21	
Acetaldehyde	0.0020 lb/ODT	Based on scaled up stack test results ²	0.02	0.10	

REFERENCE/NOTES

1. Based on production information provided by Josh Jones (Drax Biomass) to Sharon Killian (Trinity) via email on February 16, 2021. It is assumed that there will be equal distribution of throughput to the 6 exisitng pellet coolers (1 for every 2 pellet mills).

2. Stack testing conducted at a sister facility (Drax Morehouse BioEnergy) on February 10-16, 2016. These emissions have been scaled up to account for a 25% safety factor.

3. PM emission rates calculated based on March 2019 engineering testing of the pellet coolers at a sister facility (Drax Morehouse BioEnergy) adjusted for the change in production and number of pellet coolers with an additional 25% safety factor.

PM ER_{ann} (tons/yr) = (PM ER_{avg} (lbs/hr) x Operating hours) x (1 ton/2000 lbs)

4. VOC emission rates calculated based on November 2018 engineering testing of the pellet coolers at the site adjusted for the change in production and number of pellet coolers with an additional 25% safety factor. The average of the stack test results for each cooler was used to estimate the emissions.

VOC ER_{ann} (tons/yr) = (VOC ER_{avg} (lbs/hr) x Operating hours) x (1 ton/2000 lbs)

5. TAP ER calculated as follows:

 $TAP_{ann} (tons/yr) = (Annual throughput (ODT/yr) x EF (lb/ODT))/(1 ton/2000 lbs)$

COMPANY		FACILITY NAME	
Amite BioEnergy Ll	Wood Pellet Manufacturing Facility		
DESCRIPTIVE NAME OF EMISSION POINT Short Name		Emissions Point ID	
Pellet Cooler Pneumatic System No.5(INCLUDED FOR COMPLETENESS ONLY, EMISSIONS ACCOUNTED UNDER RCO)		AA-308E	

Operating Data	
Exhaust flow ¹	17,887 acfm
Annual throughput through source ¹	104,117 ODT*/yr
Potential maximum hourly throughput ¹	11.89 ODT*/hr
Operating hours ¹	8,760 hr/yr

Emission Totals:					
			Emissic	on Rates⁵	
Pollutant	Emission Factor	Reference	PTE	Annual	
			(lb/hr)	(tons/yr)	
PM _{2.5}	0.016 lb/ODT	Based on scaled up stack test results ³	0.20	0.88	
PM	0.02 lb/ODT	Based on scaled up stack test results ³	0.25	1.11	
VOC Total	1.79 lb/ODT	Based on scaled up stack test results ⁴	21.26	93.13	
Methanol	0.0020 lb/ODT	Based on scaled up stack test results ²	0.02	0.10	
Formaldehyde	0.0040 lb/ODT	Based on scaled up stack test results ²	0.05	0.21	
Acetaldehyde	0.0020 lb/ODT	Based on scaled up stack test results ²	0.02	0.10	

REFERENCE/NOTES

1. Based on production information provided by Josh Jones (Drax Biomass) to Sharon Killian (Trinity) via email on February 16, 2021. It is assumed that there will be equal distribution of throughput to the 6 exisiting pellet coolers (1 for every 2 pellet mills).

2. Stack testing conducted at a sister facility (Drax Morehouse BioEnergy) on February 10-16, 2016. These emissions have been scaled up to account for a 25% safety factor.

3. PM emission rates calculated based on March 2019 engineering testing of the pellet coolers at a sister facility (Drax Morehouse BioEnergy) adjusted for the change in production and number of pellet coolers with an additional 25% safety factor.

PM ER_{ann} (tons/yr) = (PM ER_{avg} (lbs/hr) x Operating hours) x (1 ton/2000 lbs)

4. VOC emission rates calculated based on November 2018 engineering testing of the pellet coolers at the site adjusted for the change in production and number of pellet coolers with an additional 25% safety factor. The average of the stack test results for each cooler was used to estimate the emissions.

VOC ER_{ann} (tons/yr) = (VOC ER_{avg} (lbs/hr) x Operating hours) x (1 ton/2000 lbs) 5. TAP ER calculated as follows:

 TAP_{ann} (tons/yr) = (Annual throughput (ODT/yr) x EF (lb/ODT))/(1 ton/2000 lbs)

COMPANY		FACILITY NAME	
Amite BioEnergy LLC		Wood Pellet Manufacturing Facility	
DESCRIPTIVE NAME OF EMISSION POINT Short Name		Emissions Point ID	
Pellet Cooler Pneumatic System No.6 (INCLUDED FOR COMPLETENESS ONLY, EMISSIONS ACCOUNTED UNDER RCO)	PC6	AA-308F	

Operating Data	
Exhaust flow ¹	17,887 acfm
Annual throughput through source ¹	104,117 ODT*/yr
Potential maximum hourly throughput ¹	11.89 ODT*/hr
Operating hours ¹	8,760 hr/yr

Emission Totals:				
			Emissic	on Rates⁵
Pollutant	Emission Factor	Reference	PTE	Annual
			(lb/hr)	(tons/yr)
PM _{2.5}	0.016 lb/ODT	Based on scaled up stack test results ³	0.20	0.88
PM	0.02 lb/ODT	Based on scaled up stack test results ³	0.25	1.11
VOC Total	1.79 lb/ODT	Based on scaled up stack test results ⁴	21.26	93.13
Methanol	0.0020 lb/ODT	Based on scaled up stack test results ²	0.02	0.10
Formaldehyde	0.0040 lb/ODT	Based on scaled up stack test results ²	0.05	0.21
Acetaldehyde	0.0020 lb/ODT	Based on scaled up stack test results ²	0.02	0.10

REFERENCE/NOTES

1. Based on production information provided by Josh Jones (Drax Biomass) to Sharon Killian (Trinity) via email on February 16, 2021. It is assumed that there will be equal distribution of throughput to the 6 exisiting pellet coolers (1 for every 2 pellet mills).

2. Stack testing conducted at a sister facility (Drax Morehouse BioEnergy) on February 10-16, 2016. These emissions have been scaled up to account for a 25% safety factor.

3. PM emission rates calculated based on March 2019 engineering testing of the pellet coolers at a sister facility (Drax Morehouse BioEnergy) adjusted for the change in production and number of pellet coolers with an additional 25% safety factor.

PM ER_{ann} (tons/yr) = (PM ER_{avg} (lbs/hr) x Operating hours) x (1 ton/2000 lbs)

4. VOC emission rates calculated based on November 2018 engineering testing of the pellet coolers at the site adjusted for the change in production and number of pellet coolers with an additional 25% safety factor. The average of the stack test results for each cooler was used to estimate the emissions.

VOC ER_{ann} (tons/yr) = (VOC ER_{avg} (lbs/hr) x Operating hours) x (1 ton/2000 lbs)

5. TAP ER calculated as follows:

TAP_{ann} (tons/yr) = (Annual throughput (ODT/yr) x EF (lb/ODT))/(1 ton/2000 lbs)

COMPANY		FACILITY NAME
Amite BioEnergy LLC		Wood Pellet Manufacturing Facility
DESCRIPTIVE NAME OF EMISSION POINT	Short Name	Emission Point ID
Pellet Coolers, Pellet Mills, Secondary Hammermills, and RCO Burner	RCO	AA-301

1. The RCO stack will exhaust controlled process VOC emissions from the 6 dry hammermills, 3 secondary hammermills, and 6 pellet coolers.

2. Combustion emissions from the RCO's gas burner will also exhaust out of the RCO stack.

3. Individual emissions from the hammermills and pellet coolers have been included in later spreadsheet tabs for completeness only.

COMPANY	FACILITY NAME	
Amite BioEnergy LLC		Wood Pellet Manufacturing Facility
DESCRIPTIVE NAME OF EMISSION POINT Short Name		Emission Point ID
Pellet Coolers, Pellet Mills, Secondary Hammermills, and RCO Burner	RCO	AA-301

The RCO stack will exhaust controlled process VOC emissions from the dry primary hammermills, secondary hammermills, and pellet coolers Combustion emissions from the RCO's gas burner will also exhaust out of the RCO stack.

Operating Data	
Facility Capacity ¹	624,700 ODT*/yr
Hourly Throughput	71.31 ODT*/hr
RCO VOC Control Efficiency	95 %
RCO HAP Control Efficiency	50 %
Operating hours ¹	8,760 hrs/yr

*ODT = oven dried ton (U.S.) of chips

Emission Totals:				_	
			Emission Rates		
Pollutant	Emission Factor	Reference	PTE	Annual	
			(lb/hr)	(tons/yr)	
Criteria Pollutants					
PM _{2.5}	0.0132 lb/ODT	July 2021 Performance Test Data	0.94	4.12	
PM	0.0213 lb/ODT	July 2021 Performance Test Data	1.52	6.65	
SO	0.0001 lb/ODT		0.01	0.031	
NOx	0.0130 lb/ODT	July 2021 Performance Test Data	0.93	4.06	
СО	0.1728 lb/ODT	July 2021 Performance Test Data	12.32	53.97	
VOC Total	0.1203 lb/ODT	July 2021 Performance Test Data	8.58	37.58	
Hazardous/Toxic Air Pollutants					
Methanol	0.0410 lb/ODT	July 2021 Performance Test Data	2.924	12.806	
Formaldehyde	0.0035 lb/ODT	July 2021 Performance Test Data	0.250	1.093	
Acetaldehyde	0.0037 lb/ODT	July 2021 Performance Test Data	0.264	1.156	
2-Methylnaphthalene	2.40E-05 lb/10 ⁶ scf	See Note 4	1.65E-07	7.21E-07	
3-Methylchloranthene	1.80E-06 lb/10 ⁶ scf	See Note 4	1.24E-08	5.41E-08	
7,12-Dimethylbenz(a)anthracene	1.60E-05 lb/10 ⁶ scf	See Note 4	1.10E-07	4.81E-07	
Acenaphthene	1.80E-06 lb/10 ⁶ scf	See Note 4	1.24E-08	5.41E-08	
Acenaphthylene	1.80E-06 lb/10 ⁶ scf	See Note 4	1.24E-08	5.41E-08	
Acrolein	0.0014 lb/ODT	July 2021 Performance Test Data	0.100	0.437	
Anthracene	2.40E-06 lb/10 ⁶ scf	See Note 4	1.65E-08	7.21E-08	
Arsenic	2.00E-04 lb/10 ⁶ scf	See Note 4	2.75E-06	1.20E-05	
Benz(a)anthracene	1.80E-06 lb/10 ⁶ scf	See Note 4	1.24E-08	5.41E-08	
Benzene	2.10E-03 lb/10 ⁶ scf	See Note 4	1.44E-05	6.31E-05	
Benzo(a)pyrene	1.20E-06 lb/10 ⁶ scf	See Note 4	8.24E-09	3.61E-08	
Benzo(b)fluoranthene	1.80E-06 lb/10 ⁶ scf	See Note 4	1.24E-08	5.41E-08	
Benzo(g,h,i)perylene	1.20E-06 lb/10 ⁶ scf	See Note 4	8.24E-09	3.61E-08	
Benzo(k)fluoranthene	1.80E-06 lb/10 ⁶ scf	See Note 4	1.24E-08	5.41E-08	
Beryllium	1.20E-05 lb/10 ⁶ scf	See Note 4	1.65E-07	7.21E-07	
Cadmium	1.10E-03 lb/10 ⁶ scf	See Note 4	1.51E-05	6.61E-05	
Chromium VI	1.40E-03 lb/10 ⁶ scf	See Note 4	1.92E-05	8.42E-05	
Chrysene	1.80E-06 lb/10 ⁶ scf	See Note 4	1.24E-08	5.41E-08	
Cobalt	8.40E-05 lb/10 ⁶ scf	See Note 4	1.15E-06	5.05E-06	
Dibenzo(a,h)anthracene	1.20E-06 lb/10 ⁶ scf	See Note 4	8.24E-09	3.61E-08	
Dichlorobenzene	1.20E-03 lb/10 ⁶ scf	See Note 4	8.24E-06	3.61E-05	
Fluoranthene	3.00E-06 lb/10 ⁶ scf	See Note 4	2.06E-08	9.02E-08	
Indeno(1,2,3-cd)pyrene	2.80E-06 lb/10 ⁶ scf	See Note 4	1.92E-08	8.42E-08	
Lead	1.80E-06 lb/10 ⁶ scf	See Note 4	2.47E-08	1.08E-07	
Manganese	3.80E-04 lb/10 ⁶ scf	See Note 4	5.22E-06	2.28E-05	
Mercury	2.60E-04 lb/10 ⁶ scf	See Note 4	3.57E-06	1.56E-05	
Naphthalene	6.10E-04 lb/10 ⁶ scf	See Note 4	4.19E-06	1.83E-05	
Nickel	2.10E-03 lb/10 ⁶ scf	See Note 4	2.88E-05	1.26E-04	

COMPANY	FACILITY NAME	
Amite BioEnergy LLC	Wood Pellet Manufacturing Facility	
DESCRIPTIVE NAME OF EMISSION POINT Short Name		Emission Point ID
Pellet Coolers, Pellet Mills, Secondary Hammermills, and RCO Burner	RCO	AA-301

The RCO stack will exhaust controlled process VOC emissions from the dry primary hammermills, secondary hammermills, and pellet coolers Combustion emissions from the RCO's gas burner will also exhaust out of the RCO stack.

Operating Data	
Facility Capacity ¹	624,700 ODT*/yr
Hourly Throughput	71.31 ODT*/hr
RCO VOC Control Efficiency	95 %
RCO HAP Control Efficiency	50 %
Operating hours ¹	8,760 hrs/yr

*ODT = oven dried ton (U.S.) of chips

Hazardous/Toxic Air Pollutan	ts			
Phenanathrene	1.70E-05 lb/10 ⁶ scf	See Note 4	1.17E-07	5.11E-07
Pyrene	5.00E-06 lb/10 ⁶ scf	See Note 4	3.43E-08	1.50E-07
Selenium	2.40E-05 lb/10 ⁶ scf	See Note 4	3.29E-07	1.44E-06
Toluene	3.40E-03 lb/10 ⁶ scf	See Note 4	2.33E-05	1.02E-04
n-Hexane	1.80 <u>lb/10⁶ scf</u>	See Note 4	1.24E-02	5.41E-02
Propionaldehyde	0.0034 lb/ODT	July 2021 Performance Test Data	0.242	1.062
Hydrogen Chloride	0.0008 lb/ODT	July 2021 Performance Test Data	0.057	0.250
Phenol	0.0222 lb/ODT	July 2021 Performance Test Data	1.583	6.934
		Total HAP Emissions (RCO Stack)	3.55	15.55
Greenhouse Gas Emissions				
CO e	-	See Note 4	-	7182

REFERENCE/NOTES

2. PM_{10/2.5}, VOC, and Formaldehyde lb/hr emissions are the sum of the following individual components: 6 Primary Hammermills, 6 Pellet Coolers, 3 Seconadry Hammermills, and RCO Burner. For the tpy emissions, the combination of the primary hammermills and secondary hammermills is such that the total will not exceed production of 660,000 U.S. tons. VOC emissions also include 95% RCO control efficiency, and HAP emissions include 50% RCO control efficiency. The effective emission factor (lb/ODT) is based on the the overall stream from various sources to the RCO post-control.

3. Methanol and Acetaldehyde lb/hr emissions are the sum of the following individual components: 6 Primary Hammermills, 6 Pellet Coolers, and 3Secondary Hammermills. For the tpy emissions, the combination of the primary hammermills and secondary hammermills is such that the total will not exceed production of 660,000 U.S. tons. HAP emissions include 50% RCO control efficiency.

4. SO₂, NO_x, CO, GHG emissions and all other HAP emissions are only associated with the RCO burner emissions.

^{1.} Based on information provided by Josh Jones (Drax Biomass) to Sharon Killian (Trinity) via email on February 16, 2022.

COMPANY		FACILITY NAME	
Amite BioEnergy LLC	Wood Pellet Manufacturing Facility		
DESCRIPTIVE NAME OF EMISSION POINT	EMISSION POINT ID	TEMPO ID	
RCO Burner Emissions (INCLUDED FOR COMPLETENESS ONLY)	RCO	AA-301	

Operating Data	
RCO burner capacity ¹	14 MMBtu/hr
Natural gas HHV ²	1,020 Btu/scf
Operating hours ¹	8,760 hrs/yr

Emission Totals:				
			Emissio	n Rates ³
Pollutant	Emission Factor	Reference	PTE	Annual
		Kelefenee	(lb/hr)	(tons/yr)
Criteria Pollutants				
PM _{2.5}	7.6 lb/10 ⁶ scf	AP 42; Table 1.4-2	0.10	0.46
PM	7.6 lb/10 ⁶ scf	AP 42; Table 1.4-2	0.10	0.46
SO	0.6 lb/10 ⁶ scf	AP 42; Table 1.4-2	0.01	0.04
NOx	100 lb/10 ⁶ scf	AP 42; Table 1.4-1	1.37	6.01
СО	84 lb/10 ⁶ scf	AP 42; Table 1.4-1	1.15	5.05
VOC Total	5.5 lb/10 ⁶ scf	AP 42; Table 1.4-2	0.08	0.33
Hazardous/Toxic Air Pollutants				
Formaldehyde	0.075 lb/10 ⁶ scf	AP 42; Table 1.4-3	0.001	0.005
2-Methylnaphthalene	2.40E-05 lb/10 ⁶ scf	AP 42; Table 1.4-3	3.29E-07	1.44E-06
3-Methylchloranthene	1.80E-06 lb/10 ⁶ scf	AP 42; Table 1.4-3	2.47E-08	1.08E-07
7,12-Dimethylbenz(a)anthracene	1.60E-05 lb/10 ⁶ scf	AP 42; Table 1.4-3	2.20E-07	9.62E-07
Acenaphthene	1.80E-06 lb/10 ⁶ scf	AP 42; Table 1.4-3	2.47E-08	1.08E-07
Acenaphthylene	1.80E-06 lb/10 ⁶ scf	AP 42; Table 1.4-3	2.47E-08	1.08E-07
Acrolein	1.80E-05 lb/10 ⁶ scf	AP 42; Table 1.4-3	2.47E-07	1.08E-06
Anthracene	2.40E-06 lb/10 ⁶ scf	AP 42; Table 1.4-3	3.29E-08	1.44E-07
Arsenic	2.00E-04 lb/10 ⁶ scf	AP 42; Table 1.4-3	2.75E-06	1.20E-05
Benz(a)anthracene	1.80E-06 lb/106 scf	AP 42; Table 1.4-3	2.47E-08	1.08E-07
Benzene	2.10E-03 lb/10 ⁶ scf	AP 42; Table 1.4-3	2.88E-05	1.26E-04
Benzo(a)pyrene	1.20E-06 lb/10 ⁶ scf	AP 42; Table 1.4-3	1.65E-08	7.21E-08
Benzo(b)fluoranthene	1.80E-06 lb/10 ⁶ scf	AP 42; Table 1.4-3	2.47E-08	1.08E-07
Benzo(g,h,i)perylene	1.20E-06 lb/10 ⁶ scf	AP 42; Table 1.4-3	1.65E-08	7.21E-08
Benzo(k)fluoranthene	1.80E-06 lb/10 ⁶ scf	AP 42; Table 1.4-3	2.47E-08	1.08E-07
Beryllium	1.20E-05 lb/106 scf	AP 42; Table 1.4-3	1.65E-07	7.21E-07
Cadmium	1.10E-03 lb/10 ⁶ scf	AP 42; Table 1.4-3	1.51E-05	6.61E-05
Chromium VI	1.40E-03 lb/10 ⁶ scf	AP 42; Table 1.4-3	1.92E-05	8.42E-05
Chrysene	1.80E-06 lb/10 ⁶ scf	AP 42; Table 1.4-3	2.47E-08	1.08E-07
Cobalt	8.40E-05 lb/10 ⁶ scf	AP 42; Table 1.4-3	1.15E-06	5.05E-06
Dibenzo(a,h)anthracene	1.20E-06 lb/10 ⁶ scf	AP 42; Table 1.4-3	1.65E-08	7.21E-08
Dichlorobenzene	1.20E-03 lb/10 ⁶ scf	AP 42; Table 1.4-3	1.65E-05	7.21E-05
Fluoranthene	3.00E-06 lb/10 ⁶ scf	AP 42; Table 1.4-3	4.12E-08	1.80E-07
Indeno(1,2,3-cd)pyrene	2.80E-06 lb/10 ⁶ scf	AP 42; Table 1.4-3	3.84E-08	1.68E-07
Lead	1.80E-06 lb/10 ⁶ scf	AP 42; Table 1.4-3	2.47E-08	1.08E-07
Manganese	3.80E-04 lb/10 ⁶ scf	AP 42; Table 1.4-3	5.22E-06	2.28E-05
Mercury	2.60E-04 lb/10 ⁶ scf	AP 42; Table 1.4-3	3.57E-06	1.56E-05
Naphthalene	6.10E-04 lb/10 ⁶ scf	AP 42; Table 1.4-3	8.37E-06	3.67E-05
Nickel	2.10E-03 lb/10 ⁶ scf	AP 42; Table 1.4-3	2.88E-05	1.26E-04
Phenanathrene	1.70E-05 lb/10 ⁶ scf	AP 42; Table 1.4-3	2.33E-07	1.02E-06
Pyrene	5.00E-06 lb/10 ⁶ scf	AP 42; Table 1.4-3	6.86E-08	3.01E-07
Selenium	2.40E-05 lb/10 ⁶ scf	AP 42; Table 1.4-3	3.29E-07	1.44E-06
Toluene	3.40E-03 lb/10 ⁶ scf	AP 42; Table 1.4-3	4.67E-05	2.04E-04
n-Hexane	1.8 lb/10 ⁶ scf	AP 42; Table 1.4-3	0.02	0.11
		Total HAP Emissions (NG Combustion)	0.03	0.11

COMPANY		FACILITY NAME
Amite BioEnergy LLC		Wood Pellet Manufacturing Facility
DESCRIPTIVE NAME OF EMISSION POINT	EMISSION POINT ID	TEMPO ID
RCO Burner Emissions (INCLUDED FOR COMPLETENESS ONLY)	RCO	AA-301
Operating Data		
RCO burner capacity ¹	14 MMBtu/hr	
Natural gas HHV ²	1,020 Btu/scf	
Operating hours ¹	8,760 hrs/yr	

Greenhouse Gases						
		GHG Mass Emission Rates ⁵		CO ₂ e		
Pollutant	Emission Factor ⁴	Annual	GWP ⁶	Annual		
		(tons/yr)		(tons/yr)		
CO ₂	53.06 kg/MMBtu	7174.27	1	7,174		
CH ₄	0.001 kg/MMBtu	0.14	25	3.380		
N ₂ O	0.0001 kg/MMBtu	0.01	298	4.03		
CO e				7,182		

REFERENCE/NOTES

1. Based on information provided by Josh Jones (Drax Biomass) to Sharon Killian (Trinity) via email on February 16, 2022.

2. AP-42; Chapter 1.4 - Natural Gas Combustion.

 RF ⁻¹⁴², Orlapter 1.4 - Yadufa Gas Collaboration.
 ER_{saryimax} (lb/hr) = Furnace capacity (MMBtu/hr) x (EF (lb/10⁶ scf)/HHV (Btu/scf)) ER_{san} (tons/yr) = (ER_{avg} (lb/hr) x Operating Time (hrs))/2000 lbs/ton
 Emission factor based on 40 CFR 98, Tables C-1 and C-2, for Petroleum (Natural Gas).
 Emission rates (ER) calculated as specified in 40 CFR 98.33(a)(1)(iii) and 40 CFR 98.33(c)(1)(ii) and in accordance with 98.33(b)(1)(v) as follows: GHG: ER (tons/yr) = (Total) Firing Rate (MMBtu/hr) x (Emission Factor (kg/10⁶ Btu) x 1000 g/kg / 453.59 g/lb) x Operating Hours (hr/yr) / 2000 lbs/ton CO₂e: ER (tons/yr) = GHG Mass Emission Rate x GWP

6. GWPs based on 40 CFR 98, Table A-1.

COMPANY		FACILITY NAME	
Amite BioEnergy LLC		Wood Pellet Manufacturing Facility	
DESCRIPTIVE NAME OF EMISSION POINT	Short Name	Emissions Point ID	
Starch Storage Silo, Bin Vent SS		AA-309	
Operating Data		1	

Operating Data	
Exhaust flow ¹	50 m ³ /hr
Particulate Content ¹	0.5 mg/m ³
Operating hours ¹	8,760 hr/yr

Emission Totals:				
	Emission Rates			
Pollutant	PTE	Annual		
	(lb/hr)	(tons/yr)		
PM _{2.5}	0.0001	0.0002		
PM	0.0001	0.0002		

REFERENCE/NOTES
1. Estimated based on sizing at a sister facility (Drax Morehouse BioEnergy).
2. PM Emission rates (ER) calculated as follows:

 $\mathsf{PM}\;\mathsf{ER}_{\mathsf{avg/max}}\;(\mathsf{lb/hr}) = (\mathsf{Exhaust}\;\mathsf{Flow}\;(\mathsf{m}^3/\mathsf{hr})\;\mathsf{x}\;\mathsf{Particulate}\;\mathsf{Content}\;(\mathsf{mg/m}^3))\;/\;(1000\;(\mathsf{mg/g})\;/\;453.59\;(\mathsf{g/lb}))$

PM ER_{ann} (tons/yr) = (PM ER_{avg} (lbs/hr) x Operating hours) x (1 ton/2000 lbs)

Amite BioEnergy LLC		Wood Pellet Manufacturing Facility
DESCRIPTIVE NAME OF EMISSION POINT	Short Name	Emissions Point ID
Pellet Storage Silo No. 1 with Bin Vent	PS1	AA-401A

Exhaust flow ¹	300 acfm
Annual throughput through source ¹	312,350 ODT*/yr
Potential maximum hourly throughput ¹	35.66 ODT*/hr
Exhaust temperature ¹	77 °F
Operating hours ¹	8,760 hr/yr

Emission Totals:					
				ion Rates	
Pollutant	Emission Factor	Reference	PTE	Annual	
			(lb/hr)	(tons/yr)	
PM _{2.5}	0.015 gr/scf	Vendor guarantee	0.04	0.17	
PM	0.015 gr/scf	Vendor guarantee	0.04	0.17	
VOC Total	0.0279 lb/ODT	Based on stack test results ²	1.00	4.36	
Methanol	0.0014 lb/ODT	Based on stack test results ²	0.05	0.22	
Formaldehyde	0.0027 lb/ODT	Based on stack test results ²	0.09	0.41	
Acetaldehyde	0.0014 lb/ODT	Based on stack test results ²	0.05	0.22	

REFERENCE/NOTES

1. Based on information provided by Josh Jones (Drax Biomass) to Sharon Killian (Trinity) via email on February 16, 2021.

2. Stack testing conducted at a sister facility (Drax Morehouse BioEnergy) on February 10-16, 2016. These emissions have been scaled up to account for a 25% safety factor.

3. PM Emission rates (ER) calculated as follows:

PM $ER_{avg/max}$ (lb/hr) = ((EF (gr/scf) x Exhaust Flow (acfm)) x (60 min/hr) x (1 lb/7000 gr) x (Standard Temp (°R)/Actual Temp (°R)) PM ER_{ann} (tons/yr) = (PM ER_{avg} (lbs/hr) x Operating hours) x (1 ton/2000 lbs)

4. VOC/TAP ER calculated as follows:

VOC/TAP_{ann} (tons/yr) = (Annual throughput (ODT/yr) x EF (lb/ODT))/(1 ton/2000 lbs)

 $VOC/TAP_{avg} (Ib/hr) = (VOC/TAP_{ann} (tons/yr) \times (2000 Ibs/ton))/Operating hours (hr/yr)$

VOC/TAP_{max} (lb/hr) = Potential max hourly throughput (ODT/hr) x EF (lb/ODT)

COMPANY		FACILITY NAME
Amite BioEnergy LLC		Wood Pellet Manufacturing Facility
DESCRIPTIVE NAME OF EMISSION POINT	Short Name	Emissions Point ID
Pellet Storage Silo No. 2 with Bin Vent PS2		AA-401B
Operating Data		
Exhaust flow ¹	300 acfm	

Annual throughput through source	312,350 ODT*/yr
Potential maximum hourly throughput ¹	35.66 ODT*/hr
Exhaust temperature ¹	77 °F
Operating hours ¹	8,760 hr/yr

Emission Totals:					
				ion Rates	
Pollutant	Emission Factor	Reference	PTE	Annual	
			(lb/hr)	(tons/yr)	
PM _{2.5}	0.015 gr/scf	Vendor guarantee	0.04	0.17	
PM	0.015 gr/scf	Vendor guarantee	0.04	0.17	
VOC Total	0.0279 lb/ODT	Based on stack test results ²	1.00	4.36	
Methanol	0.0014 lb/ODT	Based on stack test results ²	0.05	0.22	
Formaldehyde	0.0027 lb/ODT	Based on stack test results ²	0.09	0.41	
Acetaldehyde	0.0014 lb/ODT	Based on stack test results ²	0.05	0.22	

REFERENCE/NOTES

1. Based on information provided by Jamaria Warren (Drax Biomass) to Sharon Killian (Trinity) via email on August 23,2021.

2. Stack testing conducted at a sister facility (Drax Morehouse BioEnergy) on February 10-16, 2016. These emissions have been scaled up to account for a 25% safety factor.

3. PM Emission rates (ER) calculated as follows:

PM ER_{avg/max} (lb/hr) = ((EF (gr/scf) x Exhaust Flow (acfm)) x (60 min/hr) x (1 lb/7000 gr) x (Standard Temp (°R)/Actual Temp (°R)) PM ER_{ann} (tons/yr) = (PM ER_{avg} (lbs/hr) x Operating hours) x (1 ton/2000 lbs)

 VOC/TAP ER calculated as follows: VOC/TAP_{ann} (tons/yr) = (Annual throughput (ODT/yr) x EF (lb/ODT))/(1 ton/2000 lbs)
 VOC/TAP_{avg} (lb/hr) = (VOC/TAP_{ann} (tons/yr) x (2000 lbs/ton))/Operating hours (hr/yr)
 VOC/TAP_{max} (lb/hr) = Potential max hourly throughput (ODT/hr) x EF (lb/ODT)

COMPANY		FACILITY NAME
Amite BioEnergy LLC	>	Wood Pellet Manufacturing Facility
DESCRIPTIVE NAME OF EMISSION POINT	Short Name	Emissions Point ID
Screened Materials Return Systen	SMS	AA-401D
Operating Data]
Exhaust flow ¹	7,452 acfm	
Annual throughput through source ¹	62,470 ODT*/yr	
Potential maximum hourly throughput ¹	7.13 ODT*/hr	
Exhaust temperature ¹	77 °F	
Operating hours ¹	8,760 hr/yr	

Emission Totals:					
				on Rates	
Pollutant	Emission Factor	Reference	PTE	Annual	
			(lb/hr)	(tons/yr)	
PM _{2.5}	0.015 gr/scf	Vendor guarantee	0.96	4.20	
PM	0.015 gr/scf	Vendor guarantee	0.96	4.20	
VOC Total	0.0279 lb/ODT	Based on stack test results ²	0.20	0.87	
Methanol	0.0014 lb/ODT	Based on stack test results ²	0.01	0.04	
Formaldehyde	0.0027 lb/ODT	Based on stack test results ²	0.02	0.08	
Acetaldehyde	0.0014 lb/ODT	Based on stack test results ²	0.01	0.04	

REFERENCE/NOTES

1. It is assumed that 10% of material may be screened and returned to the process.Based on information provided by Jamaria Warren (Drax Biomass) to Sharon Killian (Trinity) via email on August 23,2021, it is assumed production capacity is 624,700 ODT/year based on an email from Josh Jones (Drax Biomass) to Sharon Killian on February 16, 2022.

2. Stack testing conducted at a sister facility (Drax Morehouse BioEnergy) on February 10-16, 2016. These emissions have been scaled up to account for a 25% safety factor.

3. PM Emission rates (ER) calculated as follows:

PM ER_{ann} (tons/yr) = (PM ER_{avg} (lbs/hr) x Operating hours) x (1 ton/2000 lbs)

4. VOC/TAP ER calculated as follows:

 $VOC/TAP_{ann} (tons/yr) = (Annual throughput (ODT/yr) x EF (lb/ODT))/(1 ton/2000 lbs)$

VOC/TAP_{avg} (lb/hr) = (VOC/TAP_{ann} (tons/yr) x (2000 lbs/ton))/Operating hours (hr/yr)

VOC/TAP_{max} (lb/hr) = Potential max hourly throughput (ODT/hr) x EF (lb/ODT)

COMPANY		FACILITY NAME
Amite BioEnergy LLC	C	Wood Pellet Manufacturing Facility
DESCRIPTIVE NAME OF EMISSION POINT	Short Name	Emissions Point ID
Pellet Truck Loadout System	PLS	AA-401E
Operating Data		
Exhaust flow ¹	13,000 acfm	
Annual throughput through source ¹	624,700 ODT*/yr	
Potential maximum hourly throughput ¹	71.31 ODT*/hr	
Exhaust temperature ¹	77 °F	
Operating hours ¹	8,760 hr/yr	

Emission Totals:				
			Emissio	on Rates
Pollutant	Emission Factor	Reference	PTE	Annual
			(lb/hr)	(tons/yr)
PM _{2.5}	0.0018 lb/ODT	Based on stack test results ³	0.13	0.55
PM	0.0024 lb/ODT	Based on stack test results ³	0.17	0.74
VOC Total	0.029 lb/ODT	Based on stack test results ⁵	2.21	9.67
Methanol	0.0014 lb/ODT	Based on stack test results ²	0.10	0.43
Formaldehyde	0.0027 lb/ODT	Based on stack test results ²	0.19	0.83
Acetaldehyde	0.0014 lb/ODT	Based on stack test results ²	0.10	0.43

REFERENCE/NOTES

1. Based on information provided by Josh Jones (Drax Biomass) to Sharon Killian (Trinity) via email on February 16, 2021.

2. Stack testing conducted at a sister facility (Drax Morehouse BioEnergy) on February 10-16, 2016. These emissions have been scaled up to account for a 25% safety factor.

3. PM emission rates calculated based on March 2019 engineering testing at a sister facility (Drax Morehouse BioEnergy) with scaled up operations and an additional 25% safety factor.

PM ER_{ann} (tons/yr) = (PM ER_{avg} (lbs/hr) x Operating hours) x (1 ton/2000 lbs)

4. VOC/TAP ER calculated as follows:

VOC/TAP_{ann} (tons/yr) = (Annual throughput (ODT/hr) x EF (lb/ODT))/(1 ton/2000 lbs)

VOC/TAP_{avg} (lb/hr) = (VOC/TAP_{ann} (tons/yr) x (2000 lbs/ton))/Operating hours (hr/yr)

VOC/TAP_{max} (lb/hr) = Potential max hourly throughput (ODT/hr) x EF (lb/ODT)

5. VOC emission rates calculated based on November 2018 engineering testing at the site. These emissions have been scaled up to account for a 25% safety factor. These emissions have been scaled up to account for the new production capacity (771,392 U.S. tons), and a 25% safety factor.

DESCRIPTIVE NAME OF EMISSION POINT Short Name Emissions Point ID	COMPANY		FACILITY NAME	
	Amite BioEnergy LLC	Wood Pellet Manufacturing Facility		
Fire Pump Engine FIR1 AA-501	DESCRIPTIVE NAME OF EMISSION POINT	Short Name	Emissions Point ID	
	Fire Pump Engine	FIR1	AA-501	

Operating Data	
Engine rating ¹	250 hp
Brake-Specific Fuel Consumption	7,000 Btu/hp-hr
Firing rate ²	1.75 MMBtu/hr
Primary fuel ¹	#2 Diesel
Operating hours ¹	100 hours

Emission Totals:				
			Emission Rates ^{3, 4, 5, 6}	
Pollutant	Emission Factor	Reference	PTE	Annual
			(lb/hr)	(tons/yr)
Criteria Pollutants				
PM _{2.5}	0.15 g/BHP-hr	40 CFR 60 Subpart IIII: Table 4	0.08	0.004
PM	0.15 g/BHP-hr	40 CFR 60 Subpart IIII: Table 4	0.08	0.004
SO	0.00205 lb/hp-hr	AP-42, Table 3.3-1 (10/96)	0.51	0.026
NOx	3.00 g/BHP-hr ⁴	40 CFR 60 Subpart IIII: Table 4	1.65	0.083
СО	0.00668 lb/hp-hr	AP-42, Table 3.3-1 (10/96)	1.67	0.084
VOC Total	3.00 g/BHP-hr ⁴	40 CFR 60 Subpart IIII: Table 4	1.65	0.083
Hazardous/Toxic Air P	ollutants			
Benzene	9.33E-04 lb/MMBtu	AP-42, Table 3.3-2 (10/96)	0.002	0.0001
Toluene	4.09E-04 lb/MMBtu	AP-42, Table 3.3-2 (10/96)	0.001	0.00004
Xylenes	2.85E-04 lb/MMBtu	AP-42, Table 3.3-2 (10/96)	0.0005	0.00002
1,3 - Butadiene	3.91E-05 lb/MMBtu	AP-42, Table 3.3-2 (10/96)	0.0001	0.000003
Formaldehyde	1.18E-03 lb/MMBtu	AP-42, Table 3.3-2 (10/96)	0.002	0.0001
Acetaldehyde	7.67E-04 lb/MMBtu	AP-42, Table 3.3-2 (10/96)	0.001	0.0001
Acrolein	9.25E-05 lb/MMBtu	AP-42, Table 3.3-2 (10/96)	0.0002	0.00001
Total PAH	1.68E-04 lb/MMBtu	AP-42, Table 3.3-2 (10/96)	0.0003	0.00001
Naphthalene	8.48E-05 lb/MMBtu	AP-42, Table 3.3-2 (10/96)	0.0001	0.00001
Greenhouse Gases				
		GHG Mass Emission Rates ⁸		CO ₂ e Emission
Pollutant	Emission Factor ⁷	Annual	GWP ⁹	Annual
		(tons/yr)		(tons/yr)
CO ₂	73.96 kg/MMBtu	14.27	1	14
CH ₄	0.003 kg/MMBtu	0.001	25	0.014
N ₂ O	0.0006 kg/MMBtu	0.0001	298	0.03
CO e				15

REFERENCE/NOTES

1. Provided by facility.

2. Firing rate (MMBtu/hr) = (Heat Conversion Factor (Btu/hp-hr) x Operating Rate (hp))/1000000

3. Emission calculation for $PM_{2.5}$, PM_{10} , NOx, VOC.

 $ER_{avg/max}$ (lb/hr) = Engine rating (HP) x EF (g/hp-hr) x (1 lb/453.5924 g)

ER_{ann} (tons/yr) = (ER_{avg} (lbs/hr) x Operating Time (hrs))/2000 lbs/ton

4. Per 40 CFR Subpart IIII, Table 4, NMHC + NOX emission standard is 3.0 g/hp-hr. For purposes of determining potential emissions of NOx and VOC, the combined emission standard for NMHC + NOx is used for each pollutant in the absence of separate emission standards for NOx and VOC. However, for purposes of demonstrating compliance with the applicable standard, the total emissions of NOx and VOC will be compared against the combined emission standard for HC + NOx.

5. Emission calculation for SO_2 and CO.

ERavg/max (lbs/hr) = Engine rating (hp) x EFavg/max (lbs/hp-hr)

 ER_{ann} (tons/yr) = (ER_{avg} (lbs/hr) x Operating Time (hrs))/2000 lbs/ton

Emission calculation for HAPs.
 ERavg/max (lbs/hr) = Firing rate (MMBtu/hr) x EFavg/max (lb/MMBtu)
 ER_{ann} (tons/yr) = (ER_{avg} (lbs/hr) x Operating Time (hrs))/2000 lbs/ton

7. Emission factor based on 40 CFR 98, Tables C-1 and C-2, for Petroleum (Distillate Fuel Oil No.2).

 Emission rates (ER) calculated as specified in 40 CFR 98.33(a)(1)(iii) and 40 CFR 98.33(c)(1)(ii) and in accordance with GHG: ER (tons/yr) = (Total) Firing Rate (MMBtu/hr) x (Emission Factor (kg/106 Btu) x 1000 g/kg / 453.59 g/lb) x Operating Hours (h CO₂e: ER (tons/yr) = GHG Mass Emission Rate * GWP

9. GWPs based on 40 CFR 98, Table A-1.

COMPANY		FACILITY NAME	
Amite BioEnergy LLC	Wood Pellet Manufacturing Facility		
DESCRIPTIVE NAME OF EMISSION POINT Short 1		Emissions Point ID	
Emergency Generator	EGN1	AA-502	

Operating Data	
Engine rating ¹	402 hp
Brake-Specific Fuel Consumption ²	7,000 Btu/hp-hr
Firing rate	2.81 MMBtu/hr
Primary fuel ¹	#2 Diesel
Operating hours ¹	100 hours

Emission Totals:				
			Emissio	n Rates ^{3, 4, 5, 6}
Pollutant	Emission Factor	Reference	PTE	Annual
			(lb/hr)	(tons/yr)
Criteria Pollutants				
PM _{2.5}	0.20 g/KW-hr	40 CFR 60 Subpart IIII	0.13	0.01
PM	0.20 g/KW-hr	40 CFR 60 Subpart IIII	0.13	0.01
SO	0.00205 lb/hp-hr	AP-42, Table 3.3-1 (10/96)	0.82	0.041
NOx	4.00 g/KW-hr ⁴	40 CFR 60 Subpart IIII	2.64	0.132
СО	3.50 g/KW-hr ⁴	40 CFR 60 Subpart IIII	2.31	0.116
VOC Total	4.00 g/KW-hr ⁴	40 CFR 60 Subpart IIII	2.64	0.132
Hazardous/Toxic Air P	ollutants			
Benzene	9.33E-04 lb/MMBtu	AP-42, Table 3.3-2 (10/96)	0.003	0.0001
Toluene	4.09E-04 lb/MMBtu	AP-42, Table 3.3-2 (10/96)	0.001	0.0001
Xylenes	2.85E-04 lb/MMBtu	AP-42, Table 3.3-2 (10/96)	0.001	0.00004
1,3 - Butadiene	3.91E-05 lb/MMBtu	AP-42, Table 3.3-2 (10/96)	0.0001	0.00001
Formaldehyde	1.18E-03 lb/MMBtu	AP-42, Table 3.3-2 (10/96)	0.003	0.0002
Acetaldehyde	7.67E-04 lb/MMBtu	AP-42, Table 3.3-2 (10/96)	0.002	0.0001
Acrolein	9.25E-05 lb/MMBtu	AP-42, Table 3.3-2 (10/96)	0.0003	0.00001
Total PAH	1.68E-04 lb/MMBtu	AP-42, Table 3.3-2 (10/96)	0.000	0.00002
Naphthalene	8.48E-05 lb/MMBtu	AP-42, Table 3.3-2 (10/96)	0.0002	0.00001
Greenhouse Gases			-	
		GHG Mass Emission Rates ⁸		
Pollutant	Emission Factor ⁷	Annual	GWP ⁹	
		(tons/yr)		
CO ₂	73.96 kg/MMBtu	22.95	1	
CH₄	0.003 kg/MMBtu	0.001	25	
N ₂ O	0.0006 kg/MMBtu	0.0002	298	
CO e			-	

REFERENCE/NOTES

1. Provided by facility.

2. Firing rate (MMBtu/hr) = (Heat Conversion Factor (Btu/hp-hr) x Operating Rate (hp))/1000000

3. Emission calculation for $PM_{2.5}$, PM_{10} , NOx, CO, VOC.

ER_{avg/max} (lb/hr) = Engine rating (HP) x EF (g/KW-hr) x (1 lb/hp-hr/608.277 g/kw-hr)

ER_{ann} (tons/yr) = (ER_{avg} (lbs/hr) x Operating Time (hrs))/2000 lbs/ton

4. Per 40 CFR 60 Subpart III (which directs to 40 CFR 89.112), NMHC + NOX emission standard is 4.0 g/hp-hr. For purposes of determining potential emissions of NOx and VOC, the combined emission standard for NMHC + NOx is used for each pollutant in the absence of separate emission standards for NOx and VOC. However, for purposes of demonstrating compliance with the applicable standard, the total emissions of NOx and VOC will be compared against the combined emission standard for HC + NOx.

5. Emission calculation for SO₂.

ERavg/max (lbs/hr) = Engine rating (hp) x EFavg/max (lbs/hp-hr)

ER_{ann} (tons/yr) = (ER_{avg} (lbs/hr) x Operating Time (hrs))/2000 lbs/ton

6. Emission calculation for HAPs.

ERavg/max (lbs/hr) = Firing rate (MMBtu/hr) x EFavg/max (lb/MMBtu) ER_{ann} (tons/yr) = (ER_{avg} (lbs/hr) x Operating Time (hrs))/2000 lbs/ton

7. Emission factor based on 40 CFR 98, Tables C-1 and C-2, for Petroleum (Distillate Fuel Oil No.2).

 Emission rates (ER) calculated as specified in 40 CFR 98.33(a)(1)(iii) and 40 CFR 98.33(c)(1)(ii) and in accordance with GHG: ER (tons/yr) = (Total) Firing Rate (MMBtu/hr) x (Emission Factor (kg/106 Btu) x 1000 g/kg / 453.59 g/lb) x Operating Hours (hi CO₂e: ER (tons/yr) = GHG Mass Emission Rate * GWP

9. GWPs based on 40 CFR 98, Table A-1.

COMPANY		FACILITY NAME
Amite BioEnergy LLC		Wood Pellet Manufacturing Facility
DESCRIPTIVE NAME OF EMISSION POINT	Short Name	Emission Point ID
Paved Roads (Fugitives)	PVRD	NA

Operating Data						
Feedstock delivery ¹		178	vehicles/day			
Miscellaneous ¹		90	vehicles/day			
Distance traveled ¹		0.85	miles/vehicle			
Road surface silt loading (sL) ²		1.1	g/m²			
Average weight of vehicle (W) ¹		29	tons			
Days rainfall >0.01" (P) ³		105	days			
PM_{10} particle size multiplier (k) ⁴		0.0022				
$PM_{2.5}$ particle size multiplier (k) ⁴		0.00054				
Days in average period (N) ¹		365	days			
Operating hours ¹		8760	hrs/yr			
Vehicle Traffic	Vehicles/Day	Ν	/liles/Vehicle	VMT/Dav⁵	V	MT/Y
Feedstock Delivery	<u>venicies/Day</u> 178	<u> </u>	0.85	151.53		55

Feedstock Delivery	178	0.85	151.53	55,307
Miscellaneous	90	0.85	76.33	27,862
				83,169

Emission Totals:			
		Emissio	n Rates ⁸
Pollutant	Emission Factor ⁷	PTE	Annual
		(lb/hr)	(tons/yr)
PM ¹⁰ _{2.5}	0.0170 lbs PM _{2.5} /VMT	0.16	0.71
РМ	0.0691 lbs PM ₁₀ /VMT	0.66	2.87

REFERENCE/NOTES

1. Based on information provided by Jamaria Warren (Drax Biomass) to Sharon Killian (Trinity) via email on August 23, 2021.

- 2. AP-42; Table 13.2.1-3.
- 3. AP-42; Figure 13.2.1-2
- 4. AP-42; Table 13.2.1-1
- 5. VMT/day = vehicles/day x miles/vehicle
- 6. VMT/year = VMT/day x 365 days/hyr
- 7. Emission factor based on EPA's AP-42 Section 13.2.1 Equation 1 (01/2011).

 $E (Ib/VMT) = [k * (sL)^{0.91} (W)^{1.02}] \times [1-(P/4N)]$

8. Emission Rates (ER) were calcuated as follows:

 ER_{Avg} (lb/hr) = ER_{Annual} (tons/yr) * 2000 lb/ton / Operating Hours (hrs/yr)

 ER_{Max} (lb/hr) = ER_{Avg} (lb/hr)

ER_{Annual} (tons/yr) = EF (lbs PM_{10/2.5}/VMT) x VMT/year / 2000 (lbs/ton)

Summary of Volatile Organic Compound (VOC) and Formaldehyde Emissions Test Results Drax Biomass November 26-30, 2018

Equipment	Test Run	Start Time (Military)	Stop Time (Military)	Stack Gas Flow Rate (standard wet ft ³ /minute)	Water Vapor in Stack Gas (percent)	Volatile Organic Compound Emissions (as propane, ppm- wet)	Volatile Organic Compound Emissions (lbs/hr)	Volatile Organic Compound Emissions (tons/yr)
Drimary Hammarmill 1A	RUN 1	14:20	15:20	8,809	-	42.8	2.59	11.36
Primary Hammermill 1A (AA-004)	RUN 2	15:28	16:28	8,901	-	38.7	2.37	10.37
(AA-004)	RUN 3	16:37	17:37	8,716	-	45.3	2.72	11.90
	Average			8,809	-	42.3	2.56	11.21
	RUN 1	14:20	15:20	9,529	-	62.0	4.06	17.79
Primary Hammermill 1B	RUN 2	15:28	16:28	9,507	-	61.9	4.04	17.72
(AA-004)	RUN 3	16:37	17:37	9,416	-	73.0	4.72	20.70
	Average			9,484	-	65.6	4.28	18.73
	RUN 1	9:35	10:35	8,929	-	140.0	8.59	37.63
Primary Hammermill 2A	RUN 2	11:00	12:00	9,233	-	131.4	8.34	36.51
(AA-004)	RUN 3	12:19	13:19	9,593	-	122.6	8.08	35.39
	Average	-		9,252	-	131.3	8.34	36.51
	RUN 1	9:35	10:35	6,766	-	123.0	5.72	25.06
Primary Hammermill 2B	RUN 2	11:00	12:00	6,820	-	113.3	5.31	23.26
(AA-004)	RUN 3	12:19	13:19	6,758	-	104.2	4.84	21.20
	Average			6,781	-	113.5	5.29	23.17
	RUN 1	14:13	15:13	8,455	-	64.9	3.77	16.52
Primary Hammermill 3A	RUN 2	15:40	16:40	8,445	-	65.8	3.82	16.72
(AA-004)	RUN 3	17:00	18:00	8,538	-	61.3	3.60	15.76
	Average			8,479	-	64.0	3.73	16.33
Duine and the second	RUN 1	14:13	15:13	8,733	-	43.5	2.61	11.43
Primary Hammermill 3B	RUN 2	15:40	16:40	8,604	-	47.2	2.79	12.23
(AA-004)	RUN 3	17:00	18:00	8,636	-	46.9	2.78	12.19
	Average			8,658	-	45.9	2.73	11.95
C	RUN 1	9:20	10:20	7,317	-	131.5	6.6	29.0
Secondary Hammermill 1	RUN 2	10:32	11:32	7,291	-	141.6	7.1	31.1
(AA-007)	RUN 3	11:48	12:48	7,241	-	150.9	7.5	32.9
	Average			7,283	-	141.3	7.07	31.0
	RUN 1	9:20	10:20	8,824	-	115.5	7.0	30.7
Secondary Hammermill 2	RUN 2	10:32	11:32	8,565	-	114.1	6.7	29.4
(AA-007)	RUN 3	11:48	12:48	8,362	-	113.1	6.5	28.5
	Average			8,584	-	114.2	6.74	29.5
Cooondom: Us	RUN 1	9:20	10:20	10,121	-	87.2	6.1	26.6
Secondary Hammermill 3	RUN 2	10:32	11:32	10,076	-	109.8	7.6	33.3
(AA-007)	RUN 3	11:48	12:48	10,182	-	107.2	7.5	32.9
	Average	•	•	10,126	-	101.4	7.06	30.9

Summary of Volatile Organic Compound (VOC) and Formaldehyde Emissions Test Results Drax Biomass November 26-30, 2018

Equipment	Test Run	Start Time (Military)	Stop Time (Military)	Stack Gas Flow Rate (standard wet ft ³ /minute)	Water Vapor in Stack Gas (percent)	Volatile Organic Compound Emissions (as propane, ppm- wet)	Volatile Organic Compound Emissions (lbs/hr)	Volatile Organic Compound Emissions (tons/yr)
	RUN 1	7:05	8:05	21,075	-	142.8	20.7	90.6
Cooler 1AB	RUN 2	8:12	9:12	21,138	-	143.7	20.9	91.5
	RUN 3	9:21	10:21	21,048	-	143.5	20.8	90.9
	Average	<u>.</u>		21,087	-	143.4	20.78	91.0
	RUN 1	11:35	12:57	17,644	-	156.8	19.0	83.3
Cooler 1CD	RUN 2	13:06	14:06	17,683	-	137.5	16.7	73.2
	RUN 3	14:13	15:13	17,816	-	143.7	17.6	77.1
	Average			17,714	-	146.0	17.78	77.9
	RUN 1	14:26	15:26	16,171	-	169.9	18.9	82.7
Cooler 2AB	RUN 2	15:31	16:31	16,084	-	170.1	18.8	82.4
	RUN 3	16:38	17:38	16,295	-	170.6	19.1	83.7
	Average	<u>.</u>		16,183	-	170.2	18.93	82.9
	RUN 1	7:05	8:05	15,953	-	191.4	21.0	91.9
Cooler 2CD	RUN 2	8:12	9:12	15,991	-	197.3	21.7	95.0
	RUN 3	9:21	10:21	15,624	-	165.2	17.7	77.7
	Average			15,856	-	184.6	20.14	88.2
	RUN 1	10:54	11:55	17,132	-	176.3	20.8	90.9
Cooler 3AB	RUN 2	12:38	13:38	17,319	-	168.5	20.1	87.9
	RUN 3	17:57	18:57	17,452	-	143.1	17.2	75.2
	Average			17,301	-	162.6	19.33	84.7
	RUN 1	15:25	17:35	17,262	-	142.9	17.0	74.3
Cooler 3CD	RUN 2	17:40	18:40	17,177	-	140.5	16.6	72.7
	RUN 3	18:45	19:45	17,158	-	145.4	17.2	75.1
	Average			17,199	-	143.0	16.90	74.0
	RUN 1	10:37	11:37	45,788	-	4.68	1.47	6.45
Loadout Silo	RUN 2	11:41	12:41	46,377	-	5.43	1.73	7.58
	RUN 3	12:45	13:45	46,583	-	6.55	2.10	9.18
	Average			46,249	-	5.55	1.77	7.74
	RUN 1	16:24	17:24	137,942	42.7	26.0	24.6	107.9
RTO	RUN 2	17:50	18:50	137,936	42.7	20.4	19.3	84.5
	RUN 3	19:16	20:16	139,995	41.8	11.2	10.8	47.2
	Average			138,624	42.4	19.18	18.24	79.87
Equipment	Test Run	Start Time (Military)	Stop Time (Military)	Stack Gas Flow Rate (standard wet ft ³ /minute)	Water Vapor in Stack Gas (percent)	Formaldehyde Emissions (ppm-wet)	Formaldehyde Emissions (lbs/hr)	Formaldehyde Emissions (tons/yr)
	RUN 1	16:24	17:24	137,942	42.7	1.28	0.82623	3.62
RTO	RUN 2	17:50	18:50	138,405	42.7	0.84	0.54403	2.38
	RUN 3	19:16	20:16	140,465	41.8	0.46	0.30236	1.32
	Average			138,937	42.4	0.9	0.55754	2.44

DRAX Morehouse

Bastrop, LA

Source	Date	Total PM lbs/hr	PM < 10 um Ibs/hr	PM < 2.5 um lbs/hr
Primary Hammermill 1a	3/12/2019	0.063	0.043	0.017
Primary Hammermill 2a	3/12/2019	0.063	0.055	0.035
Primary Hammermill 3a	3/12/2019	0.167	0.109	0.101
Average Primary Hammermills		0.098	0.069	0.051
Cooler 1CD	3/13/2019	0.208	0.228	0.206
Cooler 2 CD	3/13/2019	0.198	0.168	0.133
Cooler 3 AB	3/13/2019	0.306	0.210	0.141
Average Coolers		0.237	0.202	0.160
Secondary Hammermill 1	3/14/2019	0.076	0.008	0.008
Secondary Hammermill 2	3/14/2019	0.218	0.205	0.173
Average Secondary Hammermills		0.147	0.1065	0.0905
Rail Loadout	3/14/2019	0.238	0.136	0.101
Dryer/RTO *	3/15/2019	1.64	1.64	1.64

* RTO was 41% moisture with a 265 degree stack temperature.

There was condensed water in the ports so we were reluctant to attempt a method 201a.

The Filterable fraction of the sample was assumed to be PM < 2.5 um. This made up around 10 percent of the PM and the Condensable fraction was the balance.

Drax Morehouse February 10-24, 2016 Compliance Test Results

Table 4 RTO Outlet (EQT0003) SO₂ Compliance Test Summary

Run No.		1	2	3	Average
Sulfur Dioxide (SO ₂)	ppmv	12.7	12.5	1.6	8.9
	lb/hr	9.09	9.26	1.16	6.50

This is an excerpt from Table 4 RTO Outlet (EQT0003) PM, SO₂, NO_x, and CO Compliance Test Summary directly from Section 1.3 Test Results and Discussions from the April 2016 Emission Compliance Test Report by Providence.

Source	Parameter	Test R	esults
RTO Outlet	СО	27.98	lb/hr
(EQPT1)	NO _X	39.64	lb/hr

Drax Amite December 14-29, 2015 Compliance Test Results

This is an excerpt from Table 2 Compliance Test Results directly from Section 1.3 Test Results and Discussions from the February 2016 Emission Compliance Test Report by Providence.

SOURCE DESCRIPTION

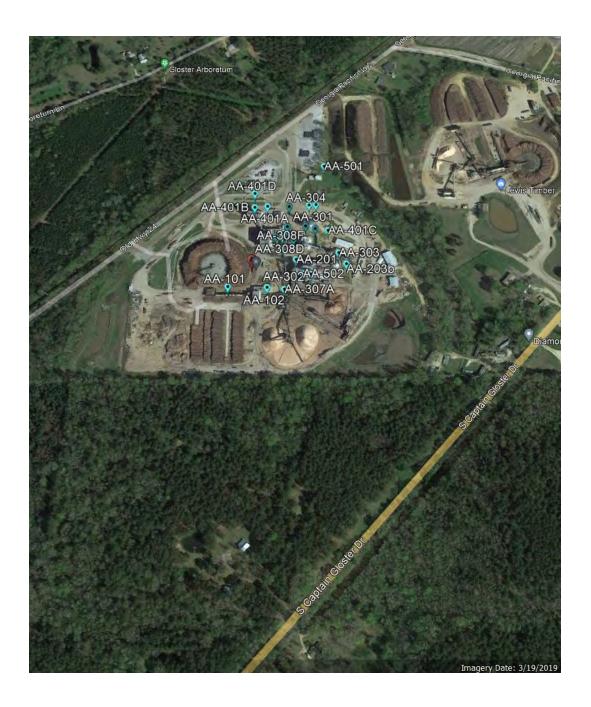
A number of process areas produce VOC and HAP emissions. Emissions are based on the results of a stack test conducted at this facility in February 10-26, 2016 and March 17, 2016. The production rates used to establish emissions are post-dryer production rates at each piece of equipment.

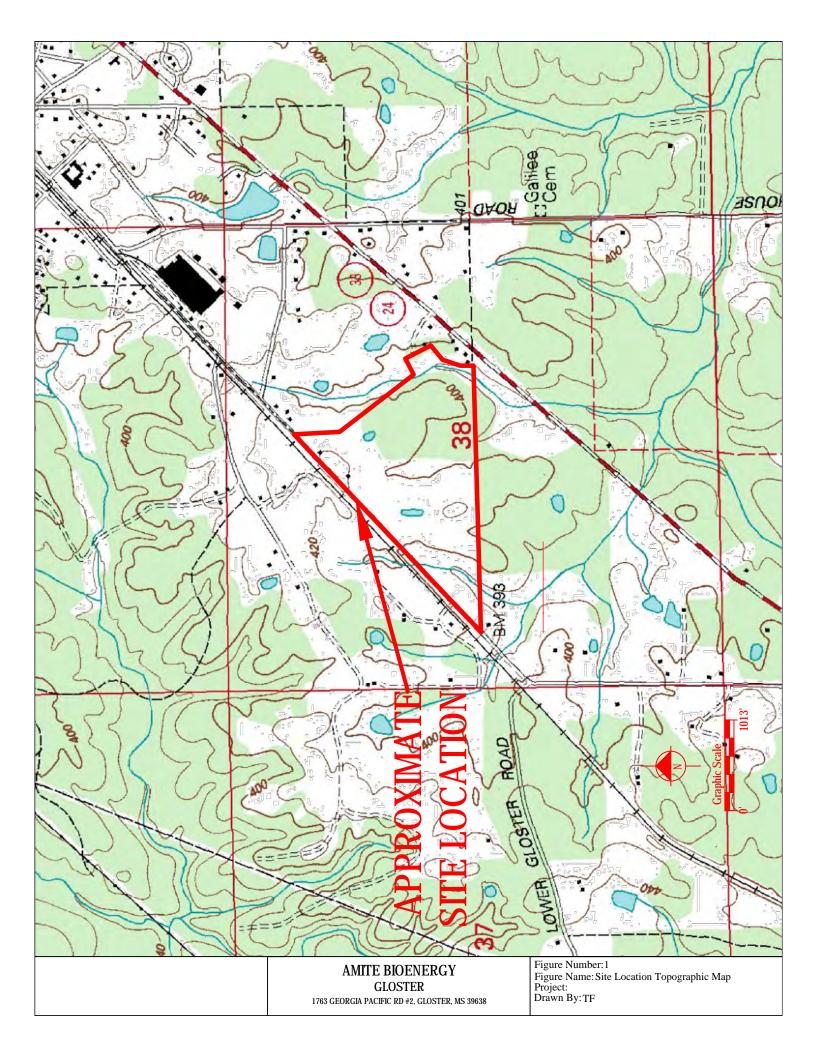
OPERATING PARAMETERS							F	Finished Pellet	t Operations												
		Potential	Potential	VOC	Potential VOC	Potential VOC	Potential VOC	Mathanal	Formaldehyde	Acetaldehyde	Potential	Potential Formaldehyde	Potential Acetaldehyde	Potential Total HAP	Maximum	Maximum Formaldehyde	Maximum Acetaldehyde	Potential	Potential Formaldehvde	Potential Acetaldehyde	Potential Total HAP
	Potential	Max Hourly	Annual	Emission			Emission	Emission	Emission	Emission	Emission	Emission	Emission	Emission	Methanol Emission	Emission	Emission	Emission	Emission	Emission	Emission
Source ID Emission Source	Operating Hours	Throughput (ton/hr)	Throughput (ton/yr)	Factor	Rate	Rate	Rate	Factor	Factor (lb/ton)	Factor (lb/ton)	Rate	Rate (lb/hr)	Rate (Ib/hr)	Rate	Rate (lb/hr)	Rate (lb/hr)	Rate (lb/hr)	Rate	Rate	Rate	Rate
	Hours	(101711)	(ton/yr)	(10/1011)	(avg ib/iii)	(max lb/hr)	(tpy)	(lb/ton)	(10/1011)	(ID/IOII)	(lb/hr)	(10/11)	(10/11)	(lb/hr)		(10/11)	(ID/III)	(tpy)	(tpy)	(tpy)	(tpy)
EQT0004 Primary Hammermill Feed Silo, Bin Vent	8,760	103.6	578,052	0.0201	1.32	2.08	5.80	0.0010	0.0019	0.0010	0.0627	0.1255	0.0627	0.2509	0.0984	0.1969	0.0984	0.2748	0.5495	0.2748	1.0990
EQT0021 Primary Hammermill Pneumatic System 1	8,760	17.3	96,342	0.298	3.28	5.14	14.35	0.0025	0.0051	0.0025	0.0279	0.0558	0.0279	0.1115	0.2625	0.5250	0.2625	0.1221	0.2442	0.1221	0.4884
EQT0022 Primary Hammermill Pneumatic System 2	8,760	17.3	96,342	0.298	3.28	5.14	14.35	0.0025	0.0051	0.0025	0.0279	0.0558	0.0279	0.1115	0.2625	0.5250	0.2625	0.1221	0.2442	0.1221	0.4884
EQT0023 Primary Hammermill Pneumatic System 3	8,760	17.3	96,342	0.298	3.28	5.14	14.35	0.0025	0.0051	0.0025	0.0279	0.0558	0.0279	0.1115	0.2625	0.5250	0.2625	0.1221	0.2442	0.1221	0.4884
EQT0024 Primary Hammermill Pneumatic System 4	8,760	17.3	96,342	0.298	3.28	5.14	14.35	0.0025	0.0051	0.0025	0.0279	0.0558	0.0279	0.1115	0.2625	0.5250	0.2625	0.1221	0.2442	0.1221	0.4884
EQT0025 Primary Hammermill Pneumatic System 5	8,760	17.3	96,342	0.298	3.28	5.14	14.35	0.0025	0.0051	0.0025	0.0279	0.0558	0.0279	0.1115	0.2625	0.5250	0.2625	0.1221	0.2442	0.1221	0.4884
EQT0026 Primary Hammermill Pneumatic System 6	8,760	17.3	96,342	0.298	3.28	5.14	14.35	0.0025	0.0051	0.0025	0.0279	0.0558	0.0279	0.1115	0.2625	0.5250	0.2625	0.1221	0.2442	0.1221	0.4884
EQT0006 Secondary Hammermill Feed Silo 1, Bin Vent	8,760	69.0	385,368	0.0201	0.88	1.38	3.86	0.0010	0.0019	0.0010	0.0418	0.0836	0.0418	0.1673	0.0984	0.1969	0.0984	0.1832	0.3663	0.1832	0.7327
EQT0007 Secondary Hammermill Feed Silo 2, Bin Vent	8,760	34.5	192,684	0.0201	0.44	0.69	1.93	0.0010	0.0019	0.0010	0.0209	0.0418	0.0209	0.0836	0.0984	0.1969	0.0984	0.0916	0.1832	0.0916	0.3663
EQT0027 Secondary Hammermill Pneumatic System 1	8,760	34.5	192,684	0.255	5.61	8.80	24.55	0.0013	0.0025	0.0013	0.0279	0.0558	0.0279	0.1115	0.1313	0.2625	0.1313	0.1221	0.2442	0.1221	0.4884
EQT0028 Secondary Hammermill Pneumatic System 2	8,760	34.5	192,684	0.255	5.61	8.80	24.55	0.0013	0.0025	0.0013	0.0279	0.0558	0.0279	0.1115	0.1313	0.2625	0.1313	0.1221	0.2442	0.1221	0.4884
EQT0029 Secondary Hammermill Pneumatic System 3	8,760	34.5	192,684	0.255	5.61	8.80	24.55	0.0013	0.0025	0.0013	0.0279	0.0558	0.0279	0.1115	0.1313	0.2625	0.1313	0.1221	0.2442	0.1221	0.4884
EQT0008 Pellet Cooler Pneumatic System 1	8,760	17.3	96,342	0.087	0.96	1.50	4.19	0.0019	0.0038	0.0019	0.0209	0.0418	0.0209	0.0836	0.1969	0.3938	0.1969	0.0916	0.1832	0.0916	0.3663
EQT0009 Pellet Cooler Pneumatic System 2	8,760	17.3	96,342	0.087	0.96	1.50	4.19	0.0019	0.0038	0.0019	0.0209	0.0418	0.0209	0.0836	0.1969	0.3938	0.1969	0.0916	0.1832	0.0916	0.3663
EQT0010 Pellet Cooler Pneumatic System 3	8,760	17.3	96,342	0.087	0.96	1.50	4.19	0.0019	0.0038	0.0019	0.0209	0.0418	0.0209	0.0836	0.1969	0.3938	0.1969	0.0916	0.1832	0.0916	0.3663
EQT0011 Pellet Cooler Pneumatic System 4	8,760	17.3	96,342	0.087	0.96	1.50	4.19	0.0019	0.0038	0.0019	0.0209	0.0418	0.0209	0.0836	0.1969	0.3938	0.1969	0.0916	0.1832	0.0916	0.3663
EQT0012 Pellet Cooler Pneumatic System 5	8,760	17.3	96,342	0.087	0.96	1.50	4.19	0.0019	0.0038	0.0019	0.0209	0.0418	0.0209	0.0836	0.1969	0.3938	0.1969	0.0916	0.1832	0.0916	0.3663
EQT0030 Pellet Cooler Pneumatic System 6	8,760	17.3	96,342	0.087	0.96	1.50	4.19	0.0019	0.0038	0.0019	0.0209	0.0418	0.0209	0.0836	0.1969	0.3938	0.1969	0.0916	0.1832	0.0916	0.3663
EQT0015 Pellet Storage Silo 1, Bin Vent	8,760	51.8	289,026	0.0201	0.66	1.04	2.90	0.0010	0.0019	0.0010	0.0314	0.0627	0.0314	0.1255	0.0984	0.1969	0.0984	0.1374	0.2748	0.1374	0.5495
EQT0016 Pellet Storage Silo 2, Bin Vent	8,760	51.8	289,026	0.0201	0.66	1.04	2.90	0.0010	0.0019	0.0010	0.0314	0.0627	0.0314	0.1255	0.0984	0.1969	0.0984	0.1374	0.2748	0.1374	0.5495
EQT0017 Screened Materials Return ²	8,760	10.4	57,805	0.0201	0.13	0.21	0.58	0.0010	0.0019	0.0010	0.0063	0.0125	0.0063	0.0251	0.0984	0.1969	0.0984	0.0275	0.0550	0.0275	0.1099
EQT0031 Pellet Loading System	8,760	103.6	578,052	0.0201	1.32	2.08	5.80	0.0010	0.0019	0.0010	0.0627	0.1255	0.0627	0.2509	0.0984	0.1969	0.0984	0.2748	0.5495	0.2748	1.0990

REFERENCES/NOTES

1. Emission rates (ER) calculated as follows:

ER_{max} (lb/hr) = Maximum Throughput (ton/hr) * Emission Factor (lb/ton) * 1.2 (safety factor)


ER_{annual} (tons/yr) = Annual Throughput (ton/yr) * Emission Factor (lb/ton)


ER_{avg} (lb/hr) = ER_{Annual} * 2000 (lb/ton) / Operating Hours (hr/yr)

2. Only a limited amount of material passes through Screened Materials Return. Therefore, it was conservatively assumed that 10% of the materials passes through the screen.

APPENDIX C: SITE MAP

APPENDIX D: CAM PLANS - RTO & RCO

.....

PROPOSED CAM PLAN - RTO

Parameter	Description
	RTO (VOCs)
Indicator	Combustion Chamber Outlet Temperature
Monitoring	Hourly recording of combustion chamber outlet temperature using
Approach	a thermocouple. Temperature data will be recorded continuously.
Indicator Range	Minimum:
	* Target range: 1500°F ,
	but will be determined during initial testing.
	The temperature will be optimized during facility start-up to
	minimize natural gas usage in the RTO while maintaining the
	desired destruction efficiency.
Response to Indicators	A combustion chamber outlet that is below the applicable minimum
Action Level Range	threshold temperature during normal operating conditions value will
	trigger an audible and/or visible alarm in the control room. Amite
	BioEnergy will take the following immediate corrective actions:
	* If the temperature cannot be raised to satisfy the applicable minimum
	threshold within 30 minutes from the start of the excursion,
	the furnace/dryer will be shutdown. The cause of the excursion
	will be conducted with corrective actions implemented and
	documented prior to re-starting the furnace/dryer.
	The WESP is equipped with a bypass stack for RTO malfunctions.
Quality Improvement Plan	Six excursions in a six-month reporting period.
Threshold	
Performance Criteria	Maintenance of adequate combustion chamber temperature assures
Data Representativeness	proper destruction of both CO and VOCs; control efficiency is a function
	of temperature.
Averaging Period	Three-hour average.
Recordkeeping	Combustion chamber temperature is monitoring continuously. The
1 0	temperature data will be stored in a data acquisition system.
QA/QC Practices and	Annual calibration or replacement per manufacturer's specifications.
Criteria	·····
Parameter	Description
	RTO (VOC & CO)
Indicator	Annual inspections of burner assemblies, blowers, fans, dampers,
	refractory lining, oxidizer shell, fuel lines, and ductwork.
Monitoring	Inspections of burner assemblies, blowers, fans, dampers,
Approach	refractory lining, oxidizer shell, fuel lines, and ductwork will be conducted
	annually.
Indicator Range	N/A
Response to Indicators	N/A
Action Level Range	
Performance Criteria	Inspections will ensure proper operation of the burner and RTO.
Data Representative	
•	Annually.
Averaging Period Recordkeeping	Annually. Manual logs of inspections.

Parameter	Description
	WESP (PM ₁₀ and PM _{2.5})
Indicator	Continuous monitoring of secondary current.
Monitoring	Continuously monitor secondary current after each of the three
Approach	transformer/rectifier sets.
Indicator Range	Change in current (initial proposed ranges):
-	« <250mA for field no. 1; range will be determined during verification
	of operational status.
	« <250mA for field no. 2; range will be determined during verification
	of operational status.
	« <250mA for field no. 3; range will be determined during verification
	of operational status.
	These ranges will be optimized during facility testing and start-up.
	A secondary current that is below the applicable minimum threshold value
	during normal operating conditions will trigger an audible and/or visible
	alarm in the control room.
Response to Indicators	If the ammeter indicates a change in current, Amite BioEnergy will take
Action Level Range	the following immediate corrective actions:
Action Level Range	« Review secondary voltage levels for irregularities;
	« Assess the cause of the change in current;
	« Assess the cause of the change in current, « If review of the other parameters indicates a malfunction, furnace/dryer
	and WESP will be shutdown.
	The furnace is equipped with a bypass stack for WESP malfunction.
Quality Improvement Plan Threshold	Six excursions in a six-month reporting period.
Performance Criteria	Current affects the collection efficiency and is typically low and constant.
Data Representative	An increase or drop in current indicates a malfunction.
Averaging Period	The secondary current will be averaged over a 3-hour period.
Recordkeeping QA/QC Practices and Criteria	Secondary current is recorded continuously in a data acquisition system.
	Annual calibration or replacement per manufacturer's recommendations.
Parameter	Description
l'aranicter	WESP (PM ₁₀ and PM _{2.5})
Indicator	Continuous monitoring of secondary voltage.
Monitoring	Monitor secondary voltage after each transformer/rectifier set.
Approach	
Indicator Range	Change in voltage (initial proposed ranges):
	« <45 kV for field no. 1; range will be determined during verification
	of operational status
	of operational status.
	« <45 kV for field no. 2; range will be determined during verification
	 « <45 kV for field no. 2; range will be determined during verification of operational status.
	 « <45 kV for field no. 2; range will be determined during verification of operational status. « <45 kV for field no. 3; range will be determined during verification
	 « <45 kV for field no. 2; range will be determined during verification of operational status. « <45 kV for field no. 3; range will be determined during verification of operational status.
	 « <45 kV for field no. 2; range will be determined during verification of operational status. « <45 kV for field no. 3; range will be determined during verification of operational status. These ranges will be optimized during facility testing and start-up.
	 « <45 kV for field no. 2; range will be determined during verification of operational status. « <45 kV for field no. 3; range will be determined during verification of operational status. These ranges will be optimized during facility testing and start-up. A secondary voltage that is below the applicable minimum threshold value
	 « <45 kV for field no. 2; range will be determined during verification of operational status. « <45 kV for field no. 3; range will be determined during verification of operational status. These ranges will be optimized during facility testing and start-up. A secondary voltage that is below the applicable minimum threshold value during normal operating conditions will trigger an audible and/or visible
	 « <45 kV for field no. 2; range will be determined during verification of operational status. « <45 kV for field no. 3; range will be determined during verification of operational status. These ranges will be optimized during facility testing and start-up. A secondary voltage that is below the applicable minimum threshold value during normal operating conditions will trigger an audible and/or visible alarm in the control room.
Response to Indicators	 « <45 kV for field no. 2; range will be determined during verification of operational status. « <45 kV for field no. 3; range will be determined during verification of operational status. These ranges will be optimized during facility testing and start-up. A secondary voltage that is below the applicable minimum threshold value during normal operating conditions will trigger an audible and/or visible alarm in the control room. If the voltmeter indicates a change in voltage, Amite BioEnergy will take
Response to Indicators Action Level Range	 « <45 kV for field no. 2; range will be determined during verification of operational status. « <45 kV for field no. 3; range will be determined during verification of operational status. These ranges will be optimized during facility testing and start-up. A secondary voltage that is below the applicable minimum threshold value during normal operating conditions will trigger an audible and/or visible alarm in the control room. If the voltmeter indicates a change in voltage, Amite BioEnergy will take the following immediate corrective actions:
	 « <45 kV for field no. 2; range will be determined during verification of operational status. « <45 kV for field no. 3; range will be determined during verification of operational status. These ranges will be optimized during facility testing and start-up. A secondary voltage that is below the applicable minimum threshold value during normal operating conditions will trigger an audible and/or visible alarm in the control room. If the voltmeter indicates a change in voltage, Amite BioEnergy will take the following immediate corrective actions: « Review secondary current levels for irregularities;
	 « <45 kV for field no. 2; range will be determined during verification of operational status. « <45 kV for field no. 3; range will be determined during verification of operational status. These ranges will be optimized during facility testing and start-up. A secondary voltage that is below the applicable minimum threshold value during normal operating conditions will trigger an audible and/or visible alarm in the control room. If the voltmeter indicates a change in voltage, Amite BioEnergy will take the following immediate corrective actions: « Review secondary current levels for irregularities; « Assess the cause of the change in voltage;
	 « <45 kV for field no. 2; range will be determined during verification of operational status. « <45 kV for field no. 3; range will be determined during verification of operational status. These ranges will be optimized during facility testing and start-up. A secondary voltage that is below the applicable minimum threshold value during normal operating conditions will trigger an audible and/or visible alarm in the control room. If the voltmeter indicates a change in voltage, Amite BioEnergy will take the following immediate corrective actions: « Review secondary current levels for irregularities;
	 « <45 kV for field no. 2; range will be determined during verification of operational status. « <45 kV for field no. 3; range will be determined during verification of operational status. These ranges will be optimized during facility testing and start-up. A secondary voltage that is below the applicable minimum threshold value during normal operating conditions will trigger an audible and/or visible alarm in the control room. If the voltmeter indicates a change in voltage, Amite BioEnergy will take the following immediate corrective actions: « Review secondary current levels for irregularities; « Assess the cause of the change in voltage;
	 « <45 kV for field no. 2; range will be determined during verification of operational status. « <45 kV for field no. 3; range will be determined during verification of operational status. These ranges will be optimized during facility testing and start-up. A secondary voltage that is below the applicable minimum threshold value during normal operating conditions will trigger an audible and/or visible alarm in the control room. If the voltmeter indicates a change in voltage, Amite BioEnergy will take the following immediate corrective actions: « Review secondary current levels for irregularities; « Assess the cause of the change in voltage; « If review of the other parameters indicates a malfunction, furnace/dryer
Action Level Range	 « <45 kV for field no. 2; range will be determined during verification of operational status. « <45 kV for field no. 3; range will be determined during verification of operational status. These ranges will be optimized during facility testing and start-up. A secondary voltage that is below the applicable minimum threshold value during normal operating conditions will trigger an audible and/or visible alarm in the control room. If the voltmeter indicates a change in voltage, Amite BioEnergy will take the following immediate corrective actions: « Review secondary current levels for irregularities; « Assess the cause of the change in voltage; « If review of the other parameters indicates a malfunction, furnace/dryer and WESP will be shutdown.
Action Level Range Quality Improvement Plan	 « <45 kV for field no. 2; range will be determined during verification of operational status. « <45 kV for field no. 3; range will be determined during verification of operational status. These ranges will be optimized during facility testing and start-up. A secondary voltage that is below the applicable minimum threshold value during normal operating conditions will trigger an audible and/or visible alarm in the control room. If the voltmeter indicates a change in voltage, Amite BioEnergy will take the following immediate corrective actions: « Review secondary current levels for irregularities; « Assess the cause of the change in voltage; « If review of the other parameters indicates a malfunction, furnace/dryer and WESP will be shutdown.
Action Level Range Quality Improvement Plan Threshold	 « <45 kV for field no. 2; range will be determined during verification of operational status. « <45 kV for field no. 3; range will be determined during verification of operational status. These ranges will be optimized during facility testing and start-up. A secondary voltage that is below the applicable minimum threshold value during normal operating conditions will trigger an audible and/or visible alarm in the control room. If the voltmeter indicates a change in voltage, Amite BioEnergy will take the following immediate corrective actions: « Review secondary current levels for irregularities; « Assess the cause of the change in voltage; « If review of the other parameters indicates a malfunction, furnace/dryer and WESP will be shutdown. Six excursions in a six-month reporting period.
Action Level Range Quality Improvement Plan Threshold Performance Criteria	 « <45 kV for field no. 2; range will be determined during verification of operational status. « <45 kV for field no. 3; range will be determined during verification of operational status. These ranges will be optimized during facility testing and start-up. A secondary voltage that is below the applicable minimum threshold value during normal operating conditions will trigger an audible and/or visible alarm in the control room. If the voltmeter indicates a change in voltage, Amite BioEnergy will take the following immediate corrective actions: « Review secondary current levels for irregularities; « Assess the cause of the change in voltage; « If review of the other parameters indicates a malfunction, furnace/dryer and WESP will be shutdown. Six excursions in a six-month reporting period. Voltage affects the collection efficiency and is typically high. A drop in
Action Level Range Quality Improvement Plan Threshold Performance Criteria	 « <45 kV for field no. 2; range will be determined during verification of operational status. « <45 kV for field no. 3; range will be determined during verification of operational status. These ranges will be optimized during facility testing and start-up. A secondary voltage that is below the applicable minimum threshold value during normal operating conditions will trigger an audible and/or visible alarm in the control room. If the voltmeter indicates a change in voltage, Amite BioEnergy will take the following immediate corrective actions: « Review secondary current levels for irregularities; « Assess the cause of the change in voltage; « If review of the other parameters indicates a malfunction, furnace/dryer and WESP will be shutdown. Six excursions in a six-month reporting period. Voltage affects the collection efficiency and is typically high. A drop in voltage directly affects the collection efficiency of the WESP (the higher
Action Level Range Quality Improvement Plan Threshold Performance Criteria Data Representative	 « <45 kV for field no. 2; range will be determined during verification of operational status. « <45 kV for field no. 3; range will be determined during verification of operational status. These ranges will be optimized during facility testing and start-up. A secondary voltage that is below the applicable minimum threshold value during normal operating conditions will trigger an audible and/or visible alarm in the control room. If the voltmeter indicates a change in voltage, Amite BioEnergy will take the following immediate corrective actions: « Review secondary current levels for irregularities; « Assess the cause of the change in voltage; « If review of the other parameters indicates a malfunction, furnace/dryer and WESP will be shutdown. Six excursions in a six-month reporting period. Voltage affects the collection efficiency and is typically high. A drop in voltage directly affects the collection efficiency of the WESP (the higher the voltage, the more particles are charged and collected.

Parameter	Description						
CYCLONE/FABRIC FILTER ((PM ₁₀ and PM _{2.5})							
Indicator	Opacity						
Monitoring	Visual observations						
Approach							
Indicator Range	Observation of visible emissions.						
Response to Indicators	If visual emissions are observed, Amite BioEnergy will take						
Action Level Range	the following immediate corrective actions:						
	 Increase frequency of inspections to hourly following notes change 						
	until issue resolved;						
	« Inspect cyclone for any damage or leaks;						
	« Inspect hammermill filters.						
Quality Improvement Plan	Six excursions in a six-month reporting period.						
Threshold							
Performance Criteria	Indication of performance degradation by increase in visible emissions.						
Data Representative							
Averaging Period	Daily						
Recordkeeping	All visual observations will br recorded in a logbook or database.						
QA/QC Practices and Criteria	Quarterly inspection of cyclone and hammermill filters.						
Parameter	Description						
HAMMERMILL PNE	UMATIC SYSTEM FILTERS (Baghouse) (PM ₁₀ and PM _{2.5})						
Indicator	Continuous pressure drop across filters						
Monitoring	Differential pressure gauge						
Approach							
Indicator Range	Pressure drop range of 2" to 6" H2O. The cleaning cycle is on a timer.						
Descuses to be directory							
Response to Indicators	If a change in pressure drop outside the indicator range is observed, Amite						
Action Level Range	BioEnergy will take the following immediate corrective actions:						
	« Conduct visual observation of Hammermill cyclones;						
	« Inspect filters for any tears or leaks;						
	« Inspect hammermill filters; and						
	« Determine if there is an excursion of visual observations.						
	Differential pressure will be optimized during facility start-up.						
Quality Improvement Plan	Six excursions in a six-month reporting period.						
Threshold							
Performance Criteria	Indication of performance degradation by increase or decrease in pressure						
Data Representative	drop outside the operational ranges.						
Averaging Period	3-hour						
Recordkeeping	All pressure drop measurements will be recorded in an electronic database.						
QA/QC Practices and Criteria	Calibration of differential pressure gauge per manufacturer's						
	specifications and annual inspection of hammermill filters.						

PROPOSED CAM PLAN - RCO

Parameter	Description						
	RCO (VOCs)						
Indicator	Combustion Chamber Outlet Temperature						
Monitoring	Hourly recording of combustion chamber outlet temperature using						
Approach	a thermocouple. Temperature data will be recorded continuously.						
Indicator Range	Minimum:						
	 * Target range: 1500°F (requested range from manufacturer), 						
	but will be determined during initial testing.						
	The temperature will be optimized during facility start-up to						
	minimize natural gas usage in the RCO while maintaining the						
	desired destruction efficiency.						
Response to Indicators	A combustion chamber outlet that is below the applicable minimum						
Action Level Range	threshold temperature during normal operating conditions value will						
	trigger an audible and/or visible alarm in the control room. Morehouse						
	BioEnergy will take the following immediate corrective actions:						
	* If the temperature cannot be raised to satisfy the applicable minimum						
	threshold within 30 minutes from the start of the excursion, half of the						
	hammermills and pellet coolers will be shut down because the RCO						
	has 2 parallel sides. The cause of the excursion will be conducted						
	with corrective actions implemented and documented prior to						
	re-starting the hammermills and pellet coolers.						
Quality Improvement Plan	Six excursions in a six-month reporting period.						
Threshold							
Performance Criteria	Maintenance of adequate combustion chamber temperature assures						
Data Representativeness	proper destruction of VOCs; control efficiency is a function of temperature.						
Averaging Period	Three-hour average.						
Recordkeeping	Combustion chamber temperature is monitoring continuously. The						
	temperature data will be stored in a data acquisition system.						
QA/QC Practices and	Annual calibration or replacement per manufacturer's specifications.						
Criteria							
enterna							
Parameter	Description						
	RCO (VOCs)						
Indicator	Annual inspections of burner/combustion chamber to ensure that all						
	refractory modules are in good shape and that the ceramic media						
	shows no sign of degradation. Remove the main fan access hatch and						
	examine the wheel for signs of particulate deposition or corrosion.						
	Examine the main fan coupling to ensure proper alignment is being						
	maintained. Examine the combustion burner internals.						
	Verify instrumentation calibration.						
Monitoring	Inspections for burner assemblies, blowers, fans, dampers, refractory lining,						
Approach	oxidizer shell, fuel lines, and ductwork will be conducted annually.						
Indicator Range	N/A						
Response to Indicators	Ν/Α						
Response to Indicators Action Level Range	N/A						
Action Level Range							
Action Level Range Performance Criteria	N/A Inspections will ensure proper operation of the burners and RCO.						
Action Level Range Performance Criteria Data Representative	Inspections will ensure proper operation of the burners and RCO.						
Action Level Range Performance Criteria							

APPENDIX E: CERTIFICATE OF GOOD STANDING

.....

Jaricus Whitlock

From:Laura JamesSent:Saturday, November 12, 2022 7:37 AMTo:Melissa Fortenberry; Jaricus WhitlockCc:Krystal RudolphSubject:FW: Amite BioEnergy MACT AnalysisAttachments:ABE MACT Analysis_11-11-22.pdf

FYI, revised Case-by-Case Determination received.

Laura James, PE Air Program Development Branch Manager Mississippi Department of Environmental Quality Air Division 601-961-5675 Ijames@mdeq.ms.gov

From: Mcilwain, Annie <annie.mcilwain@ppmco.com>
Sent: Friday, November 11, 2022 2:22 PM
To: Laura James <LJAMES@mdeq.ms.gov>
Subject: Amite BioEnergy MACT Analysis

This Message Is From an External Sender

This message came from outside your organization.

Good Afternoon Laura,

Please find attached the Case-by-Case MACT Analysis for Amite BioEnergy. Would you also like a printed copy or does electronic work? If you have any questions, please let me know.

Thanks,

Annie McIlwain, P.E. (MS) District Manager PPM Consultants, Inc. 289 Commerce Park Drive, Suite D Ridgeland, MS 39157 p: 601-956-8233 m: 601-941-3719 annie.mcilwain@ppmco.com www.ppmco.com [ppmco.com]

NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS MAXIMUM ACHIEVABLE CONTROL TECHNOLOGY (MACT) ANALYSIS AMITE BIOENERGY, LLC GLOSTER, MS.

National Emission Standards for Hazardous Air Pollutants

National Emission Standards for Hazardous Air Pollutants (NESHAP) regulate hazardous air pollutant (HAP) emissions and are applicable to certain major and area sources of HAP. NESHAP is found in 40 CFR Part 63 and has been incorporated by reference in 11 Miss. Admin. Code Pt. 2, Ch.1, R.1.8.A. The Amite BioEnergy, LLC (ABE) facility is a major source of HAP because total HAP emissions are greater than 25 tpy and an individual HAP's emissions are greater than 10 tpy.

40 CFR 63 Subpart A – General Provisions

Sources subject to a NESHAP are subject to the general requirements in Subpart A unless excluded by the source-specific subpart. Subpart A includes requirements for notifications, emission testing, recordkeeping, monitoring, and reporting. ABE is subject to Subparts B and ZZZZ of Part 63 and as such, Subpart A is applicable to these sources.

40 CFR 63 Subpart B – Requirements for Control Technology Determinations for Major Sources – Clean Air Act Section 112(g)

Clean Air Act (CAA) Section 1129(g)(2)(B) requires that new or reconstructed major stationary source that does not belong to a regulated source category for which a NESHAP has been promulgated must control emissions to levels that meet maximum achievable control technology (MACT). ABE is an existing major source of HAP. Wood pellet manufacturing facilities are not applicable to a stationary source category found in 40 CFR Part 63. Therefore, ABE is subject to 112(g) and must prepare a case-by-case MACT analysis required by 40 CFR Part 63 Subpart B.

This analysis addresses case-by-case MACT for the Wood Chip Rotary Dryer, Dry Hammermills, Dry Shavings Hammermills, and Pellet Mill/Coolers since ABE did not include these sources of HAPs in the initial construction permitting procedures. Subpart ZZZZ will not be included in this report as there will be no revision to the Department's MACT review of the Emergency Engines.

As discussed in 40 CFR63.43(d), ABE proposes to specify a control technology that will meet a MACT emission limitation that is as stringent as the emission control which is achieved in practice by the best controlled similar source, and achieve the maximum degree of reduction in emissions

of HAP which can be achieved by utilizing control technologies that can be identified from the available information.

There is no proposed MACT or presumptive MACT established for Wood Pellet Manufacturing Facilities; hence, this analysis relies solely on a review of control technologies installed and effectively operating in a category with similar sources in the wood pellet industry. This analysis proposes to base its approach to recommended emission limitations on similar sources in the source category of Subpart DDDD – National Emission Standards for Hazardous Air Pollutants: Plywood and Composite Wood Products in 40 CFR Part 63.2230 – 63.2292.

The following sources of HAP emissions are included in this analysis: Wood Chip Rotary Dryer, Dry Hammermills, Dry Shavings Hammermills, and Pellet Mill/Coolers. Additional sources that have not been emission tested at ABE but may emit HAPs in small amounts based on emission test data from a similar facility include:

- Furnace Bypass Stack
- Wood Chip Rotary Dryer Bypass Stack
- Primary Hammermill Feed Silo Bin Vent
- Dry Shavings Truck Dump/Baghouse
- Dry Fiber Silo Nos. 1 and 2 with Bin Vents
- Pellet Storage Silos Nos. 1 and 2
- Screened Materials Return System
- Pellet Loading System Pneumatic System Filter

40 CFR 63 Subpart DDDD - NESHAP for Plywood and Composite Wood Products

Subpart DDDD regulates HAP emissions from plywood and composite wood products. (PCWP) manufacturing facilities located at major sources of HAPs. A PCWP manufacturing facility is defined in §63.2292 as one that manufactures plywood and/or composite wood products by bonding wood material or agricultural fiber to form a panel, engineered wood product, or other product defined in §63.2292. Further, an engineered wood product is defined as a product made with wood elements that are bound together with resin, such as laminated strand lumber and glue-laminated beams. The wood pellets that are manufactured at the ABE do not meet the definition of any of the PCWP products defined as subject to Subpart DDDD. The wood pellets are not an engineered wood product, as they will not be bound together with resin or another chemical agent. As such, this regulation is not applicable.

Process Description

Amite BioEnergy, LLC (ABE) is an existing wood pellet manufacturing facility located at 1763 S. Georgia Pacific Road #2 in the town of Gloster in Amite County, Mississippi. The primary

raw materials used by the facility are either primarily softwood pine logs that are debarked and chipped (green wood chips) onsite or purchased softwood dry wood shavings from surrounding wood products facilities. Green wood chips are fed into a **wood chip rotary dryer** that is heated with combustion gases that are direct-fired from a 165 MMBTU/hour wood-fired furnace. The dryer reduces the moisture content of the green wood chips from approximately 50 percent to 10 percent. As the wood chips exit the dryer, multi-clones are used to separate the heavier wood chips from the lighter wood chips. The heavier dry wood chips are sent to the **primary hammermill feed silo** via an enclosed conveyor. The lighter wood chips entrained in rotary dryer exhaust gas goes through the multi-clones and enters the **Wet Electrostatic Precipitator (WESP)** and **Regenerative Thermal Oxidizer (RTO)**. The WESP removes 95 percent of the particulate matter (PM) emissions from the dryer exhaust gas. The RTO removes 95 percent of volatile organic compound (VOC) emissions in the exhaust gas from the WESP before being discharged into the atmosphere.

The dry wood chips in the **primary hammermill feed silo** are fed via an enclosed conveyor into **six (6) primary dry hammermills.** The primary dry hammermills resize the wood chips; then, the resized wood chips are sent via an enclosed conveyer to the two (2) dry fiber silos. There are six (6) Primary Dry Hammermill Pneumatic Systems where each system is equipped with a baghouse filter to control particulate matter emissions, and emissions from these baghouse filters are routed to the **Regenerative Catalytic Oxidizer (RCO)** to control VOC emissions.

Dry shavings are received at the dry shavings truck dump and placed into a dry shavings storage bin. Dry shavings from the storage bin are conveyed for resizing in **two (2) Dry Shavings Hammermills** Pneumatic Systems where each system is equipped with a baghouse filter to control particulate matter emissions, and emissions from these baghouse filters are routed to the RCO to control VOC emissions. Resized wood shavings are sent via an enclosed conveyer to the **two (2) dry fiber silos**.

The two (2) dry fiber silos which contain wood fiber from the six (6) dry hammermills and the two (2) dry shavings hammermills is sent via an enclosed conveyor to **eight (8) pellet mills**. Each pellet mill is equipped with two (2) pelletizers and one (1) cooler. The starch silo and starch system add starch as a binder to the wood fiber just before the pellet mill. The wood fiber is pressed through holes in a die. A cutter on other side of the die cuts the exposed pellet from the die. The cut pellets are air cooled before being pneumatically conveyed into **two (2) Pellet Storage Silos**. The **eight (8) Pellet Mills / Coolers** Pneumatic Systems where each system is equipped with a baghouse filter to control particulate matter emissions, and emissions from these baghouse filters are routed to the RCO to control VOC emissions.

When wood pellets are conveyed from the two (2) pellet storage silos and loaded onto trucks for transport, the wood pellets are screened to separate wood dust, and particulate generated in the system after screening is controlled by a baghouse. The screened material is returned to the dry fiber silos with a pneumatic conveyor system.

The total production of wood pellets at ABE is limited to 624,700 oven-dried tons (ODT) per year based on a rolling 12-month total. An "oven-dried ton" equates to a ton of wood at zero percent (0%) moisture. Ultimately the finished wood pellets are used in boilers adapted to combust wood pellets to generate electricity in the United Kingdom.

ABE Sources of Hazardous Air Pollutants

The primary sources emitting hazardous air pollutants at ABE as presented in the previous section are:

- One (1) Wood Chip Rotary Dryer
- Six (6) Dry Hammermills
- Two (2) Dry Shavings Hammermills
- Eight (8) Pellet Mill/Coolers

The HAP emissions from all of the primary sources described above are controlled before discharging to the atmosphere. The HAP emissions from the one (1) wood chip rotary dryer are controlled by a WESP and RTO. An RCO controls HAP emissions from the six (6) Dry Hammermills, two (2) Dry Shavings Hammermills and eight (8) Pellet Mill/Coolers.

Additional sources that have not been emission tested at ABE but may emit hazardous air pollutants in small amounts based on emission test data from a similar facility include:

- Furnace Bypass Stack
- Wood Chip Rotary Dryer Bypass Stack
- Primary Hammermill Feed Silo Bin Vent
- Dry Shavings Truck Dump/Baghouse
- Dry Fiber Silo Nos. 1 and 2 with Bin Vents
- Pellet Storage Silos Nos. 1 and 2
- Screened Materials Return System
- Pellet Loading System Pneumatic System Filter

ABE Hazardous Air Pollution Emissions

VOCs which have been designated as hazardous air pollutants are emitted from two primary sources at ABE, the RTO and RCO. The RTO controls VOC/HAP emissions from the wood chip rotary dryer. The RCO controls VOC/HAP emissions from the six (6) Dry Hammermills, two (2) Dry Shavings Hammermills and eight (8) Pellet Mill/Coolers.

In an effort to align hazardous air pollutants emitted at ABE with the source category of Subpart DDDD, 40 CFR 63.2292 defines total hazardous air pollutant emissions means, the sum of the emissions of the following six compounds was calculated: acetaldehyde, acrolein, formaldehyde, methanol, phenol, and propionaldehyde. The table below presents the estimated emission rate for each HAP emitted from the RTO and RCO.

	ABE									
Pollutants	RTO (1,676 °F)				RCO (750°F)					
	lb/hr	ODT/hr	lb/ODT	tons/year	lb/hr	ODT/hr	lb/ODT	tons/year		
VOC, Total	10.30	52.75	0.195	45.114	7.80	68.80	0.113	34.164		
Acetaldehyde	0.350	52.75	6.64E-03	1.533	0.240	68.80	3.49E-03	1.0512		
Acrolein	0.150	52.75	2.84E-03	0.657	0.090	68.80	1.31E-03	0.3942		
Formaldehyde	0.880	52.75	1.67E-02	3.8544	0.230	68.80	3.34E-03	1.0074		
Methanol	1.580	52.75	3.00E-02	6.9204	2.660	68.80	3.87E-02	11.6508		
Phenol	0.680	52.75	1.29E-02	2.9784	1.440	68.80	2.09E-02	6.3072		
Propionaldehyde	0.100	52.75	1.90E-03	0.438	0.220	68.80	3.20E-03	0.9636		

Uncontrolled HAP emissions using the calculated removal efficiency based on test data for the RTO and RCO are presented in the table below:

Pollutant	ABE RTO & RCO Removal Efficiency	RTO Uncontrolled Using Efficiency (lb/hr)	RTO Uncontrolled Using Efficiency (tons/yr)	RCO Uncontrolled Using Efficiency (lb/hr)	RCO Uncontrolled Using Efficiency (tons/yr)
VOC, Total	95.9%	253.502	1110.34	191.972	840.84
Acetaldehyde	91.5%	4.113	18.02	2.821	12.35
Acrolein	92.1%	1.895	8.30	1.137	4.98
Formaldehyde	89.3%	8.194	35.89	2.142	9.38
Methanol	73.1%	5.872	25.72	9.885	43.30
Phenol	54.5%	1.496	6.55	3.168	13.87
Propionaldehyde	85.8%	0.703	3.08	1.547	6.77

MACT Emission Limits at Other Wood Pellet Mills

The Department recommended presenting information relative to recent permit limits at other wood pellet mills. Sites owned by Drax Biomass, Enviva Biomass, and others are detailed below.

Drax Biomass, Inc.

Drax Biomass, Inc. (Drax) operates wood pellet mills in Bastrop, Louisiana and Urania, Louisiana. These facilities have not undergone HAP emissions testing to establish permit limits; therefore, a MACT analysis has not been performed. Drax also recently purchased and operates wood pellet mills in Aliceville, Alabama and Demopolis, Alabama. The pellet production capacity of these mills is such that these facilities do not exceed the MACT threshold for total HAP emissions or an individual HAP.

<u>Enviva Inc.</u>

Enviva Inc. operates ten manufacturing plants in six U.S. states (listed alphabetically):

*Ashoskie, NC – 410,000 mt/yr	*Lucedale, MS – 750,000 mt/yr					
*Amory, MS – 115,000 mt/yr	*Northhampton County, NC – 750,000 mt/yr					
Cottondale, FL – 780,000 mt/yr	*Sampson County, NC – 600,000 mt/yr					
Greenwood, SC – 500,000 mt/yr	Southhampton County, VA – 760,000 mt/yr					
*Hamlet, NC – 600,000 mt/yr	Waycross, GA – 800,000 mt/yr					
* Facilities discussed in this analysis; mt/yr – metric tons/year						

Information on only the facilities located in Mississippi and North Carolina could be readily found due to a lack of available online permitting information for other locations.

Overall, a review of the air permits and HAP emissions test data for the Enviva North Carolina facilities showed that these facilities were able to avoid Case-by-Case MACT until controls were installed and emissions testing performed that demonstrated emissions were less than the MACT threshold for total HAPs and any individual HAP. North Carolina offers a MACT avoidance regulation, which applied to Enviva and allowed them to avoid preparing a Case-by Case MACT analysis. The Lucedale, Mississippi facility is the only facility that could be identified for this analysis that has completed a case-by-case MACT analysis. However, it appears that the MDEQ has not issued a final permit decision on the most recent application for Lucedale.

The September 13, 2022, test data for Enviva's Hamlet, NC facility indicates that the facility is not a major source of HAPs. Additionally, North Carolina offers a MACT avoidance regulation at (15A NCAC 02Q.0317 avoidance of 15A NCA 02D.1112). In short, emission sources at Hamlet which are similar to ABE are also controlled with a WESP, RTO and RCO. However, a key difference between ABE and the North Carolina facilities of Enviva is the wood species. ABE uses

80% southern yellow pine, while Enviva uses 80% hardwood. Fewer VOC emissions; thus; fewer HAP emissions occur from drying of hardwood.

The May 5, 2022, test data for Enviva's Northhampton, NC facility indicates that the facility is not a major source of HAPs. The emission sources at Northhampton, which are similar to ABE, are also controlled with a WESP, RTO, and RCO. However, a key difference between ABE and the North Carolina facilities of Enviva is the wood species. ABE uses 80% southern yellow pine, while Enviva uses 80% hardwood. Fewer VOC emissions; thus; fewer HAP emissions occur from drying of hardwood.

Unlike Hamlet and Northhampton facilities, the Sampson facility is a PSD Major facility. The Sampson facility operates with 80% softwood, which is similar to ABE. However, recent test data (test date of May 24, 2022) for Sampson is not available online at the time of the writing of this analysis. The emission sources at Sampson, which are similar to ABE, are also controlled with a WESP, RTO, and RCO.

The Ashoskie facility is not a major source of HAPs. A recent NCEQ inspection report dated July 26, 2022, showed the highest individual HAP emitted was 8.95 tons in 2020. Additionally, the air permit shows that unit operations and pellet production is such that the VOC emissions are not controlled. A WESP, cyclones, and fabric filters are control devices for a wood fired dryer, two (2) dry hammermills and two (2) pellet coolers.

The Amory facility is believed to be a minor source of HAP due to pellet production level.

The Lucedale facility prepared a case-by-case MACT analysis for its dry hammermills, pellet mills and pellet coolers in a recent air permit application of March 2021. These sources are ultimately controlled with WESP/RTO/RCO systems similar to sources at ABE. The MDEQ issued an air permit in 2019; however, a revised permit for the March 2021 application appears to have not been issued at this time.

MACT Analysis and Recommended Emissions Limitations

Wood Chip Rotary Dryer

Green wood chips are fed into a wood chip rotary dryer that is heated with combustion gases that are direct-fired from a 165 MMBTU/hour wood-fired furnace. The dryer reduces the moisture content of the green wood chips from approximately 50 percent to 10 percent. The temperature of the dried chips will still be elevated as they exit the rotary dryer material multi-clones resulting in emissions of VOC and HAPs.

The following technologies were identified for use on rotary dryers:

- · RTO
- Good Combustion Practices

- · RCO
- Thermal Catalytic Oxidizer (TCO)
- Biofiltration Systems

ABE considers these technologies to be available for a rotary dryer.

ABE understands that the use of a biofiltration system has not been demonstrated in practice at a wood pellet manufacturing facility for VOC control. Additionally, the operation of catalyst control downstream of drying operations utilizing WESPs for particulate control at a wood pellet manufacturing facility, which is used at this facility, have not been demonstrated for VOC control. Moreover, an RCO and TCO are prone to major corrosion and catalyst fouling due to deposition of entrained salts and high operating temperatures. Therefore, the RCO, TCO, and biofiltration systems are not technically feasible.

Good combustion practices, as a control technology, are always available and are a technically feasible option for VOC emissions. However, the RTO maintains a 95% to 99% efficiency for VOC emissions, so it is a technically feasible option for VOC control.

The existing RTO at ABE controls wood rotary dryer emissions and achieves a 95% reduction in HAP emissions (measured as VOC). Based a review of several air permits issued to wood pellet facilities in Louisiana and North Carolina, an RTO is commonly used to control VOC emissions from wood chip rotary dryers. For comparison, 40 CFR 63 Subpart DDDD, NESHAP for Plywood and Composite Wood Products, which regulates facilities that manufacture plywood and/or composite wood products by bonding wood materials or agricultural fiber, generally with resin, only requires a HAP reduction of 90%.

Considering the above, ABE proposes use of an RTO achieving a 95% reduction in HAP emissions (measured as VOC) as MACT for wood chip rotary dryer.

Primary Dry Hammermills, Dry Shavings Hammermills, and Pellet Mill/Coolers

As previously described, ABE operates six (6) Primary Dry Hammermills, two (2) Dry Shavings Hammermills, and eight (8) Pellet Mill/Coolers. The primary dry hammermills receive dried wood chips from the primary dry hammermill feed silo. The temperature of the dried chips will remain elevated as they exit the rotary dryer and conveyed from the primary dry hammermill feed silo into the primary dry hammermills resulting in emissions of VOC and HAPs. The hammering action on the wood fiber is also believed to result in emissions of VOC and HAPs from both the primary dry hammermills and the dry shavings hammermills. VOC and HAP emissions are also entrained in the pneumatic air that transfers the wood fiber from the two (2) dry fiber silos into the pellet mill/coolers process units.

The following technologies were identified for use on and hammermills like those at Drax's facility:

- · RTO
- · RCO

- · TCO
- Bio-oxidation / Biofiltration
- Scrubber

ABE considers these technologies to be available for the milling process units described above. ABE understands that neither the use of a TCO, bio-oxidation, biofiltration, nor wet scrubbers have been demonstrated in practice at a wood pellet manufacturing facility for VOC control; accordingly, these are assumed to be technically infeasible options. The RCO and RTO both maintain a control efficiency of up to 99% and are technically feasible options for VOC control. As researched, the RTO and RCO both provide the highest control efficiency for VOC control. However, ABE demonstrated that using operating specifications and emissions calculations in its recent PSD permit application, installation of an RCO for the milling operations is more cost effective than an RTO.

Considering the above, ABE proposes use of an RCO achieving a 95% reduction in HAP emissions (measured as VOC) as MACT for the Primary Dry Hammermills, Dry Shavings Hammermills, and Pellet Mill/Coolers.

Additional Probable Sources of Hazardous Air Pollutants

The following is a list of additional sources that have not been emission tested at ABE but may emit small amounts of hazardous air pollutants:

- Furnace Bypass Stack
- Wood Chip Rotary Dryer Bypass Stack
- Primary Hammermill Feed Silo Bin Vent
- Dry Shavings Truck Dump/Baghouse
- Dry Fiber Silo Nos. 1 and 2 with Bin Vents
- Pellet Storage Silos Nos. 1 and 2
- Screened Materials Return System
- Pellet Loading System Pneumatic System Filter

Testing at other facilities and using a 25% safety factor, the HAPs from pellet finishing operations are rather low as shown in the following table:

EQT	Description Units	(tail VOC, Total	(d) A cetaldehyde	(tpy)	(tpy)	(tdt) (fdt)	lonah (tbà)	(d) Fropionaldehyde	(tbail HAPs
AA-203b	Furnace By-Pass Start/Stop	0.01	0.001	0.003	0.004	0.000	0.000	0.000	0.008
AA-203c	Furnace By-Pass Idle	0.07	0.003	0.017	0.018	0.000	0.000	0.000	0.039
AA-204b	Dryer By-pass Start/Stop	2.72	0.043	0.013	0.081	0.064	0.016	0.008	0.225
AA-302	Primary Hammermill Feed Silo	6.88	0.345	0.000	0.658	0.345	0.000	0.000	1.347
AA-304	Dry Shavings Truck Dump/Baghouse	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000
AA-305	Dry Fiber Silo Nos. 1 with Bin Vents	6.46	0.323	0.000	0.606	0.323	0.000	0.000	1.252
AA-306	Dry Fiber Silo Nos. 2 with Bin Vents	3.23	0.162	0.000	0.303	0.162	0.000	0.000	0.626
AA-401A	Pellet Storage Silo 1, Bin Vent	4.86	0.244	0.000	0.457	0.244	0.000	0.000	0.944
AA-401B	Pellet Storage Silo 2, Bin Vent	4.86	0.244	0.000	0.457	0.244	0.000	0.000	0.944
AA-401C	Sceened Materials Return System	0.97	0.049	0.000	0.093	0.049	0.000	0.000	0.191
AA-401D	A-401D Pellet Loading System Pneumatic System Filter		0.485	0.000	0.920	0.485	0.000	0.000	1.889
Total Proposed Emissions:		39.77	1.90	0.03	3.60	1.91	0.02	0.01	7.46

The furnace bypass stack and wood chip rotary dryer bypass stack is approved for operating when upset conditions occur at the WESP and RTO. VOC/HAP emissions are accounted for in the air permit but are not controlled.

The Primary Hammermill Feed Silo Bin Vent is not controlled. However, VOC/HAP emissions from the bin vent is estimated to be small because several tons of entrained VOC/HAP emissions are pneumatically conveyed to the primary dry hammermills and controlled by the RCO.

Dry Shavings Truck Dump receives dry shavings from other wood products facilities. The wood shavings are conveyed to a storage bin after being dumped from the truck. A baghouse is installed to collect fugitive wood dust when the shavings are dumped from the truck. No VOC/HAP emissions are expected from the baghouse filter.

Several tons wood fiber with entrained VOC/HAP emissions controlled by the RCO are pneumatically conveyed from the Dry Fiber Silo Nos. 1 and 2 and the pellet mill/coolers. Therefore, VOC/HAP emissions are considerably reduced from the silos.

When wood pellets are conveyed from the two (2) pellet storage silos and loaded onto trucks for transport, the wood pellets are screened to separate wood dust, and particulate generated in the system after screening is controlled by a baghouse. The screened material is returned to the dry fiber silos with a pneumatic conveyor system. A small amount of VOC/HAP s may be emitted by the pellets when in storage and subsequent loadout. There appears to be no wood pellet manufacturing facilities that have used add on controls for VOC/HAP emissions from pellet storage silos. Given the low amount of total potential HAP emission from pellet storage silos, it has been determined that the addition of controls for the silos may not be cost effective and may result in additional impacts due to increased fuel combustion from the control device such as an RCO.

Due to the fact that VOC/HAP emissions from the sources related to the silos which are controlled by an RCO, the estimated low level of emissions specifically from the silos, and such silos have not been controlled at other permitted wood pellet manufacturing facilities, ABE proposes no control or work practices as MACT for the silos and pellet loadout system.