State of Mississippi Air Quality Data Summary

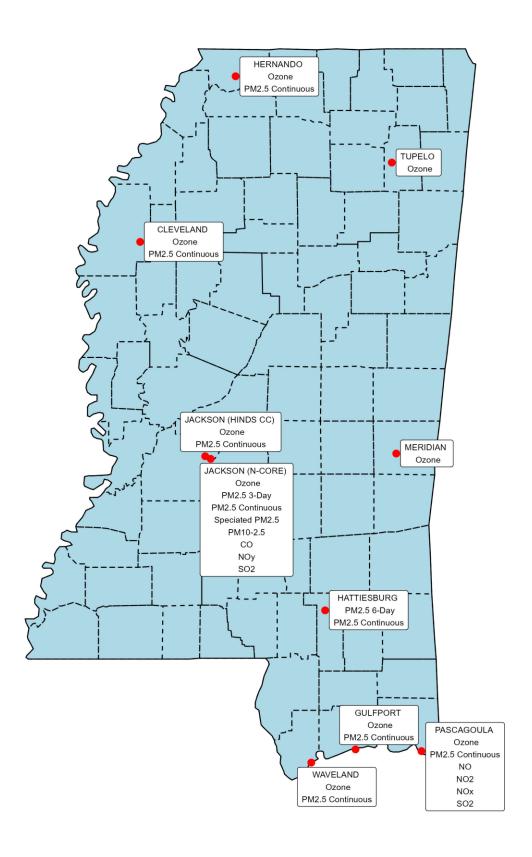
for

Calendar Year 2022

Mississippi Department of Environmental Quality

Table of Contents

Introduction	3
MDEQ Air Monitoring Network Information	4-5
NAAQS Table	6-7
Ground-Level Ozone	8-9
Particulate Matter	10
PM2.5	11-12
<u>PM10</u>	13
Carbon Monoxide.	14-15
Nitrogen Dioxide.	16-17
Sulfur Dioxide.	18-19
Appendix 1 – 10 Year Data Trends by County	20-72
Appendix 2 – Data Completeness by Pollutant	73-80


Introduction

Under the Clean Air Act, the U.S. Environmental Protection Agency (EPA) establishes primary air quality standards to protect public health, including the health of "sensitive populations such as people with asthma, children, and older adults". EPA also sets secondary standards to protect public welfare. This includes protecting ecosystems, including plants and animals, from harm, as well as protecting against decreased visibility and damage to crops, vegetation, and buildings.

EPA has set national ambient air quality standards (NAAQS) for six principal air pollutants (also called criteria pollutants): Ground-Level Ozone (O₃), Particulate Matter (PM), Nitrogen Dioxide (NO₂), Sulfur Dioxide (SO₂), Carbon Monoxide (CO), and Lead (Pb). The Mississippi Department of Environmental Quality (MDEQ) monitors all of these pollutants with the exception of lead. MDEQ ceased lead monitoring on June 30, 2016.

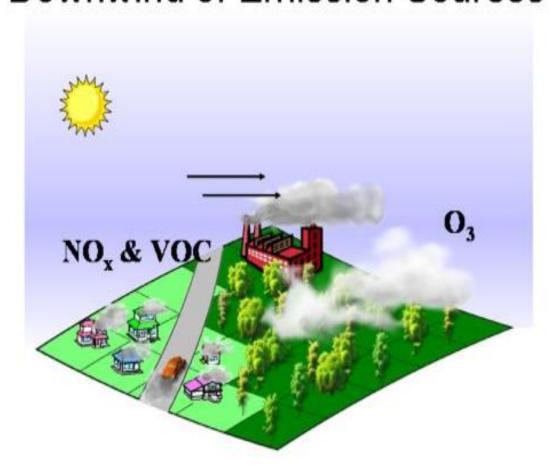
This report shows the monitored levels of criteria pollutants at sites in Mississippi during calendar year 2022 and compares these levels to the NAAQS to demonstrate whether the state is meeting the standards. The results show that Mississippi is in compliance with all current NAAQS.

2022 MDEQ Air Monitoring Network

Monitoring Network Information

Country	City	Monitoring	Pollutants	Latitude			Longitude		
County City Site ID		Monitored	Deg.	Min.	Sec.	Deg.	Min.	Sec.	
Bolivar	Cleveland	28-011-0002	Ozone,	33	45	03	-90	44	03
			PM2.5						
D.C.	TT 1	20.022.0002	Continuous	24	40	1.4	00	70	1.6
DeSoto	Hernando	28-033-0002	Ozone,	34	49	14	-89	59	16
			PM _{2.5} Continuous						
			PM2.5 6-Day,						
Forrest	Hattiesburg	28-035-0004	PM2.5 O-Day, PM2.5	31	19	23	-89	17	15
Tonest	Tratticsburg	28-033-0004	Continuous	31	19	23	-09	1 /	13
			Ozone,						
Hancock	Waveland	28-045-0003	PM2.5	30	18	3	-89	23	45
			Continuous						
Harrison	Gulfport	28-047-0008	Ozone,	30	23	24	-89	02	59
			PM2.5						
			Continuous						
Hinds	Jackson	28-049-0021	Ozone,	32	20	48	-90	13	32
	(Hinds CC)		PM2.5						
			Continuous						
Hinds	Jackson	28-049-0020	Ozone, PM2.5	32	19	45	-90	10	58
	(N-CORE)		3-Day, PM2.5						
			Continuous,						
			Speciated						
			PM _{2.5} , PM ₁₀ -						
			2.5, CO, NOy,						
Jackson	Dagaagayla	28-059-0006	SO ₂ Ozone, PM _{2.5}	30	22	42	-88	32	03
Jackson	Pascagoula	28-039-0000	Continuous,		42	-00	32	03	
			NO, NO ₂ ,						
			NOx, SO ₂						
Lauderdale	Meridian	28-075-0003	Ozone	32	21	52	-88	43	53
Lee	Tupelo	28-081-0005	Ozone	34	15	54	-88	45	58

NAAQS Table

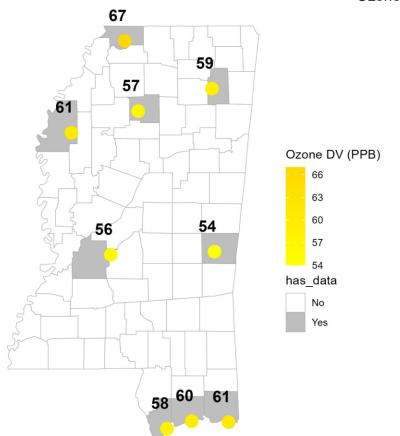

Pollutant [links to historical tables of NAAQS reviews]		Primary/ Secondary	Averaging Time	Level	Form
Carbon Monoxide (CO)		primary	8 hours	9 ppm	Not to be exceeded more than once per
			1 hour	35 ppm	year
Lead (Pb)		primary and secondary	Rolling 3- month average	0.15 μg/m ³ (1)	Not to be exceeded
Nitrogen Dioxide (NO ₂)		primary	1 hour	100 ppb	98th percentile of 1-hour daily maximum concentrations, averaged over 3 years
		primary and secondary	1 year	53 ppb ⁽²⁾	Annual Mean
Ozone (O ₃)		primary and secondary	8 hours	0.070 ppm ⁽³⁾	Annual fourth-highest daily maximum 8-hour concentration, averaged over 3 years
Particle Pollution (PM)	PM _{2.5}	primary	1 year	12.0 $\mu g/m^3$	annual mean, averaged over 3 years
		secondary	1 year	15.0 μg/m ³	annual mean, averaged over 3 years
		primary and secondary	24 hours	35 μg/m ³	98th percentile, averaged over 3 years
	PM ₁₀	primary and secondary	24 hours	150 μg/m ³	Not to be exceeded more than once per year on average over 3 years
Sulfur Dioxide (SO ₂)		primary	1 hour	75 ppb ⁽⁴⁾	99th percentile of 1-hour daily maximum concentrations, averaged over 3 years
		secondary	3 hours	0.5 ppm	Not to be exceeded more than once per year

- (1) In areas designated nonattainment for the Pb standards prior to the promulgation of the current (2008) standards, and for which implementation plans to attain or maintain the current (2008) standards have not been submitted and approved, the previous standards (1.5 μ g/m3 as a calendar quarter average) also remain in effect.
- (2) The level of the annual NO_2 standard is 0.053 ppm. It is shown here in terms of ppb for the purposes of clearer comparison to the 1-hour standard level.
- (3) Final rule signed October 1, 2015, and effective December 28, 2015. The previous (2008) O₃ standards are not revoked and remain in effect for designated areas. Additionally, some areas may have certain continuing implementation obligations under the prior revoked 1-hour (1979) and 8-hour (1997) O₃ standards.
- (4) The previous SO_2 standards (0.14 ppm 24-hour and 0.03 ppm annual) will additionally remain in effect in certain areas: (1) any area for which it is not yet 1 year since the effective date of designation under the current (2010) standards, and (2)any area for which an implementation plan providing for attainment of the current (2010) standard has not been submitted and approved and which is designated nonattainment under the previous SO_2 standards or is not meeting the requirements of a SIP call under the previous SO_2 standards (40 CFR 50.4(3)). A SIP call is an EPA action requiring a state to resubmit all or part of its State Implementation Plan to demonstrate attainment of the required NAAQS.

Ground-Level Ozone (O3)

Ozone is a gas composed of three atoms of oxygen. Ozone occurs both in the Earth's upper atmosphere and at ground level. Ozone can be good or bad, depending on where it is found. It occurs naturally in the stratosphere approximately 6 to 30 miles above the Earth's surface where it forms a protective layer that shields us from the sun's harmful ultraviolet rays. In the Earth's lower atmosphere, near ground level, ozone occurs naturally in lower amounts. Additional ground-level ozone is formed when nitrogen oxides (NO_x) and volatile organic compounds (VOC_s) emitted by cars, power plants, industrial boilers, refineries, chemical plants, and various other sources react chemically in the presence of sunlight. Because this reaction takes time to occur, ozone is usually formed downwind of emission sources.

Ozone is Usually Formed Downwind of Emission Sources

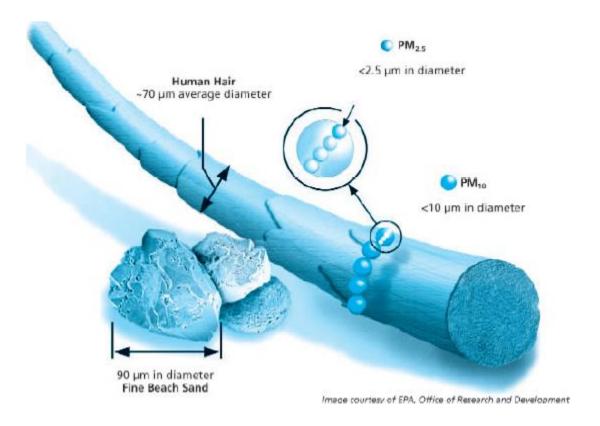

Ozone Standard

There is one primary and secondary ozone standard – the 8-hour average. MDEQ monitors ozone continuously from March 1st through October 31st each year at the monitoring sites listed below. Ozone is monitored year around at our N-CORE site located in Jackson.

Primary and Secondary 8-Hour Standard-70 ppb

The 8-hour standard is met when the 3-year average of the annual fourth highest daily maximum 8-hour average concentration (also known as the design value) is less than or equal to 0.070 parts per million (ppm) or 70 parts per billion (ppb).

Ozone 2022 Design Value

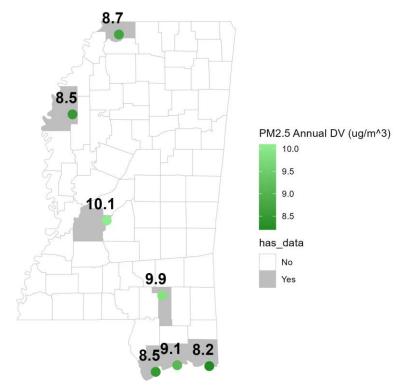


Ozone Site	County	Year	2022 DV
Cleveland Delta State	Bolivar	2022	61
Hernando	DeSoto	2022	67
Waveland	Hancock	2022	58
Gulfport Youth Court	Harrison	2022	60
Hinds CC	Hinds	2022	55
Jackson NCORE	Hinds	2022	56
Pascagoula	Jackson	2022	61
Meridian	Lauderdale	2022	54
TUPELO AIRPORT NEAR OLD NWS OFFICE	Lee	2022	59
Coffeeville	Yalobusha	2022	57

Particulate Matter

In general, particulate matter consists of a mixture of larger materials, called "coarse particles", and smaller particles, called "fine particles". Coarse particles have diameters ranging from 2.5 micrometers (μ m) to more than 40 μ m, while fine particles, also known as PM_{2.5}, include particles with diameters equal to or smaller than 2.5 μ m. MDEQ also monitors PM₁₀, which refers to particles less than or equal to 10 μ m in diameter.

These tiny particles come in many shapes and sizes and can be made up of hundreds of different chemicals. Some particles are emitted directly from a source, while others form in complicated chemical reactions in the atmosphere.

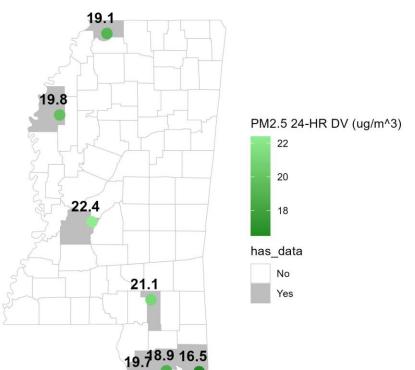

PM_{2.5} Standards

There are two primary and secondary $PM_{2.5}$ standards – (1) the Annual Average and (2) the 24-Hour Average. MDEQ monitors $PM_{2.5}$ continuously at the monitoring sites listed below.

Primary and Secondary Annual Standard – 12.0 μg/m³ and 15.0 μg/m³, respectively

The annual average primary standard is met when the three-year average of the annual averages does not exceed 12.0 micrograms per cubic meter $(\mu g/m^3)$. The annual average secondary standard is met when the three-year average of the annual averages does not exceed 15.0 micrograms per cubic meter $(\mu g/m^3)$.

PM2.5 Annual 2022 Design Value



PM Site	County	Year	PM2.5 2022 Annual DV
Cleveland Delta State	Bolivar	2022	8.5
Hernando	DeSoto	2022	8.7
Hattiesburg	Forrest	2022	9.9
Waveland	Hancock	2022	8.5
Gulfport Youth Court	Harrison	2022	9.1
Hinds CC	Hinds	2022	9.8
Jackson NCORE	Hinds	2022	10.1
Pascagoula	Jackson	2022	8.2

$\frac{Primary\ and\ Secondary\ 24\text{-Hour Standard}-}{35\ \mu\text{g/m}^3}$

The 24-hour average standard is met when the three-year average of the annual 98^{th} percentiles of the 24-hour averages does not exceed 35 micrograms per cubic meter ($\mu g/m^3$).

PM2.5 24HR 2022 Design Value

PM Site	County	Year	PM2.5 24HR 2022 Design Value
Cleveland Delta State	Bolivar	2022	19.8
Hernando	DeSoto	2022	19.1
Hattiesburg	Forrest	2022	21.1
Waveland	Hancock	2022	19.7
Gulfport Youth Court	Harrison	2022	18.9
Hinds CC	Hinds	2022	22.4
Jackson NCORE	Hinds	2022	21.7
Pascagoula	Jackson	2022	16.5

PM₁₀ Standards

There is one primary and secondary PM_{10} standard - the 24-Hour Average. MDEQ monitors PM_{10} continuously at the N-CORE site located in Jackson.

Primary and Secondary 24-Hour Standard – 150 μg/ m³

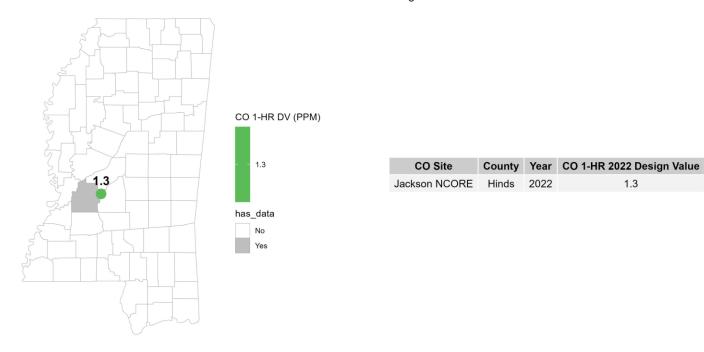
The 24-hour average primary and secondary standard is met when the annual second max does not exceed 150 micrograms per cubic meter ($\mu g/m^3$) over an average of three years.

PM10 Design Value (ug/m^3) PM Site County Year PM10 2022 Design Value Jackson NCORE Hinds 2022 78 No Yes

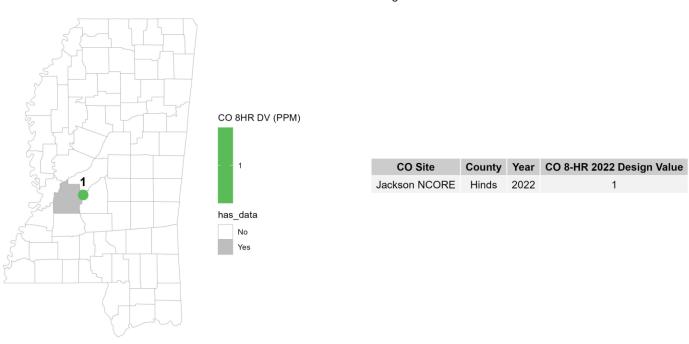
Carbon Monoxide

Carbon monoxide (CO) is a colorless, odorless gas that is formed when carbon in fuel is not burned completely. It is a component of motor vehicle exhaust, which contributes about 56% of all CO emissions nationwide. Other non-road engines and vehicles (such as construction equipment and boats) contribute about 22% of all CO emissions nationwide. Other sources of CO emissions include industrial processes, residential wood burning, and natural sources such as forest fires.

Carbon Monoxide Standards


There are two primary CO standards - (1) the 8-Hour Average and (2) the 1-Hour Standard. There are no secondary CO standards. MDEQ monitors CO continuously at the at the N-CORE site located in Jackson.

<u>Primary 8-Hour and 1-Hour Standard – 9 ppm and 35 ppm, respectively</u>

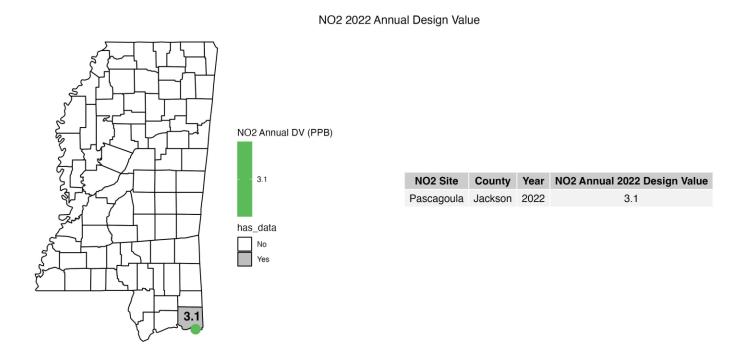

The 8-hour average standard is met if the 8-hour average of 9 parts per million (ppm) is not exceeded more than once per year. The 1-hour average standard is met if the 1-hour average of 35 parts per million (ppm) is not exceeded more than once per year.

CO 1-HR 2022 Design Value

1.3

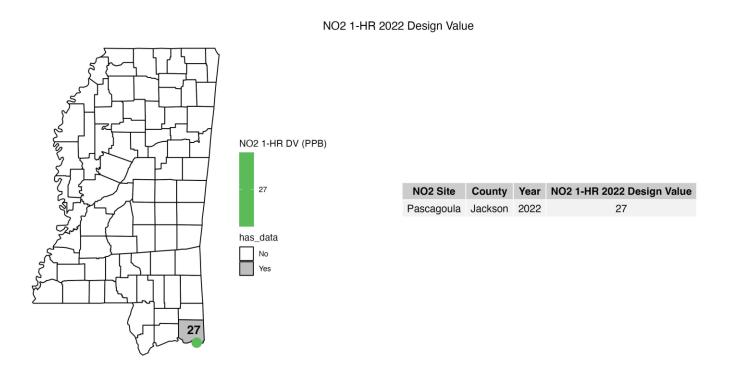
CO 8-HR 2022 Design Value

Nitrogen Dioxide


Nitrogen dioxide (NO₂) can often be seen as a reddish-brown layer. Nitrogen dioxide forms when fuel is burned at high temperatures, as in a combustion process. The primary manmade sources of nitrogen dioxide are motor vehicles, electric utilities, and other industrial, commercial, and residential sources that burn fuels. It can also be formed naturally.

Nitrogen Dioxide Standards

There are two NO₂ standards - (1) the Primary and Secondary Annual Average and (2) the Primary 1-Hour Average. MDEQ monitors nitrogen dioxide continuously at the monitoring site in Pascagoula.


<u>Primary and Secondary Annual Standard – 53 ppb</u>

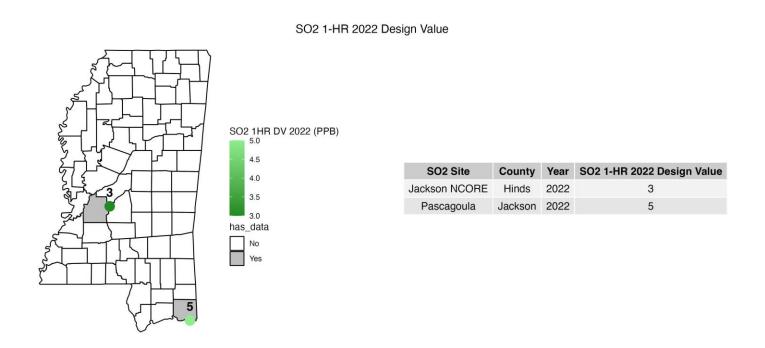
The annual average NO₂ standard is met when the annual average does not exceed 53 parts per billion (ppb).

<u>Primary 1-Hour Standard – 100 ppb</u>

The 1-hour average NO₂ standard is met when the three-year average of the annual 98th percentiles of the 24-hour averages does not exceed 100 parts per billion (ppb).

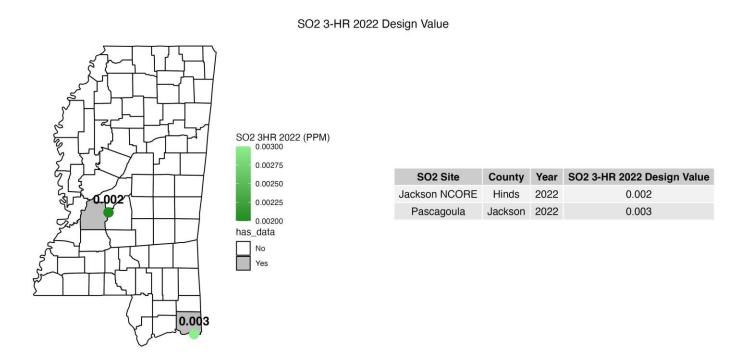
Sulfur Dioxide

Sulfur dioxide (SO_2) belongs to the family of sulfur oxide gases (SO_x). These gases dissolve easily in water. Sulfur is prevalent in all raw materials, including crude oil, coal, and ore that contain common metals like aluminum, copper, zinc, lead, and iron. SO_x gases are formed when fuel containing sulfur, such as coal and oil is burned, and when gasoline is extracted from oil and metals are extracted from the ore. SO_2 dissolves in water vapor to form acid and interacts with other gases and particles in the air to form sulfates and other products that can be harmful to people and their environment.


Over 49% of SO₂ released to the air comes from electric utilities, especially those that burn coal. Other sources of SO₂ are industrial facilities that derive their products from raw materials like metallic ore, coal, and crude oil, or that burn coal or oil to produce process heat. Examples are petroleum refineries, cement manufacturing, and metal processing facilities.

Sulfur Dioxide Standards

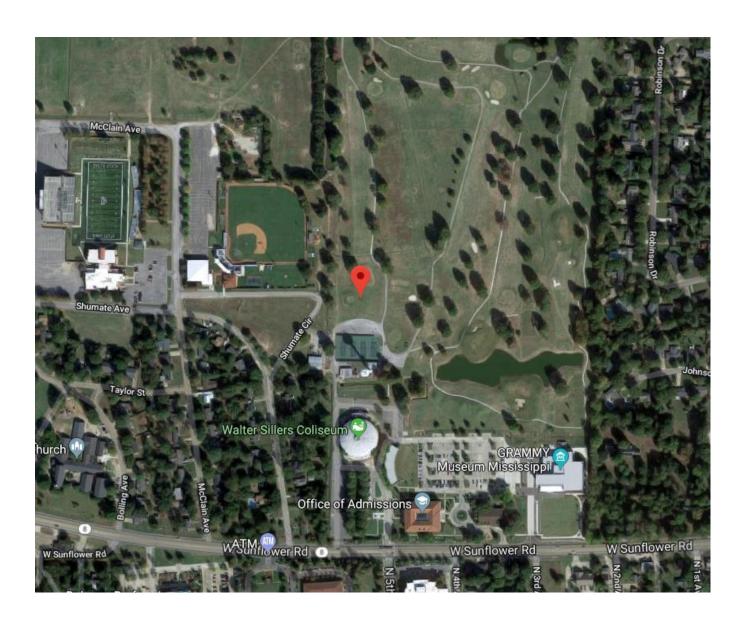
There are two SO_2 standards – (1) the Primary 1-Hour average and (2) the Secondary 3-hour average. MDEQ monitors SO_2 continuously at the monitoring sites listed below.


<u>Primary 1-Hour Standard – 75 ppb</u>

The 1-hour average SO_2 standard is met when the three-year average of the annual 99^{th} percentiles of the 1-hour averages does not exceed 75 parts per billion (ppb).

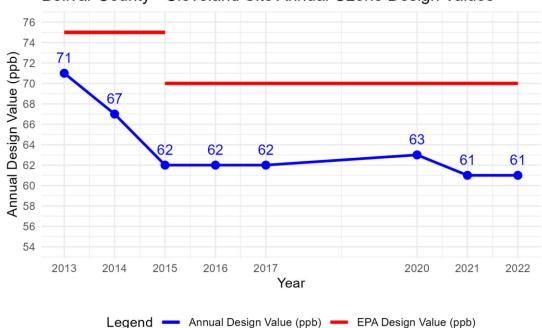
Secondary 3-Hour Standard – 0.5 ppm

The secondary 3-hour average SO_2 standard is met when the maximum 3-hour average concentration of 0.5 parts per million (ppm) is not exceeded more than once per calendar year.


Appendix 1

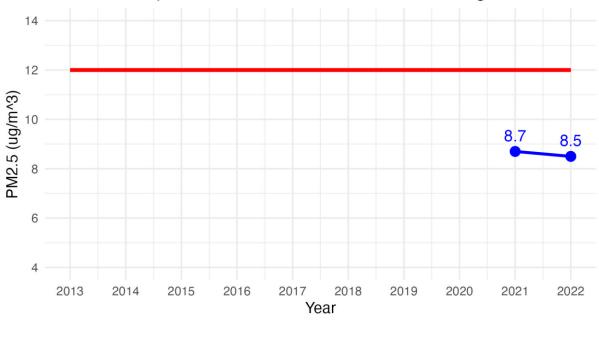
10-Year Data Trends By County

Bolivar County

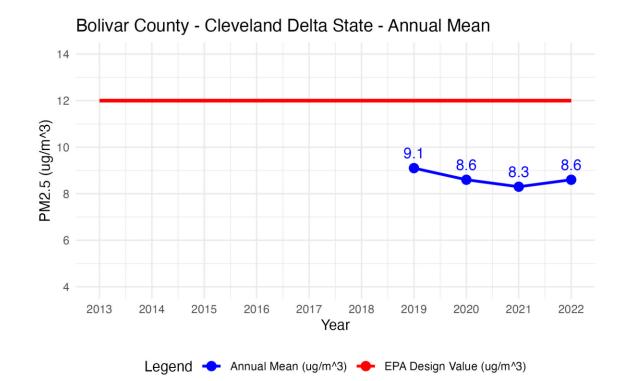


Bolivar County Monitoring Site No. 28-011-0002 Location

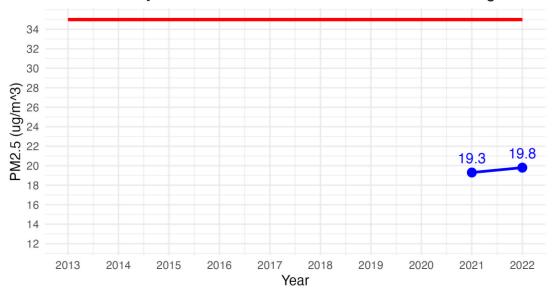
Bolivar County 8-Hour Ozone Standard

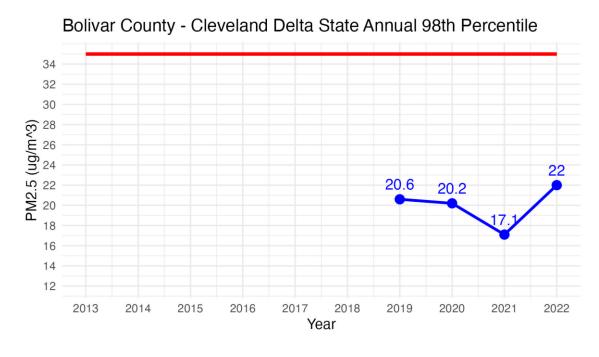

Bolivar County - Cleveland Annual 4th Max Ozone




^{*}With EPA approval, the 213 N. Bayou Ave. monitoring site in Cleveland, MS (Monitoring Site ID 28-011-0001) was shut down in January 2018 and relocated to Highway 8 West on the Delta State University campus, also in Cleveland, MS, in February 2018. This new site (Monitoring Site ID 28-011-0002) is located at latitude 33.750833 and longitude -90.734167.

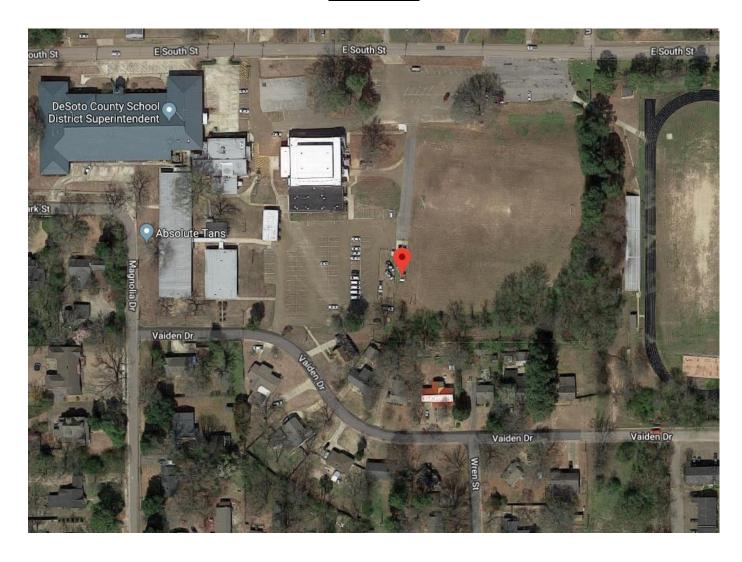
Bolivar County Annual PM_{2.5} Standard




^{*}Beginning January 2019, MDEQ incorporated Federally Equivalent Method instruments for measuring PM2.5 on a continuous basis to determine NAAQS compliance at the Cleveland air monitoring site.

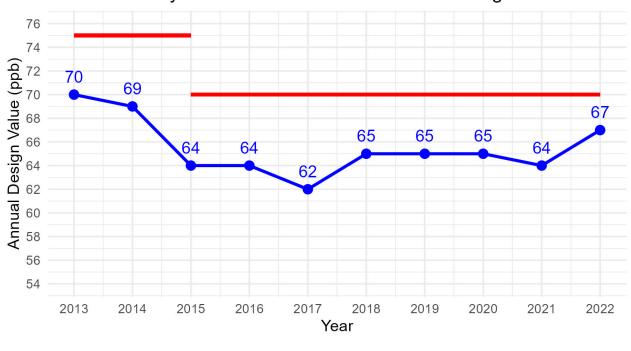
Bolivar County PM_{2.5} 24-Hour Averages


Legend - 98th Percentile DV (ug/m^3) - EPA Design Value (ug/m^3)

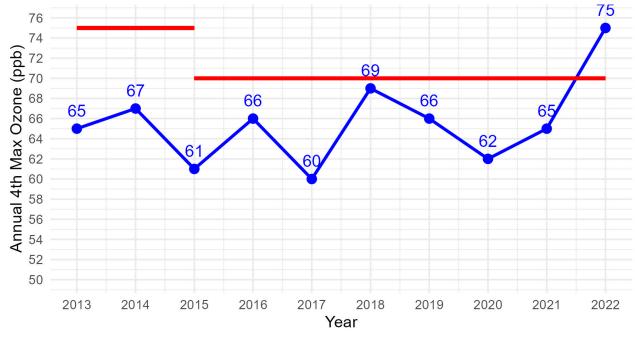

Legend → Annual 98th Percentile (ug/m^3) → EPA Design Value (ug/m^3)

^{*}Beginning January 2019, MDEQ incorporated Federally Equivalent Method instruments for measuring PM2.5 on a continuous basis to determine NAAQS compliance at the Cleveland air monitoring site.

DeSoto County

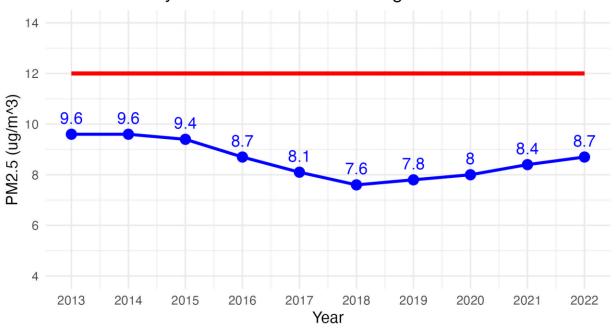


DeSoto County Monitoring Site No. 28-033-0002 Location

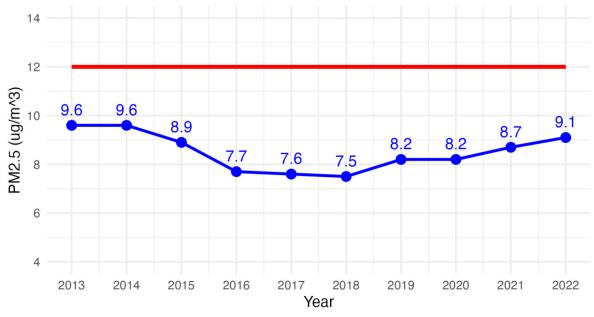

DeSoto County 8-Hour Ozone

DeSoto County - Hernando Site Annual Ozone Design Values

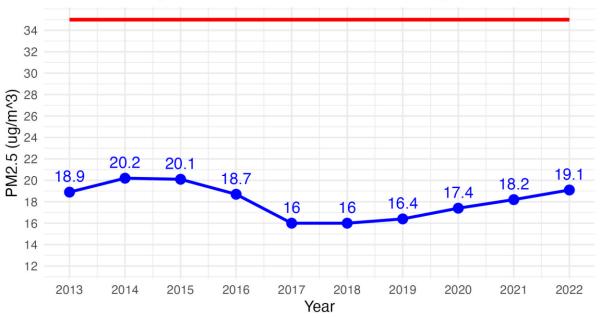

Legend — Annual Design Value (ppb) — EPA Design Value (ppb)


DeSoto County - Hernando Annual 4th Max Ozone

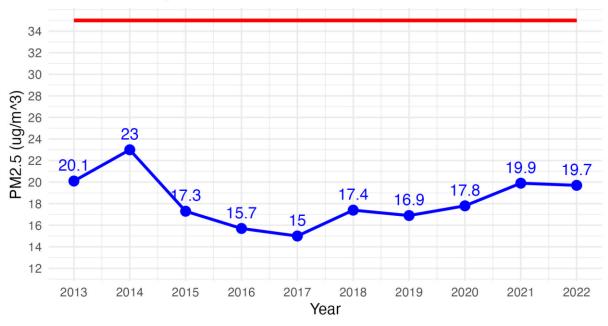
Legend — Annual 4th Max (ppb) — EPA Design Value (ppb)


DeSoto County PM_{2.5} Annual Mean

Legend - Annual Design Value (ug/m^3) - EPA Design Value (ug/m^3)


DeSoto County - Hernando - Annual Mean

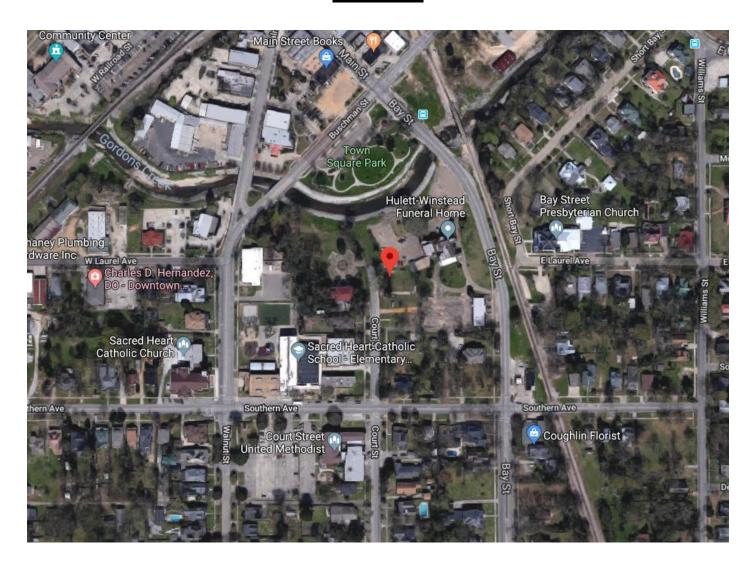
Legend - Annual Mean (ug/m^3) - EPA Design Value (ug/m^3)


DeSoto County PM_{2.5} 24-Hour Average

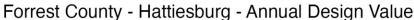
DeSoto County - Hernando 98th Percentile Design Value

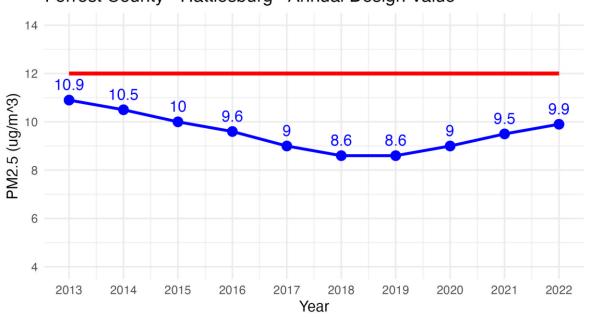
Legend → 98th Percentile DV (ug/m^3) → EPA Design Value (ug/m^3)

DeSoto County - Hernando Annual 98th Percentile

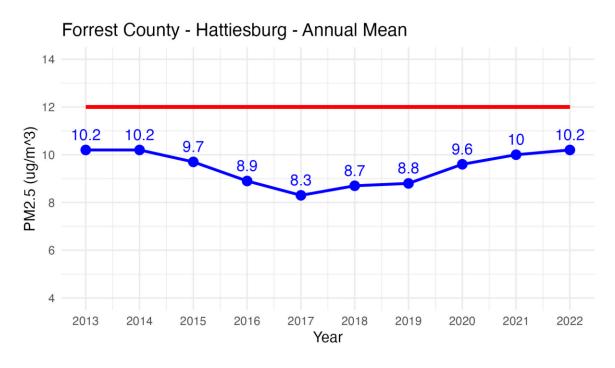


Legend - Annual 98th Percentile (ug/m^3) - EPA Design Value (ug/m^3)

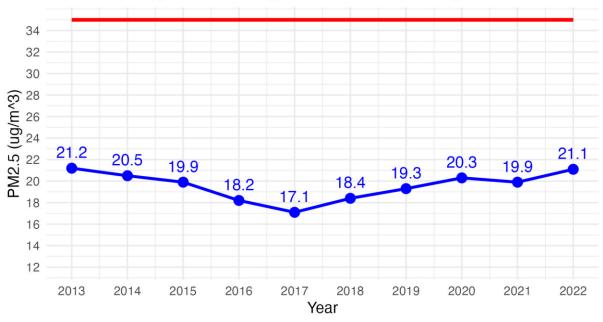

Forrest County



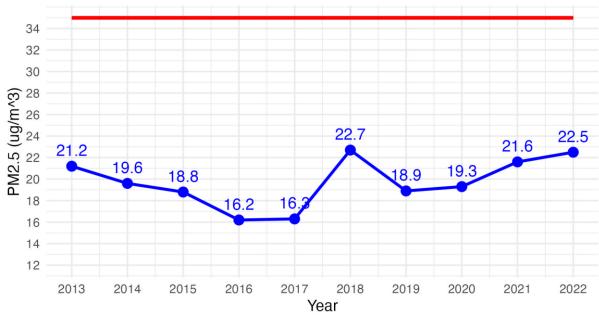
Forrest County Monitoring Site No. 28-035-0004 Location



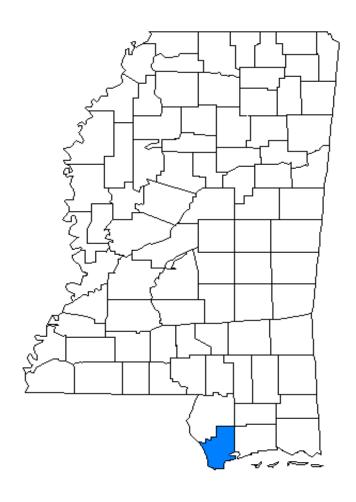
Forrest County PM_{2.5} Annual Mean


Legend → Annual Design Value (ug/m^3) → EPA Design Value (ug/m^3)

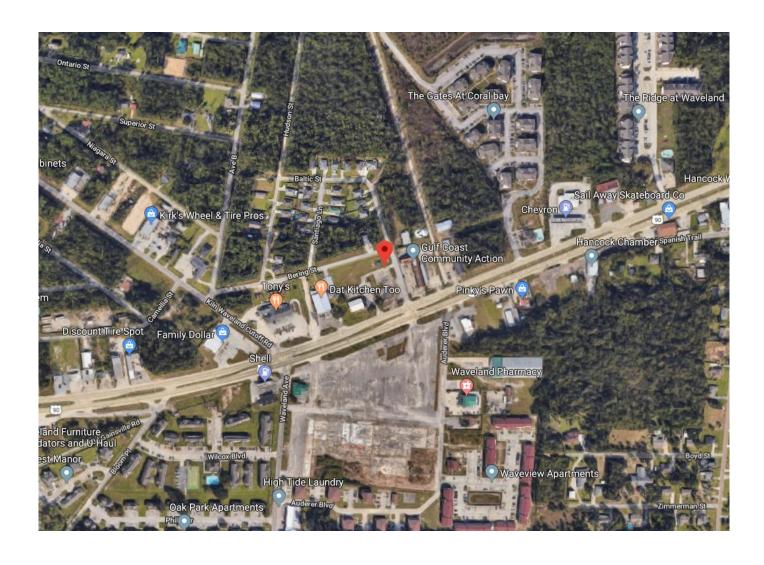
Legend - Annual Mean (ug/m^3) - EPA Design Value (ug/m^3)


Forrest County PM_{2.5} 24-Hour Average

Forrest County - Hattiesburg 98th Percentile Design Value

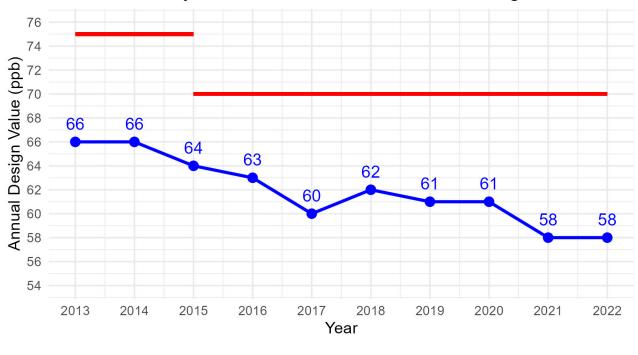

Legend • 98th Percentile DV (ug/m^3) • EPA Design Value (ug/m^3)

Forrest County - Hattiesburg Annual 98th Percentile



Legend → Annual 98th Percentile (ug/m^3) → EPA Design Value (ug/m^3)

Hancock County

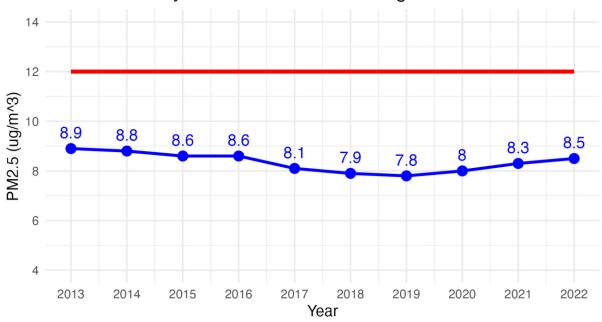


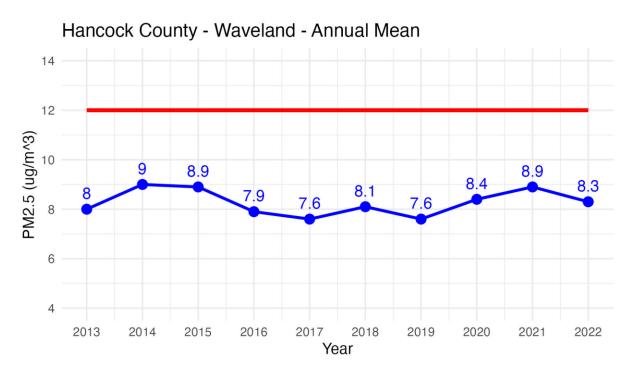
Hancock County Monitoring Site No. 28-045-0003 Location

Hancock County 8-Hour Ozone

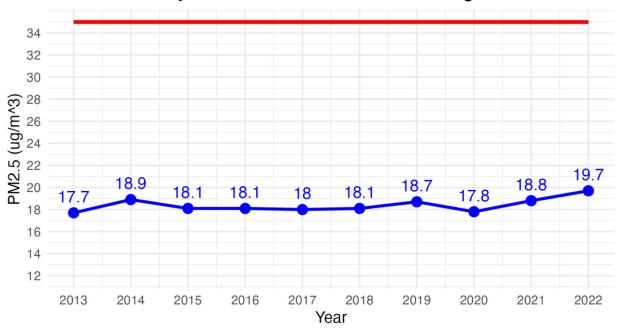
Hancock County - Waveland Site Annual Ozone Design Values


Legend — Annual Design Value (ppb) — EPA Design Value (ppb)

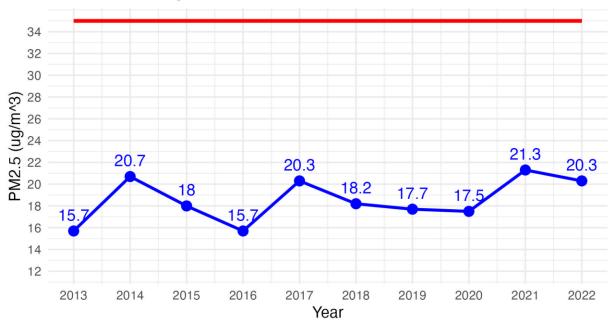



Legend — Annual 4th Max (ppb) — EPA Design Value (ppb)

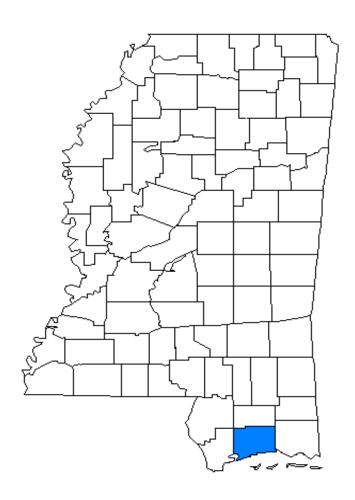
Hancock County PM_{2.5} Annual Mean


Legend - Annual Design Value (ug/m^3) - EPA Design Value (ug/m^3)

Legend - Annual Mean (ug/m^3) - EPA Design Value (ug/m^3)


Hancock County PM_{2.5} 24-Hour Average

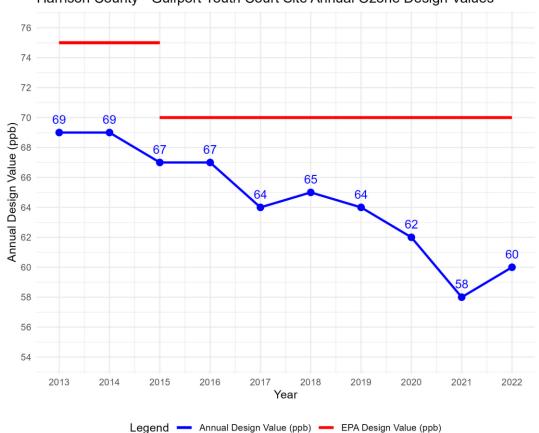
Hancock County - Waveland 98th Percentile Design Value


Legend → 98th Percentile DV (ug/m^3) → EPA Design Value (ug/m^3)

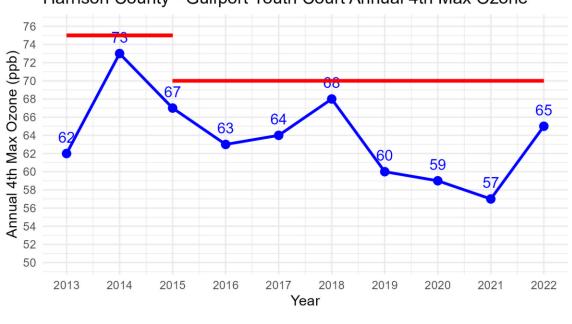
Hancock County - Waveland Annual 98th Percentile

Legend - Annual 98th Percentile (ug/m^3) - EPA Design Value (ug/m^3)

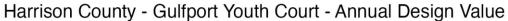

Harrison County

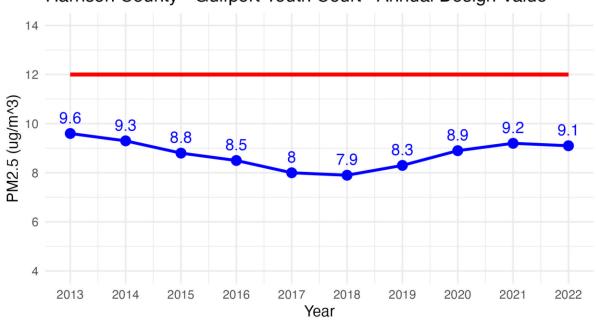


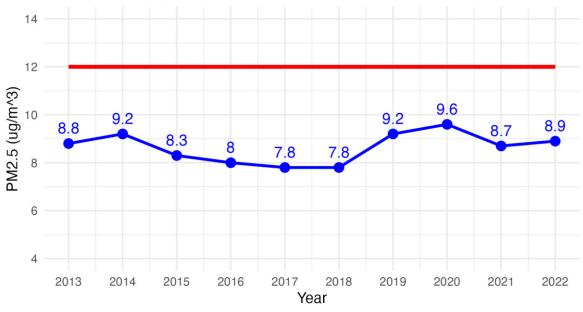
Harrison County Monitoring Site No. 28-047-0008 Location



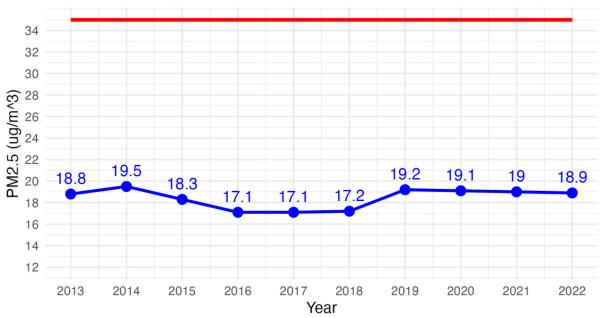
Harrison County 8-Hour Ozone

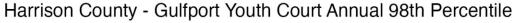





Harrison County PM_{2.5} Annual Mean

Legend - Annual Design Value (ug/m^3) - EPA Design Value (ug/m^3)

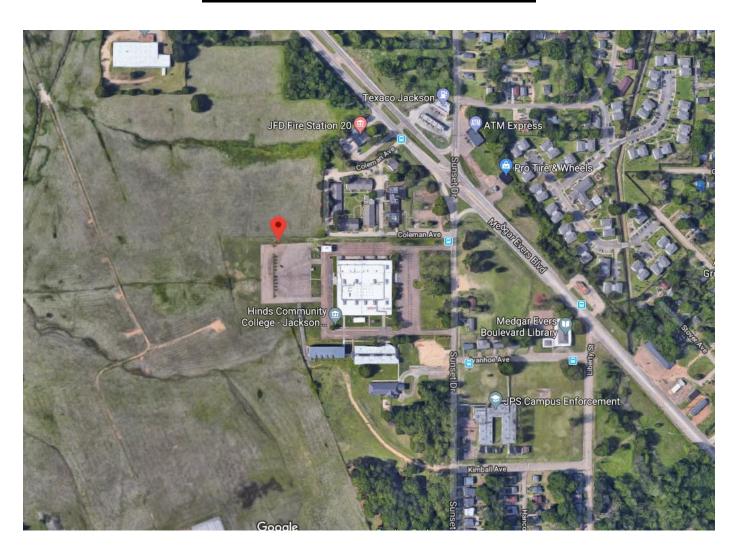

Harrison County - Gulfport Youth Court - Annual Mean


Legend → Annual Mean (ug/m^3) → EPA Design Value (ug/m^3)

Harrison County PM_{2.5} 24-Hour Average

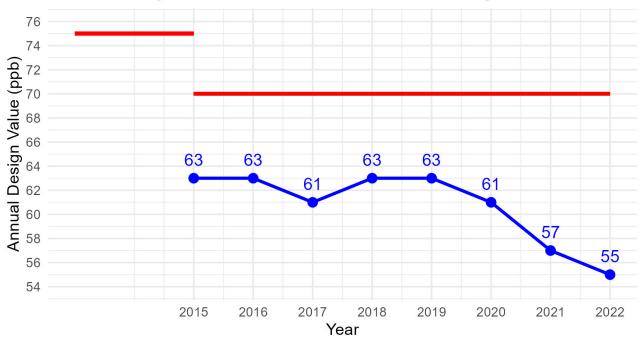
Harrison County - Gulfport Youth Court 98th Percentile Design Value

Legend → 98th Percentile DV (ug/m^3) → EPA Design Value (ug/m^3)

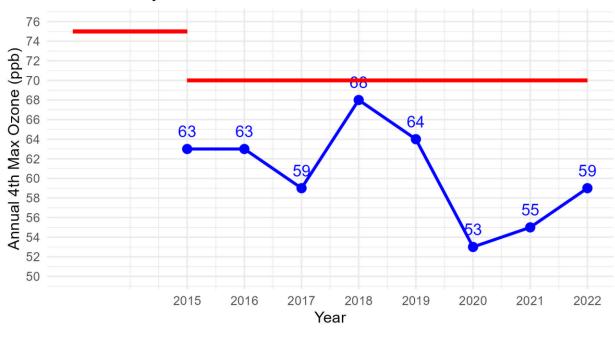


Legend - Annual 98th Percentile (ug/m^3) - EPA Design Value (ug/m^3)

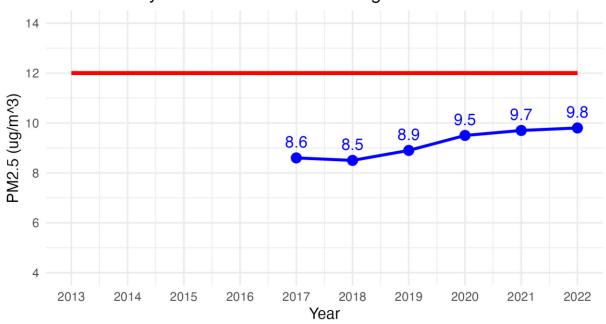
Hinds County

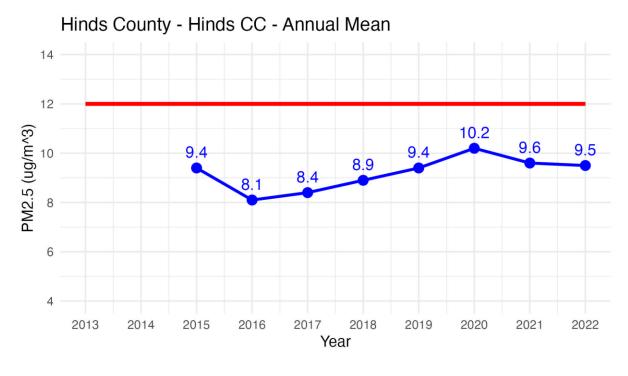


Hinds County (CC) Monitoring Site No. 28-049-0021


Hinds County (CC) 8-Hour Ozone

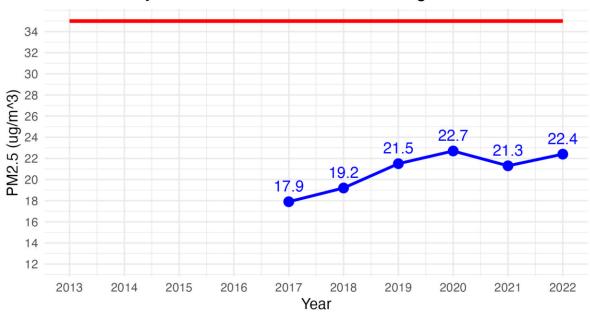
Hinds County - Hinds CC Site Annual Ozone Design Values


Legend — Annual Design Value (ppb) — EPA Design Value (ppb)



Hinds County (CC) PM_{2.5} Annual Mean

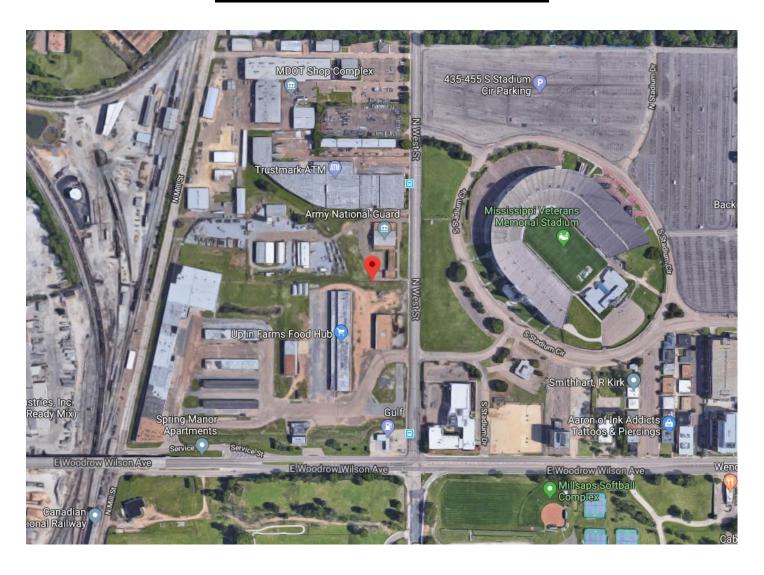
Hinds County - Hinds CC - Annual Design Value


Legend → Annual Design Value (ug/m^3) ← EPA Design Value (ug/m^3)

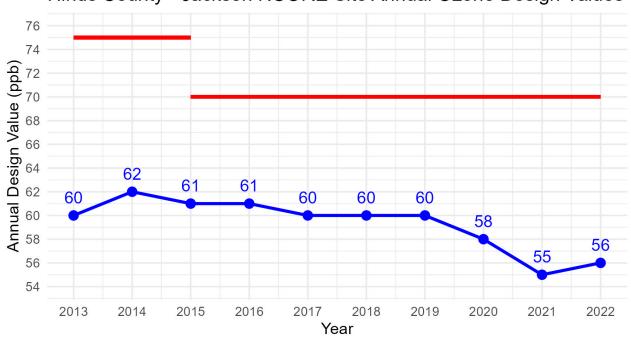
Legend → Annual Mean (ug/m^3) → EPA Design Value (ug/m^3)

Hinds County (CC) PM_{2.5} 24-Hour Average

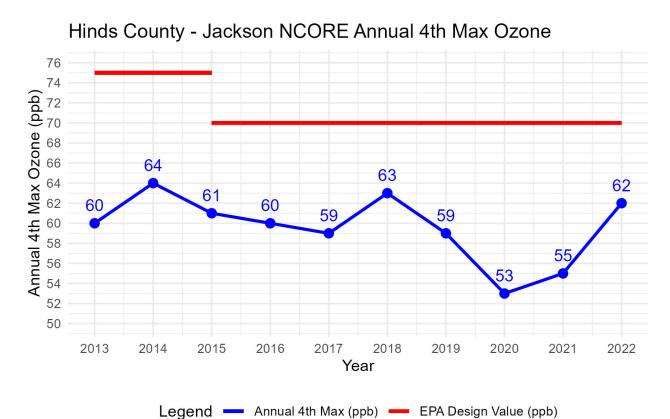
Hinds County - Hinds CC 98th Percentile Design Value


Legend → 98th Percentile DV (ug/m^3) → EPA Design Value (ug/m^3)

Hinds County - Hinds CC Annual 98th Percentile


Legend → Annual 98th Percentile (ug/m^3) → EPA Design Value (ug/m^3)

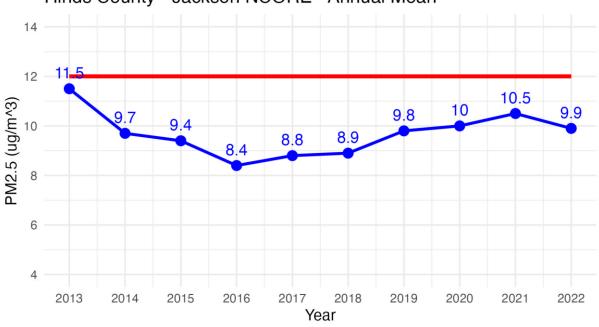
Hinds County (N-CORE) Monitoring Site No. 28-049-0020



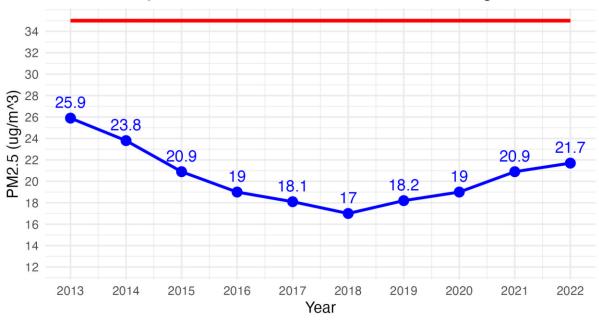
Hinds County (N-CORE) 8-Hour Ozone

Hinds County - Jackson NCORE Site Annual Ozone Design Values

Legend — Annual Design Value (ppb) — EPA Design Value (ppb)


Hinds County (N-CORE) PM_{2.5} Annual Mean

Legend → Annual Design Value (ug/m^3) → EPA Design Value (ug/m^3)


Hinds County - Jackson NCORE - Annual Mean

Legend → Annual Mean (ug/m^3) → EPA Design Value (ug/m^3)

Hinds County (N-CORE) PM_{2.5} 24-Hour Average

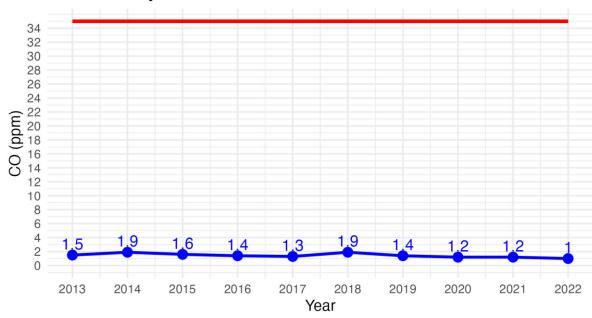
Hinds County - Jackson NCORE 98th Percentile Design Value

Legend → 98th Percentile DV (ug/m^3) → EPA Design Value (ug/m^3)

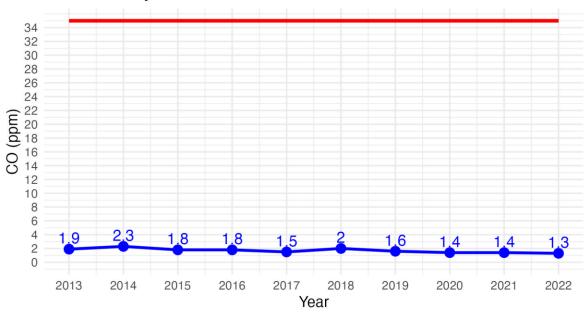
Legend - Annual 98th Percentile (ug/m^3) - EPA Design Value (ug/m^3)

Hinds County (N-CORE) \underline{PM}_{10} 3-Year Average of the Annual 2nd Max

Legend - Annual Design Value - EPA Design Value

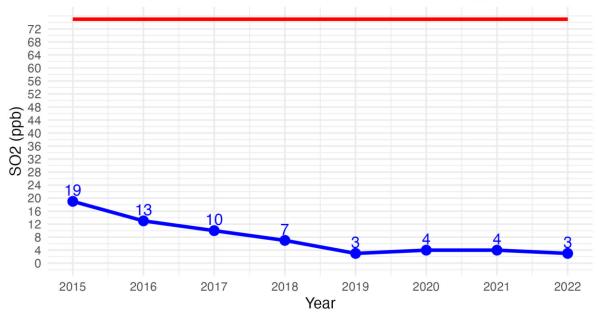

Hinds County - Jackson NCORE Annual Second Max 150 140 130

Legend - Annual Second Max (ug/m^3) - EPA Design Value (ug/m^3)


Hinds County (N-CORE) CO 8-Hour and 1- Hour Average

Hinds County - Jackson NCORE Annual 8-Hour

Legend - Annual 8-Hour (ppm) - EPA Design Value (ppm)

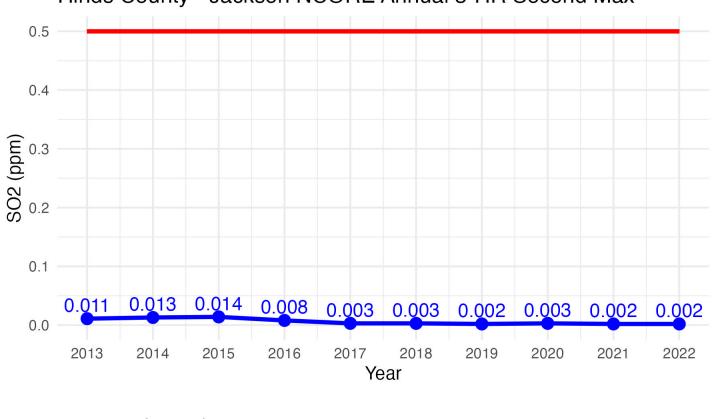

Hinds County - Jackson NCORE Annual 1-Hour

Legend - Annual 1-Hour (ppm) - EPA Design Value (ppm)

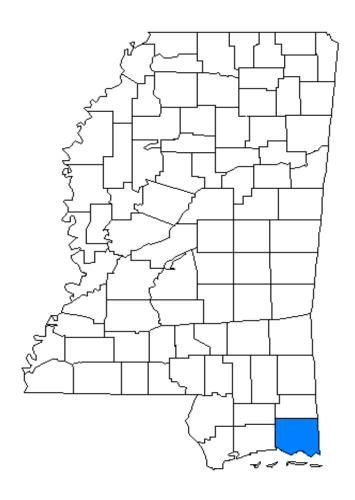
Hinds County (N-CORE) Sulfur Dioxide 1-Hour Average

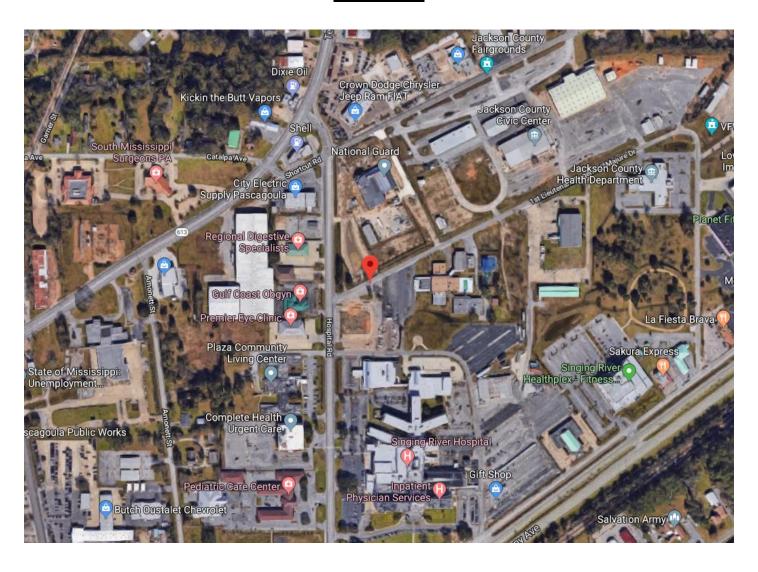
Hinds County - Jackson NCORE Annual 1-Hour Design Value

Legend — Annual 1-Hour Design Value (ppb) — EPA Design Value (ppb)


Hinds County - Jackson NCORE Annual 99th Percentile

Legend — Annual 99th Percentile (ppb) — EPA Design Value (ppb)

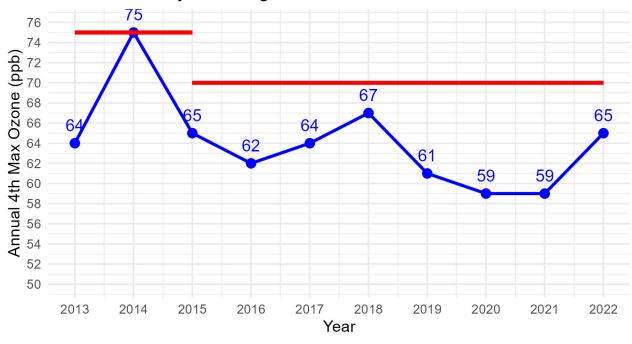

Hinds County (N-CORE) Sulfur Dioxide 3-Hour Annual 2nd Max



Legend — 3-HR Second Max (ppm) — EPA Design Value (ppm)

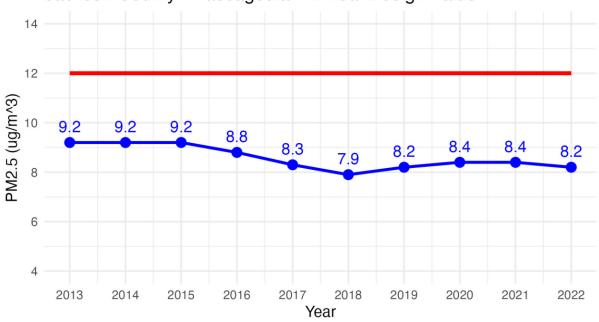
Jackson County

Jackson County Monitoring Site No. 28-059-0006 Location

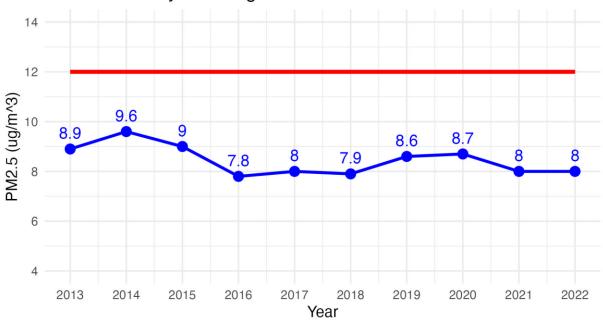

Jackson County 8-Hour Ozone

Jackson County - Pascagoula Site Annual Ozone Design Values

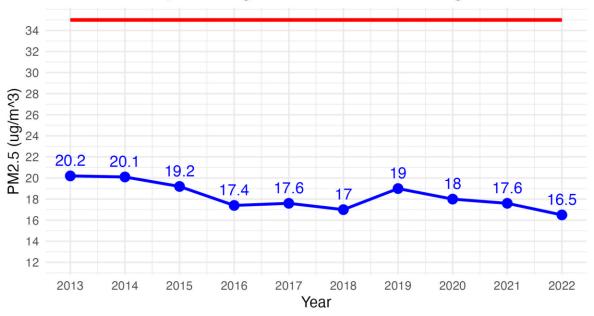
Legend — Annual Design Value (ppb) — EPA Design Value (ppb)


Jackson County - Pascagoula Annual 4th Max Ozone

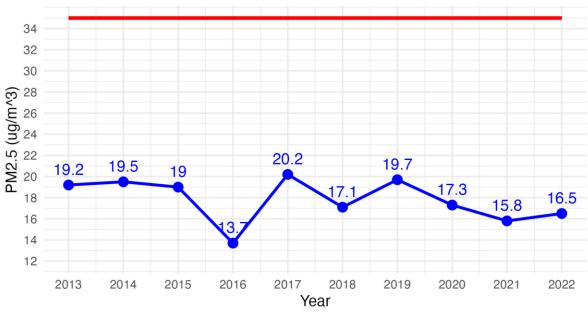
Legend — Annual 4th Max (ppb) — EPA Design Value (ppb)


Jackson County PM_{2.5} Annual Mean

Legend → Annual Design Value (ug/m³) → EPA Design Value (ug/m³)

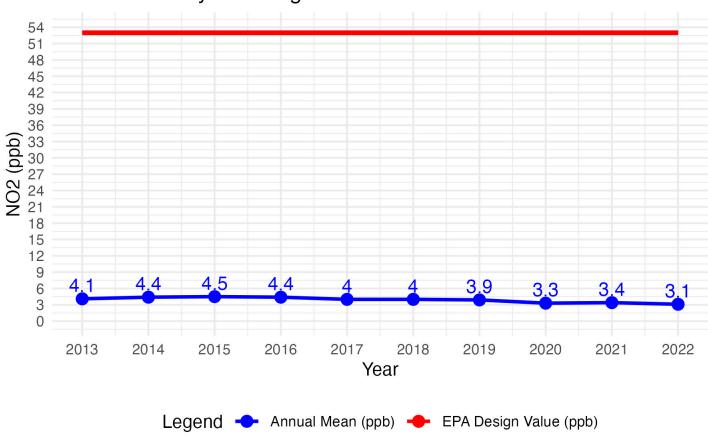

Jackson County - Pascagoula - Annual Mean

Legend → Annual Mean (ug/m^3) → EPA Design Value (ug/m^3)

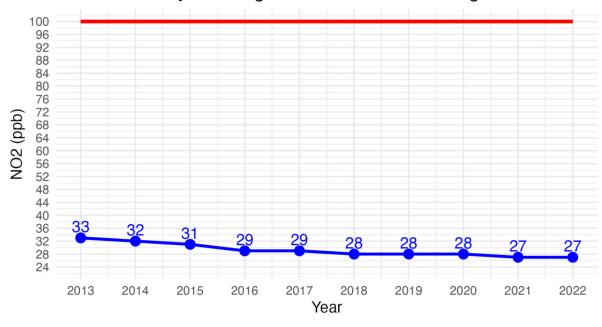

Jackson County PM_{2.5} 24-Hour Average

Jackson County - Pascagoula 98th Percentile Design Value

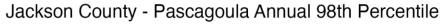
Legend - 98th Percentile DV (ug/m^3) - EPA Design Value (ug/m^3)

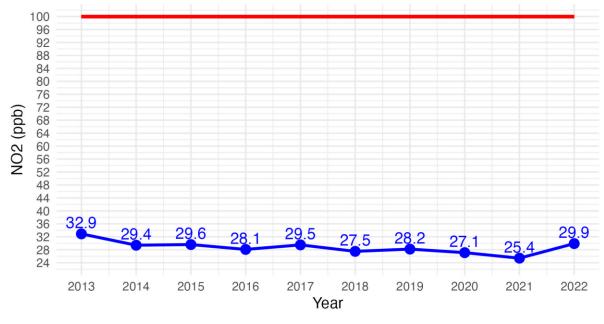

Jackson County - Pascagoula Annual 98th Percentile

Legend - Annual 98th Percentile (ug/m^3) - EPA Design Value (ug/m^3)


Jackson County Nitrogen Dioxide Annual Mean

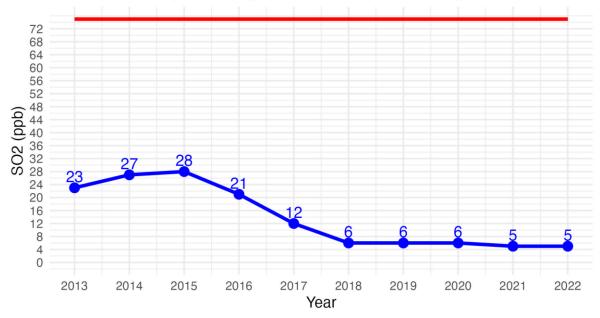
Jackson County - Pascagoula Annual Mean



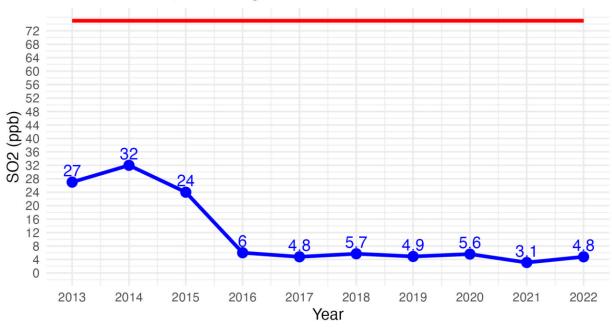

Jackson County Nitrogen Dioxide 1-Hour Average

Jackson County - Pascagoula 98th Percentile Design Value

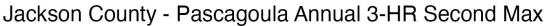
Legend - 98th Percentile Design Value (ppb) - EPA Design Value (ppb)

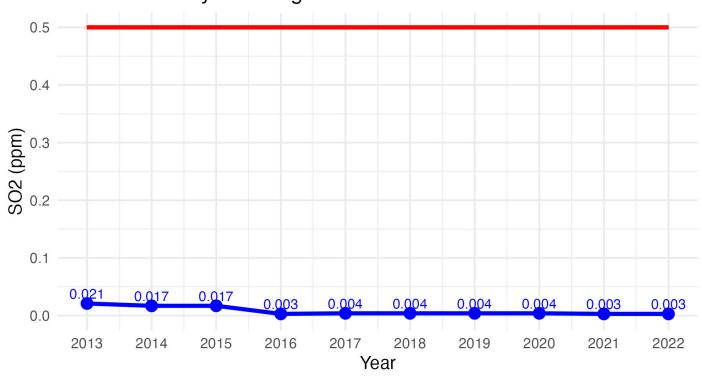


Legend - Annual 98th Percentile (ppb) - EPA Design Value (ppb)

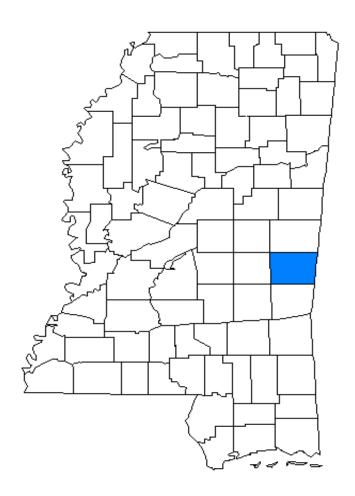

Jackson County Sulfur Dioxide 1-Hour Average

Jackson County - Pascagoula Annual 1-Hour Design Value


Legend — Annual 1-Hour Design Value (ppb) — EPA Design Value (ppb)

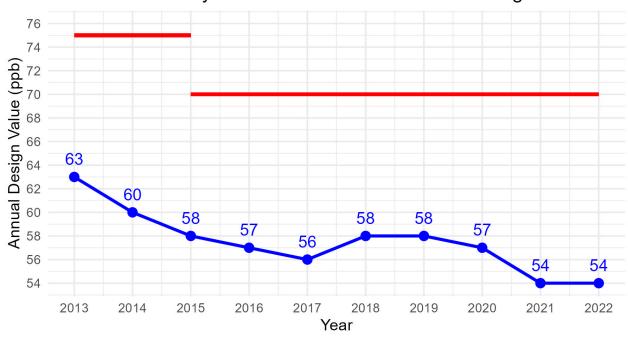

Jackson County - Pascagoula Annual 99th Percentile

Legend — Annual 99th Percentile (ppb) — EPA Design Value (ppb)


Jackson County Sulfur Dioxide 3-Hour Annual 2nd Max

Legend — 3-HR Second Max (ppm) — EPA Design Value (ppm)

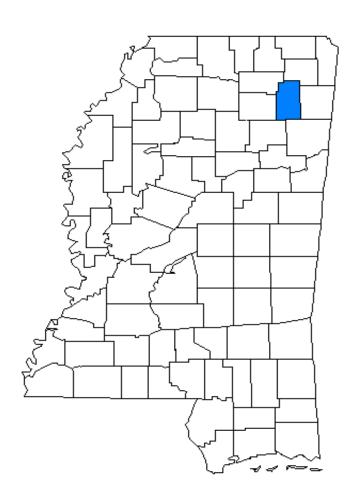
Lauderdale County



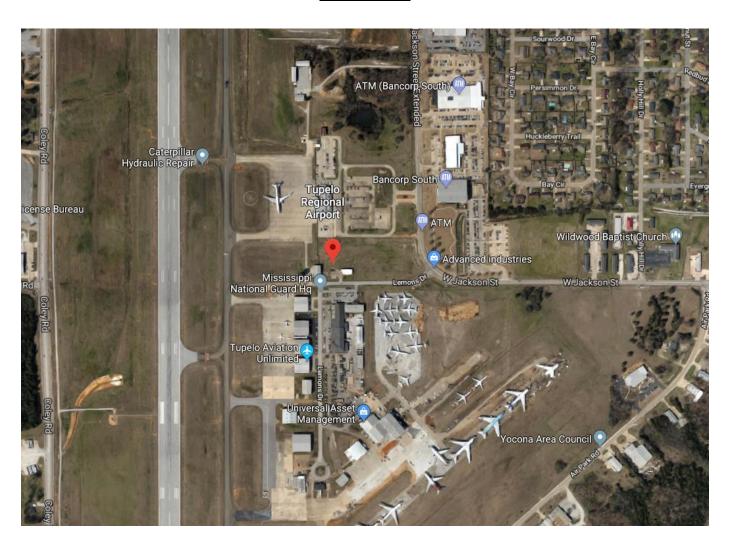
<u>Lauderdale County</u> <u>Monitoring Site No. 28-075-0003</u> <u>Location</u>

Lauderdale County 8-Hour Ozone

Lauderdale County - Meridian Site Annual Ozone Design Values

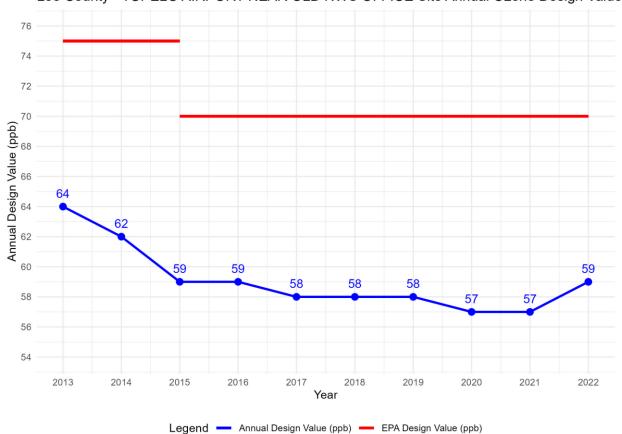

Legend — Annual Design Value (ppb) — EPA Design Value (ppb)

Lauderdale County - Meridian Annual 4th Max Ozone

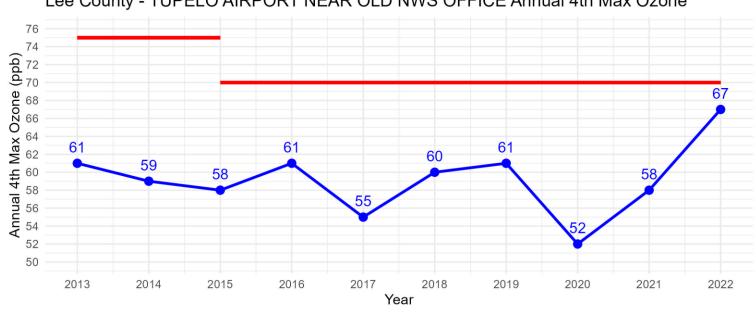


Legend — Annual 4th Max (ppb) — EPA Design Value (ppb)

Lee County



Lee County Monitoring Site No. 28-081-0005 Location



Lee County 8-Hour Ozone

Lee County - TUPELO AIRPORT NEAR OLD NWS OFFICE Annual 4th Max Ozone

Legend — Annual 4th Max (ppb) — EPA Design Value (ppb)

Appendix 2

Data Completeness By Pollutant

8-Hour Ozone Data Completeness

Standards

The standards for 8-hour ozone data completeness are:

- The daily maximum 8-hour average concentrations are available for at least 75%, on average, of the designated sampling days for any one year.
- The daily maximum 8-hour average concentrations are available for at least 90%, on average, of the designated sampling days for a three-year period.

Annual **Data Completeness**

3-Year **Data Completeness**

County	Standard	2020	2021	2022	Standard	2020-2022
Bolivar	75%	100%	96%	98%	90%	98%
DeSoto	75%	94%	98%	94%	90%	96%
Hancock	75%	93%	98%	99%	90%	97%
Harrison	75%	95%	97%	98%	90%	97%
Hinds CC	75%	97%	94%	99%	90%	97%
Hinds NC	75%	97%	98%	98%	90%	98%
Jackson	75%	96%	96%	99%	90%	97%
Lauderdale	75%	98%	99%	97%	90%	98%
Lee	75%	95%	98%	100%	90%	98%

PM_{2.5} Data Completeness

Standard

The standard for PM_{2.5} data completeness is:

• A year meets the requirements when at least 75% of the scheduled sampling days for each quarter have valid data.

2020 Quarterly PM_{2.5} Data Completeness

County	Standard	January - March	April - June	July - September	October - December
DeSoto	75%	100%	100%	100%	97%
Forrest	75%	100%	99%	98%	100%
Grenada	75%	93%	100%	100%	100%
Hancock	75%	100%	100%	90%	92%
Harrison	75%	100%	100%	90%	92%
Hinds CC*	75%	100%	92%	100%	100%
Hinds NC	75%	98%	100%	100%	100%
Jackson	75%	100%	100%	96%	92%

2021 Quarterly PM_{2.5} Data Completeness

County	Standard	January - March	April - June	July - September	October - December
Bolivar	75%	97%	97%	100%	100%
DeSoto	75%	100%	100%	94%	100%
Forrest	75%	100%	100%	100%	98%
Hancock	75%	100%	100%	94%	100%
Harrison	75%	100%	98%	94%	100%
Hinds CC	75%	100%	100%	92%	100%
Hinds NC	75%	100%	97%	100%	100%
Jackson	75%	100%	100%	94%	99%

2022 Quarterly PM_{2.5} Data Completeness

County	Standard	January - March	April - June	July - September	October - December
Bolivar	75%	100%	100%	100%	100%
DeSoto	75%	100%	100%	100%	100%
Forrest	75%	100%	100%	100%	100%
Hancock	75%	100%	100%	99%	95%
Harrison	75%	100%	100%	100%	100%
Hinds CC	75%	100%	100%	100%	98%
Hinds NC	75%	100%	100%	99%	100%
Jackson	75%	100%	100%	96%	100%

PM₁₀ Data Completeness

Standards

The standard for PM_{10} data completeness is:

• A year meets the requirements when at least 75% of the scheduled sampling days for each quarter have valid data.

2020 Quarterly PM₁₀ Data Completeness

County	Standard	January - March	April - June	July - September	October - December
Hinds NC	75%	98%	100%	100%	100%

2021 Quarterly PM₁₀ Data Completeness

County	Standard	January - March	April - June	July - September	October - December
Hinds NC	75%	100%	97%	100%	100%

2022 Quarterly PM₁₀ Data Completeness

County	Standard	January - March	April - June	July - September	October - December
Hinds NC	75%	100%	100%	99%	100%

Carbon Monoxide Data Completeness

Standard

The standard for CO data completeness is:

- An 8-hour average shall be considered valid if at least 75% of the hourly averages for the 8-hour period are available.
- A 1-hour average shall be considered valid if at least 75% of the hourly averages for the 1-hour period are available.

2022 Quarterly 8- Hour CO Data Completeness

County	Standard	January - March	April - June	July - September	October - December
Hinds NC	75%	99%	81%	98%	97%

2022 Quarterly 1- Hour CO Data Completeness

County	Standard	January - March	April - June	July - September	October - December
Hinds NC	75%	96%	79%	96%	95%

Nitrogen Dioxide Data Completeness

Standards

The standards for nitrogen dioxide data completeness are:

- An annual mean must be based upon hourly data that are at least 75% complete for the scheduled sampling days in each year.
- A 1-hour design value is valid if it encompasses three consecutive calendar years of complete data. A year meets data completeness requirements when all 4 quarters are complete. A quarter is complete when at least 75% of the sampling days for each quarter have complete data. A sampling day has complete data if 75% of the hourly concentration values are reported.

2022 Annual Mean Nitrogen Dioxide Data Completeness

County	Standard	2021
Jackson	75%	93%

2020 Quarterly 1-Hour Nitrogen Dioxide Data Completeness

County	Standard	January - March	April - June	July - September	October - December
Jackson	75%	91%	92%	87%	82%

2021 Quarterly 1-Hour Nitrogen Dioxide Data Completeness

County	Standard	January - March	April - June	July - September	October - December
Jackson	75%	94%	93%	86%	90%

2022 Quarterly 1-Hour Nitrogen Dioxide Data Completeness

County	Standard	January - March	April - June	July - September	October - December
Jackson	75%	93%	92%	93%	93%

Sulfur Dioxide Data Completeness

Standards

The standards for sulfur dioxide data completeness are:

- A 1-hour design value is valid if it encompasses three consecutive calendar years of complete data.
- A year meets data completeness requirements when all 4 quarters are complete. A quarter is complete when at least 75% of the sampling days for each quarter have complete data. A sampling day has complete data if 75% of the hourly concentration values are reported.

2020 Quarterly 1-Hour Sulfur Dioxide Data Completeness

County	Standard	January - March	April - June	July - September	October - December
Hinds NC	75%	96%	97%	93%	96%
Jackson	75%	94%	96%	92%	83%

2021 Quarterly 1-Hour Sulfur Dioxide Data Completeness

County	Standard	January - March	April - June	July - September	October - December
Hinds NC	75%	97%	85%	88%	95%
Jackson	75%	96%	96%	90%	93%

2022 Quarterly 1-Hour Sulfur Dioxide Data Completeness

County	Standard	January - March	April - June	July - September	October - December
Hinds NC	75%	96%	93%	96%	94%
Jackson	75%	96%	96%	96%	89%