

Hercules Incorporated Hercules Plaza 1313 N. Market Street Wilmington, DE 19894

July 23, 2012

VIA ELECTRONIC DELIVERY

Mr. Larry Lamberth
Chief, South Section
RCRA and OPA Enforcement and Compliance Branch
RCRA Division
United States Environmental Protection Agency, Region 4
61 Forsyth Street, S.W.
Atlanta, Georgia 30303-3104

Ms. D. Karen Knight
Chief, Corrective Action Section
Restoration and Underground Storage Tank Branch
RCRA Division
United States Environmental Protection Agency, Region 4
61 Forsyth Street, S.W.
Atlanta, Georgia 30303-3104

Mr. Chris Sanders Chief, Environmental Compliance and Enforcement Division Mississippi Department of Environmental Quality 515 Amite Street Jackson, Mississippi 39201

Subject: Submission of Final Phase II Workplan for Administrative Order

Hercules Incorporated, Hattiesburg Facility Hattiesburg, Forrest County, Mississippi

USEPA ID No. MSD 008 182 081 Docket No. RCRA-04-2011-4251

Dear Mr. Lamberth, Ms. Knight, and Mr. Sanders:

On March 19, 2012, Hercules Incorporated (Hercules; a wholly owned subsidiary of Ashland, Inc.) received comments from the U.S. Environmental Protection Agency (USEPA) and Mississippi Department of Environmental Quality (MDEQ) on the Phase II Sampling and Analysis Work Plan (Work Plan), dated September 30, 2011. These comments indicated that a revised Work Plan was to be resubmitted to USEPA and MDEQ by April 13, 2012. Based on a March 30, 2012, request from Hercules, USEPA granted an extension of the submittal date to May 4, 2012. On May 4, 2012, Hercules submitted a Draft Revised Phase II Sampling and Analysis Work Plan, as required. During several subsequent conference calls and e-mail messages with USEPA and MDEQ representatives, additional revisions to the Work Plan were mutually agreed upon. Hercules received tentative approval of the Revised Phase II Sampling and Analysis Work Plan on July 12, 2012, and is submitting the hardcopies to USEPA and MDEQ in accordance with this approval and we anticipate formal approval to be forthcoming.

Mr. Larry Lamberth Ms. D. Karen Knight Mr. Chris Sanders July 23, 2012 Page 2

As specified in Paragraph 95 of the Order, the following certification is made:

I certify that the information contained in and accompanying this submission is true, accurate, and complete. As to those identified portions of this submission for which I cannot personally verify the truth and accuracy, I certify as the facility official having supervisory responsibility for the person who, acting upon my direct instructions, made the verification, that this information is true, accurate, and complete.

Signature:	Kur C. Jan
Name:	Keith C. Silverman
Title,	Vice President Environmental Health & Safety and Product Regulatory, Ashland Inc.

If there are any questions concerning this submittal, please contact Hercules Project Coordinator Mr. Timothy Hassett at (302) 995-3456.

Sincerely,

Keith C. Silverman Vice President Operations and Environmental Health & Safety, Ashland Inc.

KCS/cep

CC:

Meredith C. Anderson – USEPA Region 4, Atlanta, GA Javier E. Garcia – USEPA Region 4, Atlanta, GA Timothy Hassett – Ashland/ Hercules, Wilmington, DE Rodney Bolton – Ashland/ Hercules, Milwaukee, WI Kristina Woods – Ashland/ Hercules, Dublin, OH John Ellis – ARCADIS/ Baton Rouge, LA The Hattiesburg Library – Hattiesburg, MS Hercules Incorporated – Hattiesburg, MS

cc: Willie McKercher – MDEQ, Jackson, MS Melissa Collier-McGee – MDEQ, Jackson, MS Mark Metcalf – Ashland/ Hercules, Dublin, OH

HERCULES

Revised Phase II Sampling and Analysis Work Plan

USEPA RCRA 3013(a) Administrative Order EPA ID No. MSD 008 182 081 Docket No. RCRA-04-2011-4251 MDEQ AI No. 2022

Hattiesburg, Mississippi

20 July 2012

John Ellis, P.G.

Principal Scientist/Hydrogeologist

James J. Reid Principal in Charge

Revised Phase II Sampling and Analysis Work Plan

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

Prepared for:

Hercules Incorporated

Prepared by:
ARCADIS U.S., Inc.
10352 Plaza Americana Drive
Baton Rouge
Louisiana 70816
Tel 225 292 1004
Fax 225 218 9677

Our Ref.:

LA002999.0006.0302A

Date:

20 July 2012

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

1.	Introdu	ction		1	
	1.1	Purpos	se and Scope	1	
2.	Backgr	ound		2	
	2.1	Histori	c Operations	2	
	2.2	Curren	t Conditions	5	
	2.3	Site Lo	cation	6	
	2.4	Previo	us Investigations	7	
	2.5	Correc	tive Action Plan and Restrictive Use Agreed Order	16	
3.	Conce	otual Si	te Model Summary	19	
	3.1	Site Co	onditions	20	
		3.1.1	Regional Hydrology	20	
		3.1.2	Site-Specific Hydrogeology	21	
		3.1.3	Topography and Surface Water	23	N.I
		3.1.4	Storm Water Outfalls	24	
		3.1.5	Surface Water and Historical Process Wastewater Management	25	
		3.1.6	Groundwater Flow Pathways	26	
		3.1.7	Potential Historical On-Site Source Areas	27	Λ
		3.1.8	Conceptual Site Model Summary	27	A
	3.2	Prelimi	nary Conceptual Exposure Model	28	
		3.2.1	Potential Sources	28	
		3.2.2	Release Mechanisms	29	1
		3.2.3	Potential Receptors	29	
		3.2.4	Potential Exposure Pathways	30	
4.	Prelimi	nary C	onstituents of Concern	30	
	4.1	Ground	dwater	31	
		4.1.1	Polychlorinated Biphenyls	31	
		4.1.2	Pesticides	31	

ii

		4.1.3	Herbicides	32	
		4.1.4	Volatile Organic Compounds	32	
		4.1.5	Semivolatile Organic Compounds	33	
		4.1.6	Inorganics	33	
		4.1.7	Dioxins/Furans	34	
	4.2	Surface	e Water	34	
	4.3	Soil		35	
		4.3.1	Pesticides/Herbicides	35	
		4.3.2	Volatile Organic Compounds	35	
		4.3.3	Semivolatile Organic Compounds	35	
		4.3.4	Inorganics	36	
		4.3.5	Dioxins/Furans	36	
	4.4	Sedime	ent	36	
		4.4.1	Pesticides/Herbicides	36	
		4.4.2	Volatile Organic Compounds	36	
		4.4.3	Semivolatile Organic Compounds	37	
		4.4.4	Inorganics	37	^
		4.4.5	Dioxins/Furans	37	А
	4.5	Summa	ary	37	
5.	Phase	II Proje	ct Objectives	39	
	5.1	Admini	strative Order Objectives	39	
	5.2	Data Q	uality Objectives	40	
6.	Phase	II Envir	onmental Investigation	40	
	6.1	Field In	vestigation Procedures	41	
	6.2	Soil Sa	mpling	41	
		6.2.1	Identification of Soil Sampling Locations	41	
		6.2.2	Soil Sampling Procedure	42	

	6.2.3	Soil Sam	ple Collection	43	
	6.2.4	Schedule	e of Sampling	45	
	6.2.5	Borehole	Abandonment	45	
6.3	Surfac	e Water ar	nd Sediment Sampling	45	
	6.3.1	Identifica	ation of Surface Water and Sediment Sampling Locations	46	
	6.3.2	Surface '	Water Sampling Procedure	47	
	6.3.3	Sedimer	at Sampling Procedure	48	
	6.3.4	Schedule	e of Sampling	48	
6.4	Ground	dwater Sar	mpling (Temporary and Permanent Wells)	48	- 1
	6.4.1	Identifica	ation of Groundwater Sampling Locations	49	
		6.4.1.1	Upper Water-Bearing Zone	49	
		6.4.1.2	Deep Aquifer	49	
	6.4.2	Monitor \	Well Installations for Groundwater Sampling	50	
		6.4.2.1	Temporary Well Installation Procedures	50	
		6.4.2.2	Groundwater Sampling Using Permanent Well Procedures	50	
		6.4.2.3	Monitor Well Construction Details	51	
		6.4.2.4	Groundwater Level Measurements	52	Λ
		6.4.2.5	Groundwater Sampling Procedures	54	
		6.4.2.6	Schedule of Groundwater Sampling	57	
		6.4.2.7	Temporary Monitor Well Abandonment	57	
6.5	Vapor	Intrusion E	valuation	58	
6.6	Soil Ga	as Samplin	g	59	L
	6.6.1	Identifica	ation of Soil Gas Sampling Locations	59	
	6.6.2	Soil Gas	Sampling Procedure	59	
	6.6.3	Schedule	e of Sampling	60	
	6.6.4	Soil Gas	Screening	60	
6.7	Sub-el-	ah Soil Ga	as and Indoor Air	61	

2999.6/R/4/bbn iii

		6.7.1	Identification of Potential Indoor Air Sampling Locations	61	
		6.7.2	Sub-slab, Soil Gas, and Indoor Air Sampling Procedure	62	
		6.7.3	Schedule of Sampling	62	
	6.8	City of	Hattiesburg Sewer Sampling	62	
7.	Analyti	cal Pro	gram	63	
8.	Data E	valuatio	on	63	
9.	Human	Health	Risk Assessment	64	_
	9.1	Constit	uent Characterization	65	
	9.2	Toxicity	/ Assessment	65	1
		9.2.1	Non-Carcinogenic Effects	66	
		9.2.2	Carcinogenic Effects	66	
		9.2.3	Dermal Toxicity Values and Dermal Absorption	67	
	9.3	Exposu	ure Assessment	67	R.
		9.3.1	Potential Receptors	68	
		9.3.2	Potential Exposure Pathways	69	
		9.3.3	Exposure Point Concentrations	69	
		9.3.4	Exposure Assumptions	70	Λ
	9.4	Risk Cl	naracterization	70	A
		9.4.1	Hazard Quotient for Non-Cancer Hazard	70	
		9.4.2	Excess Lifetime Cancer Risk	71	
		9.4.3	Receptor-Specific Excess Lifetime Risk and Hazard Evaluation	71	1
	9.5	Develo	pment of Risk-Based Remediation Goals	72	
10.	Screen	ing-Lev	rel Ecological Risk Assessment Approach	72	
	10.1		Screening-Level Problem Formulation and Ecological Effects terization	74	
		10.1.1	Screening-Level Problem Formulation	75	
		10.1.2	Screening-Level Ecological Effects Characterization (Ecotoxicity Screening Values)	78	

2999.6/R/4/bbn iV

	10.2	Step 2: Screening-Level Exposure Estimate and Risk Calculation	79	
	10.3	Step 3a: Refinement of Exposure Estimates and Risk Characterization (BERA Problem Formulation)	80	
	10.4	Scientific Management Decision Point	85	
11.	Report	ing	85	
12.	Project	Schedule	86	
13.	Project	: Team	86	
14.	Refere	nces	86	
Tab	oles			
	1A	Summary of Groundwater Analytical Results (December 2002 through July 2011)		- 1
	1B	Summary of Surface Water Analytical Results (Feburary 2003 through July 2011)		
	2	Summary of July 2011 Groundwater Analytical Results		
	3	Combined Groundwater Screening Evaluation		
	4	Combined Surface Water Screening Evaluation		
	5	Proposed Soil and Groundwater Sample Location Rationale		
	6	Preliminary Project Schedule		Λ
	7	Proposed Surface Water and Sediment Sample Location Rationale		
	8	Noncarcinogenic Toxicity Values for Oral and Dermal Exposure		
	9	Noncarcinogenic Toxicity Values for Inhalation Exposure		
	10	Carcinogenic Toxicity Values for Oral and Dermal Exposure		
	11	Carcinogenic Toxicity Values for Inhalation Exposure		
	12	Dermal Absorption Parameters		
	13	Receptor Exposure Parameters		
	14	Receptor Exposure Parameters – Mutagenic Mode of Action		
	15	Physical and Chemical Properties		

2999.6/R/4/bbn

Risk and Hazard Equations for Exposure to Soil

16

Tables (Continued)

1/	Risk and Hazard Equations for Exposure to Groundwater

- 18 Risk and Hazard Equations for Wadding Exposure to Surface Water
- 19 Risk and Hazard Equations for Exposure to Sediment
- 20 Risk and Hazard Equations for Exposure through Fish Ingestion

Figures

- 1 Site Location Map
- 2 Site Aerial Map
- 3 Historic Site Layout Map
- 4 Site Layout Map (2011)
- 5 Previous Sample Location Map
- 6 Benzene Groundwater Isoconcentration Map (July 2011)
- 7 Carbon Tetrachloride Groundwater Isoconcentration Map (July 2011)
- 8 Chlorobenzene Groundwater Isoconcentration Mao (July 2011)
- 9 Chloroform Groundwater Isoconcentration Map (July 2011)
- 10 Preliminary Conceptual Site Model for Potential Exposure Pathways
- 11 Surficial Drainage Map
- 12 Groundwater Potentiometric Map (July 2011)
- 13 Proposed Sample Location Map
- 14 Decision Flow Chart for Soil Gas and Vapor Intrusion (Within and Beyond Half-Mile Radius of Site)
- 15A Decision Flow Chart for Surface Water and Sediment (for Areas Outside the Half-Mile Radius)
- 15B Decision Flow Chart for Surface Water, Sediment, and Surface Soil (for On-Site Areas)
- 16A Decision Flow Chart for Drinking Water and Groundwater (Off Site)
- 16B Decision Flow Chart for On-Site Groundwater

F

l

N

A

2999.6/R/4/bbn Vi

Appendices

- A Historical Isoconcentration Maps
- B Boring Logs and Well Construction Diagrams
- C Historic Potentiometric Surface Maps
- D Notice of Land Use Restrictions
- E Field Forms

V

A

2999.6/R/4/bbn VII

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

1. Introduction

Hercules Incorporated (Hercules) submits this Revised Phase II Sampling and Analysis Work Plan (Revised Phase II Work Plan) pursuant to Paragraph 75 of the May 9, 2011, Administrative Order (the AO) issued by Region 4 of the U.S. Environmental Protection Agency (USEPA). The AO was issued pursuant to Section 3013(a) of the Resource Conservation and Recovery Act (RCRA), 42 United States Code §6934(a), and is specific to Hercules' Hattiesburg, Mississippi, site (Figures 1 and 2; referred to as the "Site" or the "former Hercules Plant" herein). As discussed during the June 9, 2011, meeting, components of the Phase II activities were addressed in the Revised Phase I Sampling and Analysis Work Plan (Revised Phase I Work Plan; ARCADIS 2011a). Specifically, a portion of the groundwater assessment identified as part of Phase II will be conducted under Phase I as required to properly assess the potential migration of Site-related constituents to off-site properties. The Revised Phase I Work Plan was approved by USEPA on December 9, 2011. As of the date of this report, implementation of the Revised Phase I Work Plan is ongoing. On March 19, 2012, USEPA issued a disapproval of the September 20, 2011, Phase II Sampling and Analysis Work Plan. This Revised Phase II Work Plan addresses USEPA comments in its March 19, 2012, disapproval letter.

1.1 Purpose and Scope

The scope of the AO, and the activities required under the AO, including implementation of the Work Plan, is limited to assessing the presence, magnitude, extent, direction, and rate of movement of the constituents to be investigated under the AO (the "Constituents"). The Work Plan approach includes incorporating and utilizing existing sampling data previously collected as part of Site-related assessments conducted in the area by Hercules, USEPA, or the State of Mississippi (the State) that relate to the purposes of the AO, including assessments to characterize the source(s) of site-related Constituents, characterize the potential pathways of migration of Constituents, define the degree and extent of the presence of any Constituents, and identify actual or potential human and/or ecological receptors. Detected Constituents will be investigated to determine the nature and extent of these Constituents relative to any identified or potential human or ecological receptors.

F

A

1

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

2. Background

2.1 Historic Operations

The Hercules Hattiesburg facility began operations in 1923. Throughout the facility's history the operations consisted of extracting and/or working with rosins from pine stumps to produce rosin derivatives, paper chemicals, and Delnav, an agricultural insecticide (miticide). Structures at the Site included offices, a laboratory, a powerhouse, production buildings, a wastewater treatment plant, settling ponds, a landfill, and central loading and packaging areas. The plant began to reduce production in the 1980s. Process operations at the Site were shut down at the end of 2009. Former process areas were primarily located on the southern and eastern portions of the Site at the locations shown on Figure 3. The following process areas were located at the Hercules Plant:

- Power House (1920s to 2000s): This area used boilers to produce steam used in other parts of the plant. The Power House also used spray ponds for cooling. The following chemicals were used at various times in the Power House area: boiler treatment chemicals and fuel (natural gas, oil, or wood stumps).
- Field Storage (1920s to 1980s): This area was used to store substances used in various parts of the plant. The stored chemicals were transferred to each process area as necessary.
- Laboratory (1920s to 2000s): This area was used to perform analytical testing for the facility. It stored and used various chemicals in laboratory quantities.
- Primary Operations (1924 to 1982): Primary operations consisted of milling, extracting, and refining processes conducted to separate rosin from its plant carrier (primarily pine stumps). Milling was a mechanical process. The following chemicals were used at various times in extraction and refining processes: benzene, methyl isobutyl ketone (MIBK), pexite, plant gas, solvenol, and terpenes.
- Poly-Pale (1937 to 2005): The Poly-Pale unit produced polymerized resin by dimerization. The following chemicals were used at various times in the Poly-Pale area: benzene, cyclohexane, Dowtherm (a mixture of 73 percent diphenyl oxide and 27 percent 1,1-biphenyl), lime, sulfuric acid, rosin, and toluene.

F

l

A

L

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

- Pilot Plant (1939 to 1982): The Pilot Plant was used to demonstrate that
 experimental bench processes could be scaled up for production. Dowtherm was
 used in this area in addition to various rosin polymerization and hydrogenation
 constituents.
- Hard Resins/Continuous Esterification Unit (CEU) Area (1939 to 2004): The
 Hard Resins/CEU area produced rosin and resin derivatives. The following
 chemicals were used at various times in the Hard Resins area: acetic acid,
 alcohol, Dowtherm, fumaric acid, glycerine, magnesium oxide, maleic anhydride,
 methanol, mineral spirits, paraformaldehyde, pentaerythritol, phthalic anhydride,
 toluene, rosin, and triphenylphosphite.
- **Hydroperoxides/PMHP (1940s to 1980s):** This unit produced hydrogen peroxides and paramenthane hydrogen peroxides (PMHP). The following chemicals were used at various times in the Hydroperoxides/PMHP area: paracymene (p-cymene) and paramenthane.
- Rubber Chemicals/Resin 731 (1940s to 1980s): This area produced modified rosins by dehydrogenation. The following chemicals were used in this area: Dowtherm and rosin.
- Staybelite/Foral/Staybelite Resin (1940s to 1990s): This area produced modified rosins by hydrogenation. The following chemicals were used in this area: Dowtherm, hydrogen, palladium on carbon catalyst, Raney nickel catalyst, and rosin.
- Catalyst Regen (1940s to 2000s): This area was used to regenerate catalyst
 used in other process areas. The following chemicals were used at various times
 in the Catalyst Regen area: Raney cobalt catalyst, Raney nickel catalyst, and
 sodium hydroxide.
- Delnav (1950 to 1987): The Delnav unit primarily produced the pesticide Delnav. Delnav consists of the cis- and trans- isomers of dioxathion. The pesticides toxophane and TORAK were also produced in the Delnav unit for a limited period of time. The following chemicals were used in the Delnav area: benzene, carbon tetrachloride, chlorine, cis/trans-dioxathion, cyclohexane, 1,4-dioxane, DTB peroxide, ethanol, hydrochloric acid, NDCEP-N(1,2-dichloroethyl)phthalimide, ortholeum, and phosphorus penta-sulfide.

F

N

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

- CEU (1950s to 1990): This area produced modified rosins. The following chemicals were used in this area: Dowtherm, glycerin, and rosin.
- Paste size (1950s to 1980s): This area was used to produce a paper coating for better printability. Potassium hydroxide and sodium hydroxide were used in this area.
- Rosin Amine/Rosin Amine Derivatives (RAD) (1951 to 2005): The RAD unit
 produced rosin amine derivatives. The following chemicals were at various times
 used in the RAD area: acetic acid, ammonia, Dowtherm, ethylene oxide,
 isopropanol, sodium methylate, rosin, and triethanolamine.
- Terpene Derivatives (1953 to 1983): The Terpene Derivatives unit produced terpene derivatives, such as para-cymene (p-cymene), para-menthane (p-menthane), and synthetic pine oil.
- Liquid Loading (1960 to 1982): This area served as the primary liquid loading point. The following chemicals were managed at various times in the liquid loading area: pine oil, terpenes, and turpentine.
- Kymene (1964 to 2009): The Kymene unit produced a wet strength resin paper chemical. The following chemicals were used at various times in the Kymene area: adipic acid, diethylene triamine, epichlorohydrin, formic acid, hexamethylenediamine, sulfuric acid, and urea.
- Tall Oil (1965 to 1972): The Tall Oil unit produced tall oil rosin and fatty acids.
 Crude tall oil was used in this area.
- Parcol/AKD/Defoamer Paracol (1966 to 2009): The Parcol/AKD unit produced paper chemical emulsion. The following chemicals were used at various times in the Paracol/AKD area: biocides, stearamide, hydrocarbon wax, and polymerized fatty acid.
- Effluent Treatment (1969 to present): The Effluent Treatment area was the
 facility's wastewater treatment area. The facility had a separate storm water
 system and industrial sewer. These systems were used to keep non-contact storm
 water and process wastewater separate. Non-contact storm water collected at the
 Site was ultimately discharged to the Bouie River through various conveyances.
 Facility wastewater flowed through the Impoundment Basin (IB), then underwent

F

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

dissolved air flotation (DAF) treatment. The effluent stream then underwent neutralization and entered an equalization tank. Effluent from the equalization tank flowed through carbon absorption towers with eventual discharge to a National Pollutant Discharge Elimination System (NPDES) outfall. The following chemicals are used in the Effluent Treatment area for neutralization: sodium hydroxide and sulfuric acid.

- Vinsalyn (1970s to 1980s): This area was used to produce a thermoplastic binder. The following chemicals were used at various times in the Vinsalyn area: tall oil pitch and vinsol (rosin).
- Defoamer (1970 to 2008): This unit produced rosin-based defoamer. The
 following chemicals were used at various times in the Defoamer area: biocides,
 silica, and stearamide.
- Metal Resinates (1982 to 1998): Produced rosin/printing ink solution. The following chemicals were used in this area: calcium hydroxide, printing ink solvent, rosin, toluene, and zinc oxide.
- Neuphor (1986 to 2008): The Neuphor unit produced paper chemicals. The
 following chemicals were used at various times in the Neuphor area: agefloc,
 fumaric acid, kymene, malic anhydride, rosin, and sodium lignin sulfonate.

2.2 Current Conditions

Process operations were shut down at the end of 2009. Some facility structures have been demolished. Prior to demolition of any tank, vessel, piping, or storage container, it was emptied of its contents. The contents were recycled, reused, sold, or properly disposed off site. Also, all process equipment, tankage, and piping have been emptied and decontaminated, with the exception of tanks ET-10, ET-18, and ET-19. Figure 4 shows the configuration of buildings currently located at the Site.

Security personnel are present at the facility 24 hours a day, 7 days a week. The Site perimeter is secured by chain-link fencing with controlled access points. Security cameras are placed around the site for monitoring purposes. Logs used to maintain a record of on-site visitors are maintained at the security office.

As part of plant demolition and decommissioning activities, Hercules has been working with the Mississippi Department of Environmental Quality (MDEQ) to decommission the

V

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

on-site wastewater treatment IB and is currently working with them to gain approval of the IB Decommissioning Work Plan submitted in August 2010 and revised January 2011 (ARCADIS 2011b). Storm water that falls in the IB continues to be tested and managed under the conditions of the most recent MDEQ pre-treatment discharge permit.

Hercules has had air, storm water, NPDES, and State-issued Water Pollution Control (pre-treatment) permits that covered discharges from the Site when it was in operation. Hercules continues to conduct sampling and reporting activities associated with storm water and pre-treatment discharges. There are currently no active air emissions from the facility as there are no active manufacturing processes.

In 2005, after Site investigations conducted under the MDEQ Voluntary Evaluation Program were approved, a Corrective Action Plan (2005 CAP, Groundwater & Environmental Services, Inc. [GES] 2005) was submitted to MDEQ. MDEQ approved the 2005 CAP, which called for a remedy that included monitored natural attenuation (MNA) with institutional controls. Additionally, Hercules and MDEQ established a Restricted Use Agreed Order (RUAO, No. 5349 07) in 2008 for management of the Site. The RUAO has been the primary regulatory mechanism driving current environmental monitoring at the Site. The components of the 2005 CAP and RUAO are discussed further in Section 2.6. A monitoring program was implemented and controls were established to restrict the land use and activities on site. The monitoring program for groundwater and surface water is currently conducted on a semiannual basis and consists of water level gauging and analysis of select samples for volatile organic compounds (VOCs) (semiannually) and Dioxathion/Dioxenethion (annually).

2.3 Site Location

The Hercules Site is located on approximately 200 acres of land north of West Seventh Street in Hattiesburg, Forrest County, Mississippi (Figure 1). The Site is located in Township 4 North, Range 13 West, within Sections 4 and 5 just north of Hattiesburg, Mississippi. The geographic coordinates of the front gate of the Site are 31° 20′ 20″ North latitude and 89° 18′ 25″ West longitude. The physical address of the Site is 613 West Seventh Street, Hattiesburg, Mississippi.

The Site is bordered to the north by Highway 42, beyond which is the Illinois-Central & Gulf Railroad, as well as various residential and commercial properties. The southern property boundary is bordered by West Seventh Street and by Roseland Park cemetery and Zeon Chemicals, L.P., to the south-southwest. Across from these locations are residential areas. The eastern and western boundaries are bordered by

F

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

residential and commercial areas. The Site is zoned for industrial use and this zoning category is unlikely to change in the future due to the RUAO, size of the property, and available infrastructure.

2.4 Previous Investigations

Various investigations have been conducted at the Hercules Site since the early 1980s. The work has included geophysical investigations and sampling of soil, groundwater, surface water, and stream sediment for analysis of various constituents, including VOCs, semivolatile organic compounds (SVOCs), pesticides, polychlorinated biphenyls (PCBs), metals, cyanide, Dioxathion, and Dioxenethion. The results of previous investigations are discussed in reports, which have been submitted to or developed by the MDEQ and/or USEPA. Summaries of the non-routine groundwater monitoring reports are listed below:

Preliminary Assessment, Mississippi Bureau of Pollution Control, December 1989.

A state preliminary assessment was completed in December 1989 and indicated two source areas which included approximately 38 acres of contaminated soil and a cluster of six unlined surface impoundments containing approximately 900,000 cubic feet of material. These quantities were defined using five sampling locations. Constituents such as acetone, benzene, toluene, methyl ethyl ketone (MEK), PCBs, cadmium, cobalt, lead, and mercury were identified in the soil and the surface impoundment contained arsenic, benzene, toluene, MEK, and heavy metals.

 Site Inspection Report, Black & Veatch (B&V) Waste Science and Technology Corp., April 1993 (commissioned by USEPA).

In 1992, a site inspection, field investigation, and geophysical survey were conducted by B&V as a contractor for USEPA to collect information regarding potentially hazardous environmental conditions at the Site. The USEPA was concerned about potential releases to groundwater, surface water, soil, and air and the potential threats to human health and ecology. The geophysical survey program was initiated to identify sample locations and evaluate former areas where drums, sludge, boiler ash, and other process wastes were reportedly land filled, land applied, or buried. Four sediment (HI-SD-01 through HI-SD-04), two surface water (HI-SD-01 and HI-SD-02), five surface soils (HI-SS-01 through HI-SS-05), two subsurface soils (HI-SB-01 and HI-SB-5), and three groundwater (HI-MW-B1, HI-TW-01, and HI-TW-05) samples were collected from a number of

F

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

strategic locations selected based on historical information, hydrological data, field observations, and geophysical survey results. All samples were analyzed for parameters in the Target Compound List (TCL) and Target Analyte List including organics, pesticides, PCBs, metals, and cyanide. Surface water sample results summarized in the 1993 B&V report indicated that arsenic and sodium concentrations exceeded background concentrations. The inorganics barium, copper, iron, magnesium, manganese, nickel, and zinc were detected at concentrations above background or the sample quantitation limit. No TCL organics were detected in sediment or surface water samples.

 Work Plan for Well Installation, Bonner Analytical Testing Company (BATCO), June 1997; Installation, Sampling, and Analysis Report, BATCO, December 1997; and Quarterly Monitor Well Sampling Event Reports, BATCO, June 1998 through October 1998.

BATCO prepared a report dated December 1, 1998, which presented results of four quarterly groundwater monitoring events conducted between December 1997 and December 1998. BATCO installed six shallow groundwater monitoring wells (MW-1 to MW-7) in December 1997. The wells were competed at depths between 10 and 20 feet below ground surface (ft bgs). The results of the four quarterly sampling events are summarized in the December 1, 1998, report and indicate no significant detections of the eight RCRA metals (low levels of metals were detected above the laboratory method detection limit [MDL] in various wells over the quarterly events, as well as several detections of the non-RCRA metals beryllium, nickel, copper, and zinc). Acetone was detected above the MDL twice in two different wells. MEK and isopropyl benzene (cumene) were each detected once, and an aromatic hydrocarbon compound was tentatively identified in one well. An organophosphate compound was tentatively identified in all four sampling events in MW-4. In general, MW-4, located near the sludge pits, indicated low levels of metals and the organic compounds discussed above.

• Site Investigation Work Plan, Eco-Systems, Inc. (Eco-Systems), February 1999.

A site investigation was conducted in accordance with the *Site Investigation Work Plan* (Eco-Systems 1999) and additional comments from MDEQ in an approval letter dated April 5, 1999. The activities described in the work plan centered on efforts to determine whether dioxathion, the miticide contained in Delnav, was present in Site soil and groundwater. The investigation also included an evaluation of the groundwater flow regime and refinement of the Site hydrogeologic model.

F

N

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

The scope of the 1999-2000 investigation included the installation of fourteen piezometers (TP-1 to TP-14), five monitoring wells (MW-7 to MW-11), and four staff gauges (SG-1 to SG-4) to provide hydrogeologic and groundwater quality information near the former dioxathion production areas and near the former wastewater sludge pits. Piezometers TP-1 through TP-14 were installed to evaluate groundwater flow conditions in the uppermost saturated interval beneath the Site. Monitoring Wells MW-7, MW-8, and MW-9 were installed to assess groundwater quality at points near the former Delnav production areas and Monitoring Wells MW-10 and MW-11 were installed to assess groundwater quality between the sludge disposal pits and Greens Creek.

Prior to the sampling of the new and existing monitoring wells, questions arose regarding the analytical method for dioxathion and the quality of dioxathion for use as a laboratory standard. As a result, Hercules in conjunction with MDEQ's consultant Mississippi State University developed analytical protocols for soil and groundwater. These protocols were documented in the *Sampling and Analysis Protocol for Determination of Dioxathion in Water* (Hercules 2002).

Because the quality of available analytical standards was questionable, Hercules contracted with Sigma-Aldrich Chemicals to synthesize dioxathion standards. In August 2002, dioxathion of a suitable quality had been manufactured to be used as a laboratory standard and Hercules and MDEQ agreed to a laboratory protocol.

In October 2002, groundwater samples were collected from Wells MW-1, MW-4, MW-5, MW-8, MW-9, and MW-11 for analyses of dioxathion and dioxenethion by both BATCO and the Mississippi State Chemical Laboratory to test the newly established protocol. Monitoring Wells MW-5 and MW-6 were also sampled for analysis of VOCs and SVOCs.

Isomers of dioxathion were detected in Wells MW-4, MW-5, MW-8, MW-9, and MW-11; however, no concentrations were detected at concentrations above the MDEQ Tier 1 Target Remediation Goals (TRGs). No VOCs or SVOCs were detected above the MDL in samples collected from MW-5 and MW-6. A complete summary of the sampling/analytical methods and results of the October 2002 sampling was provided in the *Site Investigation Report* (Eco-Systems 2003a).

In December 2002, groundwater samples were collected for analysis of dioxathion (MW-1 through MW-11), VOCs (MW-4 and MW-7 through MW-11), and SVOCs (MW-7 through MW-11). Samples were analyzed by BATCO and a split sample

F

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

for MW-11 was collected by MDEQ. Concentrations of dioxathion, dioxenethion, VOCs, and SVOCs were detected at various locations. Various VOCs were detected at concentrations exceeding the TRGs in Wells MW-4, MW-8, MW-9, and MW-11. No other constituents were detected at concentrations above the applicable TRG.

 Interim Groundwater Monitoring Report, Eco-Systems, January 2003; and Site Investigation Report, Eco-Systems, April 2003.

The *Interim Groundwater Monitoring Report* (Eco-Systems 2003b) was submitted describing the results of this sampling and recommending confirmation sampling prior to completing the remaining activities outlined in the 1999 Work Plan. In response, MDEQ issued a letter dated February 3, 2003, approving the proposed confirmation sampling and requesting completion of the work plan tasks. In addition, MDEQ requested submittal of a supplemental work plan for groundwater delineation and a geophysical survey. A summary of the December 2002 sampling was provided in the *Site Investigation Report* (Eco-Systems 2003a).

On February 11, 2003, groundwater, surface water, and stream sediment samples were collected in accordance with the February 3, 2003, MDEQ request. Wells MW-4, MW-8, MW-9, and MW-11 were sampled for confirmation of the 2002 VOC results. In addition, surface water and sediment samples were collected from five locations (CM-1 through CM-5) in Greens Creek for analysis of dioxathion and VOCs. Total organic carbon (TOC) and grain size analyses were also performed on sediment samples. Duplicate samples of surface water and sediment were collected by MDEQ at location CM-3.

VOCs were detected in groundwater at concentrations exceeding the TRGs in Wells MW-4, MW-8, MW-9, and MW-11. The sample collected from MW-8 had the highest reported VOC concentrations.

Various VOCs were detected in each of the samples collected from surface water locations CM-1 (upgradient) through CM-5. The greatest number of VOCs were detected in the surface water sample collected from CM-1 (the westernmost location), possibly indicating an upstream source for VOCs. Dioxathion was detected in surface water at CM-2 and dioxenethion was detected in surface water at CM-3, CM-4, and CM-5.

F

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

Various VOCs were detected in each of the samples collected from stream sediment locations CM-1 through CM-5. Similar to results for the surface water samples, the greatest number of VOCs were detected in the sediment sample collected from CM-1 (upgradient). Dioxathion was detected in sediment at CM-1, CM-3, and CM-5. TOC was reported in sediment samples at concentrations ranging between 2 and 7 parts per million (ppm). The sample collected from CM-3 showed primarily silt and clay and the samples collected from CM-4 and CM-5 showed primarily sand and gravel.

A summary of the sampling/analytical methods and results of the February 2003 sampling was provided in the *Site Investigation Report* (Eco-Systems 2003a).

 Work Plan for Supplemental Site Investigation, Eco-Systems, June 2003; and Supplemental Site Investigation Report, Eco-Systems, November 2003.

A supplemental site investigation was conducted in accordance with the *Work Plan for Supplemental Site Investigation* (Eco-Systems 2003c) approved by MDEQ in a letter dated July 11, 2003. The supplemental work plan was prepared at the request of MDEQ to delineate the lateral and vertical extent of constituents of concern (CoCs) in groundwater, collect hydrogeologic information, conduct a geophysical investigation to delineate the lateral boundaries of the waste in the former landfill and locate accumulations of buried metal in the landfill and in a potential burial area identified in the western portion of the Site, conduct single-well response tests to provide hydraulic conductivity estimates, and collect surface water and stream sediment from Greens Creek to evaluate locations upstream from previous sampling locations.

To obtain the required data, Hercules advanced eighteen Geoprobe® borings (GP-1 through GP-18) to define the lateral and vertical extent of VOCs in groundwater and to investigate groundwater quality in the vicinity of select piezometers, collected groundwater samples from permanent Monitoring Wells MW-1, MW-4, MW-10, and MW-11 for analysis of VOCs and dioxathion, conducted a geophysical investigation using ground conductivity and magnetic intensity methods at two areas of the Site (former landfill area and small grid area located west of the main plant), and collected surface water samples from two locations (upstream location CM-0 and previous location CM-1) and a stream sediment sample from one location (upstream location CM-0).

F

N

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

The results of the above activities provided a summary of known conditions in the area and further defined the extent of on-site areas. Carbon tetrachloride, benzene, and naphthalene isoconcentration maps depicting the extent of these constituents detected in groundwater from the *Supplemental Site Investigation Report* (Eco-Systems 2003d) are included in Appendix A.

• Hattiesburg, Mississippi, Investigations, MDEQ, April 2004.

As part of a response to requests by the public, in April 2004, MDEQ conducted a sampling event in the drainage pathways discharging from the Hercules facility. Four sediment samples (two from Greens Creek and two from the former "Hercules Ditch") and three surface water samples (two from Greens Creek and one from the former "Hercules Ditch") were collected and analyzed for VOCs, SVOCs, pesticides/PCBs, metals, and dioxathion. Samples collected from locations S-1 and S-2 were collected from Greens Creek across Highway 42 from the facility. Samples collected from locations S-3 and S-4 were collected downgradient of an on-site process water storage tank (Tank ET-10, referred to in the memo as the "NPDES tank"). No surface water was collected from location S-3 because it was dry.

Concentrations of toluene below the MDEQ TRGs were detected in soil collected at locations S-3 and S-4. No other constituents were detected in soil and no constituents were detected in surface water. While some trace concentrations of target analytes were detected, the report concluded that "the results of these samples did not detect any compounds above MDEQ's target remediation goal levels."

 Remedial Action Evaluation, Eco-Systems, July 2004; and Corrective Action Plan Revision 01, GES, January 2005.

A Remedial Action Evaluation was prepared to evaluate and recommend remedial alternatives for the following areas: Sludge Pits, Landfill, Greens Creek, and Groundwater. Each of the remedial alternatives were evaluated with respect to the protection of human health and the environment and based on the following criteria: long-term effectiveness; potential to reduce mobility, toxicity or volume; short term effectiveness; implementability; and cost efficiency.

The following conclusions were presented for each evaluated area:

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

- Sludge Pits: sludge does not pose a significant risk to human health and the
 environment; potential direct exposure risk for site workers and wildlife;
 potential indirect exposure risk resulting from leaching and natural weather
 events overflowing the pit berms;
- Landfill: no current risk to human health and the environment; future land use changes could expose landfill materials and/or mobilize constituents from the landfill into the groundwater or nearby surface water;
- Groundwater: VOCs present in on-site groundwater at concentrations above TRGs; no VOCs above TRGs in off-site groundwater; and
- Greens Creek: surface water and sediment containing VOCs and dioxathion
 do not pose a significant risk to human health and the environment; the results
 from samples collected upstream of Hercules property may indicate an off-site
 source.

In the final revised CAP (GES 2005), the primary components of the proposed remedial alternatives consisted of groundwater and surface monitoring networks, deed restrictions, and fencing as summarized below for each evaluated area:

- Sludge Pits: MNA combined with institutional controls/deed restrictions to restrict current/future land use and ensure that contaminated groundwater does not migrate from the sludge pits at unacceptable levels;
- Landfill: MNA combined with deed restrictions to restrict future land use and ensure that contaminated groundwater does not migrate from the landfill at unacceptable levels;
- Groundwater: MNA combined with deed restrictions to restrict future land use in the area of groundwater containing VOCs in excess of TRGs and to ensure that contaminated groundwater does not migrate from the Site at unacceptable levels; and
- Greens Creek: MNA combined with institutional controls/deed restrictions to restrict current/future land use of Greens Creek to ensure that contaminated water does not migrate at unacceptable levels from Greens Creek.

N

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

The CAP also called for contingency plans for specific units, if groundwater monitoring indicated a potential release. These contingency plans included such actions as installation of an engineered cap, installation of a horizontal barrier, or implementation of in-situ chemical oxidation. To date, groundwater monitoring results have not indicated a need to implement the contingency plan for any unit.

 Memorandum, Sludge Sample Analyses, Hattiesburg, Mississippi, Eco-Systems, October 2008.

In 2008, Hercules conducted sludge characterization sampling as part of plans to decommission the IB. The initial sampling event conducted on July 1, 2008, included collection of composite samples from the west end of the IB (SS-1), east end of the IB (SS-2) and from the wastewater holding tank (SS-3). Individual sample aliquots were collected from various locations via hand auger and combined in the field to produce composite samples. Prior to collection, each aliquot location was vertically mixed to the extent practicable by advancing and extracting the hand auger from the surface to the limit of the auger rods. Samples were submitted for toxicity characteristic leaching procedure (TCLP) analysis of VOCs, SVOCs, pesticides, PCBs, herbicides, and metals, and also for reactive cyanide, reactive sulfide, pH, and percent solids. Based on the results of this initial sampling, two additional events were conducted to confirm and further characterize sludge at the west end of the IB, where a TCLP benzene concentration (1.3 milligrams per liter [mg/L]) was detected above TCLP limits (0.5 mg/L) in SS-1.

On July 30, 2008, one composite sludge sample (SS-1-073008) was collected to confirm the benzene concentrations detected in SS-1 during the July 1 sampling event. The confirmation sample was collected following the same procedures and from the same general aliquot locations as was completed for the original sample SS-1. Samples were analyzed for TCLP-VOCs by TestAmerica and BATCO. One benzene result (0.586 mg/L) was detected above the TCLP limit in the confirmation sample analyzed by BATCO while the result of the TestAmerica analysis (0.44 mg/L) was below the TCLP limit.

In September 2008, a third sludge sampling event was conducted to investigate whether a potential localized source area for VOCs existed within the western end of the IB. Six discrete soil samples (SS-5 through SS-10) were collected and analyzed for VOCs by TCLP. Three of the samples contained concentrations of benzene below the TCLP limit, while the other three samples (SS-5 at 5.5 mg/L,

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

SS-6 at 3.2 mg/L, and SS-8 at 3.2 mg/L) contained concentrations of benzene above the TCLP limit.

Groundwater Assessment Report, Eco-Systems, November 2009.

Hercules submitted a work plan to MDEQ in July 2009 to evaluate groundwater conditions near the IB. The work plan outlined the locations and procedures for the installation and sampling of five monitoring wells. MDEQ approved the work plan with revisions in a letter dated July 22, 2009. On September 15-16, 2009, five soil borings were advanced near the IB. Each boring was converted to a monitoring well (MW-20 through MW-24). Groundwater samples were collected from each monitoring well and analyzed for VOCs, SVOCs, pesticides, PCBs, metals, and Delnav. The analytical results were compared to TRGs. Concentrations of VOCs and SVOCs were reported above the TRGs. Pesticides, PCBs, metals, and Delnav groundwater concentrations were reported below TRGs for each of these analyses. Based on the VOC and SVOC results, Wells MW-20 through MW-24 were included in routine groundwater sampling events in 2010.

 Sludge Characterization and Bench Scale Treatability Work Plan, ARCADIS, March 2010; Sludge Characterization and Bench Scale Treatability Report, ARCADIS, August 2010; and Response to Sludge Characterization and Bench Scale Treatability Report, ARCADIS, January 2011.

The focus of this investigation was to collect data necessary to assess potential options for managing the sludge contained in the IB.

Hercules is currently working with MDEQ toward the approval of a decommissioning plan to remove and properly dispose of the sludge.

USEPA Sludge Pit Sampling (2010)

In September 2010, at the request of MDEQ, representatives of the Science and Ecosystem Support Division (SESD) conducted a sampling investigation at the on-site sludge disposal area. Between September 28-29, 2010, SESD representatives collected 13 subsurface waste samples (HERC01 through HERC13) ranging from depths between 0 and 7 ft bgs. Twelve of the locations were collected from the Sludge Pit area (referred to in the SESD report as the "back forty" area). These samples were collected from various areas within the Sludge Pit which are delineated by berms and represent areas where the facility

F

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

placed sludge at different times. One sample (HERC08) was collected from a lined pond referred to in the SESD report as the "wetlands" area. Samples were collected based on visual observations and results from field screening conducted with a Thermo Toxic Vapor Analyzer 1000B. Samples were analyzed by the SESD laboratory for total VOCs, SVOCs, metals, and/or toxicity characteristics.

Various VOCs, SVOCs, and metals were detected in the sludge samples. USEPA compared the analytical data to the TRGs for unrestricted soil use and the USEPA Regional Screening Levels (RSLs). Benzene (10 samples), ethylbenzene (1 sample), isopropylbenzene (1 sample), toluene (11 samples), 1,1'-biphenyl (1 sample), naphthalene (7 samples), arsenic (4 samples), Chromium VI (13 samples), and vanadium (9 samples) exceeded the MDEQ TRGs and/or residential USEPA RSLs.

USEPA analyzed samples with detected total analyte concentrations by the TCLP method. Benzene was above the TCLP regulatory limit of 0.5 mg/L in six of the samples. No other VOCs, SVOCs, or metals failed the TCLP limits or exceeded USEPA or MDEQ regulatory levels. A summary of the investigation activities and analytical results was provided in the *Field Investigation Report* (SESD 2011).

As demonstrated by the chronology of reports presented above, Hercules has worked with MDEQ for more than 20 years to understand the environmental conditions at the Site. Figure 5 is a composite map that shows the location where previous sampling was conducted at the Site. Based on the mutual understanding of Site conditions (i.e., the delineation of impacted areas, an understanding of groundwater flow regimes, exposure pathways), in 2005 MDEQ and Hercules began formalized corrective action and ongoing management activities in a RUAO. Since the implementation of the RUAO, Hercules and MDEQ continued to work together to address environmental issues at the Site not covered by the RUAO.

2.5 Corrective Action Plan and Restrictive Use Agreed Order

The January 20, 2005, CAP (GES 2005) summarized the findings of the Site investigations between 1999 and 2003 as follows:

 Delineation of the lateral limits of the Landfill based on geophysical investigation has been completed; F

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

- VOCs were detected in groundwater at concentrations above MDEQ Tier 1 TRGs near the Landfill and other areas of the Site;
- VOCs and Dioxathion were detected at concentrations less than TRGs in surface
 water and sediment samples collected from Greens Creek with some indication of
 upstream off-site sources (i.e., upgradient sample showed similar Constituents as
 seen on site and downstream from the Site);
- VOCs and Dioxathion were detected in one of three groundwater monitoring wells located hydraulically downgradient of the sludge pits; and
- There was no indication of migration of VOCs or Dioxathion onto off-site properties via groundwater or surface water.

Additionally, the 2005 CAP presented the following conclusions:

- Sources, source area CoC concentrations, and vertical and horizontal extent of groundwater containing CoCs were defined sufficiently for remedial planning purposes;
- The existing data do not indicate that the Site poses a significant threat to human health and the environment in its current use as a chemical production facility; and
- If changes in land use occur or additional information is obtained, the current risk scenario for the Site could also change.

Based on an evaluation of the data obtained during the previous site investigations, a remedy consisting of MNA and institutional controls was proposed in the 2005 CAP to address the environmental conditions at the Site. In 2005, MDEQ approved the implementation of MNA of groundwater and surface water and institutional controls as proposed in the 2005 CAP.

On March 8, 2005, after the submission of the CAP, but prior to the implementation of the RUAO discussed below, MDEQ provided their assessment of environmental conditions in the area, including those at Hercules, in a correspondence addressed to Hattiesburg Mayor Johnny Dupree. The MDEQ letter included as an attachment an unsigned February 24, 2004, letter to the "Mobile-Bouie Street Neighborhood" from MDEQ. The 2004 MDEQ letter indicated that:

F

N

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

For Hercules ... The only contamination found to date of any significance is groundwater contamination near the center of the property in the old Delnav process area adjacent to the old landfill site. The investigation to date does not show any groundwater contamination off of the Hercules property. Additionally, samples of surface water and sediments have been take[n] in Greens Creek ... and no contamination of concern has been found.

In January 2008, Hercules entered into a RUAO with MDEQ to restrict the land use and activities on- site while constituents in site-wide groundwater attenuate. In conjunction with the RUAO, Hercules executed a Notice of Land Use Restrictions documenting that soil and groundwater contained benzene, chlorobenzene, carbon tetrachloride, chloroform, 1,2-dichloroethane, and toluene in excess of MDEQ's TRGs. As a result, the following restrictions were placed on the property:

- There shall be no excavating, drilling, or other activities that could create exposure to contaminated media without approval from MDEQ;
- The groundwater at the Site shall not be used, unless otherwise approved by MDEQ;
- Monitoring wells shall be protected and maintained. In the event that a monitoring
 well is destroyed or damaged or is no longer needed, a plan for repair,
 reinstallation or abandonment of the well(s) must be submitted to MDEQ for
 approval; and
- No wells shall be installed without prior approval from MDEQ.

MDEQ indicated in the RUAO that, "...once the requirements of it have been completed that (1) the Site will be protective of the public health and the environment; and (2) no further corrective action will be required at this time."

The Site has been operated in accordance with the 2005 CAP and RUAO since 2007. Compliance with the RUAO has consisted of routine groundwater sampling and reporting. Since 2007, Hercules has conducted groundwater sampling and submitted routine groundwater monitoring reports to MDEQ in accordance with the RUAO.

Routine groundwater monitoring reports summarizing data collection activities conducted to comply with the RUAO are submitted to MDEQ. Initial data collection events were conducted quarterly. Due to the stability of the reported concentrations,

F

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

beginning in 2008 data collection activities were reduced to semiannually with MDEQ's consent. Currently groundwater sampling is conducted semiannually. Tables 1A and 1B present the groundwater and surface water VOC concentrations obtained for the Site from December 2002 through July 2011. Isoconcentration maps for four VOC constituents (benzene, carbon tetrachloride, chlorobenzene, and chloroform) using the July 2011 data are included on Figures 6 through 9. A comparison of these figures to isoconcentration maps included in the November 2003, *Supplemental Site Investigation Report* (Appendix A) indicates that these constituents have undergone limited migration and are located in the vicinity of previously detected constituent concentrations.

At the areas covered by the RUAO, conditions to date have not warranted the implementation of contingency plans called for in the Remedial Action Plan. In the event that Site conditions change, the following contingency plans were included in the January 2005 CAP:

- Sludge Pit Area Contingency Plan: Installation of an engineered cap;
- Landfill Area Contingency Plan: Implementation of in-situ chemical oxidation or installation of a horizontal containment barrier;
- Groundwater Area Contingency Plan: Implementation of in-situ chemical oxidation; and
- Greens Creek Area Contingency Plan: Address the potential migration of constituents from the Sludge Pit Area.

3. Conceptual Site Model Summary

The regional geology, Site-specific geology, known physical characteristics of the Site, and observations made of the community near the Hercules Site were composited into a graphical conceptual site model (CSM) (Figure 10). The graphic CSM highlights potential areas of release (former production operations, wastewater IB, landfill, sludge pits), impacted media, transport mechanisms, and potential exposure pathways specific to the Site. As shown on the CSM, soil, groundwater, surface water, and soil gas to indoor air pathways potentially exist at the Site and, therefore, will be the focus of the data collection efforts of this Phase II Investigation. Additional detail related to the development and use of the CSM to investigate conditions at the Site is provided in the subsections below. Data collected during subsequent phases of investigation will

F

V

A

L

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

be used to refine and update the CSM so that a better understanding of the nature of impacts, migration pathways, and potential receptors can be developed.

3.1 Site Conditions

3.1.1 Regional Hydrology

The Site is located within the Pine Hills physiographic region of the Coastal Plain physiographic province (Foster 1941). The topography of the region is characterized by a maturely dissected plain which slopes generally to the southeast. The topography is dominated by the valleys of the Bouie and Leaf Rivers coupled with the nearly flat or gently rolling bordering terrace uplands.

The geologic formations beneath the Site are as follows (in descending order):

- Pleistocene alluvial and terrace deposits;
- The Miocene-aged Hattiesburg and Catahoula Sandstone formations;
- The Oligocene-aged Baynes Hammock Sand and Chickasawhay Limestone formations; and
- The Oligocene-aged Bucatunna Clay member of the Byron formation of the Vicksburg group.

The recent-aged alluvial and terrace deposits consist of gravel, silts, and clays. The thicknesses of the alluvial and terrace deposits are variable due to erosion. Based upon driller's logs of wells located in the vicinity of the Site, thickness of the alluvial and terrace deposits is estimated to be up to 30 feet on site and up to 50 feet closer to the rivers. The first groundwater-bearing unit at the Site occurs within the alluvial and terrace deposits.

Beneath the alluvial and terrace deposits lies the Hattiesburg formation, which is comprised predominantly of clay. Regionally within Forrest County, the Hattiesburg formation contains at least two prominent sand beds at depth beneath the clay from which a viable water supply is obtained. Logs from area wells indicate that the Hattiesburg formation ranges from approximately 130 feet to 260 feet in thickness.

F

V

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

The Catahoula sandstone underlies the Hattiesburg formation. It is not exposed near the Site, but is penetrated by numerous wells in the area. A driller's log of a municipal well approximately 1.25 miles northwest of the Site indicated that approximately 770 feet of Catahoula sandstone was encountered.

Near the Site, the Catahoula sandstone overlies the Chickasawhay limestone. Neither the Chickasawhay limestone nor the Bucatunna formation is considered to be a viable aquifer. The Bucatunna formation is comprised of clay and effectively acts as a confining layer for the underlying Oligocene aquifer.

The Miocene aquifer is comprised of both the Hattiesburg and Catahoula sandstone formations. The aquifer system is composed of numerous interbedded layers of sand and clay. Because of their interbedded nature, the Hattiesburg and Catahoula sandstone cannot be reliably separated. The formations dip southeastward approximately 30 feet to 100 feet per mile. While this dip steepens near the coast, the formations thicken. The shallowest portions of the aquifer system are unconfined with the surficial water table ranging from a few inches to greater than 6 ft bgs. Deeper portions of the aquifer are confined, with artesian conditions common.

3.1.2 Site-Specific Hydrogeology

Surficial soils in the vicinity of the Hercules Site include the Prentice-Urban Land Complex; the Trebloc silt loam; and the Brassfield-Urban Land complex. In general, these soils are described as poorly to moderately well drained and strongly acidic. The parent material from which the soil was derived is mainly marine deposits of sandy, loamy, and clayey material.

Borings installed during Site investigations encountered soils that are generally described as gray and tan, fine-grained sand with varying amounts of silt, clay, and gravel from the surface to depths ranging from 5 ft bgs to greater than 26 ft bgs (Appendix B). These sandy soils are typical of the Pleistocene alluvial and terrace deposits. Underlying the sandy soils is a gray to orange-brown, stiff, silty and/or sandy clay. Descriptions of the clay are consistent with descriptions of the Miocene Hattiesburg formation.

The Hattiesburg Formation has been encountered in all Site borings that have penetrated the overlying alluvial material indicating the formation is consistent across the Site. An exploratory boring was installed in the northern portion of the Site to obtain Site-specific information for thickness and vertical permeability of the

F

N

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

Hattiesburg Formation (Eco-Systems 2004). Information obtained from the boring (Appendix B) indicates that the Hattiesburg formation is at least 20 feet thick beneath the Site and has a hydraulic conductivity of 1.28 x 10⁻⁷ centimeters per second (cm/sec).

Water level information is routinely collected from monitoring wells, piezometers, and several Greens Creek staff gauges. Groundwater in the uppermost, saturated interval beneath the Site tends to follow the surface topography. In the former production areas, which are located in the southeastern portion of the Site, the potentiometric surface indicates the presence of a groundwater divide, which trends southwest and northeast. Current and historic potentiometric surface maps (Appendix C) indicate that groundwater located to the northwest of the divide moves northwestward toward Greens Creek. On the north side of Greens Creek, the potentiometric surface indicates that groundwater in the uppermost, saturated interval moves generally southward toward Greens Creek, until another less prominent surface drainage feature causes groundwater to flow more northwesterly. Groundwater southeast of the divide moves southeastward.

Slug testing was conducted at on-site Monitor Wells MW-2 (Northern Area), MW-6 (Former Landfill Area), and MW-7 (Former Production Area) (Eco-Systems 2004). Estimates of hydraulic conductivity were calculated using methods described by Bouwer & Rice (Bouwer and Rice 1976; Bouwer 1989). Hydraulic conductivity estimates varied from 1.31 x 10⁻³ cm/sec (3.71 feet per day [ft/day]) for MW-6 to 4.19 x 10⁻³ cm/sec (11.9 ft/day) for MW-2 with an average of 2.51 X 10⁻³ cm/sec (7.12 ft/day). Using the mean of the hydraulic conductivity estimates and historic potentiometric data, the estimated horizontal groundwater velocity from three areas of the Site were estimated using Darcy's Law. Darcy's Law can be expressed by the following equation:

$$V = Ki$$

Where:

V = Average linear groundwater velocity

K = Hydraulic conductivity

i = Hydraulic gradient

 η = Effective porosity

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

Based on a review of historic potentiometric maps and published information, the following inputs were used to calculate the estimated groundwater flow for each area:

Area	Hydraulic Conductivity (ft/day)	Effective Porosity (%)	Hydraulic Gradient (ft/ft)	Groundwater Velocity (ft/day / ft/yr)
Northern Area (MW-2)	11.9	33%	0.006	0.216 / 78.8
Former Landfill Area (MW-6)	3.71	33%	0.03	0.337 / 123
Former Production Area (MW-7)	8.14	33%	0.007	0.173 / 63.0

ft/day Feet per day. ft/ft Feet per feet. ft/yr Feet per year.

This analysis determined that the horizontal groundwater velocity ranged from 0.173 ft/day (63 feet per year [ft/yr]) in the Former Production Area (MW-7) to 0.337 ft/day (123 ft/yr) in the Former Landfill Area (MW-6).

3.1.3 Topography and Surface Water

The topography of the Site ranges from 170 feet mean sea level (ft msl) to 150 ft msl. Surface water drainage patterns at the Site conform generally to the topography. Topography slopes generally to the south in the Sludge Disposal Area and to the north/northwest in the former Industrial Landfill Area and the Former Delnav Production Area. A topographic divide located south/southeast of the Former Delnav Production Area separates surface water drainage flowing in a north to northwesterly direction from surface water that flows in an east to southeasterly direction. Surface water flow pathways are depicted on Figure 11.

The east-trending, perennial stream Greens Creek and its natural and man-made tributaries are the main surface drainage features in the area (Drainage A). Greens Creek leaves the Site at its northeast corner, enters a culvert that runs beneath a neighboring industrial property, and subsequently flows into the Bouie River, located approximately 1 mile to the north/northeast. Two unnamed intermittent drainage features are also present. One flows from the northeast corner of the Site (Drainage B) and the other flows from the southeastern portion of the Site (Drainage C).

F

V

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

In the sludge pit area, a drainage ditch enters the Site from the West. This ditch previously flowed north of the sludge pit area in a generally southeasterly direction and discharged into Greens Creek. To minimize the off-site flow of surface water in the vicinity of the sludge pit area, this drainage ditch was rerouted to direct water southward along the Hercules fenceline until it ultimately discharges into Greens Creek.

The northeastern drainage (Drainage B) flows intermittently, collecting storm water from the northeast areas of the Site and then travels through a surface water feature into the Bouie River. The southeastern drainage (Drainage C) flows intermittently, collecting storm water from the southern areas of the Site and entering two culverts before it leaves the Site which transports the surface water approximately 1,000 feet before it discharges into a surface drainage feature which flows to the Bouie River. Historically, this southeastern drainage directed permitted process water discharge through a surface feature the entire length to the Bouie River, which was the focus of the previous MDEQ investigation (MDEQ 2004) described in Section 2.4. The MDEQ investigation determined that constituent concentrations were not detected above MDEQ TRGs. These drainage features are depicted on Figure 11.

Elevations of surface water within Greens Creek are significantly lower than the groundwater. This indicates that, while groundwater may contribute to flow in Greens Creek, hydraulic connection between the uppermost saturated interval and Greens Creek is retarded. The retardation of the water moving from the alluvial material to the creek is likely due to silt and clay in the creek bed and the sand adjacent to the creek.

3.1.4 Storm Water Outfalls

Storm water that falls on the Site sheet flows to a conveyance system that consists predominantly of earthen ditches. As shown on Figure 11, the ditches aggregate and route the storm water flow to one of five outfall locations included in the Site's Storm Water Pollution Prevention Plan (Hercules 2010).

Outfall SW001 is located near the main entrance to the Site along the southern Site boundary. This outfall's drainage basin represents approximately 1.2 acres. The outfall is an earthen ditch, which discharges into an eastward-flowing ditch along West 7th Street. This storm water is eventually discharged through Outfall SW005 (Drainage C). Currently, there is no process activity in this area.

F

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

Outfall SW002 is located west of Outfall SW001 and receives runoff from approximately 7.0 acres. Storm water that enters this area is discharged through an earthen ditch that discharges into the eastward-flowing ditch along West 7th Street. This storm water is eventually discharged through Outfall SW005. Currently, there is no process activity in this area.

Outfall SW003 is located where Greens Creek exits the Site, near the northeastern corner of the property. During historic plant operations, storm water from the sludge pits, the former landfill, and a production area was routed through this outfall. Currently, this outfall receives runoff from the entire undeveloped area in the western portion of the Site. Greens Creek is a perennial stream and more than 100 acres within the facility drain to the creek. With the exception of the former Tall Oil/Neuphor process areas (which is not active), this outfall routes water from an area not used for process operations.

Outfall SW004 is located at the northeastern corner of the Hercules Site, near the intersection of Providence Street and North Main Street. The drainage basin represents approximately 16 acres. During historic plant operations, storm water from production areas was routed through this outfall. After leaving the facility, this unnamed tributary (Drainage B) discharges into the Bouie River. Currently, there is no process activity in this area.

Outfall SW005 was previously considered a storm water outfall, prior to its being permitted under NPDES permit MS0001830. Storm water that discharges through Outfall SW005 is routed to Drainage C. Outfall SW005 drainage basin represents approximately 25 acres of the central area of the Site. During historic plant operations, this outfall was the Site's primary discharge point for storm water that entered former process areas. After leaving the facility, this unnamed tributary discharges into the Bouie River. With the exception of the discharge of storm water from the IB through a permitted outfall to the publicly owned treatment works, currently there is no process activity in this area.

3.1.5 Surface Water and Historical Process Wastewater Management

When the Hercules Plant was in operation, wastewater generated in the process units accumulated in sumps typically located within each unit. The process wastewaters consisted of water that remained after recoverable amounts of chemicals were removed. Recovered chemicals were reused in process operations, while the remaining wastewater was discharged from each unit. The wastewater exiting each

F

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

process unit was primarily routed through piping that did not receive storm water and was routed to the Effluent Treatment System, which includes the IB. After treatment, water from the IB was discharged to Drainage C under an NPDES permit (NPDES permit MS0001830). Currently, storm water that enters the IB is discharged to the publicly owned treatment works in accordance with an MDEQ permit.

3.1.6 Groundwater Flow Pathways

As discussed in Section 3.1.2, groundwater in the first water-bearing zone predominantly flows in two different directions on-site, northwesterly and southeasterly (Figure 12). This water-bearing zone is underlain by the Hattiesburg formation, a competent clay layer extending underneath the entire Site. Naturally occurring subsurface groundwater flow is the primary factor influencing potential constituent transport in the subsurface. Hercules does not have any groundwater extraction nor injection systems located in the first water-bearing zone that would alter this flow.

North of the groundwater divide, groundwater flows toward Greens Creek. This naturally occurring flow direction results in the migration of groundwater in a northwesterly direction in the vicinity of the former landfill area. This groundwater ultimately enters into Greens Creek. As calculated in Section 3.1.2, this naturally occurring groundwater movement results in an approximately groundwater velocity of 123 ft/yr in this area. It should be noted that a review of the groundwater constituent plume located in the vicinity of the former landfill does not indicate that subsurface constituents migrate at this rate, only the groundwater.

North of Greens Creek, groundwater flows from off-site properties onto the Site in a southerly direction. This groundwater flows underneath the sludge pits and is discharged into Greens Creek. As calculated in Section 3.1.2, this naturally occurring groundwater movement results in an approximate groundwater velocity of 79 ft/yr in this area.

The flow of groundwater near the City sewer pipe beneath Providence Street is considered a potential subsurface flow pathway and will be investigated during the implementation of this Revised Phase II Work Plan. Groundwater in the vicinity of the IB area flows in an easterly direction.

F

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

3.1.7 Potential Historical On-Site Source Areas

The Hercules Plant operated over 80 years. The sludge pits and former industrial landfill were in operation through the life-cycle of various production units. Because these areas were used for the accumulation of waste products, they are considered the primary historic on-site potential source areas for constituent releases. Through investigations directed by USEPA and/or MDEQ, the surface water and subsurface conditions in the vicinity of the sludge pits and former industrial landfill have been characterized and documented. Sample locations from these investigations are shown on Figure 5. Subsurface conditions in these areas are currently monitored through routine groundwater sampling of a network of wells approved in the RUAO. The results of the routine groundwater sampling have been documented in formal reports submitted to MDEQ. These areas are located north of the main process areas.

Because of the layout of Site infrastructure (rail lines, roads, pipe racks, tank farms, etc.) plant operations were mainly sited in the southern and eastern portions of the Site. During the operational history, different production operations (described earlier in Section 2.1) occupied the same area of the facility at different times. Various raw materials, intermediates, and finished products were stored at the facility in tanks, vessels, warehouses, or lay-down areas. Typically, tanks and vessels were located in the vicinity of the process units that required the contained substance. Therefore, if spills occurred, the spilled materials were generally co-located within the process unit areas. Historic unit operations and material accidentally released from these units is a potential on-site source area for constituent releases.

Prior to the adoption of natural gas as the fuel source for the on-site boiler, wood wastes that were not transported off site for disposal were burned in the Power House area for steam generation. The resultant boiler ash and process wastes were buried in the landfill.

Other waste materials were disposed of in permitted off-site facilities. Transportation of waste to off-site facilities was accomplished via tractor trailer and by rail.

3.1.8 Conceptual Site Model Summary

A review of available Site data (July 2011 groundwater flow map, surface water drainage features, July 2011 laboratory analytical results, etc.) was conducted in order to develop a comprehensive CSM. The review identified the following potential data gaps that will be focused on during implementation of the Phase II investigation:

F

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

- Soil and groundwater constituent concentrations in former process areas, including the southeastern portion of the Site near Providence Street;
- Soil and groundwater constituent concentrations near the western and northwestern Site boundaries; and
- Surface water constituent concentrations at various locations along conveyance pathways.

3.2 Preliminary Conceptual Exposure Model

A component of the CSM is a preliminary conceptual exposure model. An exposure model evaluates potential exposure pathways that may result in exposure of a target population. An exposure pathway consists of the following four elements: (1) a source and mechanism of constituent release to the environment; (2) a retention or transport medium for the released constituent; (3) a point of potential contact by the receptor with the impacted medium (the exposure point); and (4) a route of exposure to the receptor at the exposure point (e.g., ingestion, inhalation, or dermal contact).

The conceptual exposure model provides the framework for the exposure assessment. It characterizes the primary and secondary potential sources and their release mechanisms and identifies the primary potential exposure points, receptors, and exposure routes. Exposure points are places or "points" where exposure could potentially occur, and exposure routes are the basic pathways through which constituents may potentially be taken up by the receptor (e.g., ingestion, inhalation, dermal contact).

The conceptual exposure model incorporates the Site-specific analytical data with Constituent-specific fate and transport information to identify migration pathways, and activity and use patterns to identify the unique receptors and exposure pathways. Figure 10 identifies the sources, release mechanisms, transport pathways, and potential receptors for the Hattiesburg Site. These are discussed in detail below.

3.2.1 Potential Sources

Operations began at the Hattiesburg Site in 1923. Rosin derivatives, paper chemicals, and Delnav (a miticide) were produced at the Site. Structures at the Site included offices, a laboratory, a powerhouse, production buildings, a wastewater treatment plant, settling ponds, a landfill, and central loading and packaging areas. Site-related

l

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

Constituents associated with these operations have been detected in soil, groundwater, surface water, and sediment on the Hercules property. Detected constituent concentrations may act as continuing sources of contamination if mobilized by the naturally occurring flow of groundwater through these areas. Activities conducted during this Phase II work will identify source areas.

3.2.2 Release Mechanisms

Constituents detected in environmental media during the previous Site investigations have included organic and inorganic constituents. The migration of Constituents released in the past is influenced by Site environmental factors and the physical and chemical properties of the Constituents.

Constituents could potentially migrate from the former Hercules Plant via several mechanisms. When the Hercules Plant was active, normal permitted operations and potential inadvertent releases could have resulted in distribution of constituents at the Site. Because the Hercules Plant is no longer operational, these types of releases are not expected to occur. The potentially impacted soils at the Site can act as a source of constituents to other media. Migration into air may occur via volatilization or fugitive dust emissions; transport into the surface water can occur via surface runoff and groundwater discharge; and migration into groundwater can occur by infiltrating rainwater through impacted soil with subsequent leaching and transport. One other process that will influence migration is the attenuation of certain constituents through naturally occurring processes.

3.2.3 Potential Receptors

The Site is inactive and thus exposure of current Site workers is not expected to be significant because they do not routinely work around former process areas or disposal locations (landfill, sludge pits) and there are no significant subsurface construction activities; however, in the future, the Site could be redeveloped for industrial use and hypothetical future construction workers and Site workers could be exposed to constituents in soil on the Site. The evaluation of hypothetical future site workers will be a more conservative assessment of site worker exposure because such workers are more likely to work around the Site. It is unlikely that exposure to constituents in groundwater would occur because of restrictions to use of on-site groundwater as a potable water supply.

F

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

The Site is surrounded by commercial, industrial, and residential land uses. Data collected during the Phase I and Phase II Site investigations under the AO will be used to evaluate the potential exposure to Site-related constituents. This will include an evaluation of potential exposure to off-site receptors.

3.2.4 Potential Exposure Pathways

There are currently no points of exposure to groundwater on site. Workers on the property could be exposed to constituents in the surface soil through incidental ingestion, dermal contact, and inhalation of vapors or dust. While the presence of trespassers is unlikely, any trespassers on the property could also contact the surface soils and be exposed to Site-related constituents. If the hypothetical trespasser were to wade in the surface water on or leaving the Hercules property, they could contact Site-related constituents in the surface water or sediments. Additionally, aquatic and terrestrial biota are identified as potential receptors.

Shallow groundwater at the property boundary contains Site-related constituents. If Site-related constituents in groundwater extend beyond the property boundary, and groundwater is extracted for some purpose, then the potential exists for this pathway to be complete. Further, if volatile constituents associated with the former Hercules Plant are present off site, these VOCs could migrate from the groundwater into the vapor phase resulting in potential exposure. However, the Notice of Land Use Restrictions filed and recorded with the Forrest County Chancery Clerk's office on February 25, 2008 (Appendix D) prohibits the use of groundwater at the Site.

4. Preliminary Constituents of Concern

Consistent with the AO, the historic operations, past investigation results, and the Appendix IX constituent list were considered to identify preliminary constituents for the Phase I and Phase II investigations. In July 2011, Hercules collected samples from selected wells and analyzed for the Appendix IX list during the course of routine semiannual groundwater sampling per the RUAO. This effort was conducted to provide data that would be used to establish a CoC list as requested in USEPA comments to the Phase I Sampling and Analysis Work Plan. The Appendix IX analyte list was used in groundwater sampling of selected wells conducted in July 2011 to assess current conditions relative to this comprehensive analyte list. The laboratory reports from this sampling event are included in the Revised Phase I Work Plan. The data are provided in tabular format in Table 2. An evaluation and screening of the current and historic groundwater and surface water data collected during routine

F

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

groundwater monitoring events were conducted to identify the Site-related constituents on which to focus future assessments (Table 3). The constituents detected during the previous investigations were compared to the MDEQ TRGs and USEPA RSLs, conservatively assuming the groundwater or surface water would be used as a potable water supply, even though this is unlikely to occur due to the restricted covenant put in place as part of the RUAO and the low yield of the first water-bearing zone. In addition, the preliminary data generated during implementation of the Revised Phase I Work Plan were evaluated to identify constituents on which to focus future assessments.

The following summarizes the process used to evaluate the constituents detected in the previous data. The groundwater and surface water data from the previous routine groundwater investigations were compared to the screening levels (Tables 3 and 4). The maximum detected concentrations were compared to the TRGs and RSLs. Additionally, the minimum and maximum detection limits were compared to the TRGs and RSLs. The preliminary Phase I data were compared to the standards presented in the Quality Assurance Project Plan (QAPP) submitted to USEPA in the December 16, 2011, Revised Phase I Work Plan.

4.1 Groundwater

The groundwater data were evaluated first by class of compounds and then by individual constituents within a class. A discussion of this evaluation is provided below.

4.1.1 Polychlorinated Biphenyls

PCBs were not detected in the groundwater at the Site. The reporting limits were above both the TRGs and RSLs (i.e., screening levels); however, there is no evidence that these constituents were manufactured or used extensively at the plant.

A preliminary screening of Phase I data indicates very limited detections and only one exceedance of a screening standard, which is in an off-site sample. Therefore, PCBs were not included on the analyte list.

4.1.2 Pesticides

Although there were no detections of toxaphene, there was limited manufacturing of the compound at the Site. Therefore, toxaphene will be included on the analyte list.

A

L

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

Two pesticides, alpha-BHC and gamma-BHC (Lindane), were detected during the July 2011 routine groundwater sampling. Because the alpha-BHC and gamma-BHC were not manufactured at the facility and their presence is most likely associated with a registered Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) use, both constituents will not be included on the analyte list. The other pesticides on the Appendix IX analyte list were not detected.

Endosulfan I; endosulfan II; endosulfan sulfate; endrin; endrin aldehyde; endrin ketone; kepone; and methoxyclor did not have reporting limits exceeding the screening levels and there was no manufacturing of these compounds.

4,4'-DDD; 4,4'-DDE; 4,4'-DDT; heptachlor; heptachlor epoxide; and technical grade chlordane had maximum reporting limits above their respective screening levels, but their minimum reporting limits were below their screening levels. There was no manufacturing or known use of these compounds at the Hercules Site.

4-Chlorobenzilate; aldrin; beta-BHC; delta-BHC; dieldrin; and isodrin had reporting limits that exceeded their respective TRGs and RSLs. These compounds were not manufactured or used at the Site.

A preliminary screening of Phase I data indicates Endosulfan I was detected in one sample. It was reported at a concentration below its screening standard. Therefore, toxaphene will be the only pesticide included on the analyte list.

4.1.3 Herbicides

2,4-D was detected in the groundwater at a concentration below the TRG and RSL. Reporting limits of 2,4,5-T and 2,4,5-TP were below their respective screening levels. These compounds were not manufactured at the Site. The other herbicides on the Appendix IX analyte list were not detected. A preliminary screening of Phase I data indicates that herbicides were not detected. Therefore, none of the herbicides will be included on the analyte list.

4.1.4 Volatile Organic Compounds

For the July 2011 groundwater sampling event, the following constituents were detected at concentrations exceeding either their TRG or RSL and were identified as constituents for the analyte list: 1,1-dichloroethene; 1,2-dichloroethane; 1,2-dichloropropane; 4-methyl-2-pentanone; acetone; benzene; bromodichloromethane;

F

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

carbon tetrachloride; chlorobenzene; chloroform; chloromethane; dibromochloromethane; ethylbenzene (detected above the RSL but not the TRG); methylene chloride; tetrachloroethene; toluene; trichloroethene; and vinyl chloride.

A preliminary screening of Phase I data indicates the following constituents were detected at concentrations exceeding screening standards and were identified as constituents for the analyte list: 1,2-dibromoethane; 1,2-dichloroethane; 1,4-dioxane (1,4-dioxane was also detected in the SVOC analyses; it will be added as an SVOC analyte because the SVOC analytical method yields a lower detection limit); benzene; carbon tetrachloride; chlorobenzene; chloroform; ethylbenzene; naphthalene; trichloroethene; and xylenes.

4.1.5 Semivolatile Organic Compounds

For the July 2011 groundwater sampling event, the following constituents were detected at concentrations exceeding either their TRG or RSL and were identified as constituents for the analyte list: 1,1'-biphenyl; 1,4-dioxane; naphthalene; 1,4-dichlorobenzene; and 1,2,4-trichlorobenzene.

A preliminary screening of Phase I data indicates that the following constituents were detected at concentrations exceeding screening standards and were identified as constituents for the analyte list: 1,1'-biphenyl; 1,4-dioxane; 2-nitrophenol; acetophenone; dibenzo(a,h)anthracene; indeno(1,2,3-cd)pyrene; naphthalene; and pentachlorophenol.

4.1.6 Inorganics

None of the inorganics detected in the groundwater were reported at concentrations above their TRGs in the July 2011 sampling event. Arsenic was detected at a maximum concentration exceeding the RSL, but the detections were below the TRG. The maximum chromium concentration of 5 micrograms per liter (μ g/L) is below the drinking water standard. Thallium's reporting limits were above the RSL.

Mercury was not detected in groundwater and the detection limits were below the TRG and RSL. Cyanide was not detected in groundwater, and the detection limits were below the TRG and RSL. Thus, mercury and cyanide were not included on the analyte list.

F

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

A preliminary screening of Phase I data indicates that the following constituents were detected at concentrations exceeding screening standards and were identified as constituents for the analyte list: arsenic; cobalt; lead; and thallium.

4.1.7 Dioxins/Furans

There were no reported detections of 2,3,7,8-TCDD during the July 2011 groundwater sampling event; however, the reporting limits were above the TRG and RSL. The dioxin/furan total toxic equivalent (TEQ) for all samples was reported at 0.00. A preliminary screening of the Phase I data indicates one dioxin was detected. A comparison to screening standards indicates it is below the standard. Because the total TEQ was 0.00 for the July 2011 data and the one detection in the Phase I data is below the screening standards, dioxins and furans were not included on the analyte list.

4.2 Surface Water

Six surface water sampling locations (CM-0 through CM-5) are routinely monitored. The historical data are included in Table 1B and the locations are designated with a CM followed by the sampling location. The following constituents were detected in surface water (including detections in upgradient sampling locations): 1,1-dichloroethene; 1,2,3-trichlorobenzene; 1,2,4-trimethylbenzene; 1,3,5-trimethylbenzene; 1,2-dichlorobenzene; 1,3-dichlorobenzene; 1,4-dichlorobenzene; 1,2-dichloroethane; 2-chlorotoluene; 4-chlorotoluene; acetone; benzene; bromobenzene; carbon tetrachloride; chlorobenzene; chloroethane; cis-1,2-dichloroethene; ethylbenzene; methyl ketone; styrene; tetrachloroethene; toluene; trichloroethene; vinyl chloride; dioxenethion; and dioxathion.

The historical data indicate the following VOCs were not detected at concentrations above both of the screening levels: 1,1-dichloroethene; 1,2,4-trichlorobenzene; 1,2,4-trimethylbenzene; 1,3-dichlorobenzene; 1,3-dichlorobenzene; 1,4-dichlorobenzene; 2-chlorotoluene; 4-chlorotoluene; acetone; bromobenzene; carbon tetrachloride; chlorobenzene; methyl ethyl ketone; styrene; and toluene.

MDEQ derived a TRG for total dioxathion. The concentrations of dioxathion were below the screening level. A screening level is not available for the dioxenethion isomer, which is a breakdown product of dioxathion.

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

In the July 2011 sampling event, cis-1,2-dichloroethene and vinyl chloride were the only constituents detected. cis-1,2-Dichloroethene was never detected above the screening levels. Vinyl chloride has exceeded the screening level. cis-1,2-Dichloroethene and vinyl chloride were included on the analyte list.

Surface water samples collected from upgradient locations (AO-SW-01 through AO-SW-05) during implementation of the Phase I SAP were not included in the preliminary evaluation of Phase I data. A preliminary screening of Phase I data indicates the following constituents were detected at concentrations exceeding screening standards and were identified as constituents for the analyte list: 1,4-dioxane; 2,2'-oxybis (1-chloropropane); acetophenone; arsenic; benzene; carbon tetrachloride; chloroform; naphthalene; and tetrachloroethene.

4.3 Soil

Soil samples are not collected during routine sampling events. During implementation of the Revised Phase I Work Plan, soil samples were collected from on-site and off-site locations. All of the Phase I soil sample results were evaluated in this preliminary CoC evaluation.

4.3.1 Pesticides/Herbicides

Seven pesticides were detected in sediment samples during implementation of the Revised Phase I Work Plan. There were no reported detections of herbicides in sediment during the Phase I sampling event. A preliminary screening of Phase I data indicates dieldrin exceeded screening standards. Dieldrin was identified as a constituent for the analyte list.

4.3.2 Volatile Organic Compounds

For the Phase I soil sampling event, the following constituents were detected at concentrations exceeding screening standards and were identified as constituents for the analyte list: carbon tetrachloride and chloroform.

4.3.3 Semivolatile Organic Compounds

For the Phase I soil sampling event, the following constituents were detected at concentrations exceeding screening standards and were identified as constituents for the analyte list: benzo(a)pyrene and benzo(b)fluoranthene.

F

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

4.3.4 Inorganics

Seventeen inorganics were detected in soil samples during implementation of the Revised Phase I Work Plan. A preliminary screening of Phase I data indicates arsenic exceeded screening standards. Therefore, arsenic is identified as a constituent for the analyte list.

4.3.5 Dioxins/Furans

Dioxins and furans were reported to be present in each of the soil samples collected during the Phase I sampling event. A preliminary screening of the Phase I data indicates that three dioxin congeners were detected at concentrations exceeding screening standards. Therefore, dioxins and furans were identified as constituents for the analyte list

4.4 Sediment

Sediment samples are not collected during routine sampling events. During implementation of the Revised Phase I Work Plan, sediment samples were collected from locations upgradient and downgradient of the Site. Because the purpose of this section is to identify potential Site-related constituents that will be carried forth in subsequent monitoring events, only the downgradient sample results were included in this preliminary CoC evaluation.

4.4.1 Pesticides/Herbicides

Seven pesticides were detected in sediment samples during implementation of the Revised Phase I Work Plan. There were no reported detections of herbicides in sediment during the Phase I sampling event. A preliminary screening of Phase I data indicates none of the detected pesticides exceeded screening standards.

4.4.2 Volatile Organic Compounds

For the Phase I sediment sampling event, vinyl chloride was detected at a concentration exceeding its screening standards. Therefore, vinyl chloride is identified as a constituent for the analyte list.

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

4.4.3 Semivolatile Organic Compounds

For the Phase I sediment sampling event, the following constituents were detected at concentrations exceeding screening standards and were identified as constituents for the analyte list: benzo(a)pyrene and benzo(b)fluoranthene.

4.4.4 Inorganics

Fourteen inorganics were detected in sediment samples during implementation of the Revised Phase I Work Plan. A preliminary screening of Phase I data indicates the following constituents exceeded screening standards and were identified as constituents for the analyte list: arsenic and cobalt.

4.4.5 Dioxins/Furans

Dioxins and furans were reported to be present in each of the sediment samples collected during the Phase I sampling event. However, none of the reported dioxins and furans exceeded screening standards.

4.5 Summary

Based on the evaluations of the July 2011 sampling data and preliminary Phase I data, discussions with USEPA, evaluations of historical analytical data, and a review of the manufacturing processes at the Site, the following analyte list is proposed for the Phase II assessment activities:

VOCs (SW-846 8260B or equivalent drinking water standards)

1,2-Dibromoethane – Benzene

1,1-Dichloroethene
 Bromodichloromethane

1,2-Dichloroethane
 Carbon Tetrachloride

1,2-Dichloropropane
 Chlorobenzene

4-Methyl-2-pentanone
 Chloroethane

AcetoneChloroform

A

Arsenic

Revised Phase II Sampling and Analysis Work Plan

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

- Chloromethane	- Styrene	
- cis-1,2-Dichloroethene	 Tetrachloroethene 	
- Dibromochloromethane	- Toluene	
- Ethylbenzene	- Trichloroethene	F
- Methylene Chloride	 Vinyl Chloride 	
- Methyl Isobutyl Ketone	- Xylenes	
 Naphthalene SVOCs (SW-846 8270C or equivalent dri 	inking water standards)	
- 1,1'-Biphenyl	- Acetophenone	
- 1,2,4-Trichlorobenzene	- Benzo(a)pyrene	N 1
- 1,4-Dioxane	- Benzo(b)fluoranthene	
- 1,4-Dichlorobenzene	 Dibenzo(a,h)anthracene 	
- 2-Nitrophenol	- Indeno(1,2,3-cd)pyrene	^
- 2,2'-Oxybis(1-Chloropropane)	- Naphthalene	A
- Diphenyl oxide	 Pentachlorophenol 	
Pesticides (USEPA 8081A or equivalent	drinking water standards)	
- Dieldrin		L
- Toxaphene		
Inorganics (SW-846 6010, 6020, or equiv	valent drinking water standards)	

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

- Cobalt
- Lead
- Thallium
- Dioxins and Furans (SW-846 8290, USEPA 1613, or equivalent drinking water standards)Dioxathion/Dioxenethion (BATCO 088.1)

This preliminary CoC list will be revised as necessary after subsequent investigations. Approximately 10 percent of the surface water and groundwater samples will be analyzed for the complete list of analytes. Additionally, modifications to this analyte list may be proposed to address the soil gas, sub-slab, and indoor air media after additional groundwater sampling is complete. Any revisions to the CoC list will be approved by USEPA and MDEQ prior to implementation.

5. Phase II Project Objectives

5.1 Administrative Order Objectives

The objectives of the Revised Phase II Work Plan are to:

- Determine the presence of Site-related Constituents at on-site locations;
- Evaluate the nature and extent of Site-related Constituents at on-site and off-site locations;
- Evaluate the Site-related Constituents' potential impact to human health and the environment;
- Determine the presence, magnitude, extent, direction, and rate of movement of Site-related Constituents within and beyond Site boundaries; and
- Document the procedures to characterize source areas, potential migration pathways, and identify actual or potential human and/or ecological receptors.

Execution of the activities set forth in this Revised Phase II Work Plan, in concert with activities completed under the Revised Phase I Work Plan required by the AO, will obtain data that can be used to determine if impacts exist on and/or off site. Media that

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

will be evaluated may include soil, soil gas, surface water, sediment, and/or groundwater. If an evaluation of these media indicates a potential vapor exposure pathway, air samples may also be collected.

5.2 Data Quality Objectives

Data collected in accordance with the procedures described in this Revised Phase II Work Plan will be evaluated in accordance with the objectives described in the QAPP. Data quality objectives (DQOs) established for this project are included in the QAPP. The project activities will be performed as required by the USEPA AO for the investigation of potential environmental impacts at or originating from the Site.

6. Phase II Environmental Investigation

The scope of work for the investigation described below is designed to meet the requirements of the AO. Due to the similar nature of the work proposed in this Revised Phase II Work Plan and the work that will be performed during the implementation of the Revised Phase I Work Plan, submitted under separate cover, the field work proposed herein will be conducted in accordance with the Health and Safety Plan submitted as Appendix E of the Revised Phase I Work Plan (ARCADIS 2011a).

Based on the sampling proposed in this document, Hercules proposes to collect the following number of samples (as detailed in the following sections and displayed on Figure 13).

Sample Media	Number of Sample Locations	
Soil (direct push)	22	
Soil (hand auger)	11	
Groundwater	22	
Surface Water	19	
Sediment	19	
Soil Gas	Will be collected, if warranted, based on the results of groundwater sampling.	
Water from Sewer	2	

Note: Samples will be submitted for the analyses included in the Quality Assurance Project Plan.

2999.6/R/4/bbn 40

F

N

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

6.1 Field Investigation Procedures

A detailed discussion of the field procedures that will be employed to complete the field tasks is provided in the following sections. All field procedures are in accordance with the USEPA Field Branches Quality System and Technical Procedures (USEPA 2011). All soil, groundwater, sediment, and surface water samples collected will be analyzed by a National Environmental Laboratory Accreditation Program certified laboratory.

6.2 Soil Sampling

6.2.1 Identification of Soil Sampling Locations

Soil sampling locations have been selected within Hercules property boundaries to address soil quality in shallow and subsurface soil. Direct-push and manual soil sampling techniques will be used to collect soil samples from the locations shown on Figure 13.

Direct-push techniques (DPTs) consist of hydraulically pushing or driving a small-diameter, hollow steel rod to a target depth and collecting a soil or groundwater sample. The equipment necessary for the collection of samples using the DPT is self-contained or vehicle-mounted unit. The steel probe rods, 3 feet to 5 feet in length, are threaded for easy connection and have tight seals to provide a continuous length of rod. The rods are hydraulically driven or hammered to target depths.

Soil samples will be collected from the following intervals in each boring advanced using DPT and retained for chemical analyses:

- The soil sample at the 0 to 2 ft bgs interval;
- The soil sample exhibiting the highest organic vapor analyzer (OVA) reading;
- The soil sample collected at the soil/groundwater interface;
- The soil sample at the base of the probehole; and
- Soil samples that are visibly stained.

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

Manual soil sampling techniques consist of using hand-auger equipment to obtain soil samples. Soil samples will be collected from the following intervals and retained for chemical analyses:

- The soil sample at the 0 to 1 ft bgs interval; and
- The soil sample at the 1 to 2 ft bgs interval.

Details of soil sample collection techniques are provided in the following sections and a map showing proposed soil sampling locations is provided in Figure 13. Soil sampling locations were selected to determine if historical operation areas have impacted soil quality and to quantify any potential human health or ecological risks that may be associated with those areas. The rationale for selecting the sampling locations shown on Figure 13 is included in Table 5.

The soil sample results will be evaluated using the assessment procedures contained in Sections 9 and 10 and the decision logic presented on Figures 15A and 15B. In the event that the decision logic indicates additional soil samples are needed for delineation, the additional soil samples will be collected from the 0 to 1 ft bgs soil interval, 1 to 2 ft bgs soil interval, and other soil intervals as needed to define the nature and extent of impacted soil. Sampling will be conducted in accordance with the sample collection procedures and analytical parameters in the following sections of this Revised Phase II Work Plan.

6.2.2 Soil Sampling Procedure

The USEPA SESD guidance document SESDPROC-300R2 will be utilized during the collection of soil samples for laboratory analysis. Soil sampling will be performed and documented in accordance with procedures outlined in the document and with the Standard Operating Procedures (SOP) provided in Appendix N of the Revised Phase I Work Plan. Where conflicts exist between the two guidance documents, the SESD guidance will prevail. Conditions that require deviations from practices in the guidance will be documented in field books, soil sampling sheets, and final reports that will become part of the project records. Soil samples will be preserved, handled, and shipped in accordance with SESDPROC-300-R1 and the project-specific QAPP. The analytical program for the soil program is discussed in Section 7 and the evaluation process is described in Section 8.

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

The lithology of the soil samples collected will be described through visual observations of the soil/bedrock cores using the Unified Soil Classification System (USCS) and/or the ASTM Standard D 2488 for Description and Identification of Soils. The Boring/Well Construction Log (Appendix E) will be used to record lithologic logging observations. The following logging sequence will be used for the description of unconsolidated materials:

- Describe major soil type and percentage;
- Describe composition of the soil;
- Describe the moisture, texture, and color of the soil;
- Document other geologic observations such as bedding characteristics, structure and orientation, and primary and secondary permeability/porosity (if possible); and
- Document observations on drilling progress including sample interval loss and recovery.

Samples will be preserved according to the selected analytical method. Specific method preservation requirements, size, and type of sample containers to be used, and holding times for each parameter are contained in the QAPP.

6.2.3 Soil Sample Collection

The following procedures will be used during the collection of soil samples from direct push borings:

- Record borehole location and intended sample depth intervals on the Boring/Well Construction Log.
- 2. Line the steel soil sampler core barrel with an acetate, polyethylene, or Teflon liner and attach sampler to end of steel rods.
- 3. Hydraulically push or drive the soil sampler and rods to intended depth.
- 4. Open the core barrel and disassemble, revealing the soil core sample within the liner.

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

- 5. Remove a portion of the liner over the entire length of the core using an appropriate cutting tool.
- 6. VOC samples will be collected immediately from defined soil sample intervals (soil/groundwater interface or depth of probehole), when encountered.
- 7. After collection of VOC sample, screen soils immediately in the field using an OVA (e.g., photoionization detector [PID], flame ionization detector [FID]) to document the levels of organic vapors present. To collect volatile organic headspace readings, place a portion of the soil sample in a sealed plastic bag approximately two-thirds full allowing for approximately 30 percent headspace. Place the bag in a dry area, which is as close to room temperature (70° F) as practicable. After 10 minutes, use a PID or FID to measure the vapors that accumulate in the bag due to off-gassing from the sample. Base PID/FID usage on the target analytes. If a PID is used, select the appropriate lamp based on the target analyte. Record the measurement on the Sample/Core Log (Appendix E).
- 8. If additional soil intervals are targeted for sample collection, a second probehole in the immediate vicinity of the original probehole will be advanced. To collect the soil sample(s) for laboratory analysis, the sampler will don a clean pair of disposable gloves immediately prior to sample collection. VOC samples will be collected directly from the target depth interval of the soil core to minimize disturbance using an EnCore™ sampler or equivalent (Terra Core). Transfer the remaining soil from the target depth interval to a stainless steel bowl. Mix the soil using a stainless steel spoon until the sample is visually uniform. Remove any debris or larger rocks observed during mixing using the spoon. Collect non-VOC analysis samples from the bowl and place in appropriate sample container, label the container, and place on ice. Note on the field sample log the depth interval from which the sample aliquot was collected. The container and preservative requirements for soil samples are outlined in the QAPP for this project.
- 9. Extract from the liners the portion of the soil core not submitted to the laboratory for analysis and use for logging purposes.
- 10. Describe the soil samples in the field. The lithology of the soil will be described by a qualified and experienced ARCADIS representative through visual observations of the soil core using the USCS or ASTM designation.
- 11. Place all soil cuttings in drums or roll-off box.

N

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

12. Properly decontaminate all down-hole sampling equipment prior to subsequent use in consecutive sample collection.

6.2.4 Schedule of Sampling

Soil sampling will be conducted at the locations shown on Figure 13. Soil sampling will be initiated upon approval of this Revised Phase II Work Plan and obtaining access agreements for off-site sampling locations. Access agreements will be presented to the property owner for review and approval. A preliminary schedule for soil sampling is included as Table 6. No samples will be collected without the owner's signed access agreement.

6.2.5 Borehole Abandonment

Direct push soil borings that are not used for temporary well installation will be abandoned by allowing the saturated portion of the formation (i.e., unconsolidated sands and gravel) to collapse back into the borehole as the DPT rods are retracted. The upper 10 feet of the borehole will be plugged with granular bentonite and hydrated with potable water to make an impermeable seal.

Open boreholes not used for monitoring well installation, temporary wells, or permanent wells will be abandoned as follows:

- The entire borehole will be grouted with cement and bentonite slurry containing
 high solids mixed to the manufacturer's specifications. The bentonite slurry will be
 placed with a tremie pipe from the bottom of the annular area to be grouted to
 ensure proper placement of the slurry.
- 2. The abandoned borehole will be marked with a flag or stake to allow for surveying.

6.3 Surface Water and Sediment Sampling

Preliminary analysis of surface water on the Site has identified three major drainages which will be sampled during implementation of the Revised Phase I Work Plan. Additional intermittent drainage ditches throughout the property, which may be influenced by the Site, will be sampled during the Phase II activities, as discussed below.

V

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

6.3.1 Identification of Surface Water and Sediment Sampling Locations

Initial actions performed by Hercules in response to the AO included performing a review of available maps, historical reports, and related resources that identify surface water features within and beyond the 0.5-mile search radius specified by USEPA. There are numerous small drainage features on the Hercules Site that collect storm water runoff from rain events but these ditches are typically dry except in periods of heavy rainfall. A detailed evaluation of hydrologic setting at the Site was performed by B&V and summarized in 1993 B&V Report. The report concluded that, and as discussed in Section 1.2, Topography and Surface Water, the Site is predominantly drained by three waterways, which include:

- The perennial Greens Creek, which flows in an easterly direction (Drainage A);
- An unnamed, intermittent drainage ditch that flows in a northerly direction and exits
 the northeast corner of the Hercules Site, crosses North Main Street, and flows
 within a culvert below a neighboring industrial facility until it daylights
 approximately 1,000 feet northeast of the Hercules property line (Drainage B); and
- An unnamed, intermittent drainage ditch located in the southeastern portion of the Site, which flows south of the Site's wastewater treatment plant and exists in both closed-culverted and open conditions along its generally easterly flow path (Drainage C).

The Site's three main drainages flow northeast for 1.0 to 1.2 miles before entering the Bouie River, which flows in a southeasterly direction (B&V 1993). Depending on which pathway surface water enters the Bouie River from the Site, it then travels between 0.9 and 1.9 miles southeast and enters the Leaf River. The Bouie and Leaf Rivers are utilized for sport and commercial fishing according to the 1993 B&V report; however, the report states that Greens Creek is too small to be used for fishing or swimming. This usage of Greens Creek will be determined during implementation of this Revised Phase II Work Plan.

The on-site surface water features identified in historical reports and the smaller intermittent drainages that have not been sampled to date, are the focus of the proposed sediment and surface water sampling program outlined in this Revised Phase II Work Plan.

F

N

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

Proposed surface water and sediment sample collection locations along the reaches of on-site drainage features are shown on Figure 13. The rationale for collecting a sample at each location is provided in Table 7. Nineteen co-located surface water and sediment samples (where possible) will be collected within the facility boundary to evaluate Constituent concentrations on Hercules property. The majority of the sample locations are proposed for the three main drainages, or tributaries to those drainages, to fully characterize Constituent concentrations within the drainages and to identify habitat characteristics in and around these features. The remaining sample locations are along the southern property boundary (West 7th Street). Sampling will not be performed in closed culverts or conveyances that are not readily accessible and open to the surface. Proposed surface water and sediment sample locations are shown on Figure 13. Details of the sample collection procedures and analytical parameters are provided in the following sections of this Revised Phase II Work Plan.

At each surface water and sediment sampling location a screening-level assessment of surface water use, habitat, and potential for threatened and endangered species will be performed to capture visual observations at the time of the sampling.

The surface water and sediment sample results will be evaluated using the assessment procedures contained in Sections 9 and 10 and the decision logic presented on Figures 15A and 15B. In the event that the decision logic indicates additional surface water and/or sediment samples are needed for delineation, the additional sampling will be conducted in accordance with the sample collection procedures and analytical parameters in the following sections of this Revised Phase II Work Plan.

6.3.2 Surface Water Sampling Procedure

The USEPA SESD guidance document SESDPROC-201-R1 will be utilized during the collection of surface water samples for laboratory analysis. Surface water sampling will be performed and documented in accordance with procedures outlined in the document and with the SOP provided in Appendix J of the Revised Phase I Work Plan. Where conflicts exist between the two guidance documents, the SESD guidance will prevail. Conditions that require deviations from practices in the guidance will be documented in field books, surface water sampling sheets, and final reports that will become part of the project records. Surface water samples will be preserved, handled, and shipped in accordance with SESDPROC-201-R1 and the project-specific QAPP. The analytical program for the surface water program is discussed in Section 7 and the evaluation process is described in Section 8.

F

N

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

6.3.3 Sediment Sampling Procedure

The USEPA SESD guidance document SESDPROC-200-R2 will be utilized during the collection of sediment samples for laboratory analysis. Sediment sampling will be performed and documented in accordance with procedures outlined in the document and with the SOP provided in Appendix K of the Revised Phase I Work Plan. Where conflicts exist between the two guidance documents, the SESD guidance will prevail. Conditions that require deviations from practices in the guidance will be documented in field books and sediment sampling sheets that will become part of the project records. Sediment samples will be collected from within the upper 0- to 6-inch sediment layer present at each location. Each sediment sample will be preserved, handled, and shipped in accordance with SESDPROC-200-R2 and the project-specific QAPP. The analytical program for the sediment program is discussed in Section 7 and the evaluation process is described in Section 8.

6.3.4 Schedule of Sampling

Surface water and sediment sampling will be conducted at the locations shown on Figure 13. A preliminary schedule for surface water and sediment sampling is included as Table 6.

6.4 Groundwater Sampling (Temporary and Permanent Wells)

Temporary or permanent groundwater monitoring wells will be installed and sampled to investigate the presence of Site-related Constituents in groundwater:

- **Step 1:** Install pre-packed well screens using direct push technology to collect screening-level groundwater data.
- **Step 2:** Based on a review of the screening level groundwater data, install permanent monitoring wells, if required, to collect shallow groundwater confirmation samples.

In addition, depth-to-water measurements and ground-surface elevations at each well point will be determined to assess the direction and gradient of groundwater flow. This section describes the sampling activities that will be performed to evaluate Constituents in groundwater.

F

V

A

48

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

6.4.1 Identification of Groundwater Sampling Locations

6.4.1.1 Upper Water-Bearing Zone

Based on Hercules' preliminary evaluation of the CSM, and to address USEPA comments during the June 9, 2011 and September 27, 2011, meetings, and to augment the monitoring data collected during routine groundwater monitoring events, groundwater screening data from the upper water-bearing zone will be collected in the vicinity of the locations as depicted on Figure 13.

The rationale for selecting the groundwater sampling locations shown on Figure 13 is provided in Table 5. The actual groundwater sample locations will be determined in the field and will be based on utility clearances.

Groundwater samples collected using pre-packed well screens are considered screening-level data, suitable for obtaining an understanding of groundwater quality.

Groundwater sample results will be evaluated using the assessment procedures contained in Section 9 and the decision logic presented on Figures 16A and 16B. In the event that the decision logic indicates additional groundwater samples are needed for delineation, the additional sampling will be conducted in accordance with the sample collection procedures and analytical parameters in the following sections of this Revised Phase II Work Plan.

6.4.1.2 Deep Aquifer

Groundwater samples were collected from two of Hercules' on-site deep wells during implementation of the Revised Phase I Work Plan. These wells are screened in the Catahoula sandstone, which is below the Hattiesburg formation. The results of the deep well sampling will be evaluated as part of the Phase I investigation. In the event that the Phase I investigation concludes that additional deep well sampling or aquifer assessment is required, additional sampling and/or assessment may be conducted as part of the Phase II investigation. Monitor wells into the deep aquifer will be installed in accordance with the procedures below, if warranted.

F

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

6.4.2 Monitor Well Installations for Groundwater Sampling

6.4.2.1 Temporary Well Installation Procedures

Groundwater samples from the first water-bearing zone will be collected by installing temporary groundwater monitoring wells completed with pre-packed well screens using a DPT drilling rig. Small-diameter (¾-inch internal diameter) polyvinyl chloride (PVC) wells equipped with 10 feet of pre-packed well screen will be installed in the locations illustrated on Figure 13 so that groundwater quality samples can be collected. The screened interval of these temporary monitoring wells will be set so that approximately 2 feet of the screened interval is above the static water table and 8 feet is below the water table. This will ensure that the screen interval intersects both the saturated and unsaturated zones of the shallow aquifer. Following utility clearing, a DPT rig will be used to collect continuous soil samples using a macro-core sampler from the ground surface to a depth equivalent to the base of the first water-bearing zone. If the saturated zone is greater than 15 feet thick or if the field screening values indicate potential impacts at depth, a second screened interval may be installed in the area. After the cores are collected, they will be opened and soils screened and collected for laboratory analysis as discussed above in Section 6.2.

6.4.2.2 Groundwater Sampling Using Permanent Well Procedures

The temporary wells may be converted to permanent groundwater monitoring wells, or permanent groundwater monitoring wells may be installed to facilitate the collection of shallow groundwater samples and the measurement of groundwater elevations, if deemed necessary based on an evaluation of the groundwater screening data. The preferred alternative is to convert the temporary well pre-packed screens into permanent wells, but in some instances the original pre-packed screens may be removed and a monitoring well installed adjacent to the screening location. All monitoring wells will be drilled and installed by a Mississippi-licensed water well driller, using one of the following techniques depending upon anticipated field conditions:

- Hollow-Stem Auger;
- Mud Rotary; or
- Rotosonic.

A

50

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

All soil cuttings generated during the drilling of the boreholes will be collected and stored in a drum or roll-off box while awaiting characterization.

6.4.2.3 Monitor Well Construction Details

The monitor wells will be constructed so that the top of the well screen is just above the water table. In the event that the groundwater bearing zone has a continuous interval greater than 15 feet in vertical length, a second monitor well will be installed to monitor the deeper portion of the zone. In either case, monitor well screens will not be greater than 10 feet long. All monitoring wells will be installed and developed in accordance with SESD GUID-101_R0. Procedures for both the conversion of DPT temporary wells to permanent wells and installation of traditional wells are provided in the SOP provided in Appendix M of the Revised Phase I Work Plan.

Monitoring well construction details will be documented on the appropriate Well Construction Log. No water will be introduced during monitoring well construction unless the borehole conditions require stabilization. If required, the water will be obtained from the public water supply system.

- The screened interval for all monitoring wells is anticipated to be 5- to 10-foot sections of factory-milled 10-slot, 2-inch O.D., schedule 40 PVC screen, placed in the bottom of each well. The well screen attached to threaded, flush joint, 2-inch O.D., schedule 40 PVC casing will be inserted in the borehole through the minimum 6.25-inch O.D. hollow-stem auger.
- 2. The screened interval of the monitoring wells are anticipated to be 8 to 18 ft bgs.
- 3. PVC casing will be threaded to the screen and brought to a height of 3 feet above ground level for completion.
- 4. The annular space between the well and the borehole wall will be backfilled with a clean, graded, size 20 to 40 silica sand pack that will extend from the bottom of the borehole to a minimum of 2 feet above the top of the screened interval. The sand pack will be placed by tremie pipe from the bottom of the borehole through the hollow-stem augers to ensure complete placement around the well screen. The hollow stem auger will be retrieved as the sand pack is emplaced and can typically serve as the tremie pipe for filter pack placement.

F

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

- 5. Approximately 1 foot of very fine sand grade size 50 or smaller may be emplaced above the filter pack to prevent the migration of the bentonite slurry into the well screen.
- 6. A minimum thickness of 3 feet of bentonite pellets or chips will be placed on top of the filter pack as a seal. If the seal is within the unsaturated zone at the time of installation, granular bentonite will be placed in 1-foot lifts, saturated with potable water, and allowed to hydrate. Hydration time will conform to the manufacturer's recommendations before further work on the well is performed.
- 7. The annular space from the top of the bentonite seal to within 1 foot beneath the frost line (approximately 30 to 36 inches bgs) will be filled with a cement and bentonite slurry containing high solids mixed to the manufacturer's specifications. Alternatively, cement/bentonite slurry consisting of 8 gallons water and 5 percent bentonite by weight per bag of Portland cement will be used, with a target density of 14 to 15 pounds per gallon. The bentonite slurry will be placed with a tremie pipe from the bottom of the annular area to be grouted to ensure proper placement of the slurry.
- 8. The remaining annular space near land surface will be filled with concrete. All wells with aboveground surface completions will be completed above grade using a protective steel cover. A concrete apron will be installed around the cover. The apron will be a minimum of 2 feet by 2 feet and 6 inches in thickness, and shall be sloped to promote drainage away from the well. The wells will also be equipped with locking caps.
- At selected locations, steel guard posts or protective barriers will be installed around the wells in a manner designed to prevent vehicles from accidentally damaging the well.

6.4.2.4 Groundwater Level Measurements

Water level measurements will be referenced to a surveyed elevation point located on the top of the well casing. This measurement point will be surveyed by a Certified Land Surveyor and referenced to feet above mean sea level. An electronic water level probe will be used to gauge the water level in the new wells, in addition to the existing monitoring wells and piezometers at the facility.

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

Water levels will be recorded in the temporary monitoring wells, existing monitoring wells and new monitoring wells within 24 hours prior to each groundwater sampling event. The total well depth may also be measured at this time to determine if sediment has accumulated in the well thereby reducing the effective well depth. Water level measurements at each Site will begin with the upgradient wells (i.e., inferred least contaminated wells) and proceed to the downgradient wells (i.e., inferred most contaminated wells). Water-level measurements will be collected within a single 24-hour period and will be measured twice to check the reproducibility of the measurement data. This measurement validation helps ensure accuracy with regard to the water level data collection. The procedure for obtaining water level measurements is as follows:

- Describe the area surrounding the well, whether or not the lock was secure (if applicable), if the well could have been impacted by surface water runoff, ambient weather conditions and other factors that could affect the final data analysis. This documentation is recorded on a Water Level Measurement Form.
- 2. Decontaminate the electronic water probe prior to initiating water level measurements and between all wells and piezometers.
- 3. Unlock the protective casing and remove the inner cap on the riser.
- 4. Check the probe to verify that it is operational, then lower down the monitoring well.
- 5. If the well is not vented, allow the water level to equilibrate for a few minutes prior to collecting the first measurement. Take fluid level measurements from a fixed reference point (the north side of the top of the PVC riser) using an electric tape graduated in 0.01-foot intervals.
- 6. Repeat the measurements until two measurements are obtained that are within 0.01 foot.
- 7. Remove and decontaminate the probe, replace the inner cap, and lock the protective casing.

F

N

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

6.4.2.5 Groundwater Sampling Procedures

The USEPA SESD guidance document SESDPROC-301-R2 will be utilized during the collection of groundwater samples for laboratory analysis. Groundwater sampling will be performed and documented in accordance with procedures outlined in the document and with the SOP provided in Appendix L of the Revised Phase I Work Plan. Where conflicts exist between the two guidance documents, the SESD guidance will prevail. Conditions that require deviations from practices in the guidance will be documented in field books, surface water sampling sheets, and final reports that will become part of the project records. Groundwater samples will be preserved, handled, and shipped in accordance with SESDPROC-301-R2 and the project-specific QAPP. The analytical program for the groundwater sampling program is discussed in Section 7 and the evaluation process is described in Section 8.

A groundwater sample will be collected from each of the groundwater monitoring wells (either temporary or permanent) following installation and well development. Samples from the monitoring wells will be collected using low-flow/low-stress sampling techniques in accordance with the procedures specified in the SOP.

New monitoring wells will not be sampled for at least 24 hours following non-stressful means of well development (e.g., purging with submersible pump or bailer) and 48 hours following stressful means of well development (e.g., air lift, surge and purge). Monitoring wells will be purged prior to collecting groundwater samples to ensure that representative formation water is being sampled. The monitoring wells will be purged and sampled in the same order as that for water-level measurements (upgradient to downgradient, or least contaminated to most contaminated where known based upon prior sampling results). Prior to introduction into the well, all non-dedicated equipment and materials will be decontaminated.

The following procedures will be implemented when performing well purging prior to sample collection:

- 1. Put on clean latex or vinyl surgical gloves or nitrile gloves.
- 2. Unlock the metal protective casing, remove the well cap, and document the general condition of the well.
- 3. Determine static fluid-level elevation using electronic probe. Record on Groundwater Sampling Form.

F

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

- 4. Compute the volume of water in the well. The volume of water to be purged will be computed based on the total well depth recorded upon the completion of well installation. The total depth will be measured periodically during the monitoring program to determine if sediment has accumulated in the well thereby reducing the effective well volume. If it is determined that sediment has accumulated in the well, then the new well depth will be used to compute the volume of water to be purged.
- Insert the pre-cleaned bladder (or peristaltic) pump and tubing into the well to the midpoint of the well screen. Record installation time in field notes. Dedicated Teflon and/or PVC bailers may be used to facilitate sample collection where site conditions warrant, such as low recovery wells.
- 6. Start pump at the lowest possible flow rate and adjust the pumping rate to approximately 100 milliliters per minute (mL/min). Record pump start time in field notes. Verify the flow rate with the graduated cylinder or equivalent by collecting the water from the discharge line for one minute. Record results in field notes. Based on the recovery rate of the well, the pump may need to be raised or lowered to adequately purge the entire well column. Adjustments will be recorded in the field notes.
- 7. Monitor water level to verify that little or no drawdown (0 to 0.3 foot) is occurring in the well. If desired, the flow rate may be increased to up to 300 mL/min in more permeable formations as long as little or no drawdown is observed in the well. Record measurements and flow rates in field notes.
- 8. Obtain field parameter measurements (temperature, specific conductance, pH, dissolved oxygen, oxidation-reduction potential [ORP], and turbidity) every 5 minutes and record on the Groundwater Sample Log. Purge until the criteria listed below have been met (unless low well recovery precludes this):
 - The field parameters stabilize to within +/- 10 percent of three consecutive meter readings taken at least 5 minutes apart.
 - The measured turbidity is less than 10 nephelometric turbidity units (NTUs), unless low recovery precludes this. In the event that turbidity is not less than 10 NTUs using standard well purging techniques (i.e., a bailer), an appropriate number of well volumes (three to five) will be removed. In the event that turbidity stabilizes at a level greater than 10 NTUs when using low flow

F

A

L

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

sampling procedures, this groundwater will be considered representative of the groundwater in the formation. The representative groundwater will be containerized and submitted for analysis.

- 9. Collect VOC samples for laboratory analysis (if required) at a low flow rate (100 mL/min) directly into the appropriate sample container. If a peristaltic pump is used, the downhole tubing will be filled using suction and removed from the well to prevent the sample from contacting the pump head. The pump speed is reduced and the direction reversed to push the sample out of the tubing and into the sample containers. Ensure that no air bubbles are present in the vial. Secure sample container lid and store sample containers in chilled cooler after filling out the sample label.
- 10. Collect additional samples for non-VOC analysis (collecting in the order of explosives, metals, and indicator parameters). If samples are being collected using a peristaltic pump following VOC sample collection, repeat steps 1 through 8. Collect non-VOC samples at low flow rate (100 mL/min). Flow rates of up to 500 mL/min can be used if all stabilization criteria are achieved. Unless specified in the site-specific work plan, metals samples will be collected unfiltered. If site conditions require filtration for metals analysis, an in-line 45 micron filter will be used. Secure sample container lids and store sample containers in chilled cooler.
- Complete sampling documentation on the Groundwater Sampling Form, record the collection date and time on the sample key, and fill out the Well Sampling Summary form.
- 12. If inadequate water is present in the well to fill the required sample containers, return periodically within 24 hours until adequate sample volume is obtained and field parameters measured. Collect groundwater for individual analyses in the appropriate sample order. If required, collect VOCs and store first, then metals, and other indicator parameters.
- 13. If drawdown in the well cannot be maintained within the 0.3-foot requirement, sample collection will be performed after three well volumes of groundwater have been purged. Begin sample collection with VOC analysis unless otherwise noted in the site-specific work plan. For wells that purge dry before all of the samples are collected, allow the well to recover and then make one more attempt to collect the remaining samples within a 24-hour period.

F

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

- 14. Turn off pump. Remove portable pump from well and decontaminate or dispose. Tubing will be left as dedicated tubing in the well or disposed of after use.
- 15. Determine the total depth of the well. Compare the measurement of the total depth of the well with previous measurements and well construction log to determine available screen length. Record on water sampling log. If more than 20 percent of a well screen is occluded by sediment, the well must be redeveloped prior to collecting future groundwater quality samples. Samples collected prior to the total well depth measurement will be representative only if the field data indicate that the well met stabilization criteria prior to sampling.
- 16. Replace cap on well and protective casing lock well.

6.4.2.6 Schedule of Groundwater Sampling

Groundwater sampling will be initiated upon approval of this Revised Phase II Work Plan and obtaining access agreements for off-site sampling locations. A review of county tax records will be performed to determine which proposed sampling locations identified on Figure 13, if any, will require private property access. Access agreements will be presented to the property owner for review and approval. The sampling event will be scheduled once all access agreements are obtained. A preliminary schedule for groundwater sampling is included in Table 6. No samples will be collected without the owner's signed access agreement.

6.4.2.7 Temporary Monitor Well Abandonment

Temporary wells will be abandoned by the following procedures.

- The temporary well riser pipe and well screen will be removed from each borehole.
 The riser pipe and screen will be decontaminated by steam cleaning at the designated decontamination area and will be discarded in a sanitary waste landfill.
- 2. The entire borehole will be grouted with cement and bentonite slurry containing high solids mixed to the manufacturer's specifications. The bentonite slurry will be placed with a tremie pipe from the bottom of the annular area to be grouted to ensure proper placement of the slurry.

The abandoned borehole will be marked with a flag or stake.

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

6.5 Vapor Intrusion Evaluation

The vapor intrusion pathway will be evaluated for on-site conditions consistent with the sample decision flow chart provided on Figure 14, if necessary. This approach starts with a broad view of the potential pathway, characterizing sampling media one step at a time originating with groundwater, then progressing to soil gas, sub-slab, and indoor air evaluations, as appropriate. The key is to focus the sampling efforts on those areas or buildings with the greatest potential for indoor air exposure to Constituents. Generally, buildings within 100 feet of the source (in this case groundwater) will be the focal point of any further investigation; however, if the groundwater exhibits concentrations below screening levels that are protective of indoor air exposures, then further evaluation would not be warranted.

The following describes the specific procedures for screening shallow groundwater data and for collecting and evaluating soil gas data near the edge of the delineated shallow groundwater plume and/or within the plume. Soil gas data will be screened using USEPA RSLs assuming a 0.1 attenuation factor moving from soil gas to indoor air. If soil gas samples exceed the screening levels, sub-slab soil gas and indoor air sampling in buildings will be warranted.

The first step in the evaluation of the vapor intrusion pathway is the comparison of shallow (water table) groundwater data to calculated groundwater screening levels (SLs) protective of indoor air exposure. These SL values have been calculated using the most recent USEPA residential indoor air RSLs (June 2011 table) consistent with USEPA (2002) guidance as follows:

$$C_{qw} = C_{ia} \times CF \times 1/HLC * 1/AF$$

Where:

 C_{ow} = groundwater to indoor air screening level (or groundwater SL)

 C_{ia} = concentration in indoor air (residential air concentrations from the USEPA RSL table)

CF = conversion factor (0.001 m³/L)

HLC = Henry's Law Constant (unitless and constituent-specific)

AF = attenuation factor (0.001)

F

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

If the calculated groundwater SL is below a federal drinking water standard such as the Maximum Contaminant Level (MCL), the MCL will be used as the criteria instead. Groundwater SLs will be calculated corresponding to a target cancer risk level of 1×10^{-6} (1 in 1,000,000) or a Hazard Quotient (HQ) of 1.0 for screening purposes, although the entire Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) target risk range (1 \times 10⁻⁶) and an HQ of 1 may be considered prior to sampling additional environmental media.

A screening procedure will be implemented during the Phase II activities to evaluate new groundwater data obtained during the proposed on-site investigation activities. If further investigation activities are required based on the results of soil gas sampling, shallow groundwater samples will be collected as described in Section 6.4 until concentrations are below either the calculated groundwater SLs or the MCLs, whichever is greater. At the completion of the on-site groundwater assessment, USEPA, MDEQ, and Hercules will determine if soil gas samples should be collected or if the data indicate that no further evaluation of the vapor intrusion exposure pathway is warranted.

6.6 Soil Gas Sampling

Soil gas sampling, if warranted, will be conducted to assist in the delineation and evaluation of the vapor intrusion exposure pathway. The overall goal of the soil gas sampling program is to confirm that VOCs associated with historical plant operations are not migrating within the vadose zone at concentrations that could be of concern for vapor intrusion. As noted above, a focused number of soil gas samples were collected from the southeast portion of the Site as part of the Phase I investigation. Additional soil gas samples may be collected based on the results of shallow groundwater sampling and screening as outlined in Figure 14 and Section 6.6.4.

6.6.1 Identification of Soil Gas Sampling Locations

Soil gas samples, if required on site, will be collected approximately 1 to 2 feet above the water table. The exact location of the samples will be determined in the field based on groundwater data and will be subject to subsurface utility restrictions.

6.6.2 Soil Gas Sampling Procedure

Soil gas sampling probes will be installed as temporary (or semi-permanent) points consistent with the SOP SESDPROC-307-R2. Specifically, 6-inch stainless steel

F

N

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

screens (or implants) will be installed using a DPT drilling rig. An extraction pit will be created around the stainless steel screen using either glass beads (as specified in the SOP) or clean sand. The sample probe will be finished at the ground surface with a temporary well cover. Soil gas samples will be collected approximately 24 hours after sample port installation and after the sample probe has been allowed to come to equilibrium. At this time, the vapor probe will be connected to a sample container (SUMMA® canister) at ground surface. All samples will be collected at a flow rate no greater than 200 milliliters per minute or 30 minutes for a 6-liter SUMMA® canister. After the prescribed sampling period, the sample containers will be closed and disconnected.

Soil gas samples will be preserved, handled, and shipped in accordance with SESDPROC-307-R2 and the project-specific QAPP. The analytical program for the soil gas program is discussed in Section 7 and the evaluation process is described in Section 8.

During the soil gas sampling, potentially affected structures near the soil gas locations will be evaluated to determine the building construction.

6.6.3 Schedule of Sampling

Soil gas sampling, if required, will be initiated upon approval of proposed sampling locations from USEPA.

6.6.4 Soil Gas Screening

Soil gas data collected will be evaluated using multiple lines of evidence, as follows:

- Evaluation of potential background sources of Constituents detected in soil gas;
- Comparison to conservative SLs (i.e., soil gas SLs); and
- Evaluation of the CSM to assess how Site-specific conditions may affect interpretation of the results.

As a first step in the analysis of the soil gas data, an analysis of potential background sources of Constituents detected in soil gas will be conducted to assess whether the Constituent is related to the Hercules Site, or may be the result of an alternate source

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

in the vicinity of the sampling point. If Constituents are clearly not identifiable as being Site-related, a petition for no further analysis will be made to USEPA/MDEQ.

For potentially Site-related Constituents, soil gas SLs will be calculated from the USEPA residential air (or indoor air) RSLs (current date is June 2011) as follows:

$$C_{sq} = C_{ia} / AF$$

Where:

C_{sg} = soil gas to indoor air screening level (or soil gas SL)

C_{ia} = concentration in indoor air (residential air RSL from current RSL table)

AF = attenuation factor (0.1)

The soil gas results will then be compared to the calculated soil gas SLs at a target risk range of 1×10^{-6} and an HQ of 1. If all Constituent concentrations are below the soil gas SLs, then no further evaluation may be necessary. If any Constituent concentrations exceed a soil gas SL, then sub-slab, soil gas, and indoor air sampling may be warranted. As part of this process, the CSM will be evaluated and a determination made if there are any Site-specific factors (i.e., geology, hydrogeology, and building construction) that could influence the interpretation of the data. The results of the soil gas screening will be used to identify the next step in the evaluation of the vapor intrusion pathway (i.e., sub-slab, soil gas, and/or indoor air sampling).

6.7 Sub-slab, Soil Gas, and Indoor Air

Based on the soil gas sampling results and data evaluation, a sub-slab soil gas and indoor air sampling program may be implemented. Sub-slab soil gas and indoor air sampling will be initially focused on buildings within the site.

6.7.1 Identification of Potential Indoor Air Sampling Locations

Soil gas, sub-slab, and/or indoor air sample locations will be selected, as necessary, based on the results of soil gas sampling and analysis.

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

6.7.2 Sub-slab, Soil Gas, and Indoor Air Sampling Procedure

Soil gas, sub-slab, and/or indoor air sampling will be conducted consistent with SOPs provided in Appendix P of the Revised Phase I Work Plan, SESDPROC-303-R4, and SESDPROC-307-R2, as appropriate. Prior to sampling, a Site reconnaissance will be conducted at each building. The overall goal of the Site reconnaissance is to complete a building survey that identifies construction conditions, heating, ventilation, and air conditioning operation, any preferential vapor migration pathways (i.e., sump pump), and products that are stored or used within the building. Any products that contain Site-related VOCs will be requested to be removed from the occupied structure 48 hours prior to sampling. A copy of the building survey and product inventory form is provided as an attachment to the SOP.

Indoor air samples may also be collected at all buildings where a sub-slab soil gas sample will be obtained. When indoor air samples are collected, a corresponding upwind, outdoor air (background) sample will be collected. Indoor air and outdoor air samples will be collected using SUMMA® canisters. Both types of air samples will be preserved, handled, and shipped in accordance with SESDPROC-303-R4, SESDPROC-307-R2, and the project-specific QAPP. The analytical program for the indoor air program is discussed in Section 7 and the evaluation process is described in Section 8.

6.7.3 Schedule of Sampling

Soil gas, sub-slab, and/or indoor air sampling will be initiated after completion of soil gas sampling and analysis and obtaining access agreements for any off-site sampling locations. Access agreements will be presented to the property owner for review and approval. The sampling event will be scheduled once access agreements are obtained. No samples will be collected without the owner's signed access agreement.

6.8 City of Hattiesburg Sewer Sampling

On October 1, 2010, MDEQ collected water samples from two manholes (A370 and A372) located beneath Providence Street. These manholes are connected to the City of Hattiesburg sewer collection system. The approximate locations of the manholes are shown on Figure 13. The samples were analyzed by MDEQ's Office of Pollution Control Laboratory for VOCs. Acetone was detected in the sample collected from the A370 manhole location. Acetone, benzene, carbon tetrachloride, chloroform, and toluene were detected in the sample collected from the A372 manhole location.

F

N

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

Hercules will collect grab samples of the water contained in manholes A370 and A372. These samples will be submitted for the same analyses as the groundwater samples collected from on-site locations. The results of the sampling will be evaluated to determine if additional soil and/or groundwater sampling will be conducted in the Providence Street area.

7. Analytical Program

The DQOs for all data collection are described in Section 5.2 and the QAPP included in the Revise Phase I Work Plan. The analytical methods that will be used to complete the assessments of the various media are included in the QAPP. The detection limits that will be used as the reporting limits will be the selected laboratory's method detection limits for the instruments utilized in their particular laboratory.

Appropriate quality assurance and quality control (QA/QC) samples will be prepared as air, soil, surface water, sediment, and/or groundwater samples are being collected. The QA/QC samples will include:

- Trip blanks (1 per cooler);
- Field blanks (1 per 20 samples);
- Rinse blanks (1per 20 samples);
- Field duplicates (1 per 20 samples); and
- Matrix spike/matrix spike duplicate samples (1 per 20 samples).

The sampling personnel will complete a chain-of-custody form that will accompany the samples to the laboratory. Additional information on the QA/QC program is provided in the QAPP included in the Revise Phase I Work Plan.

8. Data Evaluation

Data generated during this assessment will be managed in accordance with the procedures identified in the QAPP included in the Revise Phase I Work Plan. The data verification process outlined in the QAPP will ensure that data collected during the assessment activities meet the DQOs and are acceptable for evaluation.

A

63

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

Applicable USEPA and MDEQ standards and screening levels will be used to evaluate the analytical data to determine if concentrations are protective of human health and the environment. The lower of the USEPA RSLs and MDEQ Tier 1 TRG standards and screening levels will be used to evaluate the analytical data to determine if concentrations are protective of human health and the environment. Detections of Constituents will be evaluated using the decision matrices provided for the targeted media (Surface Water and Sediment, Figures 15A and 15B; Groundwater, Figures 16A and 16B; and Indoor Air, Figure 14).

If maximum detected concentrations of the Constituent are below USEPA and MDEQ standards or screening levels for any medium, then the Constituent is dropped from further consideration because there will be no excess risk to human health and adverse effects would not be expected to occur.

9. Human Health Risk Assessment

A human health risk assessment (HHRA) will be conducted to evaluate the effect of Constituents identified in Site soil, groundwater, soil gas and indoor air, sediment, and surface water on human health. Based on land use considerations, human exposure to this Site is expected to be limited because the site is a closed industrial facility with continuous fencing and a locked gate. Residential use of the property is not likely to occur based on zoning for the Site. However, land use could change sometime in the future. Therefore, the risk assessment will evaluate exposure of hypothetical future youth trespassers. Site workers, and construction workers. As a conservative measure, hypothetical future residential use of the Site will also be included in the risk assessment. Potential human health risks associated with current and reasonably expected future Site conditions and land use will be evaluated, and the results of the risk assessment will be used to evaluate the potential need for and the degree of remedial measures necessary to achieve Site closure based on Site-specific human health concerns (if any). The human health risk evaluation will be a section of the Remedial Investigation report and will draw upon the information described above and presented in earlier sections of that report. Thus, this section of the work plan will focus on the methodology used in the exposure assessment, toxicity assessment, risk characterization, development of risk-based remediation goals (if necessary), and uncertainty analysis. Each of these elements is described below.

The HHRA will be conducted consistent with methods outlined by MDEQ (2002) guidance and methods recommended by the USEPA in their risk assessment guidelines (USEPA 1989).

F

N

L

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

9.1 Constituent Characterization

The available data from previous investigations will be presented and evaluated for use in the risk assessment by comparing to background and available screening levels. Data considered to be usable and representative of the site will be included in the risk assessment and data summary tables will be prepared for each medium (surface soil, subsurface soil, groundwater, sediment, surface water, and, if appropriate, fish tissue). The summary tables will include the frequency of detection, the range of detection limits, the range of detected values, the arithmetic average concentration, the arithmetic average background concentration (if applicable), the risk-based screening values, and whether the Site-related Constituent is a constituent of potential concern (COPC).

As discussed in the previous section, the screening levels will be obtained from the most recent USEPA RSL table and the Mississippi TRGs.

9.2 Toxicity Assessment

Toxicity values for potential non-carcinogenic and carcinogenic effects are determined from available databases. For this risk assessment, toxicity values will be obtained from the following sources and will be compared to those values included in the current USEPA RSL table.

- USEPA's Integrated Risk Information System (IRIS)
- The Provisional Peer Reviewed Toxicity Values (PPRTVs) derived by USEPA's Superfund Health Risk Technical Support Center (STSC) for the USEPA Superfund program
- The Agency for Toxic Substances and Disease Registry (ATSDR) minimal risk levels (MRLs)
- The California Environmental Protection Agency/Office of Environmental Health Hazard Assessment's toxicity values
- The USEPA Superfund program's Health Effects Assessment Summary Tables

N

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

9.2.1 Non-Carcinogenic Effects

The potential for non-carcinogenic effects is estimated by comparing a calculated exposure dose with a reference dose (RfD) for each individual constituent. The RfD represents a daily exposure level that is designed to be protective of human health, even for sensitive individuals or subpopulations. The reference concentration (RfC) is a comparable level that represents an air concentration designed to be protective of human health, including sensitive individuals and subpopulations.

The RfD and RfC represent a daily exposure level that is not expected to cause adverse non-carcinogenic health effects. Chronic RfDs and RfCs are used to assess long-term exposures ranging from 7 years to a lifetime. Subchronic RfDs and RfCs are used to evaluate the potential for adverse health effects associated with exposure to constituents over a period of 2 weeks to 7 years.

For the constituents previously detected, Table 8 presents the RfDs used to assess oral and dermal exposure, and Table 9 presents the RfCs used to evaluate inhalation exposure. These tables also present the target sites associated with the non-carcinogenic toxicity values for each constituent varying with the exposure route. USEPA confidence values and uncertainty factors associated with the RfDs also are listed. The uncertainty factor represents areas of uncertainty inherent in the extrapolation from the available data. The confidence levels (low, medium, high) assess the degree of confidence in the extrapolation of available data. These levels account for data deficiencies or uncertainties, such as individual sensitivity and variability, interspecies variability (if animal data are used), database deficiency, and the extrapolation between exposure doses/durations.

9.2.2 Carcinogenic Effects

For the constituents previously detected, Table 10 presents the carcinogenic toxicity values for oral and dermal exposure, and Table 11 presents the carcinogenic toxicity values for inhalation exposure to the potential COPCs at the site. The carcinogenic toxicity value used in the calculation of potential cancer risks is the cancer slope factor (CSF), which is derived from the conservative assumption that any dose level has a possibility of causing cancer for the majority of constituents. The unit risk factor (URF) is used to evaluate inhalation exposure. The cumulative dose, regardless of the particular exposure period, determines the risk; therefore, separate CSFs are not derived for subchronic and chronic exposure periods.

F

N

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

9.2.3 Dermal Toxicity Values and Dermal Absorption

Whenever possible, route-specific toxicity values have been used; however, the USEPA has not yet developed toxicity values for dermal exposures. For this reason, the oral toxicity values (RfD_o and CSF_o) and the oral absorption efficiency were used to derive adjusted toxicity values (RfD_a and CSF_a) (adjusted to the absorbed dose) for use in assessing dermal exposure (USEPA 1989):

 $RfD_a = RfD_o \times Oral Absorption Efficiency$

CSF_a = CSF_o / Oral Absorption Efficiency

The adjusted toxicity values presented in Table 8 (RfD_as) and Table 10 (CSF_as) represent the theoretical toxicity of the orally absorbed dose of the constituent. An oral absorption efficiency factor (or relative absorption factor) describes the ratio of the absorbed fraction of a constituent from a particular exposure medium to the fraction absorbed from the dosing vehicle used in the toxicity study for that constituent. Oral absorption efficiency values are used in the derivations of the risk-based soil and groundwater constituent concentrations to account for differences in the proportion of absorbed constituent in the soil and groundwater compared to the proportion absorbed in the toxicity studies forming the bases of the toxicity reference values. Oral absorption efficiencies are constituent-specific because they depend on unique physical-chemical properties of each constituent. As a conservative measure, the oral absorption efficiencies were assumed to be equal to 1 (i.e., 100 percent absorption) for all constituents via the inhalation pathways. Uncertainty is associated with the adjusted toxicity values and with the dermal risks derived using these values due to the uncertainty in the oral toxicity values combined with the uncertainty in the oral absorption efficiency default and constituent-specific values. However, the calculated dermal risks are expected to be very conservative and, therefore, will overestimate human health risks.

Table 12 presents the dermal absorption parameters for the COPCs. The dermal absorption efficiency is used to estimate dermal uptake from a soil matrix. The permeability coefficient and non-steady state dermal absorption parameters are used to estimate dermal uptake from water.

9.3 Exposure Assessment

Exposure pathways have been identified based on an evaluation of the site characterization information and the fate and transport properties of the constituents

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

of interest. The exposure pathways evaluated identify likely points where human receptors may contact affected media under current or potential future conditions at the Site. The principal pathways by which exposure could occur are identified and presented in this section.

An exposure pathway is defined by the following four elements: 1) a source and mechanism of constituent release to the environment; 2) an environmental transport medium for the released constituent; 3) a point of potential contact with the contaminated medium (the exposure point); and 4) an exposure route at the exposure point. The purpose of the exposure assessment is to estimate the ways a population may potentially be exposed to constituents at a site. This typically involves projecting concentrations along potential pathways between sources and receptors. The projection usually is accomplished using site-specific data and, when necessary, mathematical modeling. Exposure can occur only when the potential exists for a receptor to directly contact released constituents or when there is a mechanism for released constituents to be transported to a receptor. Without exposure there is no risk; therefore, the exposure assessment is a critical component of the risk assessment.

The CSM provides the framework of the risk assessment. It characterizes the primary and secondary potential sources and release mechanisms and identifies the primary exposure points, receptors, and exposure routes. Exposure points are places or "points" where exposure could potentially occur, and exposure routes are the means by which constituents of interest may be taken up by the receptor (ingestion, inhalation, and dermal contact).

9.3.1 Potential Receptors

The facility is inactive and thus exposure of current site workers is not expected to be significant because they do not routinely work around former process areas or disposal locations (landfill, sludge pits) and there are no significant subsurface construction activities; however, in the future, the facility could be redeveloped for industrial use and hypothetical future construction workers and site workers could be exposed to constituents in soil. Site workers are not expected to contact constituents in surface water or sediment; however, at the request of USEPA, dermal contact with surface water and sediments by a future outdoor worker will be considered in the risk assessment. It is unlikely that exposure to constituents in groundwater would occur because of restrictions to use on-site groundwater as a potable water supply and its depth bgs.

F

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

The Site is surrounded by commercial, industrial, and residential land uses. The potential for exposure to constituents that have migrated off site will be evaluated in the risk assessment. Additionally, the potential for exposure to constituents in Greens Creek and other downstream surface water bodies will be evaluated in the risk assessment. Based on the data collected, these exposure scenarios will be evaluated qualitatively or quantitatively in the risk assessment. The potential for trespassers to contact site-related constituents on the Site will also be considered.

9.3.2 Potential Exposure Pathways

There are currently no points of exposure to groundwater on site. Workers on the property could be exposed to constituents in the surface soil through incidental ingestion, dermal contact, and inhalation of vapors or dust. Additionally, while the presence of trespassers is unlikely, any trespassers on the property could also contact the surface soils and be exposed to Site-related constituents. If the hypothetical trespasser were to wade in the surface water on the former Hercules property, they could contact COPCs in the surface water, fish, or sediments.

Shallow groundwater on the property boundary contains Site-related constituents. Several constituents were present above TRGs and RSLs. While groundwater is not used as a potable water supply on the property, individuals could be exposed to volatile constituents migrating into buildings on the property. Additionally, if the groundwater were used in the future for non-potable uses, exposure could occur to constituents detected in the groundwater. Potable use of groundwater will not be considered in the risk assessment because of the Notice of Land Use Restrictions filed and recorded with the Forrest County Chancery Clerk's office on February 25, 2008, which prohibits the use of groundwater at the Site.

9.3.3 Exposure Point Concentrations

The 95 percent upper confidence level (UCL) on the arithmetic mean (assuming a one-tailed distribution) will be used to identify the exposure point concentrations (EPCs). Consistent with USEPA methodology, both the mean and UCL concentrations will be calculated using the ProUCL software available from USEPA. Non-detected values will be treated following the software protocol. The UCL will be selected using the output from the ProUCL software. The UCL is a statistical number calculated to represent the mean concentration with 95 percent confidence that the true arithmetic mean concentration for the site will be less than the UCL. The high level of confidence (i.e., 95 percent) is used to compensate for the uncertainty involved in representing the

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

site conditions with a finite number of samples. If the 95 percent UCL is greater than the maximum detected concentration, the maximum detected concentration will be used as the EPC.

9.3.4 Exposure Assumptions

The exposure assumptions proposed for use in the risk assessment are provided in Tables 13 and 14 for constituents exhibiting mutagenic mode of action.

9.4 Risk Characterization

Potential risks to human health are evaluated quantitatively by combining calculated exposure levels and toxicity data. A distinction is made between non-carcinogenic and carcinogenic endpoints, and two general criteria are used to describe the HQ for non-carcinogenic effects and excess lifetime cancer risk (ELCR) for constituents evaluated as human carcinogens.

9.4.1 Hazard Quotient for Non-Cancer Hazard

Exposure doses are averaged over the expected exposure period to evaluate non-carcinogenic effects. The HQ is the ratio of the estimated exposure dose and the RfD. Thus, an HQ greater than 1 indicates that the estimated exposure level for that constituent exceeds the RfD or RfC. This ratio does not provide the probability of an adverse effect. Although an HQ less than 1 indicates that health effects should not occur, an HQ that exceeds 1 does not imply that health effects will occur, but that health effects are potentially possible.

The sum of the HQs is the hazard index (HI). A limitation with the HI approach is that the assumption of dose additivity is applied to compounds that may induce different effects by different mechanisms of action. Consequently, the summing of HIs for a number of compounds that are not expected to induce the same type of effects or that do not act by the same mechanism may overestimate the potential for toxic effects. Consistent with USEPA risk assessment guidelines for chemical mixtures, in the event that the total HI for an exposure scenario exceeds 1, it is incumbent on a risk assessor to segregate HQs by target organ/critical effect (USEPA 1989). Therefore, if the calculated HI exceeds 1 as a consequence of summing several HQs for constituents not expected to induce the same type of effects or that do not act by the same mechanism, the HIs may be segregated by effect and mechanism of action to derive separate HIs for each target-organ/critical-effect group (USEPA 1989).

F

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

9.4.2 Excess Lifetime Cancer Risk

The ELCR is an estimate of the potential increased risk of cancer that results from lifetime exposure, at specified average daily dosages, to constituents detected in media at a site. Estimated doses or intakes for each constituent are averaged over the hypothesized lifetime of 70 years. It is assumed that a large dose received over a short period is equivalent to a smaller dose received over a longer period, as long as the total doses are equal. The ELCR is calculated as the product of the exposure dose and the CSF or URF. The risk values provided in this report indicate the potential increased risk, above that applying to the general population, which may result from the exposure scenarios described in the Exposure Assessment (Section 9.3). The risk estimate is considered to be an upper-bound estimate; therefore, it is likely that the true risk is far less than that predicted by the model.

USEPA considers ELCRs within and below the range of 10⁻⁶ to 10⁻⁴ as potentially acceptable cancer risks. Site-specific remedial goal options (RGOs) will be calculated for those constituents with ELCRs exceeding the 10⁻⁶ target risk value for the relevant constituents and exposure scenarios.

9.4.3 Receptor-Specific Excess Lifetime Risk and Hazard Evaluation

The exposure parameters for each of the human receptors (hypothetical future site worker, construction worker, youth trespasser, and residents) are presented in Tables 13 and 14. The physical and chemical properties relevant to evaluating exposure and characterization of risk are presented in Table 15. The equations used to derive the risk estimates for receptor contact with soil are presented in Table 16. The equations used to derive the risk estimates for receptor contact with groundwater are presented in Table 17. The equations used to derive the risk estimates for receptor contact with surface water and sediment are presented in Tables 18 and 19, respectively. The risk estimates include exposure to the COPCs in soil via incidental ingestion, dermal contact, and inhalation of particulates released from the soil; exposure to the COPCs in groundwater and surface water via incidental ingestion, dermal contact, and inhalation of particulates released from the groundwater; and exposure to the COPCs in sediment via incidental ingestion and dermal contact. Exposure through the fish ingestion pathway will be evaluated using the equations in Table 20.

F

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

9.5 Development of Risk-Based Remediation Goals

If necessary, based on the risk estimates, human health-based RGOs will be developed for exposure pathways and constituents for which the risk estimates are not considered acceptable. The RGOs will be calculated using site-specific exposure information for the exposure scenarios identified above. For carcinogens, these RGOs will be set to achieve potential upperbound excess risk levels of 1 x 10⁻⁴, 1 x 10⁻⁵, and 1 x 10⁻⁶. For constituents exhibiting non-carcinogenic systemic toxicity, the RGOs will be set to achieve an HQ of 0.1, 1, and 3 (USEPA 2000a). The range of RGOs is provided for risk management decision making. If the proposed RGO is based on an HQ or risk level other than those preferred by MDEQ (HQ of 1 and risk level of 10⁻⁶), appropriate justification will be provided in the document.

10. Screening-Level Ecological Risk Assessment Approach

This section presents the screening level ecological risk assessment (SLERA) approach that will be used for the site. A SLERA evaluates the potential risk to terrestrial and aquatic wildlife that may be exposed to site-related constituents. A SLERA is designed to provide a conservative estimate of the risks that may exist for wildlife and incorporates uncertainty in a precautionary manner. The purpose of a SLERA is to either indicate the need for a more rigorous and focused evaluation (i.e., a baseline ecological risk assessment [BERA]), or to indicate that there is a high probability of no adverse risks for wildlife and, therefore, no need for further evaluation (USEPA 1997 and 2000b).

The ecological risk assessment (ERA) for this site will be conducted in a manner consistent with the following USEPA and MDEQ guidance:

- "Ecological Risk Assessment Guidance for Superfund" (USEPA 1997)
- "Guidelines for Ecological Risk Assessment" (USEPA 1998)

The comprehensive USEPA eight-step ERA process incorporates process is shown on the attached exhibit, which incorporates refinements recommended by USEPA Region 4 (USEPA 2000b). Steps 1 and 2 comprise the traditional SLERA, and Steps 3 through 8 comprise the BERA process. Step 3 can be subdivided into Step 3a, a refinement of the SLERA results, and Step 3b, the refinement of measurement endpoints for the BERA. The USEPA encourages the submittal of the results of

F

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

Exhibit Expanded Eight-Step Ecological Risk Assessment Process

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

Steps 1 through 3a as a single deliverable document (USEPA 2000b). Therefore, the screening-level approach for this site will consist of a SLERA/BERA 3a evaluation.

As illustrated on the exhibit, the eight-step process includes points for communication with USEPA and MDEQ and collaborative decision-making, consistent with the USEPA paradigm (USEPA 1997 and 2000b). These points are called scientific management decision points (SMDPs). As can be seen on the exhibit, the first SMDP is purposefully flexible (per the USEPA paradigm) to occur after Steps 2 or 3a, depending on the results obtained at Step 2.

The following courses of action will be considered in the SMDP at the end of the SLERA/BERA 3a process:

- 1. No further action is warranted There is adequate information to conclude that significant ecological risks are unlikely;
- 2. Further assessment of ecological risks The information is not adequate to make a decision at this point; or
- Remedial action For the media and constituents that are identified at the end of SLERA/BERA 3a as possibly being associated with significant ecological risks (in order to evaluate whether cost-effective actions can be implemented to reduce or prevent risks to wildlife).

The risk assessment will present the results of the SLERA/BERA 3a process and the SMDP. The following sections discuss these elements of the risk assessment approach for the site.

10.1 Step 1: Screening-Level Problem Formulation and Ecological Effects Characterization

The screening-level problem formulation serves to define the reasons for the SLERA and to define the methods for analyzing/characterizing risks (USEPA 1998). The background information on site characterization, receptors, and ecosystem characteristics is vital to the problem formulation, as is information on the sources and effects of the stressors (USEPA 1998).

F

А

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

10.1.1 Screening-Level Problem Formulation

The screening-level problem formulation will provide information used to establish the overall goals, breadth, and focus of the SLERA/BERA 3a. The goal of this effort is a conservative evaluation of the likelihood for adverse effects (and the ecological significance of predicted adverse effects) to wildlife that may be exposed to constituents.

The problem formulation will produce three outputs: 1) assessment endpoints that adequately reflect management goals and the ecosystem the goals are meant to protect; 2) a conceptual site model that describes the relationships between stressors and the assessment endpoints; and 3) a description of how ecological risks will be quantitatively evaluated (USEPA 1998 and 2001a).

The remainder of this section provides an overview of the components that will comprise the screening-level problem formulation.

Characterization of Environmental Setting – The environmental setting, as it pertains to ecological receptors, will be described. The environmental setting will detail the biological resources of each area, as well as their abiotic environment. This will include descriptions of available aquatic and terrestrial habitat (as appropriate) and listings of organisms that are likely to use the habitats. The local and nearby land uses will also be described because human land use affects habitat quality and quantity. The environmental setting will be constructed using available site reports, maps, aerial photographs, communication with appropriate agencies, and information obtained during a site reconnaissance (USEPA 1997).

A habitat characterization and biological survey will be conducted to document the location, condition and extent of available terrestrial, wetland, and aquatic habitats located on and within a 0.5-mile radius of the Site. The objectives of the survey will be to gather qualitative and semi-quantitative information on the ecological communities present or potentially occurring at and surrounding the Site, describe the pathways by which biological receptors could potentially be exposed to media containing Site-related Constituents, and document readily apparent evidence of stress on ecological receptors at the Site. The results of this survey will be documented in the Checklist for Ecological Assessment/Sampling (USEPA 1997) and the Ecological Checklist (MDEQ 2002) to evaluate areas that can be excluded from further ecological evaluation. The objectives of this task are to:

F

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

- Document, quantify, and characterize the location and extent of available terrestrial, wetland, and aquatic habitats at the Site; and
- Conduct an observational survey of ecological receptors that utilize the Site.

The result of this survey will be used to determine if suitable habitat for any of these species actually occurs at the Site and to identify potential receptors for a SLERA. A map will be developed that depicts the location and extent of terrestrial, wetland, and aquatic habitats within the Site and surrounding property within the 0.5-mile radius.

This process will identify habitats and species potentially present, potential contaminant migration pathways, exposure pathways, and the potential for chemical and non-chemical stressors. This information will be used to develop a CSM.

Identification of Constituents Detected – The occurrence of constituents will be summarized for surface soil, surface water, and sediment.

Description of Constituent Fate and Transport Pathways – The problem formulation will consider the fate and transport pathways that might allow the constituents of interest to interact with terrestrial and aquatic wildlife. The environmental setting will be used to determine fate and transport pathways that are likely to result in potentially complete exposure pathways for each stressor.

Description of Constituent Mechanisms of Ecotoxicity – The general mechanisms of ecological toxicity for the potential stressors will be described in the screening-level problem formulation. This information will help evaluate the importance of potential exposure pathways and focus the selection of assessment endpoints. The description of constituent mechanisms of toxicity will be presented without consideration of constituent concentrations, as the information is developed, in order to understand the possible effects, rather than describe the concentrations at which these effects might occur.

Description of Potentially Affected Categories of Receptors – The identification of the categories of receptors most likely to be exposed to the Site-related constituents of interest will help focus the SLERA/BERA 3a. This will include the evaluation of potential exposures to individual organisms of threatened and endangered species. The NatureServe (www.natureserve.org) database will be searched to identify protected species that may occur near the Site. An ecological reconnaissance by a biologist/ecologist will be conducted to evaluate whether habitat for threatened and endangered species exists at the Site and the quality of that habitat. Field surveys to

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

determine the presence or absence of listed species in the study area will not be conducted at this stage in the risk assessment process.

Identification of Potentially Complete Exposure Pathways and Conceptual Site Model – Potentially complete exposure pathways will be identified and discussed. A complete exposure pathway is "one in which the chemical can be traced or expected to travel from the source to a receptor that can be affected by the chemicals" (USEPA 1997 and 1998). Therefore, a constituent, its migration from the source, a receptor, and the mechanisms of toxicity of that constituent must be demonstrated before a complete exposure pathway can be identified. The table below illustrates possible exposure routes for the general types of receptors that are expected to be present for the media of concern at the site (i.e., surface soil, surface water, and sediment) (USEPA 1997).

Organism	Possible Exposure Routes
Terrestrial animals	Inhalation, ingestion, dermal absorption, food web
Terrestrial plants	Direct contact/absorption, leaf absorption of contaminants deposited on leaves, root contact/absorption
Aquatic animals	Dermal or gill absorption, ingestion, food web
Aquatic plants	Direct contact/absorption, leaf absorption of soil vapor (emergent vegetation), leaf absorption of contaminants deposited on leaves (emergent vegetation)

As for the human health risk assessment, an ecological CSM will be developed for the Site. This ecological CSM will integrate the potential sources of the constituents of interest, the media in which they are present, the exposure routes by which they may interact with ecological receptors, and potential ecological receptors. It should serve as a predictive model to link the Site-related constituents of interest with potential receptors. The CSM will be patterned after the USEPA guidance on building appropriate CSMs (USEPA 1997 and 1998).

An exposure pathway is not considered complete for a potential receptor if suitable habitat for that receptor is not present where constituents of interest are located. Results of the ecological reconnaissance will be used to determine the presence and extent of viable habitat for terrestrial wildlife.

Selection of Generic Assessment and Measurement Endpoints – Assessment endpoints are the explicit expression of the ecological values to be protected (USEPA 1997). The

F

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

selection of assessment endpoints requires knowledge of the affected environment, information about the constituents released (including ecotoxicological properties related to detected concentrations), and an understanding of the societal values that will drive risk management decision-making (Suter et al. 1995; USEPA 1999). For the SLERA/BERA 3a, the assessment endpoints will be adverse effects on ecological receptors, where receptors are plant and animal populations and communities.

Because direct measurement of assessment endpoints is often difficult (or impossible), surrogate endpoints (called measurement endpoints) are used to provide the information necessary to evaluate whether the values associated with the assessment endpoint are being protected. A measurement endpoint is a measurable ecological characteristic and/or response to a stressor (USEPA 1998). Measurement endpoints are also referred to as measures of potential effect (USEPA 1998). For the SLERA/BERA 3a, the only measurement endpoint used is expressed as an HQ. An HQ is the ratio of a constituent concentration to an associated screening ecotoxicity value. Screening ecotoxicity values are described as part of the Screening-Level Ecological Effects Characterization (Section 10.1.2) and HQs are described as part of the Screening-Level Risk Characterization (Section 10.2).

10.1.2 Screening-Level Ecological Effects Characterization (Ecotoxicity Screening Values)

The screening-level ecological effects characterization involves the identification of ecotoxicity screening values that will be used for surface soil, surface water, and sediment at the site. Ecotoxicity screening values are chemical concentrations in environmental media below which there is negligible or insignificant risk to receptors exposed to those media (USEPA 2000b). With the exception of a limited number of numeric water quality criteria, MDEQ does not have ecological screening values; therefore, screening values from the following sources will be considered for this site:

- USEPA Region 4 "Ecological Risk Assessment Bulletins Supplement to RAGS" website (USEPA 2001b);
- USEPA Ecological Soil Screening Levels website; and
- USEPA Region 5 Ecological Screening Levels.

78

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

10.2 Step 2: Screening-Level Exposure Estimate and Risk Calculation

The screening-level exposure assessment is comprised of the estimation of ecological exposures, risk estimation, risk characterization, and the evaluation of uncertainties (USEPA 1997 and 2001a). These form the foundation of evidence to support the scientific management decision point.

Estimation of Screening-Level Exposure Estimates – The exposure concentrations that will be used in the SLERA will be the maximum detected concentrations (USEPA 2001a). The data set from which the maximum concentrations will be identified is the same as that used for the human health risk assessment (Section 3). All available data will be used for surface soil because soils are relatively stable and likely to remain in place over long time scales.

Screening-Level Risk Calculations (Hazard Quotients) – To estimate risk in the SLERA, HQs will be calculated. An HQ is the unitless ratio of a chemical concentration in a medium to the screening ecotoxicity values for that chemical in that medium. As indicated in the previous section, maximum constituent concentrations and conservative screening ecotoxicity values for each media will be used for the HQ calculations in the SLERA. HQs equal to or less than a value of 1 (reported using one significant figure) will indicate that adverse impacts to wildlife are unlikely (USEPA 2001a). HQs exceeding a value of 1 will indicate that further assessment may be necessary to evaluate the potential for adverse impacts to wildlife.

Uncertainties – Uncertainties associated with the SLERA are generally compensated for via conservative assumptions in the analysis of exposure and effects. Therefore, most uncertainties at this stage of the risk assessment process are expected to overestimate potential risks to ecological receptors. Uncertainties will be discussed briefly following the SLERA and more fully in Step 3a, should it be performed.

Reporting –The first SMDP is purposefully flexible (per the USEPA paradigm) to occur after Steps 2 or 3a, depending on the results obtained at Step 2. The purpose of the flexibility of the first SMDP is so that additional evaluation of risks can occur and reporting can be streamlined into a single report. The results of the SLERA will be expressed in terms of the following conclusions or recommended actions:

 There is adequate information to conclude that ecological risks are unlikely and no further action is warranted. F

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

• The information is not adequate to make a decision at this point. The ERA process will continue to Step 3a – the initial step of the BERA.

10.3 Step 3a: Refinement of Exposure Estimates and Risk Characterization (BERA Problem Formulation)

The BERA is designed to more realistically identify the nature and extent of ecological risks in order to support informed environmental management decision-making (USEPA 1997 and 2000b). Step 3a of the BERA is a refinement of the Step 2 exposure estimates and risk characterization, focused only on the constituents of potential ecological concern (COPECs) and media that progress beyond the SLERA. Where further ecological evaluation is indicated, it will be conducted with the intent to be an "incremental iteration of exposure, effects, and risk characterization" (USEPA 2001a). This incremental iteration (if necessary) may include:

- refinement of the COPECs (USEPA 1997 and 2001a);
- refinement of risk calculations using alternative exposure and effects concentrations (USEPA 1997 and 2001b); and
- refinement of risk characterization considering the ecological significance of risk estimates (USEPA 1994a; Henning and Shear 1998; Durda and Preziosi 1999; Menzie et al. 1996).

The methods for refinement of exposure and risk are summarized below.

Refinement of COPECs – The refinement of the COPECS identified in the SLERA is necessary to help focus further risk assessment activities on the constituents that pose the greatest potential risk to ecological receptors. USEPA guidance for this approach (USEPA 1997, 2000b, and 2001c) indicates that the refinement of COPECs streamlines the overall ERA process by using realistic criteria to focus the risk assessment on those constituents that may pose unacceptable ecological risks. It is intended as an "incremental iteration of exposure, effects, and risk characterization" (USEPA 2001c). The outcome of this screening is that constituents are either excluded as COPECs or retained for further evaluation in the BERA process.

The process for refining the COPECs consists of evaluating each constituent separately by performing the following actions:

F

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

- Calculation of an EPC The EPC used in the HHRA (Section 3) will also be used
 in the ERA. More specifically, the EPC is equal to the lesser of the 95 percent UCL
 on the mean and the maximum concentration for each constituent and medium
 combination with at least 10 results. If fewer than 10 results are available, then the
 EPC defaults to the maximum detected concentration.
- 2. Comparison with background concentrations Constituents that are present at a concentration greater than the background concentration, including constituents not detected in background, will be retained for further consideration. Exceptions will be made for some vital electrolytes and essential nutrients including calcium, iron, magnesium, sodium, and potassium (USEPA 2001c). These constituents will be retained for further consideration only if they are present at concentrations greater than two times the background concentration.
- Frequency of detection Constituents detected in greater than 5 percent of the samples in a given medium will be retained as COPECs and considered in the next step of the refinement process.
- Comparison of EPCs with Screening Ecotoxicity Values Constituents with EPCs greater than the SLERA screening ecotoxicity value, and analytes for which there are no screening ecotoxicity values, will be retained for further consideration in the refinement process.
- 5. Identification of Direct Contact and Bioaccumulative COPECs Constituents identified as COPECs based on the criteria above will be considered COPECs for direct contact exposures. In the absence of guidance from MDEQ, the list of bioaccumulative constituents prepared by the Texas Natural Resource Conservation Commission (TNRCC; now Texas Commission on Environmental Quality) will be used to identify potential bioaccumulative COPECs (TNRCC 2000). A direct contact COPEC that is listed as a bioaccumulative compound will also be considered and evaluated as a bioaccumulative COPEC.

At this point in the risk assessment process, the COPECs and the media in which they occur, will be presented in tabular form. In addition, constituents that are likely to bioaccumulate in the food web will be identified. Constituents that remain COPECs will be further evaluated. However, if at the end of the refinement of COPECs there are no COPECs, the risk assessment process will be complete for the site.

F

N

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

Refinement of Risk Calculations for Direct Contact COPECs – Refinement of the SLERA risk calculations will consist of recalculation of the HQs using the refined exposure estimates (i.e., EPCs) and an expanded range of sources for ecotoxicity screening values (i.e., the EPCs will be divided by toxicity values obtained from the scientific literature, where these values are available). There are several reasons to include alternate ecotoxicity screening values, and the methodology is consistent with the approach for "incremental iteration of exposure, effects, and risk characterization" (USEPA 2001c and 1997). For example, some constituents may not have screening values in the guidance used in the SLERA. Also, an expanded range of ecotoxicity values may provide insight into the type or likelihood of impacts (e.g., threshold effects level versus probable effects level).

In addition to using suites of alternate ecotoxicological screening values to refine the risk calculations, some ecotoxicity screening values may be recalculated to better represent ecological receptors at the site and site conditions. For example, if a surface water screening value based primarily on effects on coldwater salmonids is exceeded, it may be more appropriate to calculate a value based on warm-water species. Also, many screening values for surface water incorporate conservative uncertainty factors to compensate for the use of toxicity data for a limited number of species (e.g., Suter and Tsao 1996).

Predictions of the likelihood for adverse effects, if any, for the direct contact COPECs will be based on HQs (USEPA 1997 and 2000b). The results of the refined risk calculations will be presented in tabular form, and constituents with HQs greater than 1 will be further considered to assess whether unacceptable ecological risks may exist. A range of HQs may be provided for some COPECs in some media because a range of screening ecotoxicity values provides greater insight into potential ecological risks. However, if there are no constituents for which the HQ is greater than 1, the risk assessment process for direct contact toxicity will be considered complete.

Refinement of Risk Calculations for Bioaccumulative COPECs – Bioaccumulative COPECs are those that may have toxic effects when they transfer through the food web. In order to calculate risks of bioaccumulative COPECs, the assessment and measurement endpoints need to be refined because the SLERA endpoints are general in nature and do not identify receptors that are susceptible to food web exposures. The assessment endpoints for bioaccumulation will be based on receptors appropriate to the habitat present at the site (based on the ecological reconnaissance), as well as the media in which bioaccumulative COPECs are identified. The measurement endpoints

F

L

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

will depend upon the mechanisms of ecotoxicity for the COPECs, as well as the species potentially exposed to the COPECs.

Example assessment and measurement endpoints that could be used for the site include:

Assessment Endpoint	Measurement Endpoint	Effects Measured					
Survival and reproductive success of birds exposed to bioaccumulative compounds	Changes in survival and reproduction as indicated by food web modeling	NOAEL and LOAEL related to chronic effects such as eggshell thinning or reduced fledgling survival					
Survival and reproductive success of mammals exposed to bioaccumulative compounds	Changes in survival and reproduction as indicated by food web modeling	NOAEL and LOAEL related to chronic effects such as reduced survival and reduced litter size					

NOAEL - no adverse effects levels.

LOAEL - lowest adverse effects levels.

Preliminary ingestion-based food web modeling will be used in Step 3a of the BERA to evaluate bioaccumulative COPECs. The purpose of the food web modeling is to characterize potential exposures to COPECs via the food web and to identify potential adverse effects for mammals and birds. Through this preliminary food web modeling, COPECs will either be eliminated or retained for further consideration.

Wildlife receptors that may be exposed to bioaccumulative COPECs at any given area of the site will depend upon the habitat present and the media in which bioaccumulative COPECs are identified. Exposure parameters for the standard food web model (USEPA 1993; Sample et al. 1996) are dependent upon the wildlife receptor. Wildlife receptors known to be susceptible to food web exposures and for which dietary and toxicological information is generally available include short-tailed shrews (*Blarina brevicauda*), American robins (*Turdus migratorius*), raccoons (*Procyon lotor*), and kingfishers (*Ceryle alcyon*). Whether these or other common receptor species are used for the food web model will depend on the results of the ecological reconnaissance and the assessment of ecological risks described above.

Exposure calculations will be performed to characterize potential exposures to COPECs via the food web and to identify potential adverse effects for mammals and birds. Ingestion modeling is based on species-specific exposure parameters and ingestion

F

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

intake requirements. The EPCs will be used to evaluate potential ingestion-based exposures.

Food web ingestion-based models use constituent-specific toxicity reference values (TRVs) for the purpose of estimating risk. TRVs are available from a variety of sources such as Sample et al. (1996 and 1997), IRIS, ATSDR, USEPA (2001d), and many chemical-specific scientific sources and publications. Toxicological benchmarks are typically reported as NOAELs and LOAELs. Both NOAELS and LOAELs will be used in the food web modeling so that a range of predicted food web impacts can be evaluated.

Predictions of the likelihood for adverse effects, if any, from the food web modeling evaluation will be based on HQs (USEPA 1997 and 2000b). The HQs will be calculated by dividing the estimated ingestion intakes by the reference toxicity values. An HQ value of 1 (rounded to one significant figure) or less will be considered to indicate that adverse effects are not expected.

Refinement of Risk Characterization by Evaluation of Ecological Significance – The USEPA provides information on issues related to evaluating the ecological significance of risk estimates (USEPA 1994b). Consideration of these issues will be used to identify ecologically significant impacts and those impacts that are not ecologically significant. These issues include the spatial extent of the release, the persistence of the release (i.e., the temporal scale), and natural variability within the system (and whether impacts can be measured separate from natural variability). This type of analysis will be used in conjunction with the HQs to evaluate whether predicted impacts (if any) will be considered ecologically significant.

Uncertainties – Uncertainty is "a component of risk resulting from imperfect knowledge of the degree of hazard or of its spatial and temporal distribution" (USEPA 1997). Uncertainties that may lead to either an overestimate or underestimate of risk are associated with each stage of risk assessment. Uncertainty is inherent to ERA, in part, because the sciences of ecology and ecotoxicology are relatively young and not yet fully developed (Kapustka and Landis 1998; Newman 1998). Uncertainty also exists in many aspects of the toxicology relied upon for conducting ERAs (Newman 1998; Lovett Doust and Schmidt 1993).

The lack of ecotoxicity screening values for constituents is one of the main contributors to uncertainty associated with a SLERA/BERA 3a evaluation. There will likely be constituents that lack ecotoxicity screening values, and HQs cannot be calculated for

N

A

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

these constituents. Therefore, a constituent that lacks a ecotoxicity values will be discussed in terms of considerations such as ecotoxicity screening values for similar compounds, comparison with background concentrations, the magnitude of the detected concentrations, and the spatial distribution of constituents.

10.4 Scientific Management Decision Point

As noted above, the first SMDP may occur after Steps 2 or 3a, depending on the results obtained at Step 2. The following courses of action will be evaluated at the end of Step 3a:

- No further action is warranted There is adequate information to conclude that significant ecological risks are unlikely;
- Further Evaluation The information is not adequate to make a decision at this
 point. The ERA will proceed (e.g., to Step 3b); or
- Remedial action For the media and constituents that are identified at the end of Step 3a as possibly being associated with significant ecological risks (in order to evaluate whether cost-effective actions can be implemented to reduce or prevent risks to wildlife).

The results of the SLERA/BERA 3a will be expressed in terms of these conclusions or recommended actions.

11. Reporting

At a minimum, quarterly progress reports will be submitted to USEPA and MDEQ during the assessment activities. During periods of increased activity, monthly progress reports will be submitted to USEPA and MDEQ. The progress reports will consist of the following:

- Summary of work performed during the reporting period;
- Discussion of work expected to be performed in the next reporting period;
- Summary of investigation results received during the reporting period;
- Issues that have arisen and/or been resolved; and

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

• An updated, detailed project schedule.

Upon completion of field activities and analytical data validation, a project final report will be prepared. The final report will document all field activities and present an interpretation of drinking water, groundwater, surface water, sediment, soil gas, and indoor air conditions. Appropriate tables, figures, and appendices will be included in the report to support the text. The report will present a risk evaluation of the data focusing on the areas of investigation and will conclude by presenting recommendations for a path forward.

12. Project Schedule

An estimated schedule for the implementation of this Revised Phase II Work Plan is included in Table 6. Implementation will begin upon receiving approval of this Revised Phase II Work Plan from USEPA and MDEQ. The duration of assessment activities will be dependent on field conditions and obtaining property access, in the event that off-site activities are required. In the event additional time is required due to unforeseen issues, the schedule will be adjusted accordingly and approved by USEPA and MDEQ.

13. Project Team

A Project Management Plan (PMP) was included in the Revised Phase I Work Plan. The PMP contains the roles and responsibilities of supervisory personnel included on the Project Team. In addition, the roles and responsibilities of parties that may be subcontracted to provide services during the implementation of this Revised Phase II Work Plan are also included in the PMP. The PMP included in the Revised Phase I Work Plan will be utilized during the implementation of this Revised Phase II Work Plan.

14. References

2999.6/R/4/bbn

ARCADIS. 2010a. Sludge Characterization and Bench Scale Treatability Work Plan.

March 1.

ARCADIS. 2010b. Sludge Characterization and Bench Scale Treatability Report. August 1.

ARCADIS. 2010c. Impoundment Basin Decommissioning Work Plan. August 20.

N

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

ARCADIS. 2011a. Revised Phase I Sampling and Analysis Work Plan. December 16.

ARCADIS. 2011b. Response to Sludge Characterization and Bench Scale Treatability Report. January 7.

B&V Waste Science and Technology Corp. 1993. Site Inspection Report. April 29.

BATCO. 1997. Installation, Sampling, and Analysis Report. December.

BATCO. 1997. Work Plan for Well Installation. June.

Bouwer, H. 1989. The Bouwer and Rice Slug Test – An Update. Groundwater, Vol. 27, No. 3. May-June.

Bouwer, H., and R.C. Rice. 1976. A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers With Completely or Partially Penetrating Wells. Water Resources Research, Vol. 12, No. 3. June.

Durda, J.L., and D.V. Preziosi, 1999. Where's the population in your risk assessment? SETAC News, Volume 19, Number 6, November.

Eco-Systems. 1999. Site Investigation Work Plan. February.

Eco-Systems. 2003a. Site Investigation Report. April.

Eco-Systems. 2003b. Interim Groundwater Monitoring Report. January.

Eco-Systems. 2003c. Work Plan for Supplemental Site Investigation. June.

Eco-Systems. 2003d. Supplemental Site Investigation Report. November.

Eco-Systems. 2004. Remedial Action Evaluation. July.

Eco-Systems. 2009. Groundwater Assessment Report. November.

Foster, Vellora M. 1941. Forrest County Mineral Resources, Mississippi State Geological Survey Bulletin, No. 44.

GES. 2005. Corrective Action Plan Revision 1. January 20.

V

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

- Henning, M., and N. Shear. 1998. Regulatory perspectives on the significance of ecological changes as reported in ecological risk assessments. *Human and Ecological Risk Assessment*, 4(4)807-814.
- Hercules. 2002. Sampling and Analysis Protocol for Determination of Dioxathion in Water.
- Hercules. 2010. Storm Water Pollution Prevention Plan. September.
- Kapustka, L.A., and W.G. Landis. 1998. Ecology: the science versus the myth. *Human* and *Ecological Risk Assessment* 4(4):829-838.
- Lovett Doust, J., and M. Schmidt. 1993. Biological assessment of aquatic pollution: Review, with emphasis on plants as biomonitors. *Ecological Review*, 69(2)147-187.
- MDEQ. 2002. Subpart II, Mississippi Department of Environmental Quality Risk Evaluation Procedures for Voluntary Cleanup and Redevelopment of Brownfield Sites, Appendix A Tier 1 Target Remediation Goals. February.
- MDEQ. 2004. Hattiesburg, Mississippi, Investigations.
- Menzie, C.A., M. Hope Henning, J. Cura, K. Finkelstein, J. Gentile, J. Maughan, D. Mitchell, S. Petron, B. Potocki, S. Svirsky, P. Tyler. 1996. Special report of the Massachusetts weight-of-evidence workgroup: A weight-of-evidence approach for evaluating ecological risks. Human and Ecological Risk Assessment: (HERA): 2(2)277-304.
- Mississippi Bureau of Pollution Control. 1989. Preliminary Assessment. December.
- Newman, M. 1998. Fundamentals of Ecotoxicology. Ann Arbor Press, Ann Arbor, Michigan.
- Sample, B., M. Alpin, R. Efroymson, G. Suter, and C. Welsh. 1997. Methods and Tools for Estimation of the Exposure of Terrestrial Wildlife to Contaminants. Oak Ridge National Laboratory, Environmental Sciences Division, Publication No. 4650.

V

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

- Sample, B.E., D.M. Opreski, G. W. Suter II. 1996. Toxicological Benchmarks for Wildlife, 1996 Revision. USDOE, Risk Assessment Program, Health Sciences Research Division, Oak Ridge, Tennessee.
- Suter II, G.W. and C.L. Tsao. 1996. Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota: 1996 Revision. ES/ER/TM-96/R2. Oak Ridge National Laboratory, Oak Ridge, TN.
- Suter, G.W, B.W. Cornaby, C.T. Hadden, R.N. Hull, M. Stack, F.A. Zafran. 1995. An approach for balancing health and ecological risks at hazardous waste Facilities. *Risk Analysis* 15(2):221-231.
- Texas Natural Resources Conservation Commission (TNRCC). 2000. Guidance for Conducting Ecological Risk Assessments at Remediation Sites in Texas. Office of Waste Management. August 28. http://www.tnrcc.state.tx.us/permitting/remed/techsupp/erag8_00.pdf.
- USEPA. 1989. Risk Assessment Guidance for Superfund, Human Health Evaluation Manual, Volume 1, Part A. Interim Final. Office of Emergency and Remedial Response, Washington, DC. EPA/540/1-89/002. December.
- USEPA. 1993. Wildlife Exposure Factors Handbook. Office of Research and Development. EPA/600/R-93/187. http://cfpub.epa.gov/ncea/cfm/wefh.cfm
- USEPA. 1994a. Ecological Risk Assessment Issue Papers. Risk Assessment Forum.
- USEPA. 1994b. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, 3rd ed., EPA/600/4-91/002. U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory (currently National Exposure Research Laboratory), Cincinnati, OH.
- USEPA. 1997. Ecological Risk Assessment Guidance for Superfund Process for Designing and Conducting Ecological Risk Assessments. Environmental Response Team. June 1997.
- USEPA. 1998. Guidelines for Ecological Assessment. Office of Research and Development, EPA/630/R-95/002FA, April 1998.

V

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

- USEPA. 1999. "Issuance of Final Guidance: Ecological Risk Assessment and Risk Management Principles for Superfund Sites." Memorandum from Stephen D. Luftig, Director of the Office of Emergency and Remedial Response. Dated October 7, 1999.
 - http://www.epa.gov/superfund/programs/risk/ecorisk/final99.pdf
- USEPA. 2000a. Supplemental Guidance to RAGS: Region 4 Bulletins, Human Health Risk Assessment Bulletins, USEPA Region 4, originally published November 1995, Website version last updated May 2000: http://www.epa.gov/region4/waste/ots/healtbul.htm
- USEPA. 2000b. "Amended Guidance on Ecological Risk Assessment at Military
 Bases: Process Considerations, Timing of Activities, and Inclusion of
 Stakeholders." Memorandum from Ted W. Simon, Ph.D., Office of Technical
 Services. Dated June 23, 2000. http://risk.lsd.ornl.gov/homepage/ecoproc2.pdf
- USEPA. 2001a. "Update: Role of Screening-level Risk Assessments and Refining Contaminants of Concern in Baseline Ecological Risk Assessments." http://www.epa.gov/superfund/programs/risk/ecoup/slera0601.pdf
- USEPA. 2001b. "Region 4 Ecological Risk Assessment Bulletins Supplement to RAGS". Accessed 2001. http://www.epa.gov/region4/waste/ots/ecolbul.htm
- USEPA. 2001c. "ECO-Update: Role of Screening-level Risk Assessments and Refining Contaminants of Concern in Baseline Ecological Risk Assessments." Accessed 2001. http://www.epa.gov/superfund/programs/risk/ecoup/slera0601.pdf
- USEPA. 2001d. "Ecotox Database System". Accessed 2001. Internet access: [http://www.epa.gov/med/databases/databases.html].
- USEPA. 2002. OSWER Draft Guidance for Evaluating the Vapor Intrusion to Indoor Air Pathway from Groundwater and Soils (Subsurface Vapor Intrusion Guidance). EPAUSEPA530-D-02-004. November.
- USEPA. 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. Office of Emergency and Remedial Response, Washington, DC. OSWER 9355.4-24. December.

V

USEPA RCRA 3013(a) Administrative Order Hattiesburg, Mississippi

- USEPA. 2003. Recommendations of the Technical Review Workgroup for Lead for an Approach to Assessing Risks Associated with Adult Exposures to Lead in Soil.
- USEPA. 2004. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment), Final. Office of Superfund Remediation and Technology Innovation, Washington, DC. OSWER 9285.7-02EP. EPA/540/R/99/005. PB99-963312. July.
- USEPA. 2011. Field Branches Quality System and Technical Procedures. Region 4. http://www.epa.gov/region4/sesd/fbqstp/

F

V

A

Tables

Table 1a. Summary of Groundwater Analytical Results (December 2002 through July 2011), Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

		Concentrations in µg/L																
Location	Date	Acetone	Benzene	Bromodichloromethane	Bromoform	Bromomethane	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloromethane	Chloroform	cis-1,2-dichloroethene	1,2-Dichloroethane	1,2-Dichloropropane	1,1-Dichloroethene	Ethylbenzene	Methylene Chloride	Methyl Ethyl Ketone
MDEQ_GW		608	5.0	0.17	8.5	8.5	5.0	100	3.6	1.4	0.15	70	5.0	5.0	7.0	700	5.0	1,906
MW-02	Aug-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
02	Nov-05	32	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Feb-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Aug-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Feb-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Dec-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Jul-11	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
MW-03	Aug-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Feb-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Feb-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Aug-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	7.5	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	54
	Feb-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Dec-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Jul-11	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
MW-04	Dec-02	ND	14	ND	ND	ND	10.00	1.81	63	1.72	ND	ND	ND	ND	ND	ND	ND	NA
	Feb-03	NA	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 12.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 13.0	NA
	Aug-03	NA	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0	< 1.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0	< 5.0	NA
	Aug-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Feb-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Aug-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	3.6	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Feb-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0

Table 1a. Summary of Groundwater Analytical Results (December 2002 through July 2011), Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

			_					_	Conce	ntrations in	μg/L							
Location	Date	Acetone	Benzene	Bromodichloromethane	Bromoform	Bromomethane	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloromethane	Chloroform	cis-1,2-dichloroethene	1,2-Dichloroethane	1,2-Dichloropropane	1,1-Dichloroethene	Ethylbenzene	Methylene Chloride	Methyl Ethyl Ketone
MDEQ_GW		608	5.0	0.17	8.5	8.5	5.0	100	3.6	1.4	0.15	70	5.0	5.0	7.0	700	5.0	1,906
	Nov-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Dec-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Dec-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Jul-11	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
MW-05	Aug-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.3	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Feb-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.8	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Aug-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-06 Feb-07	60 52	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 5.0 < 5.0	< 10.0 < 10.0
	May-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.6	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-08	85	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Dec-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Dec-10	27	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Jul-11	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
MW-06	Aug-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Feb-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Aug-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-06	< 25	56	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	58	< 5.0	< 10.0
	Feb-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-08	490	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Dec-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Dec-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
NAVA / 0.7	Jul-11	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
MW-07	Aug-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Feb-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA 1 1 0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0

Table 1a. Summary of Groundwater Analytical Results (December 2002 through July 2011), Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

		Concentrations in μg/L																
Location	Date	Acetone	Benzene	Bromodichloromethane	Bromoform	Bromomethane	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloromethane	Chloroform	cis-1,2-dichloroethene	1,2-Dichloroethane	1,2-Dichloropropane	1,1-Dichloroethene	Ethylbenzene	Methylene Chloride	Methyl Ethyl Ketone
MDEQ_GW		608	5.0	0.17	8.5	8.5	5.0	100	3.6	1.4	0.15	70	5.0	5.0	7.0	700	5.0	1,906
	Aug-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-06	< 25	93	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	61	< 5.0	< 10.0
	Feb-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Dec-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Dec-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Jul-11	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
MW-08	Dec-02	ND	6,900	6.84	ND	4.07	16,000	290	66	39.2	1,800	19.0	20	ND	17.0	55.6	26.1	NA
	Feb-03	NA	< 500	4.72	< 10.0	< 10.0	12,000	230	85.5	3.34	1,300	17.5	79.8	< 10.0	1.85	67.5	< 13	NA
	Aug-05	< 6,300	18,000	< 1.0	< 250	< 250	3,500	< 250	< 250	< 250	510	NA	500	< 250	< 250	< 250	< 1,300	< 10.0
	Nov-05	< 2,500	17,000	< 1.0	< 100	< 100	1,000	160	< 100	< 100	260	NA	< 100	< 100	< 100	260	< 500	< 10.0
	Feb-06	< 2,500	11,000	< 1.0	< 100	< 100	480	160	< 100	< 100	130	NA	< 100	< 100	< 100	290	< 500	< 10.0
	May-06	< 630	11,000	< 25	< 25	< 25	2,200	170	< 25	< 25	280	29.0	< 25	< 25	< 25	190	380	< 10.0
	Aug-06	750	15,000	< 1.0	< 1.0	< 1.0	640	220	3.80	< 1.0	450	34.0	< 1.0	< 1.0	6.40	280	510	< 10.0
	Nov-06	< 2,500	13,000	< 1.0	< 100	< 100	330	< 100	< 100	< 100	< 100	< 100	< 100	< 100	< 100	190	< 500	< 1,000
	Feb-07	< 250	990	< 1.0	< 10.0	< 10.0	840	24	< 10	< 10	100	< 10.0	< 10	< 10.0	< 10.0	12	< 50	< 100
	May-07	< 2,500	9,600	< 1.0	< 50	< 50	6,100	220	< 50	< 50	890	< 50	< 50	< 50	< 50	100	< 250	< 500
	Nov-07	< 2,500	14,000	< 1.0	< 100	< 100	370	< 100	< 100	< 100	< 100	NA	< 100	< 100	< 100	110	< 500	< 10.0
	May-08	< 2,500	3,200	< 1.0	< 100	< 100	15,000	350	< 100	< 100	2,200	NA	< 100	< 100	< 100	110	< 500	< 10.0
	Nov-08	< 2,500	3,400	< 1.0	< 100	< 100	1,800	150 110	< 100	< 100	460	NA 05	< 100	< 100	< 100	33	170	< 10.0
	May-09	< 620	540	< 25	< 25	< 25	2,300		< 25 < 25	< 25	1,300	< 25 < 25	< 25 < 25	< 25 < 25	< 25 < 25	< 25 68	< 125	< 250
	Dec-09	< 620 < 250	< 1,000	< 25 < 10.0	< 25 < 10.0	< 25 < 10.0	2,700	180 180	< 10.0	< 25 < 10.0	610 1,400	< 10.0	63	< 10.0	< 10.0	22	380 230	< 250 < 100
	May-10 Dec-10	< 1,200	2,900 6,000	< 50	< 50	< 50	8,000 1,000	150	< 50	< 50	300	< 25	< 50	< 50	< 50	74	560	< 500
	Jul-11	< 1,300	4,600	< 50	< 50	< 50	2,600	220	< 50	< 50	640	< 50	< 50	< 50	< 50	55	340	< 500
MW-09	Dec-02	ND	9.15	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5.92	ND	2.48	NA NA
10100-09	Feb-03	NA NA	64	< 10.0	< 10.0	< 10.0	20.7	J 5.85	19.7	< 10.0	J 9.83	< 10.0	J 1.43	< 10.0	< 10.0	J 1.53	< 13.0	NA NA
	Aug-05	< 25	12	< 1.0	< 1.0	< 1.0	< 1.0	1.00	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	3.2	1.40	< 5.0	< 10.0
	Nov-05	< 25	16	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA NA	< 1.0	< 1.0	3.4	3.0	< 5.0	< 10.0
	Feb-06	< 25	18	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA NA	< 1.0	< 1.0	4.1	3.8	< 5.0	< 10.0
	May-06	< 25	8.10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	3.2	< 1.0	< 5.0	< 10.0
	Aug-06	< 25	10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	6.0	1.0	< 5.0	< 10.0
	Nov-06	34	18	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	6.5	3.8	6.8	< 10.0
	Feb-07	< 25	7.60	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	4.6	< 1.0	< 5.0	< 10.0
	May-07	< 25	8.40	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	2.6	< 1.0	< 5.0	< 10.0
	Nov-07	< 25	9.10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	3.7	< 1.0	< 5.0	< 10.0
	May-08	< 25	3.50	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.2	< 1.0	< 5.0	< 10.0
	Nov-08	46	1.90	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
						1 1 -				1 1 2							1 1 7	

Table 1a. Summary of Groundwater Analytical Results (December 2002 through July 2011), Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

									Concer	ntrations in	ua/l							
			T				T	T	Conce		µg/L	T			T			
Location	Date	Acetone	Benzene	Bromodichloromethane	Bromoform	Bromomethane	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloromethane	Chloroform	cis-1,2-dichloroethene	1,2-Dichloroethane	1,2-Dichloropropane	1,1-Dichloroethene	Ethylbenzene	Methylene Chloride	Methyl Ethyl Ketone
MDEQ_GW		608	5.0	0.17	8.5	8.5	5.0	100	3.6	1.4	0.15	70	5.0	5.0	7.0	700	5.0	1,906
	May-09	< 25	1.10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Dec-09	210	1.60	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Dec-10	< 25	3.00	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.3	< 1.0	< 5.0	< 10.0
	Jul-11	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
MW-10	Aug-03	NA	< 1.0	< 1.0	1.6	< 5.0	< 1.0	< 1.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0	< 5.0	NA
	Aug-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Feb-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Aug-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Feb-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Dec-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Dec-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Jul-11	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
MW-11	Dec-02	ND	114	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	NA
	Feb-03	NA	J 6.39	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 12.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 13.0	NA
	Aug-03	NA	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0	< 1.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0	< 5.0	NA
	Aug-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Feb-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Aug-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Feb-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	` 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-09	42	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Dec-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Dec-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Jul-11	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0

Table 1a. Summary of Groundwater Analytical Results (December 2002 through July 2011), Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

									Conce	ntrations in	μg/L							
Location	Date	Acetone	Benzene	Bromodichloromethane	Bromoform	Bromomethane	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloromethane	Chloroform	cis-1,2-dichloroethene	1,2-Dichloroethane	1,2-Dichloropropane	1,1-Dichloroethene	Ethylbenzene	Methylene Chloride	Methyl Ethyl Ketone
MDEQ_GW		608	5.0	0.17	8.5	8.5	5.0	100	3.6	1.4	0.15	70	5.0	5.0	7.0	700	5.0	1,906
MW-12	Aug-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Feb-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Aug-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-06	91	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Feb-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-08	32	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-09	28	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Dec-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Dec-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
101/10	Jul-11	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
MW-13	Aug-05	< 25	120	< 1.0	< 1.0	< 1.0	260	10	< 1.0	< 1.0	96	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-05	29	78	< 1.0	< 1.0	< 1.0	53	9	< 1.0	< 1.0	56	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Feb-06	< 25	110	< 1.0 < 1.0	< 1.0	1.6	77	22 5	< 1.0 < 1.0	< 1.0	63 33	NA 4.00	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0	< 5.0	< 10.0
	May-06	< 25 < 25	48 72	< 1.0	< 1.0	< 1.0	110 45	17		< 1.0 < 1.0		1.00	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Aug-06	< 25	94	< 1.0	< 1.0	< 1.0	27	19	< 1.0	< 1.0	35 30	3.10	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0 < 10.0
	Nov-06	< 25	160	< 1.0	< 1.0	< 1.0	680	14	< 1.0	+ +	120	4.00	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0	< 5.0	
	Feb-07	< 25	320	< 1.0	< 1.0	< 1.0 < 1.0	1,400	13	< 1.0 < 1.0	< 1.0 < 1.0	130	2.50 1.30	< 1.0	< 1.0	< 1.0	< 1.0 < 1.0	< 5.0 < 5.0	< 10.0 < 10.0
	May-07 Nov-07	< 25	180	< 1.0	< 1.0	< 1.0	560	9	< 1.0	< 1.0	140	1.20	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-08	< 250	780	< 1.0	< 20	< 20	3,200	23	< 20	< 20	260	< 20	< 20	< 20	< 20	< 20	< 100	< 200
	Nov-08	< 250	250	5.60	< 20	< 20	880	14	< 20	< 20	180	1.80	6.10	< 20	< 20	< 20	< 100	< 200
	May-09	< 620	1,200	< 25	< 25	< 25	3,500	< 25	< 25	< 25	340	< 25	< 25	< 25	< 25	< 25	< 125	< 250
	Dec-09	< 620	790	< 25	< 25	< 25	2,000	29	< 25	< 25	310	< 25	< 25	< 25	< 25	< 25	< 120	< 250
	May-10	< 500	2,600	< 20	< 20	< 20	4,000	110	< 20	< 20	1,900	< 20	< 20	< 20	< 20	< 20	< 100	< 200
	Dec-10	< 250	530	< 10.0	< 10.0	< 10.0	970	25	< 10.0	< 10.0	230	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 50	< 100
	Jul-11	< 250	390	< 10.0	< 10.0	< 10.0	620	24	< 10.0	< 10.0	210	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 50	< 100
MW-14	Aug-05	34	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-05	35	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Feb-06	180	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Aug-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-06	440	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Feb-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-07	72	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-08	650	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-08	590	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0

Table 1a. Summary of Groundwater Analytical Results (December 2002 through July 2011), Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

									-									
				1			1		Concer	ntrations in	μg/L							
Location	Date	Acetone	Benzene	Bromodichloromethane	Bromoform	Bromomethane	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloromethane	Chloroform	cis-1,2-dichloroethene	1,2-Dichloroethane	1,2-Dichloropropane	1,1-Dichloroethene	Ethylbenzene	Methylene Chloride	Methyl Ethyl Ketone
MDEQ_GW		608	5.0	0.17	8.5	8.5	5.0	100	3.6	1.4	0.15	70	5.0	5.0	7.0	700	5.0	1,906
	May-09	260	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 10.0	< 20.0
	Dec-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Dec-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Jul-11	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
MW-15	Aug-05	84	1.7	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
-	Nov-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Feb-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-06	50	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Aug-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-06	1,500	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Feb-07	350	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-07	62	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-08	2,300	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
		1,300	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 25.0	< 50.0
	May-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	_	< 10.0
	Dec-09					++	< 1.0	< 1.0							< 1.0		< 5.0	
	May-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 5.0	< 10.0 < 10.0
	Dec-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	
NAV 40	Jul-11	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
MW-16	Aug-05	< 25	2.3	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-05	< 25	1.2	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Feb-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Aug-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Feb-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Nov-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Dec-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-10	< 25	1.1	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.3	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Dec-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Jul-11	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
MW-17	Aug-05	< 6,300	6,200	< 1.0	< 250	< 250	1,500	340	< 250	< 250	1,200	NA	< 250	< 250	< 250	< 250	< 1,300	NA
	Nov-05	< 13,000	1,500	< 1.0	< 500	< 500	17,000	< 500	< 500	< 500	1,600	NA	< 500	< 500	< 500	< 500	< 2,500	NA
	Feb-06	< 13,000	1,300	< 1.0	< 500	< 500	37,000	600	< 500	< 500	2,600	NA	< 500	< 500	< 500	< 500	< 2,500	NA
	May-06	< 6,300	4,200	< 250	< 250	< 250	30,000	530	< 250	< 250	< 250	< 250	< 250	< 250	< 250	< 250	< 1,300	NA
	Aug-06	570	1,000	< 1.0	< 1.0	< 1.0	33,000	610	3	< 1	3,000	26	< 1.0	< 1.0	6.0	36	10.0	< 10.0
	Nov-06	< 5,000	2,100	< 1.0	< 200	< 200	26,000	470	< 200	< 200	< 200	< 200	< 200	< 200	< 200	< 200	< 1,000	< 2,000
	Feb-07	< 5,000	3,300	< 1.0	< 200	< 200	48,000	810	< 200	< 200	3,400	< 200	< 200	< 200	< 200	< 200	< 1,000	< 2,000

Table 1a. Summary of Groundwater Analytical Results (December 2002 through July 2011), Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

									Conce	ntrations in	μg/L							
Location	Date	Acetone	Benzene	Bromodichloromethane	Bromoform	Bromomethane	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloromethane	Chloroform	cis-1,2-dichloroethene	1,2-Dichloroethane	1,2-Dichloropropane	1,1-Dichloroethene	Ethylbenzene	Methylene Chloride	Methyl Ethyl Ketone
MDEQ_GW		608	5.0	0.17	8.5	8.5	5.0	100	3.6	1.4	0.15	70	5.0	5.0	7.0	700	5.0	1,906
	May-07	740	5,300	< 1.0	< 20	< 20	32,000	770	< 20	< 20	2,800	< 20	< 20	< 20	< 20	< 20	< 100	< 200
	Nov-07	< 5,000	3,000	< 1.0	< 200	< 200	45,000	890	< 200	< 200	4,600	< 200	< 200	< 200	< 200	< 200	< 1,000	< 2,000
	May-08	< 5,000	4,800	< 1.0	< 200	< 200	47,000	930	< 200	< 200	3,600	< 200	< 200	< 200	< 200	< 200	< 1,000	< 2,000
	Nov-08	< 5,000	1,800	< 1.0	< 200	< 200	34,000	720	< 200	< 200	3,500	< 200	< 200	< 200	< 200	< 200	< 1,000	< 2,000
	May-09	< 5,000	8,100	< 1.0	< 200	< 200	39,000	640	< 200	< 200	2,900	< 200	< 200	< 200	< 200	< 200	< 1,000	< 2,000
	Dec-09	< 12,000	4,500	< 500	< 500	< 500	54,000	1,200	< 500	< 500	7,100	< 500	< 500	< 500	< 500	< 500	< 2,500	< 5,000
	May-10	< 2,500	7,500	< 100	< 100	< 100	40,000	740	< 100	< 100	8,400	< 100	< 100	< 100	< 100	230	660	< 1,000
	Dec-10	< 12,000	< 500	< 500	< 500	< 500	32,000	760	< 500	< 500	5,900	< 500	< 500	< 500	< 500	< 500	< 2,500	< 5,000
	Jul-11	< 5,000	3,600	< 200	< 200	< 200	25,000	770	< 200	< 200	3,000	< 400	< 200	< 200	< 200	< 200	< 200	< 2,000
MW-18	Aug-05	< 25	10.00	< 1.0	< 1.0	< 1.0	< 1.0	45	< 1.0	< 1.0	< 1.0	NA	< 1.0	2.30	2.60	1.60	< 5.0	< 10.0
	Nov-05	< 25	3.90	< 1.0	< 1.0	< 1.0	< 1.0	26	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	1.60	< 1.0	< 5.0	< 10.0
	Feb-06	< 25	4.20	< 1.0	< 1.0	< 1.0	< 1.0	31	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	1.50	< 1.0	< 5.0	< 10.0
	May-06	< 25	6.50	< 1.0	< 1.0	< 1.0	< 1.0	35	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	2.30	1.10	< 5.0	< 10.0
	Aug-06	< 25	4.80	< 1.0	< 1.0	< 1.0	< 1.0	34	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	20	3.10	1.20	< 5.0	< 10.0
	Nov-06	61	2.90	< 1.0	< 1.0	< 1.0	< 1.0	23	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.10	< 1.0	< 1.0	< 5.0	< 10.0
	Feb-07	< 25	4.10	< 1.0	< 1.0	< 1.0	< 1.0	28	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.40	1.70	< 1.0	< 5.0	< 10.0
	May-07	< 25	4.00	< 1.0	< 1.0	< 1.0	< 1.0	33	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.30	1.60	1.00	< 5.0	< 10.0
	Nov-07	< 25	1.20	< 1.0	< 1.0	< 1.0	< 1.0	26	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.20	1.40	< 1.0	< 5.0	< 10.0
	May-08	< 25	1.70	< 1.0	< 1.0	< 1.0	< 1.0	31	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	2.00	< 1.0	< 5.0	< 10.0
	Nov-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	23	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.00	< 1.0	< 5.0	< 10.0
	May-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	24	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Dec-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	21	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-10	< 25	1.1	< 1.0	< 1.0	< 1.0	< 1.0	20	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.00	< 1.0	< 5.0	< 10.0
	Dec-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	18	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Jul-11	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	21	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
MW-19	Aug-05	< 25	20	< 1.0	< 1.0	< 1.0	< 1.0	7.50	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	1.90	< 5.0	< 10.0
	Nov-05	< 25	19	< 1.0	< 1.0	< 1.0	< 1.0	6.40	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	1.30	< 5.0	< 10.0
	Feb-06	< 25	22	< 1.0	< 1.0	< 1.0	< 1.0	9.80	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	2.10	< 5.0	< 10.0
	May-06	28	21	< 1.0	< 1.0	< 1.0	< 1.0	7.20	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.70	< 5.0	< 10.0
	Aug-06	< 25	18	< 1.0	< 1.0	< 1.0	< 1.0	6.30	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	2.10	< 5.0	< 10.0
	Nov-06	< 25	20	< 1.0	< 1.0	< 1.0	< 1.0	6.20	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	2.00	< 5.0	< 10.0
	Feb-07	< 25	32	< 1.0	< 1.0	< 1.0	< 1.0	8.50	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	2.40	< 5.0	< 10.0
	May-07	< 25	36	< 1.0	< 1.0	< 1.0	< 1.0	9.50	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	2.50	< 5.0	< 10.0
	Nov-07	< 25	44	< 1.0	< 1.0	< 1.0	< 1.0	10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.10	2.60	< 5.0	< 10.0
	May-08	< 25	66	< 1.0	< 1.0	< 1.0	6.70	13	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.50	2.30	< 5.0	< 10.0
	Nov-08	< 25	58	< 1.0	< 1.0	< 1.0	< 1.0	9.70	< 1.0	< 1.0	1.10	< 1.0	< 1.0	< 1.0	< 1.0	2.40	< 5.0	< 10.0
	May-09	< 25	65	< 1.0	< 1.0	< 1.0	11.0	14	< 1.0	< 1.0	4.70	< 1.0	< 1.0	< 1.0	1.30	2.00	< 5.0	< 10.0
	Dec-09	< 25	64	< 1.0	< 1.0	< 1.0	4.50	12	< 1.0	< 1.0	2.90	< 1.0	< 1.0	< 1.0	< 1.0	2.40	< 5.0	< 10.0
	May-10	< 25	52	< 1.0	< 1.0	< 1.0	3.20	10	< 1.0	< 1.0	3.60	< 1.0	< 1.0	< 1.0	1.40	1.90	< 5.0	< 10.0
	Dec-10	< 25	61	< 1.0	< 1.0	< 1.0	< 1.0	9.1	< 1.0	< 1.0	2.70	< 1.0	< 1.0	< 1.0	< 1.0	2.20	< 5.0	< 10.0
	Jul-11	< 25	54	< 1.0	< 1.0*	< 1.0	3.5	9.9	< 1.0	< 1.0	3.30	< 1.0	< 1.0	< 1.0	< 1.0	1.30	< 5.0	< 10.0
MW-20	Sep-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Dec-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Jul-11	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0

Table 1a. Summary of Groundwater Analytical Results (December 2002 through July 2011), Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

									Conce	ntrations in	μg/L							
Location	Date	Acetone	Benzene	Bromodichloromethane	Bromoform	Bromomethane	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloromethane	Chloroform	cis-1,2-dichloroethene	1,2-Dichloroethane	1,2-Dichloropropane	1,1-Dichloroethene	Ethylbenzene	Methylene Chloride	Methyl Ethyl Ketone
MDEQ_GW		608	5.0	0.17	8.5	8.5	5.0	100	3.6	1.4	0.15	70	5.0	5.0	7.0	700	5.0	1,906
MW-21	Sep-09	< 1,200	4,400	< 50	< 50	< 50	< 50	170	< 50	< 50	6,800	< 50	< 50	< 50	< 50	< 50	< 250	< 500
	May-10	< 1,200	3,500	< 50	< 50	< 50	280	150	< 50	< 50	7,800	< 50	< 50	< 50	< 50	< 50	< 250	< 500
	Dec-10	< 1,200	4,400	< 50	< 50	< 50	< 50	180	< 50	< 50	7,300	< 50	84	< 50	< 50	< 50	< 250	< 500
	Jul-11	< 1,300	3,200	< 50	< 50	< 50	< 50	150	< 50	< 50	4,300	< 100	< 50	< 50	< 50	< 50	< 50	< 500
MW-22	Sep-09	86	9.80	< 1.0	< 1.0	< 1.0	< 1.0	7.70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-10	< 25	6.60	< 1.0	< 1.0	< 1.0	< 1.0	4.90	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Dec-10	< 25	6.30	< 1.0	< 1.0	< 1.0	< 1.0	2.30	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Jul-11	< 25	10.0	< 1.0	< 1.0	< 1.0	< 1.0	8.70	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
MW-23	Sep-09	1,600	9,200	< 100	< 50	< 100	< 50	190	< 100	< 100	1,400	< 100	< 50	< 50	< 50	< 50	290	< 500
	May-10	< 2,500	10,000	< 100	< 50	< 100	< 100	180	< 100	< 100	2,000	< 100	< 100	< 100	< 100	< 100	< 500	< 1,000
	Dec-10	< 2,500	7,600	< 100	< 50	< 100	< 100	< 100	< 100	< 100	2,900	< 100	< 100	< 100	< 100	< 100	< 500	< 1,000
	Jul-11	< 2,500	8,800	< 100	< 100	< 100	< 100	140	< 100	< 100	3,200	< 100	< 100	< 100	< 100	< 100	< 500	< 1,000
MW-24	Sep-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	May-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Dec-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0			< 1.0	< 1.0	< 1.0	< 5.0	< 10.0
	Jul-11	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0

Table 1a. Summary of Groundwater Analytical Results (December 2002 through July 2011), Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

											0		in/I									
			_								Con	centrations	in µg/∟									
Location	Date	Methyl Isobutyl Ketone	Styrene	Tetrachloroethene	Toluene	Trichloroethene	Vinyl Chloride	Total Xylenes	Bromobenzene	2-Chlorotoluene	4-Chlorotoluene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Naphthalene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	p-Isopropyltoluene	Dibromochloromethane	Isopropylbenzene
MDEQ_GW		139	100	5.0	1,000	5.0	2.0	10,000		122		600	5.5	75	6.2		70	12.0	12.0		0.13	679
MW-02	Aug-05	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA
10100-02	Nov-05	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA
	Feb-06	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	May-06	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
	Aug-06	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		1 1	< 1.0	< 1.0			< 1.0				NA	NA NA		NA NA		-	++		++		NA NA	
	Nov-06	< 10.0						< 2.0	NA	NA			NA		NA NA	NA	NA NA	NA NA	NA NA	NA		NA
	Feb-07	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA
	May-07	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
	Nov-07	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-08	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-08	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-09	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dec-09	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-10	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-10	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Jul-11	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-03	Aug-05	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-05	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Feb-06	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Feb-06	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-06	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Aug-06	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-06	< 10.0	< 1.0	65	< 1.0	< 39	1.2	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Feb-07	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-07	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
	Nov-07	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA NA
	May-08	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA NA
	Nov-08	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA NA	NA.	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	May-09	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Dec-09	< 10.0		< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA
	May-10	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		< 10.0		< 1.0			< 1.0	< 2.0	NA NA	1 1		NA NA	NA NA								1 1	
+	Nov-10			< 1.0			< 1.0			NA NA	NA	+	+ +	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
NAVA 0.4	Jul-11	< 10.0						< 2.0	NA	NA	NA	NA	NA	NA	NA 5.30	NA	NA	NA	NA	NA	NA	NA 4.26
MW-04	Dec-02	NA NA	ND 1100	ND	ND 1100	ND 100	ND	ND	ND	ND 110.0	ND	ND	ND 110.0	ND	5.38	ND D 45.0	ND D 0.70	ND	ND 1100	ND	ND	1.26
	Feb-03	NA NA	< 10.0	< 10.0			< 10.0	< 15.0	< 10.0		< 10.0	< 10.0	< 10.0	< 10.0		B 45.9	B 9.79	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
	Aug-03	NA 10.0		< 1.0			< 1.0	< 1.0	< 1.0		< 1.0		< 1.0	< 1.0	< 5.0	< 5.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Aug-05	< 10.0		< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-05	< 10.0		< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Feb-06	< 10.0		< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-06	< 10.0		< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Aug-06	< 10.0		< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-06	< 10.0	< 1.0	68	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Feb-07	< 10.0		< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-07	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 1a. Summary of Groundwater Analytical Results (December 2002 through July 2011), Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

May 08 100												Conc	entrations	in μg/L				_					
MICHOLOGY	Location	Date	Isobutyl	Styrene	Tetrachloroethene	Toluene	Trichloroethene		Total Xylenes	Bromobenzene	2-Chlorotoluene	4-Chlorotoluene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Naphthalene	,3-Trichlorobenz	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	p-IsopropyItoluene		Isopropylbenzene
New 07 1:00 1:0	IDEQ GW		139		5.0				10.000			•	600	5.5	75	6.2		70	12.0	12.0		0.13	679
May 08		Nov-07								NA		NA					NA			 	NA		NA
May 06										NA	NA			NA	NA	NA	NA			NA		NA	NA
Dec-09 100		Nov-08	< 10.0	< 1.0	< 1.0	< 1.0				NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
May-10		May-09									NA					NA	NA			NA	NA	NA	NA
Dec-10											+ + - +									1 1			NA
MAYOF 10.0																1 1	1 1						NA
MM-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-ON-																	+ +						NA
No-966 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 2.0 NA NA NA NA NA NA NA N											1 1						+ +						NA
Feb-06 100 10 10 10 10 10 10	MW-05																						NA
May-96 10											1 1									1 1			NA
May																	1 1						NA
No-y-06		•															+ +						NA
Feb-07 \$ 10.0											1 1						+ +		1 1				NA
May-07 < 0.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1																							NA NA
No-07 \$10.0 \$10.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$1.0 \$2.0 NA NA NA NA NA NA NA N											1 1									1 1			NA NA
May-08 C 10.0 C 1.0 C 1.0 C 1.0 C 1.0 C 1.0 C 1.0 C 2.0 NA NA NA NA NA NA NA N		•															1 1						NA NA
Nov-08																	+ +						NA
Mg-90		•									1 1						+ +		1 1				NA NA
Dec-09 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.2 NA NA NA NA NA NA NA N																							NA
May-10 C 10.0											1 1									1 1			NA NA
Dec-10																	1 1						NA
MW-06 Aug-05 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 NA NA NA NA NA NA NA N		•															+ +						NA
MW-06											+ + - +						+ +		1 1				NA
Nov-05	MW-06																						NA
Feb-06 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.										+-+	+ + +												NA
May-06 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 <											+ + - +					NA	NA			NA			NA
Aug-06 C 10.0 C 1.0 C		May-06	< 10.0	< 1.0	< 1.0	< 1.0			< 2.0	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Feb-07 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 NA		Aug-06	< 10.0			< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
May-07 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 NA NA NA NA NA NA NA N		Nov-06	< 10.0		< 1.0						NA	NA	NA	NA		NA	NA		NA	NA	NA		NA
Nov-07 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 <		Feb-07		< 1.0	< 1.0						NA	NA		NA		NA	NA		NA	NA	NA	NA	NA
May-08 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 NA <		May-07																			NA		NA
Nov-08		Nov-07									1 1		_			1 1	+ +		 		1 1		NA
May-09 < 10.0		•								+-+	+ + - +					1 1							NA
Dec-09										+-+	+ + - +					1 1	1 1		1 1				NA
May-10 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 <											+ + + +								 	+ +			NA
Dec-10 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.																					1 1		NA
Jul-11 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0		•									+ + + +					1 1	+ +		 		1 1		NA
MW-07 Aug-05 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.										+-+													NA NA
Nov-05 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.	NAVA 07										1 1					1 1	1 1		1 1				NA
Feb-06 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 NA	IVIVV-U/										+ + + +		_		+ +				 	+ +			NA NA
											+ + + +								 	+ +	1 1		NA NA
I MOVOR LEIOO LEIO LEIO LEIO LEIO LEIO LEIO LEI		May-06	< 10.0		< 1.0			< 1.0	< 2.0	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA

Table 1a. Summary of Groundwater Analytical Results (December 2002 through July 2011), Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

Date	- d	mochloromethane opylbenzene
	0 12.0	Dibror
Aug-06 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 <	_	0.13 679
No-06	NA NA	NA NA
Feb-07 c		NA NA
May-07 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 <		NA NA
Nov-07 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 NA NA NA NA NA NA NA N		NA NA
Mgy-08 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 NA NA NA NA NA NA NA N		NA NA
Nov-08		NA NA
May-09	- 	NA NA
Dec-09 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 NA NA NA NA NA NA NA N		NA NA
May-10		NA NA
Dec-10		NA NA
Jul-11 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 NA		NA NA
MW-08 Dec-02 NA ND 8.51 28 5.80 ND ND ND ND ND ND ND N		NA NA
Feb-03		4.45 4.60
Aug-05 < 10.0 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 < 250 <		10.0 4.35
Nov-05 < 10.0 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < < 100 < 100 < < 100 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <		NA NA
Feb-06 < 10.0 < 100 < 100 < 300 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 <		NA NA
May-06 < 10.0 < 25 < 25	- 	NA NA
Aug-06 < 10.0		NA NA
Nov-06		
Feb-07		NA NA
May-07 < 500 < 50 < 50 < 50 79 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50 < 50		
Nov-07		NA NA
May-08 < 10.0		
Nov-08 < 10.0 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 NA		NA NA
May-09 < 250		NA NA
Dec-09 < 250 < 25 43.0 < 25 < 25 95 NA		NA NA
May-10 < 100 < 10.0 < 10		NA NA
Dec-10 < 500 < 50 < 50 < 50 < 50 < 50 < 50 <		NA NA
Jul-11 < 500 < 50 < 50 < 50 < 50 < 50 < 100 NA		NA NA
	- 	NA NA
MW-09 Dec-02 INA IND		NA NA
		ND ND
Feb-03 NA < 10.0 < 10.0 < 10.0 < 10.0 < 15.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0		10.0 J 1.92
Aug-05 < 10.0 < 1.0 1.2 < 1.0 < 1.0 < 2.0 NA NA NA NA NA NA NA N		NA NA
Nov-05 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 NA		NA NA
Feb-06 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 NA		NA NA
May-06 < 10.0 < 1.0 < 1.0 1.1 < 1.0 < 1.0 < 2.0 NA NA NA NA NA NA NA N		NA NA
Aug-06 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 NA		NA NA
Nov-06 48		NA NA
Feb-07 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 NA		NA NA
May-07 < 10.0 < 1.0 < 1.0 1.6 < 1.0 < 1.0 < 2.0 NA NA NA NA NA NA NA N	NA NA	NA NA
Nov-07 < 10.0 < 1.0 < 1.0 1.5 < 1.0 < 1.0 < 2.0 NA NA NA NA NA NA NA N	NA NA	NA NA
May-08 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 NA	INA INA	NA NA
Nov-08 < 10.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 2.0 NA		

Table 1a. Summary of Groundwater Analytical Results (December 2002 through July 2011), Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

											Con	centrations	in ua/l									
											COI		μg/L									
Location	Date	ethyl Isobutyl Ketone	yrene	trachloroethene	luene	ichloroethene	Vinyl Chloride	tal Xylenes	omobenzene	Chlorotoluene	Chlorotoluene	-Dichlorobenzene	3-Dichlorobenzene	-Dichlorobenzene	phthalene	3,3-Trichlorobenzene	,4-Trichlorobenzene	,4-Trimethylbenzene	3,5-Trimethylbenzene	-Isopropyltoluene	bromochloromethane	ppropylbenzene
		Μe	Sty	Tei	Tolu	Ţ	V.	P	Bro	2-0	4-C	1,2	1,3	4, 1	Na	1,2	1,2,	1,2,	1,3	급	<u>Di</u>	Iso
MDEQ_GW		139	100	5.0	1,000	5.0	2.0	10,000		122		600	5.5	75	6.2		70	12.0	12.0		0.13	679
	May-09	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dec-09	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-10	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dec-10	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Jul-11	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-10	Aug-03	NA	< 1.0	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 5.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Aug-05	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-05	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Feb-06	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-06	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Aug-06	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-06	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Feb-07	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-07	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-07	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-08	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-08	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-09	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dec-09	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-10	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dec-10	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Jul-11	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-11	Dec-02	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
	Feb-03	NA	< 10.0	< 10.0		< 10.0	< 10.0	< 15.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	B 42.6	B 53.40	B 13.55	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
	Aug-03	NA	< 1.0	< 1.0			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 5.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
	Aug-05	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-05	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Feb-06	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-06	< 10.0	< 1.0	< 1.0		< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Aug-06	< 10.0		< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-06	< 10.0		< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Feb-07	< 10.0		< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-07	< 10.0		< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-07	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-08	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-08	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-09	< 10.0		< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dec-09	< 10.0		< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-10	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dec-10	< 10.0	< 1.0	< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Jul-11	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 1a. Summary of Groundwater Analytical Results (December 2002 through July 2011), Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

			_	_	_	_		_			Con	centrations i	n μg/L		1		_	_				
Location	Date	Methyl Isobutyl Ketone	Styrene	Tetrachloroethene	Toluene	Trichloroethene	Vinyl Chloride	Total Xylenes	Bromobenzene	2-Chlorotoluene	4-Chlorotoluene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Naphthalene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	p-IsopropyItoluene	Dibromochloromethane	Isopropylbenzene
MDEQ_GW		139	100	5.0	1,000	5.0	2.0	10,000		122		600	5.5	75	6.2		70	12.0	12.0		0.13	679
MW-12	Aug-05	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-05	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Feb-06	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-06	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u> </u>	Aug-06	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u> </u>	Nov-06	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Feb-07	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
+	May-07	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
+	Nov-07	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
+	May-08	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA
	Nov-08	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
-	May-09	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA
+	Dec-09	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA NA	NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA
-	May-10	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
-	Dec-10	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA
<u> </u>	Jul-11	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MW-13	Aug-05	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	1.10	< 2.0	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
10100-13		< 10.0	< 1.0	< 1.0	< 1.0		1.70	< 2.0	NA NA	NA NA	NA NA	 	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
	Nov-05		+ +	< 1.0	< 1.0	< 1.0					+ +	NA		-	+ +			++		1 1	++	
	Feb-06	< 10.0	< 1.0	< 1.0		< 1.0	2.40	< 2.0	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA
+	May-06	< 10.0	< 1.0		< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA NA
	Aug-06	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	2.10	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-06	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	2.50	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Feb-07	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	1.60	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-07	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-07	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-08	< 200	< 20	< 20	< 20	< 20	< 20	< 20	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-08	< 200	< 20	< 20	< 20	< 20	< 20	< 20	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-09	< 250	< 25	< 25	< 25	< 25	< 25	< 25	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dec-09	< 250	< 25	< 25	< 25	< 25	< 25	< 50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-10	< 200	< 20.0	< 20	< 20*	< 20	< 20	< 40	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dec-10	< 100	< 200	< 10.0	< 10.0	< 10.0	< 10.0	< 20	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Jul-11	< 100	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 20	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-14	Aug-05	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-05	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
I	Feb-06	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-06	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Aug-06	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
						1.		< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	N I A	NIA	NA
	Nov-06	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	1471	1.47	147.4			1.47			14/3	INA	INA	NA	NA	14/3
		< 10.0 < 10.0	< 1.0 < 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA
	Nov-06																		1 1			
	Nov-06 Feb-07	< 10.0	< 1.0	< 1.0	< 1.0 < 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-06 Feb-07 May-07	< 10.0 < 10.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 2.0 < 2.0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA

Table 1a. Summary of Groundwater Analytical Results (December 2002 through July 2011), Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

													://									
			_		1						Con	centrations	in μg/L									
Location	Date	Methyl Isobutyl Ketone	Styrene	Tetrachloroethene	Toluene	Trichloroethene	Vinyl Chloride	Total Xylenes	Bromobenzene	2-Chlorotoluene	4-Chlorotoluene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Naphthalene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	p-Isopropyltoluene	Dibromochloromethane	Isopropylbenzene
MDEQ_GW		139	100	5.0	1,000	5.0	2.0	10,000		122		600	5.5	75	6.2		70	12.0	12.0		0.13	679
	May-09	< 20.0	< 4.0	< 2.0	< 2.0		< 2.0	< 4.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dec-09	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-10	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dec-10	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Jul-11	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
MW-15	Aug-05	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-05	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA
	Feb-06	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA
	May-06	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
	Aug-06	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
	Nov-06	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Feb-07	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
	May-07	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA	NA
	Nov-07	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
	May-08	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
	Nov-08	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
	May-09	< 50.0	< 5.0	< 5.0	< 5.0		< 5.0	< 10.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
	Dec-09	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	May-10	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA
	Dec-10	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
	Jul-11	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
MW-16	Aug-05	< 10.0	< 1.0	< 1.0	5.2		< 1.0	< 2.0	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA
10100 10	Nov-05	< 10.0	< 1.0	< 1.0	2.1		< 1.0	< 2.0	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Feb-06	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA
	May-06	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA
	Aug-06	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
	Nov-06	< 10.0		< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Feb-07	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	May-07	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Nov-07	< 10.0		< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA
	May-08	< 10.0	< 1.0	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-08	< 10.0		< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-09	< 10.0		< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dec-09	< 10.0		< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA
	May-10	< 10.0		< 1.0	3.5		< 1.0	< 2.0	NA	NA	NA	NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA
	Dec-10	< 10.0		< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA
	Jul-11	< 10.0		< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA	NA	NA	NA
MW-17	Aug-05	NA	< 250	< 250	920		< 250	680	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
1414 4 - 17	Nov-05	NA NA	< 500	< 500	< 500		< 500	< 1,000	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Feb-06	NA NA	< 500	< 500	< 500		< 500	< 1,000	NA NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA	NA
	May-06	NA NA	< 250	< 250	720		< 250	540	NA NA	NA	NA	NA NA	NA NA	NA	NA NA	NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA
	Aug-06	< 10.0	< 1.0	8.00	69		< 1.0	93	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Nov-06	< 2,000	< 200	< 200	< 200		< 200	< 400	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
-													1 1				+ +		+ +	+ +	1 1	++
	Feb-07	< 2,000	< 200	< 200	270	< 200	< 200	420	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 1a. Summary of Groundwater Analytical Results (December 2002 through July 2011), Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

MDEQ_GW N N N N N C C N MW-18 A N F N N N N N N N N N N N N N N N N N	May-08 Nov-08 May-09 Dec-09 May-10 Dec-10 Jul-11 Aug-05 Nov-05 Feb-06 May-06 Aug-06 Nov-06 Feb-07	< 10.0 < 10.0 < 10.0 < 10.0 < 10.0	< 200 < 200 < 200 < 10,000 < 100 < 500 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	5.0 22 < 200 < 200 < 200 < 200 < 500 < 100 < 500 < 1.10 < 1.0 < 1.0 < 1.0	210 450	< 200 < 200 < 200 < 200 < 500 < 100 < 500 < 200 < 1.0 < 1.0 < 1.0 < 1.0	2.0 < 20 < 200 < 200 < 200 < 200 < 500 < 100 < 500 < 10.0 < 1.0 < 1.0	10,000 810 < 400 670 < 400 < 400 < 1,000 830 < 1,000 < 200 < 2.0 < 2.0 < 2.0 < 2.0		122 NA NA NA NA NA NA NA NA NA NA	PX PX PX <	NA	2.5 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	75 NA NA NA NA NA NA NA NA NA NA	S.2 NA NA NA NA NA NA NA NA	VA V	NA NA NA <	NA N	13,5-Trimethylbenzene	by Paragraphic Par	Dipromochloromethane NA NA NA NA NA NA	679 NA NA NA NA NA NA
MW-18 A N N N N N N N N N N N N N N N N N N	Nov-07 May-08 Nov-08 May-09 Dec-09 May-10 Dec-10 Jul-11 Aug-05 Nov-05 Feb-06 May-06 Aug-06 Nov-06 Feb-07	570 < 2,000 < 2,000 < 2,000 < 2,000 < 5,000 < 1,000 < 5,000 < 10.0 < 10.0	< 20 < 200 < 200 < 200 < 200 < 10,000 < 100 < 500 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	22	1,000 450 210 450 < 200 < 200 < 500 520 < 500 < 200 < 1.0 < 1.0 < 1.0 < 1.20 < 1.0	5.0 < 20 < 200 < 200 < 200 < 200 < 200 < 500 < 100 < 500 < 1.0 < 1.0 < 1.0 < 1.0	2.0 < 20 < 200 < 200 < 200 < 200 < 200 < 500 < 100 < 500 < 100 < 1.0 < 1.0	810 < 400 670 < 400 < 400 < 1,000 830 < 1,000 < 200 < 2.0 < 2.0	NA	122 NA NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA	NA	NA NA NA NA NA NA NA	NA	6.2 NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA
MW-18 A N N N N N N N N N N N N N N N N N N	Nov-07 May-08 Nov-08 May-09 Dec-09 May-10 Dec-10 Jul-11 Aug-05 Nov-05 Feb-06 May-06 Aug-06 Nov-06 Feb-07	570 < 2,000 < 2,000 < 2,000 < 2,000 < 5,000 < 1,000 < 5,000 < 10.0 < 10.0	< 20 < 200 < 200 < 200 < 200 < 10,000 < 100 < 500 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	22	450 210 450	 20 200 200 200 500 100 500 200 1.0 1.0 1.0 1.0 	< 20 < 200 < 200 < 200 < 200 < 500 < 100 < 500 < 100 < 1.0 < 1.0	810 < 400 670 < 400 < 400 < 1,000 830 < 1,000 < 200 < 2.0 < 2.0	NA	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA NA	NA	NA NA NA NA NA NA NA	NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA
MW-18	Nov-07 May-08 Nov-08 May-09 Dec-09 May-10 Dec-10 Jul-11 Aug-05 Nov-05 Feb-06 May-06 Aug-06 Nov-06 Feb-07	< 2,000 < 2,000 < 2,000 < 2,000 < 5,000 < 1,000 < 5,000 < 10.00 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0	< 200 < 200 < 200 < 200 < 10,000 < 100 < 500 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 200 < 200 < 200 < 200 < 500 < 100 < 500 < 100 < 1.10 < 1.0 < 1.0 < 1.0	210 450	< 200 < 200 < 200 < 200 < 500 < 100 < 500 < 200 < 1.0 < 1.0 < 1.0 < 1.0	< 200 < 200 < 200 < 200 < 500 < 100 < 500 < 100 < 100 < 100 < 100 < 100 < 100	< 400 670 < 400 < 400 < 1,000 830 < 1,000 < 200 < 2.0 < 2.0	NA	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA
MW-18	May-08 Nov-08 May-09 Dec-09 May-10 Dec-10 Jul-11 Aug-05 Nov-05 Feb-06 May-06 Aug-06 Nov-06 Feb-07	< 2,000 < 2,000 < 2,000 < 5,000 < 1,000 < 5,000 < 10.00 < 10.00 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0	< 200 < 200 < 200 < 10,000 < 100 < 500 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 200 < 200 < 200 < 500 < 100 < 500 < 100 < 1.10 < 1.0 < 1.0 < 1.0	450 < 200 < 200 < 500 520 < 500 < 200 < 1.0 < 1.0 < 1.0 < 1.20 < 1.0	< 200 < 200 < 200 < 500 < 100 < 500 < 100 < 500 < 1.0 < 1.0 < 1.0 < 1.0	< 200 < 200 < 200 < 500 < 100 < 500 < 100 < 100 < 100 < 100 < 100 < 100 < 100	670 < 400 < 400 < 1,000 830 < 1,000 < 200 < 2.0 < 2.0	NA NA NA NA NA NA NA NA	NA NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA NA	NA NA NA
MW-18 A A N A A A A A A A A A A A A A A A A	Nov-08 May-09 Dec-09 May-10 Dec-10 Jul-11 Aug-05 Nov-05 Feb-06 May-06 Aug-06 Nov-06 Feb-07	< 2,000 < 2,000 < 5,000 < 1,000 < 5,000 < 200 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0	< 200 < 200 < 10,000 < 100 < 500 < 200 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 200 < 200 < 500 < 100 < 500 < 200 1.10 < 1.0 < 1.0 < 1.0	< 200 < 200 < 500 < 500 < 500 < 200 < 1.0 < 1.0 < 1.0 < 1.20 < 1.0	< 200 < 200 < 500 < 100 < 500 < 200 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 200 < 200 < 500 < 100 < 500 < 200 < 1.0 < 1.0	< 400 < 400 < 1,000 830 < 1,000 < 200 < 2.0 < 2.0	NA NA NA NA NA < 400 NA	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA	NA NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA	NA NA NA
MW-18 A A N A A A A A A A A A A A A A A A A	May-09 Dec-09 May-10 Dec-10 Jul-11 Aug-05 Nov-05 Feb-06 May-06 Aug-06 Nov-06 Feb-07	< 2,000 < 5,000 < 1,000 < 5,000 < 200 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0	< 200 < 10,000 < 100 < 500 < 200 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 200 < 500 < 100 < 500 < 100 < 200 1.10 < 1.0 < 1.0 < 1.0	< 200 < 500 520 < 500 < 200 < 1.0 < 1.0 < 1.0 < 1.0 < 1.10 < 1.20 < 1.0	< 200 < 500 < 100 < 500 < 200 < 1.0 < 1.0 < 1.0 < 1.0	< 200 < 500 < 100 < 500 < 200 < 1.0 < 1.0	< 400 < 1,000 830 < 1,000 < 200 < 2.0 < 2.0	NA NA NA NA < 400 NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA	NA NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MW-18 A A A A A A A A A A A A A A A A A A A	Dec-09 May-10 Dec-10 Jul-11 Aug-05 Nov-05 Feb-06 May-06 Aug-06 Nov-06 Feb-07	< 5,000 < 1,000 < 5,000 < 200 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0	< 10,000 < 100 < 500 < 200 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 500 < 100 < 500 < 200 1.10 < 1.0 < 1.0 < 1.0 < 1.0	< 500 520 < 500 < 200 < 1.0 < 1.0 < 1.0 < 1.0 < 1.10 < 1.20 < 1.0	< 500 < 100 < 500 < 200 < 1.0 < 1.0 < 1.0 < 1.0	< 500 < 100 < 500 < 200 < 1.0 < 1.0 < 1.0	< 1,000 830 < 1,000 < 200 < 2.0 < 2.0	NA NA NA < 400 NA	NA NA NA NA NA	NA NA NA NA	NA NA NA NA	NA NA NA	NA NA	NA	NA	+	NA		NA	NA	NA
MW-18 A MW-18 A F N A N N N N N N N N N N	May-10 Dec-10 Jul-11 Aug-05 Nov-05 Feb-06 May-06 Aug-06 Nov-06 Feb-07	< 1,000 < 5,000 < 200 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0	< 100 < 500 < 200 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 100 < 500 < 200 1.10 < 1.0 < 1.0 < 1.0	520	< 100 < 500 < 200 < 1.0 < 1.0 < 1.0 < 1.0	< 100 < 500 < 200 < 1.0 < 1.0	830 < 1,000 < 200 < 2.0 < 2.0	NA NA < 400 NA	NA NA NA	NA NA NA	NA NA NA	NA NA	NA	NA		NA		NI A			
MW-18 A A A A A A A A A A A A A A A A A A A	Dec-10 Jul-11 Aug-05 Nov-05 Feb-06 May-06 Aug-06 Nov-06 Feb-07	< 5,000 < 200 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0	< 500 < 200 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 500 < 200 1.10 < 1.0 < 1.0 1.00 < 1.0	< 500 < 200 < 1.0 < 1.0 < 1.0 1.20	< 500 < 200 < 1.0 < 1.0 < 1.0 < 1.0	< 500 < 200 < 1.0 < 1.0 < 1.0	< 1,000 < 200 < 2.0 < 2.0	NA < 400 NA	NA NA	NA NA	NA NA	NA				1 1	NA	NA	NA	NA	NA
MW-18 A N F N A N N N N N N N N N N N	Jul-11 Aug-05 Nov-05 Feb-06 May-06 Aug-06 Nov-06 Feb-07	< 200 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0	< 200 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 200 1.10 < 1.0 < 1.0 1.00 < 1.0	< 200 < 1.0 < 1.0 < 1.0 1.20	< 200 < 1.0 < 1.0 < 1.0 < 1.0	< 200 < 1.0 < 1.0 < 1.0	< 200 < 2.0 < 2.0	< 400 NA	NA NA	NA	NA		r 1		NA	NA	NA	NA	NA	NA	NA
MW-18 A N F N A N N N N N N N N N N	Aug-05 Nov-05 Feb-06 May-06 Aug-06 Nov-06 Feb-07	< 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0 < 10.0	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	1.10 < 1.0 < 1.0 1.00 < 1.0	< 1.0 < 1.0 < 1.0 1.20	< 1.0 < 1.0 < 1.0 < 1.0	< 1.0 < 1.0 < 1.0	< 2.0 < 2.0	NA			INIA		NA	NA	NA	NA	NA	NA	NA	NA	NA
F N A A A A A A A A A A A A A A A A A A	Feb-06 May-06 Aug-06 Nov-06 Feb-07	< 10.0 < 10.0 < 10.0 < 10.0 < 10.0	< 1.0 < 1.0 < 1.0 < 1.0	< 1.0 1.00 < 1.0	< 1.0 1.20 < 1.0	< 1.0 < 1.0	< 1.0		NΑ	1		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
M A A A A A A A A A A A A A A A A A A A	May-06 Aug-06 Nov-06 Feb-07	< 10.0 < 10.0 < 10.0 < 10.0	< 1.0 < 1.0 < 1.0	1.00 < 1.0	1.20 < 1.0	< 1.0		20	I N/A	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A A A A A A A A A A A A A A A A A A A	Aug-06 Nov-06 Feb-07	< 10.0 < 10.0 < 10.0	< 1.0 < 1.0	< 1.0	< 1.0		1 1 1		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N F F N N N N N N N	Nov-06 Feb-07	< 10.0 < 10.0	< 1.0			4 ~	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
F N N N N N N	Feb-07	< 10.0		< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N N N N			110				< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N N	May-07			< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N N	-	< 10.0		< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N N	Nov-07	< 10.0		< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
N	May-08	< 10.0		< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		< 10.0		< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
[< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		< 10.0		< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		< 10.0		< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		< 10.0		< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		< 10.0		< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
				< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		< 10.0		< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA
		< 10.0		< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
				< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA
		< 10.0		< 1.0			< 1.0	< 2.0	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA NA	NA	NA	NA	NA NA
		< 10.0 < 10.0		< 1.0 < 1.0			< 1.0 < 1.0	< 2.0	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA
		< 10.0		< 1.0			< 1.0	< 2.0 < 2.0	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA		NA NA	NA NA	NA NA	NA NA
				< 1.0 < 1.0			< 1.0	< 2.0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		< 10.0		< 1.0			< 1.0	< 2.0	NA NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA NA	NA	NA	NA	NA NA
	•			< 1.0			< 1.0	< 2.0	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA		NA NA	NA NA	NA NA		NA NA	NA NA
				< 1.0			< 1.0	< 2.0	NA NA	+++	NA					NA NA				NA NA	NA NA	
	•	< 10.0 < 10.0		< 1.0	2.70		< 1.0	2.2	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		< 10.0		< 1.0			< 1.0	< 2.0	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
				< 1.0			< 1.0	< 2.0	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
				< 1.0			< 1.0	< 2.0	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		< 10.0		< 1.0			< 1.0	< 2.0	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
		< 10.0		< 1.0			< 1.0	< 2.0	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA
	iviay-10	< 10.0		< 1.0			< 1.0	< 2.0	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA	NA	NA NA
L	•		~ I.U	< 1.0			< 1.0	< 2.0	NA	NA NA	NA	NA NA	NA	NA NA	NA	NA	1111/7	1 111/7	111177	113/7	111/7	

Table 1a. Summary of Groundwater Analytical Results (December 2002 through July 2011), Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

											Con	centrations i	n μg/L									
Location	Date	Methyl Isobutyl Ketone	Styrene	Tetrachloroethene	Toluene	Trichloroethene	Vinyl Chloride	Total Xylenes	Bromobenzene	2-Chlorotoluene	4-Chlorotoluene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Naphthalene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	p-Isopropyltoluene	Dibromochloromethane	Isopropylbenzene
MDEQ_GW		139	100	5.0	1,000	5.0	2.0	10,000		122		600	5.5	75	6.2		70	12.0	12.0		0.13	679
MW-21	Sep-09	640	< 50	< 50	4,800	< 50	< 50	< 100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-10	< 500	< 50	< 50	4,500	< 50	< 50	< 100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dec-10	510	< 50	< 50	4,500	< 50	< 50	< 100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Jul-11	< 500	< 50	< 50	2,600	< 50	< 50	< 100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-22	Sep-09	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-10	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dec-10	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Jul-11	21	< 1.0	< 1.0	1.1	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-23	Sep-09	1,300	< 100	< 100	3,300	< 500	< 50	< 100	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-10	1,000	< 100	< 100	3,300	< 100	< 100	< 200	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dec-10	< 1,000	< 100	< 100	1,400	< 100	< 100	< 200	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Jul-11	< 1,100	< 100	< 100	1,300	< 100	< 100	< 200	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-24	Sep-09	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-10	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dec-10	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Jul-11	< 10.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

Less than.

- - Standard not promulgated.

B Compound detected in the associated method blank.

J Estimated value.

RSL Regional Screening Level

MDEQ_GW Mississippi Department of Environmental Quality Tier 1 Target Remediation Goals.

 $\begin{array}{ll} \text{NA} & \text{Not analyzed.} \\ \mu\text{g/L} & \text{Micrograms per liter.} \\ \textbf{Boldface} & \text{Compound detected.} \end{array}$

Shaded cells indicate that the reported result exceeds the MDEQ criteria.

Some Appendix IX parameters not shown due to no detections for that parameter.

Table 1b. Summary of Surface Water Analytical Results (September 2003 through July 2011), Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

										Conc	entrations	in μg/L								
Location	Date	Acetone	Benzene	Bromodichloromethane	Bromoform	Bromomethane	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloromethane	Chloroform	cis-1,2-Dichloroethene	1,2-Dichloroethane	1,2-Dichloropropane	1,1-Dichloroethene	Ethylbenzene	Methylene Chloride	Methyl Ethyl Ketone	Methyl Isobutyl Ketone	Styrene
USEPA Wate	r Criteria [a]	12,000	2.2	0.55	4.3	47	0.23	130	21,000	190	5.7	28	0.38	0.50	330	530	4.6	4,900	1,000	1,100
CM-00	Sep-03	NA	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0	< 1.0	< 5.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	5.0	4.1	< 5.0	NA	NA	3.16
	Aug-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Feb-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Aug-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Feb-07	42	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Dec-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Jul-11	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
CM-01	Feb-03	NA	2.82	< 10.0	< 10.0	< 10.0	3.03	< 10.0	20.5	< 10.0	2.34	< 10.0	< 10.0	< 10.0	< 10.0	< 10.00	< 13.0	NA	NA NA	< 10.0
0.0.0	Sep-03	NA	< 1.0	< 1.0	< 1.0	< 5.0	< 1.0	6.58	< 5.0	< 1.0	< 1.0	< 1.0	1.71	< 1.0	< 5.0	1.55	< 5.0	NA NA	NA	2.36
	Aug-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Feb-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Aug-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-06	62	8.40	< 1.0	< 1.0	< 1.0	< 1.0	24	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	57	< 5.0	< 10.0	< 10.0	< 1.0
	Feb-07	49	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Dec-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Jul-11	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
CM-02	Feb-03	NA	1.17	< 10.0	< 10.0	< 10.0	1.48	< 10.0	15.6	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 13.0	NA	NA	< 10.0
CIVI-UZ	Aug-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Feb-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
									< 1.0											
	May-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0

Table 1b. Summary of Surface Water Analytical Results (September 2003 through July 2011), Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

										Conce	entrations i	n μg/L								
Location	Date	Acetone	Benzene	Bromodichloromethane	Bromoform	Bromomethane	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloromethane	Chloroform	cis-1,2-Dichloroethene	1,2-Dichloroethane	1,2-Dichloropropane	1,1-Dichloroethene	Ethylbenzene	Methylene Chloride	Methyl Ethyl Ketone	Methyl Isobutyl Ketone	Styrene
USEPA Water	er Criteria [a]	12,000	2.2	0.55	4.3	47	0.23	130	21,000	190	5.7	28	0.38	0.50	330	530	4.6	4,900	1,000	1,100
	Aug-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Feb-07	92	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-08		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Dec-09	34	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Jul-11	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
CM-03	Feb-03	NA	3.66	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	8.42	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 13.0	NA	NA	< 10.0
	Aug-05	< 25	1.10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-05	< 25	1.40	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Feb-06	< 25	1.10	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-06	< 25	1.60	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Aug-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Feb-07	63	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-07	< 25	4.80	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-08	< 25	1.90	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-09	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
		< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0		< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
		< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
		< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
CM-04	Feb-03	NA	2.25	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	3.43	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 13.0	NA	NA	< 10.0
	Aug-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Feb-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-06		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.00	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Aug-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.00	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-06	31	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	1.40	17	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	160	< 10.0	< 1.0
	Feb-07	160	1.30	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0

Table 1b. Summary of Surface Water Analytical Results (September 2003 through July 2011), Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

										Conce	ntrations in	μg/L								
Location	Date	Acetone	Benzene	Bromodichloromethane	Bromoform	Bromomethane	Carbon Tetrachloride	Chlorobenzene	Chloroethane	Chloromethane	Chloroform	cis-1,2-Dichloroethene	1,2-Dichloroethane	1,2-Dichloropropane	1,1-Dichloroethene	Ethylbenzene	Methylene Chloride	Methyl Ethyl Ketone	Methyl Isobutyl Ketone	Styrene
USEPA Water	er Criteria [a]	12,000	2.2	0.55	4.3	47	0.23	130	21,000	190	5.7	28	0.38	0.50	330	530	4.6	4,900	1,000	1,100
	May-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-09	< 25		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Dec-09	< 25		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Jul-11	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	7.60	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
CM-05	Feb-03	NA	4.04	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 12.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 13.0	NA	NA	< 10.0
	Aug-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-05	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Feb-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	NA	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-06	< 25		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Aug-06	< 25		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-06	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Feb-07	< 25	+ +	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-07	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-07	< 25		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-08	< 25		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-08	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-09	< 25		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Dec-09	47		< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	May-10	< 25	+ +	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Nov-10	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0
	Jul-11	< 25	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 5.0	< 10.0	< 10.0	< 1.0

Table 1b. Summary of Surface Water Analytical Results (September 2003 through July 2011), Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

										Cor	centrations	in μg/L								
Location	Date	Tetrachloroethene	Toluene	Trichloroethene	Vinyl Chloride	Total Xylenes	Bromobenzene	2-Chlorotoluene	4-Chlorotoluene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Naphthalene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	p-Isopropyltoluene	Dibromochloromethane	Isopropylbenzene
USEPA Wate	er Criteria [a]	0.69	1,300	2.5	0.025	190	130	180	190	420	320	63	0.14	35	35	15	87	390	0.40	390
CM-00	Sep-03	< 1.0	< 1.0	< 1.0	< 1.0	8.31	4.18	3.40	4.61	3.44	3.66	7.54	< 5.0	< 5.0	< 5.0	< 1.0	1.04	< 1.0	< 1.0	< 1.0
	Aug-05	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-05	< 1.0	< 1.0	< 1.0		< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Feb-06	< 1.0	< 1.0	< 1.0		< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-06	< 1.0	< 1.0	< 1.0		< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Aug-06		< 1.0	< 1.0		< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
	Nov-06		< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
	Feb-07		< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-07		< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-07		< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-08		< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-08		< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-09		< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dec-09	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-10		< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-10	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Jul-11	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CM-01	Feb-03	< 10.0	< 10.0	< 10.0	< 10.0	< 15.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	25.7	32.2	3.36	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
	Sep-03	< 1.00	4.66	< 1.00	< 1.00	7.41	13	2.53	4.17	3.76	3.42	6.35	14.7	6.64	1.8	1.3	1.57	< 1.0	< 1.0	< 1.0
	Aug-05	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-05	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Feb-06	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-06	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Aug-06	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-06	< 1.0	2.70	< 1.0	< 1.0	86	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Feb-07	< 1.0	< 1.0	< 1.0		< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-07	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-07	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-08	< 1.0	< 1.0	< 1.0		< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-08	< 1.0	< 1.0	< 1.0		< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-09	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dec-09	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-10		< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-10	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Jul-11	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CM-02	Feb-03	< 10.0	< 10.0	< 10.0	< 10.0	< 15.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	20.3	24.8	2.37	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
	Aug-05	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-05	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Feb-06	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-06	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Table 1b. Summary of Surface Water Analytical Results (September 2003 through July 2011), Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

										Cor	centrations	in µg/L								
Location	Date	Tetrachloroethene	Toluene	Trichloroethene	Vinyl Chloride	Total Xylenes	Bromobenzene	2-Chlorotoluene	4-Chlorotoluene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Naphthalene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	p-IsopropyItoluene	Dibromochloromethane	Isopropylbenzene
USEPA Wate	er Criteria [a]	0.69	1,300	2.5	0.025	190	130	180	190	420	320	63	0.14	35	35	15	87	390	0.40	390
	Aug-06	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-06	< 1.0	21	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Feb-07	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-07	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-07	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-08	< 1.0		< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-08	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-09	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dec-09	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-10	< 1.0		< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-10	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Jul-11	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CM-03	Feb-03	< 10.0	< 10.0	< 10.0	< 10.0	< 15.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	20.1	23	2.13	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
	Aug-05	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-05	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Feb-06	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-06	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Aug-06	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-06	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Feb-07	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-07	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-07	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA
	May-08	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-08	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA
	May-09	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA	NA
	Dec-09	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 2.0 < 2.0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	May-10			< 1.0	< 1.0	< 2.0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
	Nov-10 Jul-11	< 1.0 < 1.0		< 1.0	< 1.0	< 2.0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
CM-04	Feb-03	< 10.0		< 10.0	< 10.0	< 15.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	13	12.2	1.26	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
CIVI-04	Aug-05	< 1.0		< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
,——	Nov-05	< 1.0		< 1.0	< 1.0	< 2.0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
,——-	Feb-06	< 1.0		< 1.0	< 1.0	< 2.0	NA NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
,	May-06	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
,	Aug-06	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA NA	NA NA	NA NA
	Nov-06	90	< 1.0	26	2.6	< 2.0	NA	NA NA	NA	NA NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
			ı 1		1 1	115	1 1 1 7 1	1 1 1 1 1	1 1	1 1	1 1. " "	1 1	1		1 1		1 1 , ,	1 1. */ 1	1 1 7 1	
<u>'</u>		< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	INA
	Feb-07 May-07	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 1.0 < 1.0	< 2.0 < 2.0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA

Table 1b. Summary of Surface Water Analytical Results (September 2003 through July 2011), Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

										Con	centrations	in µg/L								
Location	Date	Tetrachloroethene	Toluene	Trichloroethene	Vinyl Chloride	Total Xylenes	Bromobenzene	2-Chlorotoluene	4-Chlorotoluene	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Naphthalene	1,2,3-Trichlorobenzene	1,2,4-Trichlorobenzene	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	p-IsopropyItoluene	Dibromochloromethane	Isopropylbenzene
USEPA Water	er Criteria [a]	0.69	1,300	2.5	0.025	190	130	180	190	420	320	63	0.14	35	35	15	87	390	0.40	390
	May-08	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-08	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-09	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dec-09		< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-10	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-10		< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Jul-11	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
CM-05	Feb-03	< 10.0	< 10.0		< 10.0	< 15.0	< 10.0	< 10.0		< 10.0	< 10.0	< 10.0	7.51	5.54	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0	< 10.0
	Aug-05	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-05	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Feb-06	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-06	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Aug-06	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-06	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Feb-07	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-07	< 1.0	< 1.0	4-4	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-07		< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-08	< 1.0	< 1.0	4-4	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Nov-08	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	May-09	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Dec-09	< 1.0	< 1.0	4-4	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u> </u>	May-10	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
<u> </u>	Nov-10	< 1.0	< 1.0		< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Jul-11	< 1.0	< 1.0	< 1.0	< 1.0	< 2.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:

[a] The USEPA National Recommended Water Criteria are listed. If a value was not available, the most recent USEPA Tapwater Regional Screening Levels (2011) were used.

Less than. NA Not analyzed. Micrograms per liter. μg/L

USEPA United States Environmental Protection Agency National Recommended Water Quality Criteria.

Shaded cells indicate that the reported result exceeds the USEPA National Water criteria or USEPA Tapwater RSLs if a National Recommended Water Criteria is not available.

Some Appendix IX parameters not shown due to no detections for that parameter.

Table 2. Summary of July 2011 Groundwater Analytical Results, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

Location ID:		EPA RSL			MW-02	MW-03	MW-04	MW-05	MW-06	MW-07	MW-08	MW-09	MW-10	MW-11	MW-12	MW-13	MW-14
Date Collected:	CAS#	TAP WATER	MDEQ_GW	UNITS	07/27/11	07/27/11	07/27/11	07/28/11	07/28/11	07/28/11	07/26/11	07/28/11	07/27/11	07/27/11	07/27/11	07/26/11	07/28/11
PEST/PCB-EPA 8081A/8082																	
4,4'-DDD	72-54-8	2.80E-01	2.79E-01	μg/L	<0.099	NA	<0.1	NA	NA	NA	<0.1 [<0.098]	NA	NA	NA	<0.099	<0.1	NA
4,4'-DDE	72-55-9	2.00E-01	1.97E-01	μg/L	<0.099	NA	<0.1	NA	NA	NA	<0.1 [<0.098]	NA	NA	NA	< 0.099	<0.1	NA
4,4'-DDT	50-29-3	2.00E-01	1.97E-01	μg/L	<0.099	NA NA	<0.1	NA	NA NA	NA NA	<0.1 [<0.098]	NA NA	NA NA	NA NA	<0.099	<0.1	NA NA
4-Chlorobenzilate Aldrin	510-15-6 309-00-2	6.10E-01 4.00E-03	2.48E-01 3.94E-03	μg/L μg/L	<0.5 <0.05	NA NA	<0.51 <0.051	NA NA	NA NA	NA NA	<0.51 [<0.49] <0.051 [<0.049]	NA NA	NA NA	NA NA	<0.5 <0.05	<0.51 <0.051	NA NA
Alpha-BHC	319-84-6	1.10E-02	1.06E-02	μg/L μg/L	<0.05	NA NA	<0.051	NA NA	NA NA	NA NA	0.61 [0.75]	NA NA	NA NA	NA NA	<0.05	0.25	NA NA
Aroclor-1016	12674-11-2		9.57E-01	μg/L	<0.99	NA NA	<1	NA NA	NA NA	NA NA	<1 [<0.98]	NA NA	NA NA	NA NA	<0.99	<1	NA NA
Aroclor-1221	11104-28-2		3.35E-02	μg/L	<2	NA	<2	NA	NA	NA	<2 [<2]	NA	NA	NA	<2	<2	NA
Aroclor-1232	11141-16-5		3.35E-02	μg/L	<0.99	NA	<1	NA	NA	NA	<1 [<0.98]	NA	NA	NA	<0.99	<1	NA
Aroclor-1242	53469-21-9		3.35E-02	μg/L	<0.99	NA	<1	NA	NA	NA	<1 [<0.98]	NA	NA	NA	<0.99	<1	NA
Aroclor-1248	12672-29-6		3.35E-02	μg/L	<0.99	NA	<1	NA	NA	NA	<1 [<0.98]	NA	NA	NA	<0.99	<1	NA
Aroclor-1254	11097-69-1	3.40E-02	3.35E-02	μg/L	<0.99	NA	<1	NA	NA	NA	<1 [<0.98]	NA	NA	NA NA	<0.99	<1	NA
Aroclor-1260 Beta-BHC	11096-82-5		3.35E-02	μg/L	<0.99 <0.05	NA NA	<1 <0.051	NA NA	NA NA	NA NA	<1 [<0.98]	NA NA	NA NA	NA NA	<0.99 <0.05	<1 <0.051	NA NA
Delta-BHC	319-85-7 319-86-8	3.70E-02	3.72E-02	μg/L μg/L	<0.05	NA NA	<0.051	NA NA	NA NA	NA NA	<0.051 [<0.049] <0.051 [<0.049]	NA NA	NA NA	NA NA	<0.05	<0.051	NA NA
Dieldrin	60-57-1	4.20E-03	4.19E-03	μg/L	<0.099	NA NA	<0.031	NA NA	NA NA	NA NA	<0.051 [<0.049]	NA NA	NA NA	NA NA	<0.099	<0.031	NA NA
Endosulfan I	959-98-8			μg/L	<0.05	NA NA	<0.051	NA NA	NA NA	NA NA	<0.051 [<0.049]	NA NA	NA NA	NA NA	<0.05	<0.051	NA NA
Endosulfan II	33213-65-9			µg/L	<0.099	NA	<0.1	NA	NA	NA	<0.1 [<0.098]	NA	NA	NA	<0.099	<0.1	NA
Endosulfan Sulfate	1031-07-8			μg/L	<0.099	NA	<0.1	NA	NA	NA	<0.1 [<0.098]	NA	NA	NA	< 0.099	<0.1	NA
Endrin	72-20-8	1.10E+01	2.00E+00	μg/L	<0.099	NA	NA	NA	NA	NA	<0.1 [<0.098]	NA	NA	NA	<0.099	<0.1	NA
Endrin Aldehyde	7421-93-4			μg/L	<0.099	NA	<0.1	NA	NA	NA	<0.1 [<0.098]	NA	NA	NA	< 0.099	<0.1	NA
Endrin Ketone	53494-70-5			μg/L	<0.099	NA NA	<0.1	NA	NA NA	NA	<0.1 [<0.098]	NA NA	NA NA	NA NA	<0.099	<0.1	NA NA
Gamma-BHC (Lindane) Heptachlor	58-89-9 76-44-8	6.10E-02 1.50E-02	2.00E-01 4.00E-01	μg/L	<0.05 <0.05	NA NA	<0.051 <0.051	NA NA	NA NA	NA NA	0.3 [0.45] <0.051 [<0.049]	NA NA	NA NA	NA NA	<0.05 <0.05	<0.051 <0.051	NA NA
Heptachlor Epoxide	1024-57-3	7.40E-03	2.00E-01	μg/L μg/L	<0.05	NA NA	<0.051	NA NA	NA NA	NA NA	<0.051 [<0.049]	NA NA	NA NA	NA NA	<0.05	<0.051	NA NA
Isodrin	465-73-6	7.40L-03	2.00E-01	μg/L	<0.05	NA NA	<0.051	NA NA	NA NA	NA NA	<0.051 [<0.049]	NA NA	NA NA	NA NA	<0.05	<0.051	NA NA
Kepone	143-50-0	6.70E-03		µg/L	<0.99 *	NA	<1 *	NA	NA	NA	<1 [<0.98]	NA	NA	NA	<0.99 *	<1	NA
Methoxychlor	72-43-5	1.80E+02	4.00E+01	μg/L	<0.099	NA	<0.1	NA	NA	NA	<0.1 [<0.098]	NA	NA	NA	<0.099	<0.1	NA
Technical Chlordane	57-74-9		2.00E+00	μg/L	<0.5	NA	<0.51	NA	NA	NA	<0.51 [<0.49]	NA	NA	NA	<0.5	<0.51	NA
Toxaphene	8001-35-2	6.10E-02	3.00E+00	μg/L	<5	NA	<5.1	NA	NA	NA	<5.1 [<4.9]	NA	NA	NA	<5	<5.1	NA
Herb-EPA 8151A		_	_														
2,4,5-T	93-76-5	3.70E+02	3.65E+02	μg/L	<0.51	NA NA	<0.51	NA	NA	NA	<0.51 [<0.5]	NA NA	NA NA	NA NA	<0.51	<0.5	NA NA
2,4,5-TP 2,4-D	93-72-1 94-75-7	2.90E+02 3.70E+02	5.00E+01 7.00E+01	μg/L μg/L	<0.51 <0.51	NA NA	<0.51 <0.51	NA NA	NA NA	NA NA	<0.51 [<0.5] <0.51 [<0.5]	NA NA	NA NA	NA NA	<0.51 <0.51	<0.5 <0.5	NA NA
Volatile Organics-EPA 8260B	34-13-1	3.70L+02	7.00L+01	µg/L	VU.51	INA	20.51	INA	INA	INA	<0.51 [<0.5]	INA	INA	INA	ζ0.51	ζ0.5	INA
1,1,1,2-Tetrachloroethane	630-20-6	5.20E-01	4.06E-01	μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
1,1,1-Trichloroethane	71-55-6	9.10E+03	2.00E+02	µg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
1,1,2,2-Tetrachloroethane	79-34-5	6.70E-02	5.27E-02	μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
1,1,2-Trichloroethane	79-00-5	2.40E-01	5.00E+00	μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
1,1-Dichloroethane	75-34-3	2.40E+00	7.98E+02	μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
1,1-Dichloroethene	75-35-4	3.40E+02	7.00E+00	μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
1,2,3-Trichloropropane 1,2-Dibromo-3-chloropropane	96-18-4 96-12-8	7.20E-04 3.20E-04	6.23E-03 2.00E-01	μg/L	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<1 <1	<50 [<50] <50 [<50]	<1 [<1] <1 [<1]	<1 <1	<1 [<1] <1 [<1]	<1 <1	<10 <10	<1 <1
1,2-Dibromoethane	106-93-4	6.50E-03	5.00E-02	μg/L μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
1,2-Dichloroethane	107-06-2	1.50E-01	5.00E+00	μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
1,2-Dichloropropane	78-87-5	3.90E-01	5.00E+00	µg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
2-Butanone	78-93-3	7.10E+03	1.91E+03	μg/L	<10	<10	<10	<10	<10	<10	<500 [<500]	<10 [<10]	<10	<10 [<10]	<10	<100	<10
2-Chloro-1,3-butadiene	126-99-8	1.60E-02	1.43E+01	μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
2-Hexanone	591-78-6	4.70E+01	1.46E+03	μg/L	<10	<10	<10	<10	<10	<10	<500 [<500]	<10 [<10]	<10	<10 [<10]	<10	<100	<10
3-Chloropropene	107-05-1	6.50E-01	4.005.00	μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
4-Methyl-2-pentanone	108-10-1	2.00E+03	1.39E+02	μg/L	<10	<10	<10	<10	<10	<10	<500 [<500] <1.300 [<1.300]	<10 [<10]	<10	<10 [<10]	<10	<100	<10
Acetone Acetonitrile	67-64-1 75-05-8	2.20E+04 1.30E+02	6.08E+02 1.25E+02	μg/L μg/L	<25 <40	<25 <40	<25 <40	<25 <40	<25 <40	<25 <40	<1,300 [<1,300] <2,000 [<2,000]	<25 [<25] <40 [<40]	<25 <40	<25 [<25] <40 [<40]	<25 <40	<250 <400	<25 <40
Acrolein	107-02-8	4.20E-02	4.16E-02	μg/L	<20	<20	<20	<20	<20	<20	<1,000 [<1,000]	<20 [<20]	<20	<20 [<20]	<20	<200	<20
Acrylonitrile	107-13-1	4.50E-02	3.67E-02	µg/L	<20	<20	<20	<20	<20	<20	<1,000 [<1,000]	<20 [<20]	<20	<20 [<20]	<20	<200	<20
Benzene	71-43-2	4.10E-01	5.00E+00	μg/L	<1	<1	<1	<1	<1	<1	4,600 [5,100]	<1 [<1]	<1	<1 [<1]	<1	390	<1
Bromodichloromethane	75-27-4	1.20E-01	1.68E-01	μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
Bromoform	75-25-2	8.50E+00	8.48E+00	μg/L	<1	<1	<1	<1 *	<1 *	<1 *	<50 [<50]	<1 * [<1 *]	<1	<1 * [<1]	<1	<10	<1 *
Bromomethane	74-83-9	8.70E+00	8.52E+00	μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
Carbon Disulfide	75-15-0	1.00E+03	1.04E+03	μg/L	<2	<2	<2	<2	<2	<2	<100 [<100]	<2 [<2]	<2	<2 [<2]	<2	<20	<2
Carbon Tetrachloride	56-23-5	4.40E-01	5.00E+00	µg/L	<1	<1	<1	<1 *	<1	<1	2,600 [2,700 *]	<1 [<1]	<1	<1 * [<1]	<1	620	<1 *
Chloroethane	108-90-7 75-00-3	9.10E+01	1.00E+02	μg/L μg/l	<1	<1	<1	<1	<1	<1 <1	220 [240]	<1 [<1]	<1 <1	<1 [<1]	<1 <1	24 <10	<1
Chloroethane	10-00-3	2.10E+04	3.64E+00	μg/L	<1	<1	<1	<1	<1	<u> </u>	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1

Table 2. Summary of July 2011 Groundwater Analytical Results, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

Location ID: Date Collected:	CAS#	EPA RSL TAP WATER	MDEQ GW	UNITS	MW-02 07/27/11	MW-03 07/27/11	MW-04 07/27/11	MW-05 07/28/11	MW-06 07/28/11	MW-07 07/28/11	MW-08 07/26/11	MW-09 07/28/11	MW-10 07/27/11	MW-11 07/27/11	MW-12 07/27/11	MW-13 07/26/11	MW-14 07/28/11
Chloroform	67-66-3	1.90E-01	1.55E-01	μg/L	<1	<1	<1	<1	<1	<1	640 [640]	<1 [<1]	<1	<1 [<1]	<1	210	<1
Chloromethane	74-87-3	1.90E+02	1.43E+00	μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
cis-1,2-Dichloroethene	156-59-2	7.30E+01	7.00E+01	μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
cis-1,3-Dichloropropene	10061-01-5			μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
Dibromochloromethane	124-48-1	1.50E-01	1.26E-01	μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
Dibromomethane	74-95-3	8.20E+00	6.08E+01	μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
Dichlorodifluoromethane	75-71-8	2.00E+02	3.48E+02	μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
Ethyl Methacrylate	97-63-2	5.30E+02	5.48E+02	μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
Ethylbenzene	100-41-4	1.50E+00	7.00E+02	μg/L	<1	<1	<1	<1	<1	<1	55 [61]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
Iodomethane	74-88-4			μg/L	<5	<5	<5	<5	<5	<5	<250 [<250]	<5 [<5]	<5	<5 [<5]	<5	<50	<5
Isobutanol	78-83-1	1.10E+04	1.83E+03	μg/L	<40	<40	<40	<40	<40	<40	<2,000 [<2,000]	<40 [<40]	<40	<40 [<40]	<40	<400	<40
Methacrylonitrile	126-98-7	1.00E+00	1.04E+00	μg/L	<20	<20	<20	<20	<20	<20	<1,000 [<1,000]	<20 [<20]	<20	<20 [<20]	<20	<200	<20
Methyl Methacrylate	80-62-6	1.40E+03	1.42E+03	μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
Methylene Chloride	75-09-2	4.80E+00	5.00E+00	μg/L	<5	<5	<5	<5	<5	<5	340 [350]	<5 [<5]	<5	<5 [<5]	<5	<50	<5
Pentachloroethane	76-01-7	7.50E-01		μg/L	<5	<5	<5	<5	<5	<5	<250 [<250]	<5 [<5]	<5	<5 [<5]	<5	<50	<5
Propionitrile	107-12-0			μg/L	<20	<20	<20	<20	<20	<20	<1,000 [<1,000]	<20 [<20]	<20	<20 [<20]	<20	<200	<20
Styrene	100-42-5	1.60E+03	1.00E+02	μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
Tetrachloroethene	127-18-4	1.10E-01	5.00E+00	μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
Toluene	108-88-3	2.30E+03	1.00E+03	μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
trans-1.2-Dichloroethene	156-60-5	1.10E+02	1.00E+02	μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
trans-1,3-Dichloropropene	10061-02-6	1.10L+02	1.002+02	μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
trans-1,4-Dichloro-2-butene	110-57-6	1.20E-03		μg/L	<2	<2	<2	<2	<2	<2	<100 [<100]	<2 [<2]	<2	<2 [<2]	<2	<20	<2
Trichloroethene	79-01-6	2.00E+00	5.00E+00	μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
Trichlorofluoromethane	75-69-4	1.30E+03	1.29E+03	μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
Vinyl Acetate	108-05-4	4.10E+02	4.12E+02	μg/L	<2	<2	<2	<2	<2	<2	<100 [<100]	<2 [<2]	<2	<2 [<2]	<2	<20	<2
Vinyl Chloride	75-01-4	1.60E-02	2.00E+00	μg/L	<1	<1	<1	<1	<1	<1	<50 [<50]	<1 [<1]	<1	<1 [<1]	<1	<10	<1
Xylenes (total)	1330-20-7	2.00E+02	1.00E+04	μg/L μg/L	<2	<2	<2	<2	<2	<2	<100 [<100]	<2 [<2]	<2	<2 [<2]	<2	<20	<2
Semivolatile Organics-EPA 8270C	1330-20-7	2.00L+02	1.00L+04	µg/L	\ <u>Z</u>	\Z	\Z	\Z	\Z	\Z	<100 [<100]	\Z [\Z]	\Z	\Z [\Z]	\Z	\2 0	<u> </u>
	92-52-4	8.30E-01	2.045.02	/	<9.9	NA	<10	NA	NA	NA	.4.000 [.540]	NA	NA	NA	<12	<49	NA
1,1'-Biphenyl 1,2,4,5-Tetrachlorobenzene	95-94-3		3.04E+02	μg/L		NA NA		NA NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA NA	<12	<49 <49	NA NA
1,2,4,5-Tetrachiorobenzene 1,2,4-Trichlorobenzene	120-82-1	1.10E+01 2.30E+00	1.10E+01	μg/L	<9.9 <9.9	NA NA	<10 <10	NA NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA NA	<12	<49	NA NA
• •			7.00E+01	μg/L							<1,000 [<510]						NA NA
1,2-Dichlorobenzene	95-50-1 99-35-4	3.70E+02	6.00E+02	μg/L	<9.9 <9.9	NA NA	<10 <10	NA NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA NA	<12 <12	<49 <49	NA NA
1,3,5-Trinitrobenzene		1.10E+03	1.10E+03	μg/L	<9.9 <9.9		<10	NA NA	NA NA		<1,000 [<510]	NA NA			<12	<49 <49	NA NA
1,3-Dichlorobenzene	541-73-1		5.48E+00	μg/L		NA NA				NA	<1,000 [<510]		NA NA	NA			
1,3-Dinitrobenzene	99-65-0	3.70E+00	3.65E+00	μg/L	<9.9	NA NA	<10	NA NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA NA	<12	<49	NA NA
1,4-Dichlorobenzene	106-46-7	4.30E-01	7.50E+01	μg/L	<9.9	NA NA	<10	NA NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA	<12	<49	NA NA
1,4-Dioxane	123-91-1	6.70E-01	6.09E+00	μg/L	<9.9	NA NA	23	NA	NA NA	NA NA	13,000 [9,400]	NA NA	NA NA	NA	<12	470	NA
1,4-Naphthoquinone	130-15-4			μg/L	<9.9	NA	<10	NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA	<12	<49	NA
1-Naphthylamine	134-32-7			μg/L	<9.9	NA NA	<10	NA NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA NA	<12	<49	NA NA
2,2'-Oxybis(1-Chloropropane)	108-60-1	3.20E-01		μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
2,3,4,6-Tetrachlorophenol	58-90-2	1.10E+03	1.10E+03	μg/L	<9.9	NA	<10	NA	NA NA	NA	<1,000 [<510]	NA NA	NA	NA	<12	<49	NA
2,4,5-Trichlorophenol	95-95-4	3.70E+03	3.65E+03	μg/L	<9.9	NA	<10	NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA	<12	<49	NA
2,4,6-Trichlorophenol	88-06-2	6.10E+00	6.09E+00	μg/L	<9.9	NA NA	<10	NA NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA NA	<12	<49	NA NA
2,4-Dichlorophenol	120-83-2	1.10E+02	1.10E+02	μg/L	<9.9	NA NA	<10	NA NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA NA	<12	<49	NA NA
2,4-Dimethylphenol	105-67-9	7.30E+02	7.30E+02	μg/L	<9.9	NA	<10	NA	NA NA	NA	<1,000 [<510]	NA	NA NA	NA	<12	<49	NA
2,4-Dinitrophenol	51-28-5	7.30E+01	7.30E+01	μg/L	<49	NA NA	<52	NA NA	NA NA	NA NA	<5,200 [<2,500]	NA NA	NA NA	NA	<62	<250	NA NA
2,4-Dinitrotoluene	121-14-2	2.20E-01	7.30E+01	μg/L	<9.9	NA NA	<10	NA NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA NA	<12	<49	NA NA
2,6-Dichlorophenol	87-65-0			μg/L	<9.9	NA NA	<10	NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA	<12	<49	NA
2,6-Dinitrotoluene	606-20-2	3.70E+01	3.65E+01	µg/L	<9.9	NA NA	<10	NA NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA NA	<12	<49	NA NA
2-Acetylaminofluorene	53-96-3	1.80E-02		μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA NA	NA	NA	<12	<49	NA
2-Chloronaphthalene	91-58-7	2.90E+03	4.87E+02	μg/L	<9.9	NA NA	<10	NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA	<12	<49	NA
2-Chlorophenol	95-57-8	1.80E+02	3.04E+01	μg/L	<9.9	NA	<10	NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA	<12	<49	NA
2-Methylnaphthalene	91-57-6	1.50E+02	1.22E+02	μg/L	<9.9	NA	<10	NA	NA	NA NA	<1,000 [<510]	NA NA	NA	NA	<12	<49	NA
2-Methylphenol	95-48-7	1.80E+03	1.83E+03	µg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
2-Naphthylamine	91-59-8	3.70E-02		μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
2-Nitroaniline	88-74-4	3.70E+02	4.17E-01	μg/L	<49	NA	<52	NA	NA	NA	<5,200 [<2,500]	NA	NA	NA	<62	<250	NA
2-Nitrophenol	88-75-5		4.16E-01	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
2-Picoline	109-06-8			μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
	15021 10 4			μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
3 & 4 Methylphenol	15831-10-4		<u> </u>	μg/ L	٦٥.٥						,						
3 & 4 Methylphenol 3,3'-Dichlorobenzidine	91-94-1	1.50E-01	1.49E-01	μg/L	<59	NA	<63	NA	NA	NA	<6,200 [<3,000]	NA	NA	NA	<75	<290	NA

Table 2. Summary of July 2011 Groundwater Analytical Results, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

Location ID:		EPA RSL	· I	1 1	MW-02	MW-03	MW-04	MW-05	MW-06	MW-07	MW-08	MW-09	MW-10	MW-11	MW-12	MW-13	MW-14
Date Collected:	CAS#	TAP WATER	MDEQ GW	UNITS	07/27/11	07/27/11	07/27/11	07/28/11	07/28/11	07/28/11	07/26/11	07/28/11	07/27/11	07/27/11	07/27/11	07/26/11	07/28/11
3-Methylcholanthrene	56-49-5	9.80E-04		μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
3-Nitroaniline	99-09-2			μg/L	<49	NA	<52	NA	NA	NA	<5,200 [<2,500]	NA	NA	NA	<62	<250	NA
4,6-Dinitro-2-methylphenol	534-52-1	2.90E+00	3.65E+00	μg/L	<49	NA	<52	NA	NA	NA	<5,200 [<2,500]	NA	NA	NA	<62	<250	NA
4-Aminobiphenyl	92-67-1	3.20E-03		μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
4-Bromophenyl-phenylether	101-55-3			μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
4-Chloro-3-Methylphenol	59-50-7	3.70E+03	7.30E+04	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA NA	NA	NA	<12	<49	NA
4-Chlorophopul phopulathor	106-47-8 7005-72-3	3.40E-01	1.46E+02	μg/L	<20 <9.9	NA NA	<21 <10	NA NA	NA NA	NA NA	<2,100 [<1,000] <1,000 [<510]	NA NA	NA NA	NA NA	<25 <12	<98 <49	NA NA
4-Chlorophenyl-phenylether 4-Nitroaniline	1005-72-3	3.40E+00		μg/L μg/L	<9.9 <49	NA NA	<52	NA NA	NA NA	NA NA	<5,200 [<2,500]	NA NA	NA NA	NA NA	<62	<250	NA NA
4-Nitrophenol	100-01-0	3.40L+00 	2.92E+02	μg/L μg/L	<49	NA NA	<52	NA NA	NA NA	NA NA	<5,200 [<2,500] <5,200 [<2,500]	NA NA	NA NA	NA NA	<62	<250	NA NA
4-Nitroquinoline-1-oxide	56-57-5			μg/L	<20	NA NA	<21	NA NA	NA NA	NA NA	<2,100 [<1,000]	NA NA	NA NA	NA NA	<25	<98	NA NA
4-Phenylenediamine	106-50-3	6.90E+03	6.94E+03	μg/L	<2,000	NA	<2,100	NA	NA	NA	210,000 [<100,000	NA	NA	NA	<2,500	<9,800	NA
5-Nitro-o-toluidine	99-55-8	7.50E+00	2.03E+00	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
7,12-Dimethylbenz(a)anthracene	57-97-6	8.60E-05		μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
a,a'-Dimethylphenethylamine	122-09-8			μg/L	<2,000	NA	<2,100	NA	NA	NA	210,000 [<100,000	NA	NA	NA	<2,500	<9,800	NA
Acenaphthene	83-32-9	2.20E+03	3.65E+02	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Acenaphthylene	208-96-8	2.705.02	2.19E+03	μg/L	<9.9	NA NA	<10	NA NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA NA	<12	<49	NA NA
Acetophenone Aniline	98-86-2 62-53-3	3.70E+03 1.20E+01	4.16E-02	μg/L	<9.9 <20	NA NA	<10 <21	NA NA	NA NA	NA NA	<1,000 [<510] <2,100 [<1,000]	NA NA	NA NA	NA NA	<12 <25	<49 <98	NA NA
Anthracene	120-12-7	1.20E+01 1.10E+04	1.17E+01 4.34E+01	μg/L μg/L	<9.9	NA NA	<10	NA NA	NA NA	NA NA	<1,000 [<1,000]	NA NA	NA NA	NA NA	<12	<98 <49	NA NA
Aramite	140-57-8	2.70E+00	4.34E+01	μg/L μg/L	<9.9	NA NA	<10	NA NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA NA	<12	<49	NA NA
Benzo(a)anthracene	56-55-3	2.90E-02	9.17E-02	μg/L	<9.9	NA NA	<10	NA NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA NA	<12	<49	NA NA
Benzo(a)pyrene	50-32-8	2.90E-03	2.00E-01	µg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Benzo(b)fluoranthene	205-99-2	2.90E-02	9.17E-02	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Benzo(g,h,i)perylene	191-24-2		1.10E+03	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Benzo(k)fluoranthene	207-08-9	2.90E-01	9.17E-01	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Benzyl Alcohol	100-51-6	3.70E+03	1.10E+04	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
bis(2-Chloroethoxy)methane	111-91-1	1.10E+02		μg/L	<9.9	NA NA	<10	NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA	NA NA	<12	<49	NA
bis(2-Chloroethyl)ether bis(2-Ethylhexyl)phthalate	111-44-4	1.20E-02	9.20E-03	μg/L	<9.9 <9.9	NA NA	<10 <10	NA NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA NA	<12 <12	<49 <49	NA NA
Butylbenzylphthalate	117-81-7 85-68-7	4.80E+00 3.50E+01	6.00E+00 2.69E+03	μg/L μg/L	<9.9 <9.9	NA NA	<10	NA NA	NA NA	NA NA	<1,000 [<510] <1,000 [<510]	NA NA	NA NA	NA NA	<12	<49 <49	NA NA
Chrysene	218-01-9	2.90E+00	9.17E+00	μg/L μg/L	<9.9	NA NA	<10	NA NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA NA	<12	<49	NA NA
Diallate	2303-16-4	1.10E+00		μg/L	<9.9	NA NA	<10	NA NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA NA	<12	<49	NA NA
Dibenzo(a,h)anthracene	53-70-3	2.90E-03	9.17E-03	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Dibenzofuran	132-64-9	3.70E+01	2.43E+01	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Diethylphthalate	84-66-2	2.90E+04	2.92E+04	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Dimethoate	60-51-5	7.30E+00		μg/L	<9.9 *	NA	<10 *	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12 *	<49	NA
Dimethylphthalate	131-11-3		3.65E+05	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Di-n-Butylphthalate	84-74-2	3.70E+03	3.65E+03	μg/L	<9.9	NA NA	<10	NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA	NA NA	<12	<49	NA
Di-n-Octylphthalate	117-84-0 88-85-7	3.70E+01	2.00E+01	μg/L	<9.9 <9.9	NA NA	<10 <10	NA NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA NA	<12 <12	<49 <49	NA NA
Dinoseb Disulfoton	298-04-4	1.50E+01	7.00E+00 1.46E+00	μg/L μg/L	<9.9 *	NA NA	<10 *	NA NA	NA NA	NA NA	<1,000 [<510] <1,000 [<510]	NA NA	NA NA	NA NA	<12 *	<49 <49	NA NA
Ethyl Methanesulfonate	62-50-0	1.50L+00		μg/L μg/L	<9.9	NA NA	<10	NA NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA NA	<12	<49	NA NA
Ethyl Parathion	56-38-2	2.20E+02	2.19E+02	μg/L	<9.9	NA	<10	NA NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA NA	<12	<49	NA NA
Famphur	52-85-7			μg/L	<9.9 *	NA	<10 *	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12 *	<49	NA
Fluoranthene	206-44-0	1.50E+03	1.46E+03	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Fluorene	86-73-7	1.50E+03	2.43E+02	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Hexachlorobenzene	118-74-1	4.20E-02	1.00E+00	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Hexachlorobutadiene	87-68-3	8.60E-01	8.59E-01	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Hexachlorocyclopentadiene	77-47-4	2.20E+02	5.00E+01	μg/L	<9.9	NA NA	<10	NA NA	NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA NA	<12	<49	NA NA
Hexachloroethane	67-72-1	4.80E+00	4.78E+00	μg/L	<9.9	NA NA	<10	NA NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA NA	<12	<49	NA NA
Hexachlorophene	70-30-4 1888-71-7	1.10E+01	1.10E+01	µg/L	<4,900 <9.9	NA NA	<5,200 <10	NA NA	NA NA	NA NA	520,000 [<250,000 <1,000 [<510]	NA NA	NA NA	NA NA	<6,200 <12	<25,000 <49	NA NA
Hexachloropropene Indeno(1.2.3-cd)pyrene	193-39-5	2.90E-02	9.17E-02	μg/L μg/L	<9.9 <9.9	NA NA	<10	NA NA	NA NA	NA NA	<1,000 [<510] <1,000 [<510]	NA NA	NA NA	NA NA	<12	<49 <49	NA NA
Isophorone	78-59-1	7.10E+01	7.05E+01	μg/L μg/L	<9.9	NA NA	<10	NA NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA NA	<12	<49	NA NA
Isosafrole	120-58-1			μg/L	<9.9	NA NA	<10	NA NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA NA	<12	<49	NA NA
Methapyrilene	91-80-5			μg/L	<2,000	NA NA	<2,100	NA NA	NA	NA NA	210,000 [<100,000	NA NA	NA NA	NA NA	<2,500	<9,800	NA NA
Methyl Methanesulfonate	66-27-3	6.80E-01		μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Methyl Parathion	298-00-0	9.10E+00	9.13E+00	μg/L	<9.9 *	NA	<10 *	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12 *	<49	NA
Naphthalene	91-20-3	1.40E-01	6.20E+00	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Nitrobenzene	98-95-3	1.20E-01	3.53E+00	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
N-Nitrosodiethylamine	55-18-5	1.40E-04	4.46E-04	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
N-Nitrosodimethylamine	62-75-9	4.20E-04	1.31E-03	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
N-Nitroso-di-n-butylamine	924-16-3	2.40E-03	1.89E-03	μg/L	<9.9	NA NA	<10	NA NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA NA	<12	<49	NA NA
N-Nitroso-di-n-propylamine	621-64-7	9.60E-03	9.57E-03	μg/L	<9.9	NA NA	<10	NA NA	NA NA	NA NA	<1,000 [<510]	NA NA	NA NA	NA NA	<12	<49	NA NA
N-Nitrosodiphenylamine	86-30-6	1.40E+01	1.37E+01	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA

Table 2. Summary of July 2011 Groundwater Analytical Results, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

Location ID:		EPA RSL			MW-02	MW-03	MW-04	MW-05	MW-06	MW-07	MW-08	MW-09	MW-10	MW-11	MW-12	MW-13	MW-14
Date Collected:	CAS#	TAP WATER	MDEQ_GW	UNITS	07/27/11	07/27/11	07/27/11	07/28/11	07/28/11	07/28/11	07/26/11	07/28/11	07/27/11	07/27/11	07/27/11	07/26/11	07/28/11
N-Nitrosomethylethylamine	10595-95-6	3.10E-03	3.04E-03	µg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
N-Nitrosomorpholine	59-89-2	1.00E-02		μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
N-Nitrosopiperidine	100-75-4	7.20E-03		μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
N-Nitrosopyrrolidine	930-55-2	3.20E-02	3.19E-02	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
o,o,o-Triethylphosphorothioate	126-68-1			μg/L	<9.9	NA	22	NA	NA	NA	3,400 [3,300]	NA	NA	NA	<12	190	NA
o-Toluidine	95-53-4		2.79E-01	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
p-Dimethylaminoazobenzene	60-11-7	1.50E-02		μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Pentachlorobenzene	608-93-5	2.90E+01	2.92E+01	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Pentachloronitrobenzene	82-68-8	2.60E-01	2.58E-01	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Pentachlorophenol	87-86-5	1.70E-01	1.00E+00	μg/L	<49	NA	<52	NA	NA	NA	<5,200 [<2,500]	NA	NA	NA	<62	<250	NA
Phenacetin	62-44-2	3.10E+01		μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Phenanthrene	85-01-8		1.10E+03	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Phenol	108-95-2	1.10E+04	2.19E+04	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Phorate	298-02-2	7.30E+00		μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Pronamide	23950-58-5	2.70E+03		μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Pyrene	129-00-0	1.10E+03	1.83E+02	μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Pyridine	110-86-1	3.70E+01	3.65E+01	μg/L	<49	NA	<52	NA	NA	NA	<5,200 [<2,500]	NA	NA	NA	<62	<250	NA
Safrole	94-59-7	9.80E-02		μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Sulfotep	3689-24-5	1.80E+01		μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Thionazin	297-97-2			μg/L	<9.9	NA	<10	NA	NA	NA	<1,000 [<510]	NA	NA	NA	<12	<49	NA
Dioxins-EPA 8290																	
2,3,7,8-TCDD	1746-01-6	5.20E-01	3.00E+01	pg/L	<10	NA	<10	NA	NA	NA	<11 [<10]	NA	NA	NA	<9.8	<10	NA
Total TEQ				pg/L	0.00	NA	0.00	NA	NA	NA	0.00	NA	NA	NA	0.00	0.00	NA
Inorganics-EPA 6020											<u> </u>						
Antimony	7440-36-0	1.50E+01	6.00E+00	μg/L	<5	NA	<5	NA	NA	NA	<5 [<5]	NA	NA	NA	<5	<5	NA
Arsenic	7440-38-2	4.50E-02	5.00E+01	μg/L	2.9	NA	<2.5	NA	NA	NA	42 [44]	NA	NA	NA	<2.5	5.7	NA
Barium	7440-39-3	7.30E+03	2.00E+03	μg/L	76	NA	110	NA	NA	NA	260 [260]	NA	NA	NA	120	49	NA
Beryllium	7440-41-7	7.30E+01	4.00E+00	μg/L	<0.5	NA	<0.5	NA	NA	NA	<0.5 [<0.5]	NA	NA	NA	<0.5	<0.5	NA
Cadmium	7440-43-9		5.00E+00	μg/L	<0.5	NA	<0.5	NA	NA	NA	<0.5 [<0.5]	NA	NA	NA	<0.5	<0.5	NA
Chromium	7440-47-3			μg/L	<5	NA	<5	NA	NA	NA	<5 [<5]	NA	NA	NA	<5	<5	NA
Cobalt	7440-48-4	1.10E+01	2.19E+03	μg/L	4.2	NA	<0.5	NA	NA	NA	<0.5 [<0.5]	NA	NA	NA	3.4	1.5	NA
Copper	7440-50-8	1.50E+03	1.30E+03	μg/L	<5	NA	<5	NA	NA	NA	<5 [<5]	NA	NA	NA	<5	<5	NA
Lead	7439-92-1		1.50E+01	μg/L	<1.5	NA	<1.5	NA	NA	NA	<1.5 [<1.5]	NA	NA	NA	<1.5	<1.5	NA
Nickel	7440-02-0	7.30E+02	7.30E+02	μg/L	<5	NA	<5	NA	NA	NA	<5 [<5]	NA	NA	NA	9.7	<5	NA
Selenium	7782-49-2	1.80E+02	5.00E+01	μg/L	<2.5	NA	<2.5	NA	NA	NA	<2.5 [<2.5]	NA	NA	NA	<2.5	<2.5	NA
Silver	7440-22-4	1.80E+02	1.83E+02	μg/L	<1	NA	<1	NA	NA	NA	<1 [<1]	NA	NA	NA	<1	<1	NA
Thallium	7440-28-0	3.70E-01	2.00E+00	μg/L	<1	NA	<1	NA	NA	NA	<1 [<1]	NA	NA	NA	<1	<1	NA
Tin	7440-31-5	2.20E+04	2.19E+04	μg/L	<5	NA	<5	NA	NA	NA	<5 [<5]	NA	NA	NA	<5	<5	NA
Vanadium	7440-62-2		2.56E+02	μg/L	<10	NA	<10	NA	NA	NA	<10 [<10]	NA	NA	NA	<10	<10	NA
Zinc	7440-66-6	1.10E+04	1.10E+04	μg/L	<20	NA	<20	NA	NA	NA	<20 [<20]	NA	NA	NA	34	41	NA
Inorganics-EPA 7470A												•					
Mercury	7439-97-6	6.30E-01	2.00E+00	μg/L	<0.2	NA	<0.2	NA	NA	NA	<0.2 [<0.2]	NA	NA	NA	<0.2	<0.2	NA
Miscellaneous-9034		U.				L. L		•					•	•			
Sulfide	18496-25-8			mg/L	<1	NA	1.1	NA	NA	NA	5 [17]	NA	NA	NA	<1	<1	NA
Miscellaneous9012A				, ,									1	1			
Cyanide	57-12-5	7.30E-01	2.00E-01	mg/L	<0.01	NA	<0.01	NA	NA	NA	<0.01 [<0.01]	NA	NA	NA	<0.01	<0.01	NA
0,000	0, 120	7.002 01	2.002 01	y/∟	70.01	1 1/ 1	30.01	14/1	14/1	1 47 1	30.01 [30.01]	14/1	1 17/1	14/1	30.01	30.01	1 1// 1

Laboratory duplicate analysis was outside control limits.

Less than.

Standard not promulgated.

Shaded cells indicate that the reported result exceeds the EPA RSL or MDEQ_GW.

Compound detected. Boldface type

U.S. Environmental Protection Agency. MDEQ Mississippi Department of Environmental Quality.

MDEQ_GW MDEQ Tier 1 Target Remediation Goal.

mg/L Milligrams per liter. Micrograms per liter. μg/L Not analyzed. pg/L Picogram per liter. RSL Regional Screening Level. TEQ Toxic equivalent.

2999.6/T/Revised Phase II/2/kp

Table 2. Summary of July 2011 Groundwater Analytical Results, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

Location Date Colle		EPA RSL TAP WATER	MDEQ_GW	UNITS	MW-15 07/28/11	MW-16 07/28/11	MW-17 07/26/11	MW-18 07/27/11	MW-19 07/26/11	MW-20 07/27/11	MW-21 07/26/11	MW-22 07/27/11	MW-23 07/26/11	MW-24 07/27/11
PEST/PCB-EPA 8081A/8082	•													
4,4'-DDD	72-54-8	2.80E-01	2.79E-01	μg/L	NA	NA	< 0.99	NA	< 0.099	NA	NA	NA	< 0.099	NA
4,4'-DDE	72-55-9	2.00E-01	1.97E-01	μg/L	NA	NA	<0.99	NA	<0.099	NA	NA	NA	<0.099	NA
4,4'-DDT	50-29-3	2.00E-01	1.97E-01	μg/L	NA	NA	<0.99	NA	<0.099	NA	NA	NA	<0.099	NA
4-Chlorobenzilate	510-15-6	6.10E-01	2.48E-01	μg/L	NA	NA	<4.9	NA	<0.49	NA	NA	NA	<0.49	NA
Aldrin	309-00-2	4.00E-03	3.94E-03	μg/L	NA NA	NA	<0.49	NA NA	<0.049	NA NA	NA NA	NA	<0.049	NA NA
Alpha-BHC Aroclor-1016	319-84-6 12674-11-2	1.10E-02 9.60E-01	1.06E-02 9.57E-01	μg/L	NA NA	NA NA	1.5 p <9.9	NA NA	<0.049 <0.99	NA NA	NA NA	NA NA	<0.049 <0.99	NA NA
Aroclor-1016 Aroclor-1221	11104-28-2	6.80E-01	3.35E-02	μg/L μg/L	NA NA	NA NA	<9.9	NA NA	<0.99	NA NA	NA NA	NA NA	<2	NA NA
Aroclor-1221 Aroclor-1232	11141-16-5	6.80E-03	3.35E-02	μg/L	NA NA	NA NA	<9.9	NA NA	<0.99	NA NA	NA NA	NA NA	<0.99	NA NA
Aroclor-1242	53469-21-9	3.40E-02	3.35E-02	μg/L	NA NA	NA NA	<9.9	NA NA	<0.99	NA NA	NA NA	NA NA	<0.99	NA NA
Aroclor-1248	12672-29-6	3.40E-02	3.35E-02	μg/L	NA	NA	<9.9	NA	<0.99	NA	NA	NA	<0.99	NA
Aroclor-1254	11097-69-1	3.40E-02	3.35E-02	μg/L	NA	NA	<9.9	NA	< 0.99	NA	NA	NA	<0.99	NA
Aroclor-1260	11096-82-5	3.40E-02	3.35E-02	μg/L	NA	NA	<9.9	NA	< 0.99	NA	NA	NA	< 0.99	NA
Beta-BHC	319-85-7	3.70E-02	3.72E-02	μg/L	NA	NA	<0.49	NA	<0.049	NA	NA	NA	<0.049	NA
Delta-BHC	319-86-8			μg/L	NA	NA	<0.49	NA	<0.049	NA	NA	NA	<0.049	NA
Dieldrin	60-57-1	4.20E-03	4.19E-03	μg/L	NA NA	NA NA	<0.99	NA NA	<0.099	NA NA	NA NA	NA NA	<0.099	NA NA
Endosulfan I	959-98-8			μg/L	NA NA	NA NA	<0.49	NA NA	<0.049	NA NA	NA NA	NA NA	<0.049	NA NA
Endosulfan II Endosulfan Sulfate	33213-65-9 1031-07-8			μg/L	NA NA	NA NA	<0.99 <0.99	NA NA	<0.099 <0.099	NA NA	NA NA	NA NA	<0.099 <0.099	NA NA
Endosulfan Sulfate Endrin	72-20-8	1.10E+01	2.00E+00	μg/L μg/L	NA NA	NA NA	<0.99	NA NA	<0.099	NA NA	NA NA	NA NA	<0.099	NA NA
Endrin Aldehyde	7421-93-4	1.10L+01	2.00L+00	μg/L μg/L	NA NA	NA NA	<0.99	NA NA	<0.099	NA NA	NA NA	NA NA	<0.099	NA NA
Endrin Ketone	53494-70-5			μg/L	NA NA	NA NA	<0.99	NA NA	<0.099	NA NA	NA NA	NA NA	<0.099	NA NA
Gamma-BHC (Lindane)	58-89-9	6.10E-02	2.00E-01	μg/L	NA	NA	<0.49	NA	<0.049	NA	NA	NA	<0.049	NA
Heptachlor	76-44-8	1.50E-02	4.00E-01	μg/L	NA	NA	<0.49	NA	<0.049	NA	NA	NA	<0.049	NA
Heptachlor Epoxide	1024-57-3	7.40E-03	2.00E-01	μg/L	NA	NA	<0.49	NA	<0.049	NA	NA	NA	<0.049	NA
Isodrin	465-73-6			μg/L	NA	NA	<0.49	NA	<0.049	NA	NA	NA	<0.049	NA
Kepone	143-50-0	6.70E-03		μg/L	NA	NA	<9.9	NA	< 0.99	NA	NA	NA	<0.99	NA
Methoxychlor	72-43-5	1.80E+02	4.00E+01	μg/L	NA	NA	<0.99	NA	<0.099	NA	NA	NA	<0.099	NA
Technical Chlordane	57-74-9		2.00E+00	μg/L	NA NA	NA NA	<4.9	NA NA	<0.49	NA NA	NA NA	NA NA	<0.49	NA NA
Toxaphene	8001-35-2	6.10E-02	3.00E+00	μg/L	NA	NA	<49	NA	<4.9	NA	NA	INA	<4.9	NA
Herb-EPA 8151A 2,4,5-T	93-76-5	3.70E+02	3.65E+02	μg/L	NA	NA	<0.51	NA	<0.5	NA	NA	NA	<0.5	NA
2,4,5-1 2,4,5-TP	93-76-5	2.90E+02	5.00E+01	μg/L μg/L	NA NA	NA NA	<0.51	NA NA	<0.5	NA NA	NA NA	NA NA	<0.5	NA NA
2,4-D	94-75-7	3.70E+02	7.00E+01	μg/L	NA	NA NA	<0.51	NA NA	<0.5	NA NA	NA NA	NA NA	10 D	NA NA
Volatile Organics-EPA 8260B	1 4			F-5'-										
1,1,1,2-Tetrachloroethane	630-20-6	5.20E-01	4.06E-01	μg/L	<1	<1	<200	<1	<1	<1	<50	<1	<100	<1
1,1,1-Trichloroethane	71-55-6	9.10E+03	2.00E+02	μg/L	<1	<1	<200	<1	<1	<1	<50	<1	<100	<1
1,1,2,2-Tetrachloroethane	79-34-5	6.70E-02	5.27E-02	μg/L	<1	<1	<200	<1	<1	<1	<50	<1	<100	<1
1,1,2-Trichloroethane	79-00-5	2.40E-01	5.00E+00	μg/L	<1	<1	<200	<1	<1	<1	<50	<1	<100	<1
1,1-Dichloroethane	75-34-3	2.40E+00	7.98E+02	μg/L	<1	<1	<200	<1	<1	<1	<50	<1	<100	<1
1,1-Dichloroethene	75-35-4	3.40E+02	7.00E+00	μg/L	<1	<1	<200	<1	<1	<1	<50	<1	<100	<1
1,2,3-Trichloropropane	96-18-4	7.20E-04	6.23E-03	μg/L	<1	<1	<200	<1	<1	<1	<50	<1	<100	<1
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	96-12-8 106-93-4	3.20E-04 6.50E-03	2.00E-01 5.00E-02	μg/L μg/L	<1 <1	<1 <1	<200 <200	<1 <1	<1 <1	<1 <1	<50 <50	<1 <1	<100 <100	<1 <1
1,2-Distributione 1,2-Distribution 1,2-D	107-06-2	1.50E-01	5.00E+00	μg/L μg/L	<1	<1	<200	<1	<1	<1	<50	<1	<100	<1
1,2-Dichloropropane	78-87-5	3.90E-01	5.00E+00	μg/L μg/L	<1	<1	<200	<1	<1	<1	<50	<1	<100	<1
2-Butanone	78-93-3	7.10E+03	1.91E+03	μg/L	<10	<10	<2,000	<10	<10	<10	<500	<10	<1,000	<10
2-Chloro-1,3-butadiene	126-99-8	1.60E-02	1.43E+01	μg/L	<1	<1	<200	<1	<1	<1	<50	<1	<100	<1
2-Hexanone	591-78-6	4.70E+01	1.46E+03	μg/L	<10	<10	<2,000	<10	<10	<10	<500	<10	<1,000	<10
3-Chloropropene	107-05-1	6.50E-01		μg/L	<1	<1	<200	<1	<1	<1	<50	<1	<100	<1
4-Methyl-2-pentanone	108-10-1	2.00E+03	1.39E+02	μg/L	<10	<10	<2,000	<10	<10	<10	<500	21	1,100	<10
Acetone	67-64-1	2.20E+04	6.08E+02	μg/L	<25	<25	<5,000	<25	<25	<25	<1,300	<25	<2,500	<25
Acetonitrile	75-05-8	1.30E+02	1.25E+02	μg/L	<40	<40	<8,000	<40	<40	<40	<2,000	<40	<4,000	<40
Acrolein	107-02-8	4.20E-02	4.16E-02	μg/L	<20	<20	<4,000	<20	<20	<20	<1,000	<20	<2,000	<20
Acrylonitrile	107-13-1 71-43-2	4.50E-02 4.10E-01	3.67E-02 5.00E+00	μg/L	<20	<20	<4,000	<20	<20 54	<20	<1,000	<20 10	<2,000 8,800	<20
Benzene Bromodichloromethane	71-43-2	4.10E-01 1.20E-01	1.68E-01	μg/L μg/L	<1 <1	<1 <1	3,600 <200	<1 <1	54 <1	<1 <1	3,200 <50	<1	8,800 <100	<1 <1
Bromoform	75-27-4	8.50E+00	8.48E+00	μg/L μg/L	<1 *	<1 *	<200	<1	<1	<1	<50	<1 *	<100	<1
Bromomethane	74-83-9	8.70E+00	8.52E+00	μg/L μg/L	<1	<1	<200	<1	<1	<1	<50	<1	<100	<1
Carbon Disulfide	75-15-0	1.00E+03	1.04E+03	μg/L	<2	<2	<400	<2	<2	<2	<100	<2	390	<2
Carbon Tetrachloride	56-23-5	4.40E-01	5.00E+00	μg/L	<1	<1 *	25,000 *	<1	3.5	<1	<50	<1 *	<100	<1
Chlorobenzene	108-90-7	9.10E+01	1.00E+02	μg/L	<1	<1	770	21	9.9	<1	150	8.7	140	<1

Table 2. Summary of July 2011 Groundwater Analytical Results, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

	Location ID: e Collected: CAS #	EPA RSL TAP WATER	MDEQ_GW	UNITS	MW-15 07/28/11	MW-16 07/28/11	MW-17 07/26/11	MW-18 07/27/11	MW-19 07/26/11	MW-20 07/27/11	MW-21 07/26/11	MW-22 07/27/11	MW-23 07/26/11	MW-24 07/27/11
Chloroform	67-66-3		1.55E-01	μg/L	<1	<1	3,000	<1	3.3	<1	4,300	<1	3,200	<1
Chloromethane	74-87-3		1.43E+00	μg/L	<1	<1	<200	<1	<1	<1	<50	<1	<100	<1
cis-1,2-Dichloroethene	156-59-2		7.00E+01	μg/L	<1	<1	<200	<1	<1	<1	<50	<1	<100	<1
cis-1,3-Dichloropropene	10061-01-	_		μg/L	<1	<1	<200	<1	<1	<1	<50	<1	<100	<1
Dibromochloromethane	124-48-1	1.50E-01	1.26E-01	μg/L	<1	<1	<200	<1	<1	<1	<50	<1 *	<100	<1
Dibromomethane	74-95-3	8.20E+00	6.08E+01	μg/L	<1	<1	<200	<1	<1	<1	<50	<1	<100	<1
Dichlorodifluoromethane	75-71-8	2.00E+02	3.48E+02	μg/L	<1	<1	<200	<1	<1	<1	<50	<1	<100	<1
Ethyl Methacrylate	97-63-2	5.30E+02	5.48E+02	μg/L	<1	<1	<200	<1	<1	<1	<50	<1	<100	<1
Ethylbenzene	100-41-4	1.50E+00	7.00E+02	μg/L	<1	<1	<200	<1	1.3	<1	<50	<1	<100	<1
lodomethane	74-88-4			μg/L	<5	<5	<1,000	<5	<5	< 5	<250	<5	<500	<5
Isobutanol	78-83-1	1.10E+04	1.83E+03	μg/L	<40	<40	<8,000	<40	<40	<40	<2,000	<40	<4,000	<40
Methacrylonitrile	126-98-7	1.00E+00	1.04E+00	μg/L	<20	<20	<4,000	<20	<20	<20	<1,000	<20	<2,000	<20
Methyl Methacrylate	80-62-6		1.42E+03	μg/L	<1	<1	<200	<1	<1	<1	<50	<1	<100	<1
Methylene Chloride	75-09-2		5.00E+00	μg/L	<5	<5	<1,000	<5	<5	<5	<250	<5	<500	<5
Pentachloroethane	76-01-7	7.50E-01		μg/L	<5	<5	<1,000	<5	<5	<5	<250	<5	<500	<5
Propionitrile	107-12-0			μg/L	<20	<20	<4,000	<20	<20	<20	<1,000	<20	<2,000	<20
Styrene	100-42-5		1.00E+02	μg/L	<1	<1	<200	<1	<1	<1	<50	<1	<100	<1
Tetrachloroethene	127-18-4		5.00E+00	μg/L	<1	<1	<200	<1	<1	<1	<50	<1	<100	<1
Toluene	108-88-3		1.00E+03	μg/L	<1	<1	<200	<1	2.4	<1	2,600	1.1	1,300	<1
trans-1,2-Dichloroethene	156-60-5		1.00E+02	μg/L	<1	<1	<200	<1	<1	<1	<50	<1	<100	<1
trans-1,3-Dichloropropene	10061-02-			μg/L	<1	<1	<200	<1	<1	<1	<50	<1	<100	<1
trans-1,4-Dichloro-2-butene	110-57-6			μg/L	<2	<2	<400	<2	<2	<2	<100	<2	<200	<2
Trichloroethene	79-01-6		5.00E+00	μg/L	<1	<1	<200	<1	<1	<1	<50	<1	<100	<1
Trichlorofluoromethane	75-69-4		1.29E+03	μg/L	<1	<1	<200	<1	<1	<1	<50	<1	<100	<1
Vinyl Acetate	108-05-4		4.12E+02	μg/L	<2	<2	<400	<2	<2	<2	<100	<2	<200	<2
Vinyl Chloride	75-01-4		2.00E+00	μg/L	<1	<1	<200	<1	<1	<1	<50	<1	<100	<1
Xylenes (total)	1330-20-	7 2.00E+02	1.00E+04	μg/L	<2	<2	<400	<2	<2	<2	<100	<2	<200	<2
Semivolatile Organics-EPA 8270														
1,1'-Biphenyl	92-52-4	8.30E-01	3.04E+02	μg/L	NA NA	NA	<1,000	NA	770	NA	NA NA	NA	<97	NA
1,2,4,5-Tetrachlorobenzene	95-94-3		1.10E+01	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
1,2,4-Trichlorobenzene	120-82-1		7.00E+01	μg/L	NA NA	NA NA	<1,000	NA NA	<99	NA	NA NA	NA NA	<97	NA NA
1,2-Dichlorobenzene	95-50-1	3.70E+02	6.00E+02	μg/L	NA NA	NA NA	<1,000	NA NA	<99	NA	NA NA	NA NA	<97	NA NA
1,3,5-Trinitrobenzene	99-35-4		1.10E+03	μg/L	NA NA	NA NA	<1,000	NA NA	<99	NA	NA NA	NA NA	<97	NA NA
1,3-Dichlorobenzene	541-73-1		5.48E+00	μg/L	NA NA	NA NA	<1,000	NA NA	<99	NA NA	NA NA	NA NA	<97	NA NA
1,3-Dinitrobenzene	99-65-0 106-46-7		3.65E+00	μg/L	NA NA	NA NA	<1,000 <1,000	NA NA	<99	NA NA	NA NA	NA NA	<97 <97	NA NA
1,4-Dichlorobenzene 1,4-Dioxane	123-91-1		7.50E+01 6.09E+00	μg/L μg/L	NA NA	NA NA	<1,000	NA NA	<99 <99	NA NA	NA NA	NA NA	890	NA NA
1,4-Naphthoquinone	130-15-4		6.09E+00	μg/L μg/L	NA NA	NA NA	<1,000	NA NA	<99	NA NA	NA NA	NA NA	<97	NA NA
1-Naphthylamine	134-32-7			μg/L μg/L	NA NA	NA NA	<1,000	NA NA	<99	NA NA	NA NA	NA NA	<97	NA NA
2,2'-Oxybis(1-Chloropropane)	108-60-1			μg/L μg/L	NA NA	NA NA	<1,000	NA NA	<99	NA NA	NA NA	NA NA	<97	NA NA
2,3,4,6-Tetrachlorophenol	58-90-2		1.10E+03	μg/L	NA NA	NA NA	<1,000	NA NA	<99	NA NA	NA NA	NA NA	<97	NA NA
2,4,5-Trichlorophenol	95-95-4	3.70E+03	3.65E+03	μg/L	NA NA	NA NA	<1,000	NA NA	<99	NA NA	NA NA	NA NA	<97	NA NA
2,4,6-Trichlorophenol	88-06-2		6.09E+00	μg/L	NA NA	NA NA	<1,000	NA NA	<99	NA NA	NA NA	NA NA	<97	NA NA
2,4-Dichlorophenol	120-83-2		1.10E+02	μg/L	NA NA	NA NA	<1,000	NA NA	<99	NA NA	NA NA	NA NA	<97	NA NA
2,4-Dimethylphenol	105-67-9		7.30E+02	μg/L	NA NA	NA NA	<1,000	NA NA	<99	NA NA	NA NA	NA NA	<97	NA NA
2,4-Dinitrophenol	51-28-5		7.30E+01	μg/L	NA	NA	<5,000	NA	<500	NA	NA	NA	<480	NA
2,4-Dinitrotoluene	121-14-2		7.30E+01	μg/L	NA NA	NA NA	<1,000	NA NA	<99	NA NA	NA NA	NA NA	<97	NA NA
2,6-Dichlorophenol	87-65-0			μg/L	NA NA	NA NA	<1,000	NA NA	<99	NA NA	NA NA	NA NA	<97	NA NA
2,6-Dinitrotoluene	606-20-2	_	3.65E+01	μg/L	NA NA	NA NA	<1,000	NA NA	<99	NA	NA NA	NA NA	<97	NA NA
2-Acetylaminofluorene	53-96-3			μg/L	NA NA	NA NA	<1,000	NA NA	<99	NA	NA NA	NA	<97	NA NA
2-Chloronaphthalene	91-58-7	2.90E+03	4.87E+02	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
2-Chlorophenol	95-57-8		3.04E+01	μg/L	NA	NA	<1,000	NA NA	<99	NA	NA	NA	<97	NA
2-Methylnaphthalene	91-57-6		1.22E+02	μg/L	NA NA	NA NA	<1,000	NA NA	<99	NA NA	NA NA	NA NA	<97	NA NA
, ,		1.80E+03	1.83E+03	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
2-Methylphenol	95-48-7					NA	<1,000	NA	<99	NA	NA	NA	<97	NA
- '	95-48-7 91-59-8			µa/L	NA	INA							<31	
2-Methylphenol 2-Naphthylamine 2-Nitroaniline		3.70E-02	4.17E-01	μg/L μg/L	NA NA	NA NA	<5,000	NA	<500	NA	NA NA	NA	<480	NA
2-Naphthylamine	91-59-8	3.70E-02 3.70E+02					,	NA NA						
2-Naphthylamine 2-Nitroaniline	91-59-8 88-74-4	3.70E-02 3.70E+02	4.17E-01	μg/L	NA	NA	<5,000		<500	NA	NA	NA	<480	NA
2-Naphthylamine 2-Nitroaniline 2-Nitrophenol	91-59-8 88-74-4 88-75-5	3.70E-02 3.70E+02 	4.17E-01 4.16E-01	μg/L μg/L	NA NA	NA NA	<5,000 <1,000	NA	<500 <99	NA NA	NA NA	NA NA	<480 <97	NA NA
2-Naphthylamine 2-Nitroaniline 2-Nitrophenol 2-Picoline	91-59-8 88-74-4 88-75-5 109-06-8	3.70E-02 3.70E+02 4	4.17E-01 4.16E-01	μg/L μg/L μg/L	NA NA NA	NA NA NA	<5,000 <1,000 <1,000	NA NA	<500 <99 <99	NA NA NA	NA NA NA	NA NA NA	<480 <97 <97	NA NA NA

Table 2. Summary of July 2011 Groundwater Analytical Results, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

Location ID: Date Collected:	CAS#	EPA RSL TAP WATER	MDEQ_GW	UNITS	MW-15 07/28/11	MW-16 07/28/11	MW-17 07/26/11	MW-18 07/27/11	MW-19 07/26/11	MW-20 07/27/11	MW-21 07/26/11	MW-22 07/27/11	MW-23 07/26/11	MW-24 07/27/11
3-Methylcholanthrene	56-49-5	9.80E-04		μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
3-Nitroaniline	99-09-2			μg/L	NA	NA	<5,000	NA	<500	NA	NA	NA	<480	NA
4,6-Dinitro-2-methylphenol	534-52-1	2.90E+00	3.65E+00	μg/L	NA	NA	<5,000	NA	<500	NA	NA	NA	<480	NA
4-Aminobiphenyl	92-67-1	3.20E-03		μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
4-Bromophenyl-phenylether	101-55-3			μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
4-Chloro-3-Methylphenol	59-50-7	3.70E+03	7.30E+04	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
4-Chloroaniline	106-47-8	3.40E-01	1.46E+02	μg/L	NA	NA	<2,000	NA	<200	NA	NA	NA	<190	NA
4-Chlorophenyl-phenylether	7005-72-3			μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
4-Nitroaniline	100-01-6	3.40E+00		μg/L	NA NA	NA NA	<5,000	NA NA	<500	NA NA	NA NA	NA NA	<480	NA NA
4-Nitrophenol	100-02-7		2.92E+02	μg/L	NA NA	NA NA	<5,000	NA NA	<500	NA NA	NA NA	NA NA	<480	NA
4-Nitroquinoline-1-oxide	56-57-5			μg/L	NA NA	NA NA	<2,000	NA NA	<200	NA NA	NA NA	NA NA	<190	NA
4-Phenylenediamine 5-Nitro-o-toluidine	106-50-3 99-55-8	6.90E+03	6.94E+03	μg/L	NA NA	NA NA	<200,000	NA NA	<20,000	NA NA	NA NA	NA NA	<19,000	NA
		7.50E+00	2.03E+00	μg/L			<1,000	NA NA	<99				<97	NA
7,12-Dimethylbenz(a)anthracene	57-97-6	8.60E-05		μg/L	NA NA	NA NA	<1,000	NA NA	<99	NA NA	NA NA	NA NA	<97	NA
a,a'-Dimethylphenethylamine	122-09-8	 2 20E - 02	 2 CET - 02	μg/L	NA NA	NA NA	<200,000	NA NA	<20,000	NA NA	NA NA	NA NA	<19,000	NA
Acenaphthene	83-32-9	2.20E+03	3.65E+02	μg/L	NA NA	NA NA	<1,000	NA NA	<99	NA NA	NA NA	NA NA	<97	NA
Acenaphthylene	208-96-8	0.705.00	2.19E+03	μg/L	NA NA	NA NA	<1,000	NA NA	<99	NA NA	NA NA	NA NA	<97	NA
Acetophenone	98-86-2	3.70E+03	4.16E-02	μg/L	NA NA	NA NA	<1,000	NA NA	<99	NA NA	NA NA	NA NA	<97	NA NA
Aniline	62-53-3	1.20E+01	1.17E+01	μg/L	NA NA	NA NA	<2,000	NA NA	<200	NA NA	NA NA	NA NA	<190	NA
Anthracene	120-12-7	1.10E+04	4.34E+01	μg/L	NA NA	NA NA	<1,000	NA NA	<99	NA NA	NA NA	NA NA	<97	NA
Aramite	140-57-8	2.70E+00	0.475.00	μg/L	NA NA	NA NA	<1,000	NA NA	<99	NA NA	NA NA	NA NA	<97	NA
Benzo(a)anthracene	56-55-3	2.90E-02	9.17E-02	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Benzo(a)pyrene	50-32-8	2.90E-03	2.00E-01	μg/L	NA	NA NA	<1,000	NA NA	<99	NA NA	NA	NA	<97	NA
Benzo(b)fluoranthene	205-99-2	2.90E-02	9.17E-02	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Benzo(g,h,i)perylene	191-24-2		1.10E+03	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Benzo(k)fluoranthene	207-08-9	2.90E-01	9.17E-01	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Benzyl Alcohol	100-51-6	3.70E+03	1.10E+04	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
bis(2-Chloroethoxy)methane	111-91-1	1.10E+02		μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
bis(2-Chloroethyl)ether	111-44-4	1.20E-02	9.20E-03	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
bis(2-Ethylhexyl)phthalate	117-81-7	4.80E+00	6.00E+00	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Butylbenzylphthalate	85-68-7	3.50E+01	2.69E+03	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Chrysene	218-01-9	2.90E+00	9.17E+00	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Diallate	2303-16-4	1.10E+00		μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Dibenzo(a,h)anthracene	53-70-3	2.90E-03	9.17E-03	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Dibenzofuran	132-64-9	3.70E+01	2.43E+01	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Diethylphthalate	84-66-2	2.90E+04	2.92E+04	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Dimethoate	60-51-5	7.30E+00		μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Dimethylphthalate	131-11-3		3.65E+05	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Di-n-Butylphthalate	84-74-2	3.70E+03	3.65E+03	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Di-n-Octylphthalate	117-84-0		2.00E+01	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Dinoseb	88-85-7	3.70E+01	7.00E+00	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Disulfoton	298-04-4	1.50E+00	1.46E+00	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Ethyl Methanesulfonate	62-50-0			μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Ethyl Parathion	56-38-2	2.20E+02	2.19E+02	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Famphur	52-85-7			μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Fluoranthene	206-44-0	1.50E+03	1.46E+03	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Fluorene	86-73-7	1.50E+03	2.43E+02	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Hexachlorobenzene	118-74-1	4.20E-02	1.00E+00	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Hexachlorobutadiene	87-68-3	8.60E-01	8.59E-01	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Hexachlorocyclopentadiene	77-47-4	2.20E+02	5.00E+01	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Hexachloroethane	67-72-1	4.80E+00	4.78E+00	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Hexachlorophene	70-30-4	1.10E+01	1.10E+01	μg/L	NA	NA	<500,000	NA	<50,000	NA	NA	NA	<48,000	NA
Hexachloropropene	1888-71-7			μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Indeno(1,2,3-cd)pyrene	193-39-5	2.90E-02	9.17E-02	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Isophorone	78-59-1	7.10E+01	7.05E+01	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Isosafrole	120-58-1			μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Methapyrilene	91-80-5			μg/L	NA	NA	<200,000	NA	<20,000	NA	NA	NA	<19,000	NA
Methyl Methanesulfonate	66-27-3	6.80E-01		μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Methyl Parathion	298-00-0	9.10E+00	9.13E+00	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Naphthalene	91-20-3	1.40E-01	6.20E+00	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Nitrobenzene	98-95-3	1.20E-01	3.53E+00	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
N-Nitrosodiethylamine	55-18-5	1.40E-04	4.46E-04	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
N-Nitrosodimethylamine	62-75-9	4.20E-04	1.31E-03	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
N-Nitroso-di-n-butylamine	924-16-3	2.40E-03	1.89E-03	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
							,							
N-Nitroso-di-n-propylamine	621-64-7	9.60E-03	9.57E-03	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA

Table 2. Summary of July 2011 Groundwater Analytical Results, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

Locati Date Coll	on ID: ected: CAS#	EPA RSL TAP WATER	MDEQ_GW	UNITS	MW-15 07/28/11	MW-16 07/28/11	MW-17 07/26/11	MW-18 07/27/11	MW-19 07/26/11	MW-20 07/27/11	MW-21 07/26/11	MW-22 07/27/11	MW-23 07/26/11	MW-24 07/27/11
N-Nitrosomethylethylamine	10595-95-6	3.10E-03	3.04E-03	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
N-Nitrosomorpholine	59-89-2	1.00E-02		μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
N-Nitrosopiperidine	100-75-4	7.20E-03		μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
N-Nitrosopyrrolidine	930-55-2	3.20E-02	3.19E-02	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
o,o,o-Triethylphosphorothioate	126-68-1			μg/L	NA	NA	12,000	NA	<99	NA	NA	NA	<97	NA
o-Toluidine	95-53-4		2.79E-01	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
p-Dimethylaminoazobenzene	60-11-7	1.50E-02		μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Pentachlorobenzene	608-93-5	2.90E+01	2.92E+01	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Pentachloronitrobenzene	82-68-8	2.60E-01	2.58E-01	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Pentachlorophenol	87-86-5	1.70E-01	1.00E+00	μg/L	NA	NA	<5,000	NA	<500	NA	NA	NA	<480	NA
Phenacetin	62-44-2	3.10E+01		μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Phenanthrene	85-01-8		1.10E+03	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Phenol	108-95-2	1.10E+04	2.19E+04	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	140	NA
Phorate	298-02-2	7.30E+00		μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Pronamide	23950-58-5	2.70E+03		μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Pyrene	129-00-0	1.10E+03	1.83E+02	μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Pyridine	110-86-1	3.70E+01	3.65E+01	μg/L	NA	NA	<5,000	NA	<500	NA	NA	NA	<480	NA
Safrole	94-59-7	9.80E-02		μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Sulfotep	3689-24-5	1.80E+01		μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Thionazin	297-97-2			μg/L	NA	NA	<1,000	NA	<99	NA	NA	NA	<97	NA
Dioxins-EPA 8290	· ·	U.				1							J.	
2.3.7.8-TCDD	1746-01-6	5.20E-01	3.00E+01	pg/L	NA	NA	<10	NA	<10	l NA	NA	NA	<10	NA
Total TEQ				pg/L	NA	NA	0.00	NA	0.00	NA	NA	NA	0.00	NA
Inorganics-EPA 6020	<u> </u>	l.		F 3' -										
Antimony	7440-36-0	1.50E+01	6.00E+00	μg/L	NA	NA	<5	NA	<5	NA	NA	NA	<5	NA
Arsenic	7440-38-2	4.50E-02	5.00E+01	μg/L	NA NA	NA.	28	NA NA	14	NA NA	NA NA	NA NA	19	NA NA
Barium	7440-39-3	7.30E+03	2.00E+03	μg/L	NA NA	NA	120	NA NA	51	NA NA	NA NA	NA NA	240	NA NA
Beryllium	7440-41-7	7.30E+01	4.00E+00	µg/L	NA	NA.	<0.5	NA NA	<0.5	NA NA	NA NA	NA NA	3.3	NA NA
Cadmium	7440-43-9		5.00E+00	μg/L	NA NA	NA.	<0.5	NA NA	<0.5	NA NA	NA NA	NA NA	<0.5	NA NA
Chromium	7440-47-3			μg/L	NA NA	NA	<5	NA NA	<5	NA NA	NA NA	NA NA	5	NA NA
Cobalt	7440-48-4	1.10E+01	2.19E+03	μg/L	NA NA	NA NA	0.69	NA NA	<0.5	NA NA	NA NA	NA NA	0.71	NA NA
Copper	7440-50-8	1.50E+03	1.30E+03	μg/L	NA NA	NA	<5	NA NA	<5	NA NA	NA NA	NA NA	<5	NA NA
Lead	7439-92-1		1.50E+01	μg/L	NA NA	NA	<1.5	NA NA	<1.5	NA NA	NA NA	NA NA	<1.5	NA NA
Nickel	7440-02-0	7.30E+02	7.30E+02	μg/L	NA NA	NA NA	<5	NA NA	<5	NA.	NA NA	NA NA	<5	NA NA
Selenium	7782-49-2	1.80E+02	5.00E+01	μg/L μg/L	NA NA	NA NA	<2.5	NA NA	<2.5	NA NA	NA NA	NA NA	<2.5	NA NA
Silver	7440-22-4	1.80E+02	1.83E+02	μg/L	NA NA	NA NA	<1	NA NA	<1	NA NA	NA NA	NA NA	<1	NA NA
Thallium	7440-22-4	3.70E-01	2.00E+00	μg/L μg/L	NA NA	NA NA	<1	NA NA	<1	NA NA	NA NA	NA NA	<1	NA NA
Tin	7440-28-0	2.20E+04	2.19E+04	μg/L μg/L	NA NA	NA NA	<5	NA NA	<5	NA NA	NA NA	NA NA	<5	NA NA
Vanadium	7440-31-3	2.20E+04	2.19E+04 2.56E+02	μg/L μg/L	NA NA	NA NA	<10	NA NA	<10	NA NA	NA NA	NA NA	16	NA NA
Zinc	7440-62-2	1.10E+04	1.10E+04	μg/L μg/L	NA NA	NA NA	<20	NA NA	57	NA NA	NA NA	NA NA	<20	NA NA
Inorganics-EPA 7470A	1440-00-0	1.10E+04	1.100+04	μg/L	INA	INA	< 20	INA	31	INA	INA	INA	<2 0	INA
	7420.07.0	6 20E 04	2.005.00	1/1	NIA	NIA	.0.0	NIA	-0.0	NΙΔ	NΙΔ	NΙΔ	-0.0	NIA
Mercury	7439-97-6	6.30E-01	2.00E+00	μg/L	NA	NA	<0.2	NA	<0.2	NA	NA	NA	<0.2	NA
Miscellaneous-9034	140,000 00 0	1	1	n 1	N1.	L	4.5	h					7.	h
Sulfide	18496-25-8			mg/L	NA	NA	4.2	NA	<1	NA	NA	NA	7.9	NA
Miscellaneous9012A														
Cyanide	57-12-5	7.30E-01	2.00E-01	mg/L	NA	NA	<0.01	NA	<0.01	NA	NA	NA	<0.01	NA

Laboratory duplicate analysis was outside control limits.

Less than.

- - Standard not promulgated.

Shaded cells indicate that the reported result exceeds the EPA RSL or MDEQ_GW.

Boldface type Compound detected.

EPA U.S. Environmental Protection Agency.
MDEQ Mississippi Department of Environmental Quality.

MDEQ_GW MDEQ Tier 1 Target Remediation Goal.

mg/L

µg/L

NA

Not analyzed.

pg/L

RSL

TEQ

Milligrams per liter.

Micrograms per liter.

Not analyzed.

Picogram per liter.

Regional Screening Level.

Toxic equivalent.

2999.6/T/Revised Phase II/2/kp

Table 3. Combined Groundwater Screening Evaluation, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

	_		2011 Data				Historic Data				Combined			_								
		Max	Location of Maximum Detection	Detecti	on Limit	Max	Location of Maximum Detection		ection mit	Max	Location of Maximum Detection		ection mit	MDEQ	Does max detect exceed MDEQ TRG?	Does max DL exceed MDEQ TRG?	Does min DL exceed MDEQ?	USEPA	Surrogate	Does max detect exceed RSL?	Does max DL exceed RSL?	
Constituent [a]		Detect		Max	Min	Detect		Max	Min	Detect		Max	Min	TRG [b]				RSL [c]	Value			
Pesticides/PCBs (μg/L)																						-
4,4'-DDD		_		0.99	0.10	NA		NA	NA			0.99	0.10	0.28	ND	YES	No	0.28		ND	YES	No
4,4'-DDE		_		0.99	0.10	NA		NA	NA			0.99	0.10	0.20	ND	YES	No	0.20		ND	YES	No
4,4'-DDT		_		0.99	0.10	NA		NA	NA			0.99	0.10	0.20	ND	YES	No	0.20		ND	YES	No
4-Chlorobenzilate Aldrin		_		4.9 0.49	0.49 0.05	NA NA		NA NA	NA NA		 	4.9 0.49	0.49 0.05	0.25 0.004	ND ND	YES YES	YES YES	0.61 0.004		ND ND	YES YES	No YES
Alpha-BHC		_ 1.5	 MW-17(7/26/2011)	0.49	0.05	NA	 	NA	NA	 1.5	 MW-17(7/26/2011)	0.49	0.05	0.004	YES	YES	YES	0.004		YES	YES	YES
Aroclor 1016		-		9.9	0.03	NA	 	NA	NA	1.5		9.9	0.03	0.01	ND	YES	YES	0.96		ND	YES	YES
Aroclor 1221		_		20	2.0	NA		NA	NA			20	2.0	0.03	ND	YES	YES	0.01		ND	YES	YES
Aroclor 1232		_		9.9	0.99	NA		NA	NA			9.9	0.99	0.03	ND	YES	YES	0.01		ND	YES	YES
Aroclor 1242		_		9.9	0.99	NA		NA	NA			9.9	0.99	0.03	ND	YES	YES	0.03		ND	YES	YES
Aroclor 1248		_		9.9	0.99	NA		NA	NA			9.9	0.99	0.03	ND	YES	YES	0.03		ND	YES	YES
Aroclor 1254		_		9.9	0.99	NA		NA	NA			9.9	0.99	0.03	ND	YES	YES	0.03		ND	YES	YES
Aroclor 1260		_		9.9	0.99	NA		NA	NA			9.9	0.99	0.03	ND	YES	YES	0.03		ND	YES	YES
Beta-BHC		_		0.49	0.05	NA		NA	NA			0.49	0.05	0.04	ND	YES	YES	0.04		ND	YES	YES
Delta-BHC	[d]	_		0.49	0.05	NA		NA	NA			0.49	0.05	0.04	ND	YES	YES	0.04	[d]	ND	YES	YES
Dieldrin		_		0.99	0.10	NA		NA	NA			0.99	0.10	0.004	ND	YES	YES	0.00		ND	YES	YES
Endosulfan I	[e]	_		0.49	0.05	NA		NA	NA			0.49	0.05	219	ND	No	No	220		ND	No	No
Endosulfan II	[e]	_		0.99	0.10	NA		NA	NA			0.99	0.10	219	ND	No	No	220		ND	No	No
Endosulfan Sulfate	[e]	_		0.99	0.10	NA		NA	NA			0.99	0.10	219	ND	No	No	220		ND	No	No
Endrin		_		0.99	0.10	NA		NA	NA			0.99	0.10	2.0	ND	No	No	11		ND	No	No
Endrin Aldehyde	[f]	_		0.99	0.10	NA		NA	NA			0.99	0.10	2.0	ND	No	No	11		ND	No	No
Endrin Ketone	[f]	_		0.99	0.10	NA		NA	NA			0.99	0.10	2.0	ND	No	No	11		ND	No	No
Gamma-BHC (Lindane)		0.3	MW-08(7/26/2011)	0.49	0.05	NA		NA	NA	0.3	MW-08(7/26/2011)	0.49	0.05	0.20	YES	YES	No	0.06		YES	YES	No
Heptachlor		_		0.49	0.05	NA		NA	NA			0.49	0.05	0.40	ND	YES	No	0.02		ND	YES	YES
Heptachlor Epoxide		_		0.49	0.05	NA		NA	NA			0.49	0.05	0.20	ND	YES	No	0.01		ND	YES	YES
Isodrin	[g]	_		0.49	0.05	NA		NA	NA			0.49	0.05	0.004	ND	YES	YES	0.004	[g]	ND	YES	YES
Kepone		_		9.9	0.99	NA		NA	NA			9.9	0.99	NA	ND	NA	NA	0.007		ND	YES	YES
Methoxychlor		_		0.99	0.10	NA		NA	NA			0.99	0.10	40	ND	No	No	180		ND	No	No
Technical Chlordane		_		4.9 49	0.49 4.9	NA NA		NA NA	NA			4.9 49	0.49 4.9	2.0 3.0	ND ND	YES YES	No YES	0.19 0.06		ND ND	YES YES	YES YES
Toxaphene Herbicides (µg/L)		_		49	4.9	INA		INA	NA			49	4.9	3.0	ND	163	TES	0.06		ND	163	TES
2,4,5-T				0.51	0.5	NA		NA	NA			0.51	0.50	365	ND	No	No	370		ND	No	No
2,4,5-TP		_		0.51	0.5	NA		NA	NA		 	0.51	0.50	50	ND	No	No	290		ND	No	No
2,4-D		10	MW-23(7/26/2011)	0.51	0.5	NA		NA	NA	10	MW-23(7/26/2011)	0.51	0.50	70	No	No	No	370		No	No	No
Volatile Organic Compounds (µg/L)		10	10100-23(1/20/2011)	0.51	0.5	INA		INA	INA	10	WW-23(7/20/2011)	0.51	0.50	70	140	140	140	370		140	140	140
1,1,1,2-Tetrachloroethane		_		200	1.0	NA		NA	NA			200	1.0	0.41	ND	YES	YES	0.52		ND	YES	YES
1,1,1-Trichloroethane		_		200	1.0	NA		NA	NA			200	1.0	200	ND	No	No	9,100		ND	No	No
1,1,2,2-Tetrachloroethane		_		200	1.0	NA		NA	NA			200	1.0	0.05	ND	YES	YES	0.07		ND	YES	YES
1,1,2-Trichloroethane		_		200	1.0	NA		NA	NA			200	1.0	5.0	ND	YES	No	0.24		ND	YES	YES
1,1-Dichloroethane		_		200	1.0	NA		NA	NA			200	1.0	798	ND	No	No	2.4		ND	YES	No
1,1-Dichloroethene		_		200	1.0	17	MW-08(12/1/2002)	500	1	17	MW-08(12/1/2002)	500	1.0	7.0	YES	YES	No	340		No	YES	No
1,2,3-Trichloropropane		_		200	1.0	NA		NA	NA		·	200	1.0	0.01	ND	YES	YES	0.0007		ND	YES	YES
1,2-Dibromo-3-chloropropane		_		200	1.0	NA		NA	NA			200	1.0	0.20	ND	YES	YES	0.0003		ND	YES	YES
1,2-Dibromoethane		_		200	1.0	NA		NA	NA			200	1.0	0.05	ND	YES	YES	0.01		ND	YES	YES
1,2-Dichloroethane		_		200	1.0	500	MW-08(8/1/2005)	500	1	500	MW-08(8/1/2005)	500	1.0	5.0	YES	YES	No	0.15		YES	YES	YES
1,2-Dichloropropane		_		200	1.0	20	MW-18(8/6/2006)	500		20	MW-18(8/6/2006)	500	1.0	5.0	YES	YES	No	0.39		YES	YES	YES
2-Butanone		_		2,000	10	NA		NA	NA			2,000	10	1,906	ND	YES	No	7,100		ND	No	No
2-Chloro-1,3-butadiene		_		200	1.0	NA		NA	NA			200	1.0	14	ND	YES	No	0.02		ND	YES	YES
2-Hexanone		_		2,000	10	NA		NA	NA			2,000	10	1,460	ND	YES	No	47		ND	YES	No
3-Chloropropene		1 100	 M/M/ 22/7/26/2011)	200	1.0 10	NA NA		NA NA	NA	1 100	 MW-23(7/26/2011)	200	1.0	NA 120	ND YES	NA YES	NA No	0.65		ND No	YES	YES
4-Methyl-2-pentanone		1,100	MW-23(7/26/2011)	2,000 5,000	10 25	NA 2300	 M/M/_15/11/19/2009)	NA 13,000	NA 25	1,100 2,300	MW-23(7/26/2011) MW-15(11/18/2008)	2,000 13,000	10 25	139 608	YES	YES	No No	2,000 22,000		No No	No No	No No
Acetone Acetonitrile		_	 	5,000 8,000	25 40	2300 NA	MW-15(11/18/2008)	13,000 NA	∠5 NA	2,300	14144-19(11/10/2008)	8,000	25 40	125	ND	YES	No No	130		ND	No YES	No No
Acrolein		_		4,000	40 20	NA NA	 	NA	NA NA		 	4,000	20	0.04	ND ND	YES	YES	0.04		ND	YES	YES
Acrylonitrile		_		4,000	20	NA NA	 	NA NA	NA NA			4,000	20	0.04	ND ND	YES	YES	0.04		ND	YES	YES
Benzene		8,800	 MW-23(7/26/2011)	1.0	1.0	18000	MW-08(8/1/2005)	1000	1	18,000	MW-08(8/1/2005)	1,000	1.0	5.0	YES	YES	No	0.03		YES	YES	YES
Bromodichloromethane		-		200	1.0	6.84	MW-08(12/1/2002)	500	1	6.8	MW-08(12/1/2002)	500	1.0	0.17	YES	YES	YES	0.41		YES	YES	YES
Bromoform		_	 	200	1.0	1.55	MW-10(8/1/2003)	500	1	1.6	MW-10(8/1/2003)	500	1.0	8.5	No	YES	No	8.5		No	YES	No
Promotorni		-					, ,		•		, ,		1.0	8.5	No	YES	No			No	YES	No
Bromomethane		_		200	1.0	4.07	MW-08(12/1/2002)	500	1	4.1	MW-08(12/1/2002)	500						8.7				

Table 3. Combined Groundwater Screening Evaluation, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

			2011 Data				Historic Data			-	Combined			=	_				_		
	M	lax	Location of Maximum Detection	Detecti	on Limit	Max	Location of Maximum Detection		ection	Max	Location of Maximum Detection		ection mit	MDEQ	Does max detect exceed MDEQ TRG?	Does max DL exceed MDEQ TRG?	Does min DL exceed MDEQ?	USEPA Surrogate	Does max detect exceed RSL?	Does max DL exceed RSL?	
Constituent [a]	De	tect		Max	Min	Detect		Max	Min	Detect		Max	Min	TRG [b]				RSL [c] Value			
Carbon Tetrachloride	25.	,000	MW-17(7/26/2011)	100	1.0	54000	MW-17(12/10/2009)	100	1	54,000	MW-17(12/10/2009)	100	1.0	5.0	YES	YES	No	0.44	YES	YES	YES
Chlorobenzene	7	70	MW-17(7/26/2011)	1.0	1.0	1200	MW-17(12/10/2009)	500	1	1,200	MW-17(12/10/2009)	500	1.0	100	YES	YES	No	91	YES	YES	No
Chloroethane		-		200	1.0	200	MW-17(11/6/2006)	500	1	200	MW-17(11/6/2006)	500	1.0	3.6	YES	YES	No	21,000	No	No	No
Chloroform	4,3	300	MW-21(7/26/2011)	1.0	1.0	8400	MW-17(5/13/2010)	250	1	8,400	MW-17(5/13/2010)	250	1.0	0.15	YES	YES	YES	0.19	YES	YES	YES
Chloromethane		_		200	1.0	39.2	MW-08(12/1/2002)	500	1	39	MW-08(12/1/2002)	500	1.0	1.4	YES	YES	No	190	No	YES	No
cis-1,2-Dichloroethene		_		200	1.0	34	MW-08(8/6/2006)	500	1	34	MW-08(8/6/2006)	500	1.0	70	No	YES	No	73	No	YES	No
cis-1,3-Dichloropropene	[h]	_		200	1.0	NA		NA	NA			200	1.0	0.08	ND	YES	YES	0.43	ND	YES	YES
Dibromochloromethane		_		200	1.0	4.45	MW-08(12/1/2002)	10	1	4.5	MW-08(12/1/2002)	200	1.0	0.13	YES	YES	YES	0.15	YES	YES	YES
Dibromomethane		_		200	1.0	NA		NA	NA			200	1.0	61	ND	YES	No	8.2	ND	YES	No
Dichlorodifluoromethane		_		200	1.0	NA		NA	NA			200	1.0	348	ND	No	No	200	ND	No	No
Ethyl Methacrylate		_		200	1.0	NA		NA	NA			200	1.0	548	ND	No	No	530	ND	No	No
Ethylbenzene		55	MW-08(7/26/2011)	200	1.0	290	MW-08(2/6/2006)	500	1	290	MW-08(2/6/2006)	500	1.0	700	No	No	No	1.5	YES	YES	No
Iodomethane	[i]	_		1,000	5.0	NA		NA	NA			1,000	5.0	8.5	ND	YES	No	8.7	ND	YES	No
Isobutanol		_		8,000	40	NA		NA	NA			8,000	40	1,825	ND	YES	No	11,000	ND	No	No
Isopropylbenzene		_	_	_	_	4.6	MW-08(12/1/2002)	10	1	4.6	MW-08(12/1/2002)	10	1.0	679	No	No	No	680	No	No	No
Methacrylonitrile		_		4,000	20	NA		NA	NA			4,000	20	1.04	ND	YES	YES	1.0	ND	YES	YES
Methyl Methacrylate		_		200	1.0	NA		NA	NA			200	1.0	1,419	ND	No	No	1400	ND	No	No
Methylene Chloride	3	40	MW-08(7/26/2011)	1,000	5.0	660	MW-17(5/13/2010)	2,500	5	660	MW-17(5/13/2010)	2,500	5.0	5.0	YES	YES	No	4.8	YES	YES	YES
Pentachloroethane		_		1,000	5.0	NA		NA	NA			1,000	5.0	NA	ND	NA	NA	0.75	ND	YES	YES
Propionitrile		_		4,000	20	NA		NA	NA			4,000	20	NA	ND	NA NA	NA	NA	ND	NA	NA
Styrene		_		200	1.0	1.25	MW-08(2/1/2003)	10,000	1	1.3	MW-08(2/1/2003)	10,000	1.0	100	No	YES	No	1,600	No	YES	No
Tetrachloroethene		_		200	1.0	68	MW-04(11/6/2006)	500	1	68	MW-04(11/6/2006)	500	1.0	5.0	YES	YES	No	0.11	YES	YES	YES
Toluene	21	600	MW-21(7/26/2011)	200	1.0	4800	MW-21(9/29/2009)	500	1	4,800	MW-21(9/29/2009)	500	1.0	1,000	YES	No	No	2,300	YES	No	No
trans-1,2-Dichloroethene	۷,۰	_		200	1.0	NA		NA	NA		10100-21(3/23/2003)	200	1.0	100	ND	YES	No	110	ND	YES	No
trans-1,3-Dichloropropene	[h]	_		200	1.0	NA	 	NA	NA		 	200	1.0	0.08	ND	YES	YES	0.43	ND	YES	YES
trans-1,4-Dichloro-2-butene	ניין [i]	_		400	2.0	NA	 	NA	NA			400	2.0	0.004	ND	YES	YES	0.43	ND	YES	YES
Trichloroethene	חו	_		200	1.0	21	MW-04(11/6/2006)	500	1	 21	MW-04(11/6/2006)	500	1.0	5.0	YES	YES	No	2.0	YES	YES	No
		_		200	1.0	NA	10100-04(11/6/2006)		NA	21	1/1/0/2006)		1.0	1,288	ND		No		ND		No
Trichlorofluoromethane		_						NA				200		,		No		1,300	ND ND	No	
Vinyl Acetate		_		400	2.0	NA	 MM 00(0(0(0000)	NA 500	NA		 NAVA (00/0/0/0000)	400	2.0	412	ND	No	No	410		No	No
Vinyl Chloride		_		200	1.0	2.6	MW-08(8/6/2006)	500	1	2.6	MW-08(8/6/2006)	500	1.0	2.0	YES	YES	No	0.02	YES	YES	YES
Xylenes (total)		_		400	2.0	NA		NA	NA			400	2.0	10,000	ND	No	No	200	ND	YES	No
Semivolatile Organic Compounds (µg/L)				4 000							1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 000		004	\/=o	\/=o		0.00	\/=o	\/=o	
1,1'-Biphenyl		70	MW-19(7/26/2011)	1,000	9.9	NA		NA	NA	770	MW-19(7/26/2011)	1,000	9.9	304	YES	YES	No	0.83	YES	YES	YES
1,2,4,5-Tetrachlorobenzene		-		1,000	9.9	NA		NA	NA -			1,000	9.9	11.0	ND	YES	No	11	ND	YES	No
1,2,4-Trichlorobenzene		_		1,000	9.9	13.55	MW-11(2/1/2003)	5	5	14	MW-11(2/1/2003)	1,000	9.9	70	No	YES	No	2.30	YES	YES	YES
1,2-Dichlorobenzene		_		1,000	9.9	2.71	MW-08(12/1/2002)	10	1	2.7	MW-08(12/1/2002)	1,000	9.9	600	No	YES	No	370	No	YES	No
1,3,5-Trinitrobenzene		_		1,000	9.9	NA		NA	NA			1,000	9.9	1,095	ND	No	No	1,100	ND	No	No
1,3-Dichlorobenzene		_		1,000	9.9	3.75	MW-08(12/1/2002)	10	1	3.8	MW-08(12/1/2002)	1,000	9.9	5.5	No	YES	YES	370	No	YES	No
1,3-Dinitrobenzene		_		1,000	9.9	NA		NA	NA			1,000	9.9	3.7	ND	YES	YES	3.7	ND	YES	YES
1,4-Dichlorobenzene		_		1,000	9.9	3.8	MW-08(12/1/2002)	10	1	3.8	MW-08(12/1/2002)	1,000	9.9	75	No	YES	No	0.43	YES	YES	YES
1,4-Dioxane	13,	,000	MW-08(7/26/2011)	1,000	9.9	NA		NA	NA	13,000	MW-08(7/26/2011)	1,000	9.9	6.1	YES	YES	YES	0.67	YES	YES	YES
1,4-Naphthoquinone		_		1,000	9.9	NA		NA	NA			1,000	9.9	NA	ND	NA	NA	NA	ND	NA	NA
1-Naphthylamine		_		1,000	9.9	NA		NA	NA			1,000	9.9	NA	ND	NA	NA	NA	ND	NA	NA
2,2'-Oxybis(1-Chloropropane)		_		1,000	9.9	NA		NA	NA			1,000	9.9	NA	ND	NA	NA	NA	ND	NA	NA
2,3,4,6-Tetrachlorophenol		_		1,000	9.9	NA		NA	NA			1,000	9.9	1,095	ND	No	No	1,100	ND	No	No
2,4,5-Trichlorophenol		_		1,000	9.9	NA		NA	NA			1,000	9.9	3,650	ND	No	No	3,700	ND	No	No
2,4,6-Trichlorophenol		_		1,000	9.9	NA		NA	NA			1,000	9.9	6.1	ND	YES	YES	6.1	ND	YES	YES
2,4-Dichlorophenol		_		1,000	9.9	NA		NA	NA			1,000	9.9	110	ND	YES	No	110	ND	YES	No
2,4-Dimethylphenol		_		1,000	9.9	NA		NA	NA			1,000	9.9	730	ND	YES	No	730	ND	YES	No
2,4-Dinitrophenol		_		5,200	49	NA		NA	NA			5,200	49	73	ND	YES	No	73	ND	YES	No
2,4-Dinitrotoluene		_		1,000	9.9	NA		NA	NA			1,000	9.9	73	ND	YES	No	0.22	ND	YES	YES
2,6-Dichlorophenol	[k]	_		1,000	9.9	NA		NA	NA			1,000	9.9	73	ND	YES	No	73 [k]	ND	YES	No
2,6-Dinitrotoluene		_		1,000	9.9	NA		NA	NA			1,000	9.9	37	ND	YES	No	37	ND	YES	No
2-Acetylaminofluorene		_		1,000	9.9	NA		NA	NA			1,000	9.9	NA	ND	NA	NA	0.02	ND	YES	YES
2-Chloronaphthalene		_		1,000	9.9	NA		NA	NA			1,000	9.9	487	ND	YES	No	2,900	ND	No	No
2-Chlorophenol		_		1,000	9.9	NA		NA	NA			1,000	9.9	30	ND	YES	No	180	ND	YES	No
2-Methylnaphthalene		_		1,000	9.9	NA		NA	NA			1,000	9.9	122	ND	YES	No	150	ND	YES	No
2-Methylphenol		_		1,000	9.9	NA NA	 	NA NA	NA NA		 	1,000	9.9 9.9	1,825	ND ND	No	No	1,800	ND ND	No	No
∠-INICHTYIPHICHUI		-		,																	YES
2-Naphthylamine 2-Nitroaniline		_	 	1,000 5,200	9.9 49	NA NA	 	NA NA	NA NA		 	1,000 5,200	9.9 49	NA 0.42	ND ND	NA YES	NA YES	0.04 370	ND ND	YES YES	No

Table 3. Combined Groundwater Screening Evaluation, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

		2011 Dat	ta			Historic Data	l			Combined	<u> </u>						Decis		
	Max	Location of Maximum Detection	Detection	on Limit	Max	Location of Maximum Detection		ection imit	Max	Location of Maximum Detection		ection mit	Does det exc MDEQ MDEQ	ect Does ma	d exceed	USEPA Surrogate	Does max detect exceed RSL?	Does max DL exceed RSL?	
Constituent [a]	Detect		Max	Min	Detect		Max	Min	Detect		Max	Min	TRG [b]			RSL [c] Value			
2-Picoline	_		1,000	9.9	NA		NA	NA			1,000	9.9	NA N	D NA	NA	NA	ND	NA	NA
3 & 4 Methylphenol	660	MW-23(7/26/2011)	1,000	9.9	NA		NA	NA	660	MW-23(7/26/2011)	1,000	9.9	NA N		NA	NA	NA	NA	NA
3,3'-Dichlorobenzidine	_		6,200	59	NA		NA	NA			6,200	59	0.15 N		YES	0.15	ND	YES	YES
3,3'-Dimethylbenzidine	_		2,100	20	NA		NA	NA			2,100	20	0.01 N		YES	0.01	ND	YES	YES
3-Methylcholanthrene	_		1,000	9.9	NA		NA	NA			1,000	9.9	NA N		NA	0.003	ND	YES	YES
3-Nitroaniline	_		5,200	49 49	NA		NA	NA			5,200	49 49	NA N 3.7 N		NA YES	3.4 2.90	ND ND	YES YES	YES YES
4,6-Dinitro-2-methylphenol 4-Aminobiphenyl	_		5,200 1,000	9.9	NA NA		NA NA	NA NA			5,200 1,000	9.9	3.7 N NA N		NA	0.003	ND ND	YES	YES
4-Bromophenyl-phenylether	_		1,000	9.9	NA NA		NA	NA NA			1,000	9.9	NA N		NA NA	3.7	ND	YES	YES
4-Chloro-3-Methylphenol	_	 	1,000	9.9	NA		NA	NA			1,000	9.9	73,000 N		No	3,700	ND	No	No
4-Chloroaniline	_		2,100	20	NA		NA	NA			2,100	20	146 N		No	0.34	ND	YES	YES
4-Chlorophenyl-phenylether	_		1,000	9.9	NA		NA	NA			1,000	9.9	NA N		NA	3.7	ND	YES	YES
4-Nitroaniline	_		5,200	49	NA		NA	NA			5,200	49	NA N		NA	3.4	ND	YES	YES
4-Nitrophenol	_		5,200	49	NA		NA	NA			5,200	49	292 N		No	180	ND	YES	No
4-Nitroquinoline-1-oxide	_		2,100	20	NA		NA	NA			2,100	20	NA N		NA	NA	ND	NA	NA
4-Phenylenediamine	_		210,000	2,000	NA		NA	NA			210,000	2,000	6,935 N		No	6,900	ND	YES	No
5-Nitro-o-toluidine	_		1,000	9.9	NA		NA	NA			1,000	9.9	2.0 N	YES	YES	7.5	ND	YES	YES
7,12-Dimethylbenz(a)anthracene	_		1,000	9.9	NA		NA	NA			1,000	9.9	NA N	D NA	NA	0.0003	ND	YES	YES
a,a'-Dimethylphenethylamine	_		210,000	2,000	NA		NA	NA			210,000	2,000	NA N	NA C	NA	NA	ND	NA	NA
Acenaphthene	_		1,000	9.9	NA		NA	NA			1,000	9.9	365 N	YES	No	2,200	ND	No	No
Acenaphthylene	_		1,000	9.9	NA		NA	NA			1,000	9.9	2,190 N		No	2,200	ND	No	No
Acetophenone	_		1,000	9.9	NA		NA	NA			1,000	9.9	0.04 N		YES	3,700	ND	No	No
Aniline	_		2,100	20	NA		NA	NA			2,100	20	12 N		YES	12	ND	YES	YES
Anthracene	_		1,000	9.9	NA		NA	NA			1,000	9.9	43 N		No	11,000	ND	No	No
Aramite	_		1,000	9.9	NA		NA	NA			1,000	9.9	NA N		NA	2.7	ND	YES	YES
Benzo(a)anthracene	_		1,000	9.9	NA		NA	NA			1,000	9.9	0.09 N		YES	0.03	ND	YES	YES
Benzo(a)pyrene	_		1,000	9.9	NA		NA	NA			1,000	9.9	0.20 N		YES	0.003	ND	YES	YES
Benzo(b)fluoranthene	_		1,000	9.9	NA		NA	NA			1,000	9.9	0.09 N		YES	0.03	ND	YES	YES
Benzo(g,h,i)perylene	_		1,000	9.9	NA		NA	NA			1,000	9.9	1,095 N		No	1,100	ND	No	No
Benzo(k)fluoranthene	_		1,000	9.9	NA		NA	NA			1,000	9.9	0.92 N		YES	0.29	ND	YES	YES
Benzyl Alcohol	_		1,000	9.9	NA		NA NA	NA NA			1,000	9.9 9.9	10,950 N NA N		No NA	3,700	ND ND	No YES	No
bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether	_		1,000 1,000	9.9 9.9	NA NA		NA NA	NA NA			1,000 1,000	9.9 9.9	NA N 0.01 N		YES	110 0.01	ND ND	YES	No YES
bis(2-Ethylhexyl)phthalate	_		1,000	9.9	NA		NA	NA			1,000	9.9	6.0 N		YES	4.8	ND	YES	YES
Butylbenzylphthalate	_		1,000	9.9	NA		NA	NA			1,000	9.9	2,690 N		No	35	ND	YES	No
Chrysene	_		1,000	9.9	NA		NA	NA			1,000	9.9	9.2 N		YES	2.9	ND	YES	YES
Diallate	_		1,000	9.9	NA		NA	NA			1,000	9.9	NA N		NA	1.1	ND	YES	YES
Dibenzo(a,h)anthracene	_		1,000	9.9	NA		NA	NA			1,000	9.9	0.01 N		YES	0.0029	ND	YES	YES
Dibenzofuran	_		1,000	9.9	NA		NA	NA			1,000	9.9	24 N		No	37	ND	YES	No
Diethylphthalate	_		1,000	9.9	NA		NA	NA			1,000	9.9	29,200 N		No	29,000	ND	No	No
Dimethoate	_		1,000	9.9	NA		NA	NA			1,000	9.9	NA N		NA	7.3	ND	YES	YES
Dimethylphthalate	_		1,000	9.9	NA		NA	NA			1,000	9.9	365,000 N) No	No	29,000	ND	No	No
Di-n-Butylphthalate	_		1,000	9.9	NA		NA	NA			1,000	9.9	3,650 N		No	3,700	ND	No	No
Di-n-Octylphthalate	_		1,000	9.9	NA		NA	NA			1,000	9.9	20 N		No	3,700	ND	No	No
Dinoseb	_		1,000	9.9	NA		NA	NA			1,000	9.9	7.0 N		YES	37	ND	YES	No
Disulfoton	_		1,000	9.9	NA		NA	NA			1,000	9.9	1.5 N		YES	1.5	ND	YES	YES
Ethyl Methanesulfonate	_		1,000	9.9	NA		NA	NA			1,000	9.9	NA N		NA	NA	ND	NA	NA
Ethyl Parathion	_		1,000	9.9	NA		NA	NA			1,000	9.9	219 N		No	220	ND	YES	No
Famphur	_		1,000	9.9	NA		NA	NA			1,000	9.9	NA N		NA	NA 4.500	ND	NA	NA
Fluoranthene	_		1,000	9.9	NA		NA	NA			1,000	9.9	1,460 N		No	1,500	ND	No	No
Fluorene	_		1,000	9.9	NA		NA	NA			1,000	9.9	243 N		No	1,500	ND	No	No
Hexachlorobenzene	_		1,000	9.9	NA		NA	NA			1,000	9.9	1.00 N		YES	0.04	ND	YES	YES
Hexachlorobutadiene	_		1,000	9.9	NA		NA	NA			1,000	9.9	0.86 N		YES	0.86	ND	YES	YES
Hexachlorocyclopentadiene	_		1,000	9.9	NA		NA	NA			1,000	9.9	50 N		No	220	ND	YES	No
Hexachloroethane	_		1,000	9.9	NA		NA	NA			1,000	9.9	4.8 N		YES	4.8	ND	YES	YES
Hexachlorophene	_		520,000	4,900	NA		NA	NA			520,000	4,900	10.95 N		YES	11	ND	YES	YES
Hexachloropropene	_		1,000	9.9	NA		NA	NA			1,000	9.9	NA N		NA	NA	ND	NA	NA
Indeno(1,2,3-cd)pyrene	_		1,000	9.9	NA		NA	NA			1,000	9.9	0.09 N		YES	0.03	ND	YES	YES
Isophorone	_		1,000	9.9	NA		NA	NA			1,000	9.9	70 N		No	71	ND	YES	No
Isosafrole	_		1,000	9.9	NA		NA	NA			1,000	9.9	NA N		NA	NA	ND	NA	NA
Methapyrilene	_		210,000	2,000	NA		NA	NA			210,000	2,000	NA N	D NA	NA	NA	ND	NA	NA

Table 3. Combined Groundwater Screening Evaluation, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

Max Location of Maximum Detection Detection I Detection Detection Detection Detection ID Methyl Methanesulfonate — — 1,000 Methyl Parathion — — 1,000 Naphthalene — — 1,000 N-Nitroscoriethylamine — — 1,000 N-Nitroscorien-brutylamine — — 1,000 N-Nitroscorien-propylamine — — 1,000 N-Nitroscorien-propylamine — — 1,000 N-Nitroscorien-propylamine — — 1,000 N-Nitroscorientylethylamine — — 1,000 N-Nitroscorientylethylamine<		2011 Data	Historic D	а			Combined			_	D				B		
Methyl Methanesulfonate — — 1,000 Methyl Parathion — — 1,000 Nidrobenzene — — 1,000 N-Nitrosodiethylamine — — 1,000 N-Nitrosodiethylamine — — 1,000 N-Nitrosod-in-propylamine — — — 1,000 N-Nitrosodiphenylamine — — — 1,000 N-Nitrosodiphenylamine — — — 1,000 N-Nitrosomorpholine — — — 1,000 N-Nitrosopyrroidine — — — 1,000 Polimethylaminoazobenzene — — — 1,000 Pentachloronitrobenzene — —<	t Max	Maximum	Location of Maximum Detection		ection imit	Max	Location of Maximum Detection		ection mit	_ MDEQ	Does max detect exceed MDEQ TRG?	Does max DL exceed MDEQ TRG?	Does min DL exceed MDEQ?	USEPA Surrogate	Does max detect exceed RSL?	Does max DL exceed RSL?	Does min DL exceed RSL?
Methyl Parathion	Detec	Max	t	Max	Min	Detect		Max	Min	TRG [b]				RSL [c] Value			
Naphthalene Nitrobenzene Nitrosodientylamine N-Nitrosodientylamine N-Nitrosodientylamine N-Nitrosodinethylamine N-Nitrosodinethylamine N-Nitrosodin-propylamine N-Nitrosodin-propylamine N-Nitrosodin-propylamine N-Nitrosodin-propylamine N-Nitrosodin-propylamine N-Nitrosodin-propylamine N-Nitrosomorpholine N	NA	1,000		NA	NA			1,000	9.9	NA	ND	NA	NA	0.68	ND	YES	YES
Nitrosocidentylamine		1,000		NA	NA			1,000	9.9	9.1	ND	YES	YES	9.1	ND	YES	YES
N-Nitrosodiethylamine			MW-11(2/1/200		5	43	MW-11(2/1/2003)	1,000	9.9	6.2	YES	YES	YES	0.14	YES	YES	YES
N-Nitrosodimethylamine N-Nitroso-din-butylamine N-Nitroso-din-propylamine N-Nitroso-din-propylamine N-Nitrosodin-propylamine N-Nitrosomethylethylamine N-Nitrosomethylethylamine N-Nitrosomethylethylamine N-Nitrosomethylethylamine N-Nitrosopyrrolidine N-Nitrosopy				NA	NA			1,000	9.9	3.5	ND	YES	YES	0.12	ND	YES	YES
N-Nitroso-di-n-butylamine N-Nitroso-di-n-propylamine N-Nitroso-di-n-propylamine N-Nitroso-di-n-propylamine N-Nitrosomorpholime N-Nitrosomorpholime N-Nitrosomorpholime N-Nitrosomorpholime N-Nitrosomorpholime N-Nitrosopiperidine N-Nitrosopiperidine N-Nitrosopiperidine N-Nitrosopiperidine N-Nitrosopiperidine N-Nitrosopyrrolidine O,o.o-Triethylphosphorothioate O,o.o-Triethylphosphorothioate N-Nitrosopiperidine N-Nitrosopyrrolidine N-N-17(7/26/2011) N-Notrosopyrrolidine N-N-17(7/26/2011) N-Notrosopyrrolidine N-N-17(7/26/2011) N-Notrosopyrrolidine N-N-17(7/26/2011) N-Notrosopyrrolidine N-N-17(7/26/2011) N-Notrosopyrrolidine N-N-17(7/26/2		,		NA	NA			1,000	9.9	0.0004	ND	YES	YES	0.0001	ND	YES	YES
N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine N-Nitrosomorpholine N-Nitrosomorpholine N-Nitrosomorpholine N-Nitrosopiperidine N-N-Nitrosopiperidine N-Nitrosopiperidine N-Nitrosopiper	NA	•		NA	NA			1,000	9.9	0.001	ND	YES	YES	0.0004	ND	YES	YES
N-Nitrosodiphenylamine N-Nitrosomethylethylamine N-Nitrosomethylethylamine N-Nitrosomorpholine N-Nitrosopropholine N-Nitrosopiperidine N-Nitrosopyrrolidine	NA	,		NA	NA			1,000	9.9	0.002	ND	YES	YES	0.002	ND	YES	YES
N-Nitrosomethylethylamine N-Nitrosomorpholine N-Nitrosomorpholine N-Nitrosomorpholine N-Nitrosopytrolidine N-Nitro		•		NA	NA			1,000	9.9	0.010	ND	YES	YES	0.01	ND	YES	YES
N-Nitrosomorpholine N-Nitrosopiperidine N-Nitrosopiperidine N-Nitrosopyrolidine O,o,o-Triethylphosphorothioate O-Toluidine O-Toluidine D-Dimethylaminoazobenzene Pentachlorobenzene Pentachlorobenzene Pentachlorophenol Poperacheria Pentachlorophenol Poperacheria Pentachlorophenol Pentachlorophenol Poperacheria Pentachlorophenol Poperachlorophenol Poperacheria Poperacheria Poperache				NA	NA			1,000	9.9	13.7	ND	YES	No	14	ND	YES	No
N-Nitrosopiperidine N-Nitrosopyrrolidine N-Nitrosop				NA	NA			1,000	9.9	0.003	ND	YES	YES	0.003	ND	YES	YES
N-Nitrosopyrrolidine		•		NA	NA			1,000	9.9	NA	ND	NA	NA	0.01	ND	YES	YES
o,o,o-Trietrylphosphorothioate 12,000 MW-17(7/26/2011) 99 o-Toluidine - - 1,000 P-Dimethylaminoazobenzene - - 1,000 Pentachlorobenzene - - 1,000 Pentachlorophenol - - 1,000 Phenacetin - - 1,000 Phenanthrene - - 1,000 Phenal 140 MW-23(7/26/2011) 1,000 Phorate - - 1,000 Pyrene - - 1,000 Pyrene - - - 1,000 Safrole - - - 1,000 Sulfotep - - - 1,000 Thionazin - - -		,		NA	NA			1,000	9.9	NA	ND	NA	NA	0.007	ND	YES	YES
o-Toluidine p-Dimethylaminoazobenzene Pentachlorobenzene Pentachlorobenzene Pentachlorophenol Pentachlorophenol Phenacetin Phenanthrene Phenanthrene Phenanthrene Pronamide Pyrene Pyrene Pyrene Pyrene Pyrane Pallorophenol Pyrene Pronamide Pyrene Poblic Pyrene Pronamide Pronamide Poblic Pyrene Pronamide Pyrene Poblic Pyrene Pronamide Pronamide Poblic Pyrene Pronamide Pronamide Poblic Pyrene Pronamide Poblic Pyrene Pronamide Pr		•		NA	NA		 NANA 47/7/00/004 **	1,000	9.9	0.03	ND	YES	YES	0.03	ND	YES	YES
p-Dimethylaminoazobenzene - - 1,000 Pentachlorobenzene - - 1,000 Pentachlorophenol - - 5,200 Phenacetin - - 1,000 Phenacetin - - - 1,000 Phenanthrene - - - 1,000 Phenol 140 MW-23(7/26/2011) 1,000 Phorate - - 1,000 Phorate - - 1,000 Pronamide - - 1,000 Pyrene - - 1,000 Pyrene - - - 5,200 Safrole - - - 1,000 Sulfotep - - - 1,000 Dioxins (pg/L) 2,37,8-TCDD - - 1 1 2,37,8-TCDD - - - 1 1 Total TEQ - - - 0.0	NA	,		NA	NA	12,000	MW-17(7/26/2011)	99	9.9	NA	NA	NA	NA	NA	NA	NA	NA
Pentachlorobenzene - 1,000 Pentachloronitrobenzene - 1,000 Pentachlorophenol - 5,200 Phenacetin - 1,000 Phenanthrene - 1,000 Phenol 140 MW-23(7/26/2011) 1,000 Phorate - 1,000 Pronamide - 1,000 Pyridine - 1,000 Pyridine - 1,000 Safrole - 1,000 Sulfotep - 1,000 Sulfotep - 1,000 Dioxins (pg/L) 2,3,7,8-TCDD - - 11 Total TEQ - - - 0.00 Inorganics (µg/L) - - - 5.0 Arsenic 42 MW-08(7/26/2011) 2.5 Barium 260 MW-08(7/26/2011) </td <td></td> <td></td> <td></td> <td>NA</td> <td>NA</td> <td></td> <td></td> <td>1,000</td> <td>9.9</td> <td>0.28</td> <td>ND</td> <td>YES</td> <td>YES</td> <td>NA</td> <td>ND</td> <td>NA</td> <td>NA</td>				NA	NA			1,000	9.9	0.28	ND	YES	YES	NA	ND	NA	NA
Pentachloronitrobenzene - - 1,000 Pentachlorophenol - - 5,200 Phenacetin - - 1,000 Phenanthrene - - 1,000 Phenol 140 MW-23(7/26/2011) 1,000 Phorate - - 1,000 Pronamide - - 1,000 Pyrene - - 1,000 Pyridine - - 1,000 Pyridine - - 1,000 Safrole - - - 1,000 Safrole - - - 1,000 Sulfotep - - - 1,000 Dioxins (pg/L) 2,37,8-TCDD - - 1 1,000 Dioxins (pg/L) - - - 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0				NA	NA			1,000	9.9	NA	ND	NA	NA	0.02	ND	YES	YES
Pentachlorophenol - 5,200 Phenacetin - 1,000 Phenanthrene - 1,000 Phenol 140 MW-23(7/26/2011) 1,000 Phorate - 1,000 Pronamide - 1,000 Pyrene - 1,000 Pyridine - 5,200 Safrole - 1,000 Sulfotep - 1,000 Thionazin - 1,000 Dioxins (pg/L) - 1,000 Pioxins (pg/L) - 1,000 Inorganics (µg/L) - 5,0 <tr< td=""><td></td><td>•</td><td></td><td>NA</td><td>NA</td><td></td><td></td><td>1,000</td><td>9.9</td><td>29</td><td>ND</td><td>YES</td><td>No</td><td>29</td><td>ND</td><td>YES</td><td>No</td></tr<>		•		NA	NA			1,000	9.9	29	ND	YES	No	29	ND	YES	No
Phenacetin - - 1,000 Phenanthrene - - 1,000 Phenol 140 MW-23(7/26/2011) 1,000 Phorate - - 1,000 Pronamide - - 1,000 Pyrene - - 1,000 Pyridine - - 5,200 Safrole - - 1,000 Sulfotep - - 1,000 Thionazin - - 1,000 Dioxins (pg/L) 2,3,7,8-TCDD - - 11 2,3,7,8-TCDD - - - 10 Inorganics (µg/L) - - - 11 Artenony - - - 11 Artenony - - - 5.0 Arsenic 42 MW-08(7/26/2011) - - Beryllium 3.3 MW-23(7/26/2011) 0.5 Cadmium -		,		NA	NA			1,000	9.9	0.26	ND	YES	YES	0.26	ND	YES	YES
Phenanthrene - - 1,000 Phenol 140 MW-23(7/26/2011) 1,000 Phorate - - 1,000 Pyrene - - 1,000 Pyridine - - 1,000 Safrole - - 1,000 Sulfotep - - 1,000 Thionazin - - 1,000 Dioxins (pg/L) - - 1,000 Dioxins (pg/L) - - 1,000 Dioxins (pg/L) - - - - 1,000 Inorganics (pg/L) - - - - - <td< td=""><td>NA</td><td>•</td><td></td><td>NA</td><td>NA</td><td></td><td></td><td>5,200</td><td>49</td><td>1.0</td><td>ND</td><td>YES</td><td>YES</td><td>0.17</td><td>ND</td><td>YES</td><td>YES</td></td<>	NA	•		NA	NA			5,200	49	1.0	ND	YES	YES	0.17	ND	YES	YES
Phenol 140 MW-23(7/26/2011) 1,000 Phorate - - 1,000 Pronamide - - 1,000 Pyrene - - 1,000 Pyridine - - 5,200 Safrole - - 1,000 Sulfotep - - 1,000 Thionazin - - 1,000 Dioxins (pg/L) - - 1,000 Dioxins (pg/L) - - 11 Total TEQ - - - 0.00 Inorganics (µg/L) - - - 0.00 1 Arsenic 42 MW-08(7/26/2011) 2.5 5 Barium 260 MW-08(7/26/2011) - - Beryllium 3.3 MW-23(7/26/2011) 0.5 - Cadmium - - - 0.5 Chromium [I] 5.0 MW-23(7/26/2011) 5.0 Copper - - - 5.0 Lead -	NA	,		NA	NA			1,000	9.9	NA	ND	NA	NA	31	ND	YES	No
Phorate - - 1,000 Pronamide - - 1,000 Pyrene - - 1,000 Pyridine - - 5,200 Safrole - - 1,000 Sulfotep - - 1,000 Thionazin - - 1,000 Dioxins (pg/L) 2,3,7,8-TCDD - - 11 Total TEQ - - - 0.00 10 Inorganics (µg/L) - - - 0.00 10 Inorganics (µg/L) - - - 0.00 10 Inorganics (µg/L) - - - - 0.00 10 Inorganics (µg/L) -				NA	NA			1,000	9.9	1,095	ND	No	No	11,000	ND	No	No
Pronamide - 1,000 Pyrene - 1,000 Pyridine - 5,200 Safrole - 1,000 Sulfotep - 1,000 Thionazin - 1,000 Dioxins (pg/L) - 10,000 2,3,7,8-TCDD - 0.00 1 Inorganics (µg/L) - 0.00 0 Antimony - 5.0 0 Arsenic 42 MW-08(7/26/2011) 2.5 5 Barium 260 MW-08(7/26/2011) - - 5 0 Arsenic 42 MW-08(7/26/2011) 0.5 0 - - - 0.5 0 - - - - 0.5 0 -				NA	NA	140	MW-23(7/26/2011)	1,000	9.9	21,900	No	No	No	11,000	No	No	No
Pyrene - 1,000 Pyridine - 5,200 Safrole - 1,000 Sulfotep - 1,000 Thionazin - 1,000 Dioxins (pg/L) 2,3,7,8-TCDD - 0.00 Int Total TEQ - 0.00 Intimory Arsenic 42 MW-08(7/26/2011) 2.5 Barium 260 MW-08(7/26/2011) - Beryllium 3.3 MW-23(7/26/2011) 0.5 Cadmium - - 0.5 Chromium [I] 5.0 MW-23(7/26/2011) 5.0 Cobalt 4.2 MW-02(7/27/2011) 0.5 Copper - - - 1.5 Lead - - - 1.5 Nickel 9.7 MW-12(7/27/2011) 5.0 Selenium - - - 1.0 Thallium - -				NA	NA			1,000	9.9	NA	ND	NA	NA	7.3	ND	YES	YES
Pyridine - - 5,200 Safrole - - 1,000 Sulfotep - - 1,000 Thionazin - - 1,000 Dioxins (pg/L) 2,3,7,8-TCDD - - 11 Total TEQ - - 0.00 10 Inorganics (μg/L) - - - 5.0 Arsenic 42 MW-08(7/26/2011) 2.5 2.5 Barium 260 MW-08(7/26/2011) - - - Beryllium 3.3 MW-23(7/26/2011) 0.5 - - 0.5 Chromium [I] 5.0 MW-23(7/26/2011) 5.0 Cobalt 4.2 MW-02(7/27/2011) 5.0 Cobalt 4.2 MW-02(7/27/2011) 0.5 Copper - - - 5.0 Lead - - 1.5 Nickel 9.7 MW-12(7/27/2011) 5.0 Selenium - - - 1.5 Nickel 9.7 MW-12(7/27/2011) 5.0 Selenium - - - 1.0		,		NA	NA			1,000	9.9	NA	ND	NA VEO	NA	2,700	ND	No	No
Safrole - - 1,000 Sulfotep - - 1,000 Thionazin - - - 1,000 Doi: Injury - - - 1,000 Doi: Injury - - - 11 - Total TEQ - - - 0.00 - - - 0.00 - - - 0.00 - - - 0.00 - - - 0.00 - - - 0.00 - - - 0.00 - - - 0.00 - - - 0.00 - - - 0.00 - - - 0.00 - - - 0.00 -		•		NA	NA			1,000	9.9	183	ND	YES	No	1,100	ND	No	No
Sulfotep - - 1,000 Thionazin - - 1,000 Dioxins (pg/L) - - - 11 2,3,7,8-TCDD - - - 0.00 0 Inorganics (µg/L) - - - 5.0 Antimony - - - 5.0 Arsenic 42 MW-08(7/26/2011) - - Barium 260 MW-08(7/26/2011) - - Beryllium 3.3 MW-23(7/26/2011) 0.5 - Cadmium - - - 0.5 - Chromium [I] 5.0 MW-23(7/26/2011) 5.0 - Cobalt 4.2 MW-02(7/27/2011) 0.5 - Copper - - - 5.0 - Lead - - - 1.5 N Nickel 9.7 MW-12(7/27/2011) 5.0 - Selenium - - - 1.0 Thallium - - <td>NA</td> <td>,</td> <td></td> <td>NA</td> <td>NA</td> <td></td> <td></td> <td>5,200</td> <td>49</td> <td>37</td> <td>ND</td> <td>YES</td> <td>YES</td> <td>37</td> <td>ND</td> <td>YES</td> <td>YES</td>	NA	,		NA	NA			5,200	49	37	ND	YES	YES	37	ND	YES	YES
Thionazin − − − 1,000 Dioxins (pg/L) 2,3,7,8-TCDD − − − 11 Total TEQ − − − − 0.00 Inorganics (µg/L) Antimony − − − 5.0 Arsenic 42 MW-08(7/26/2011) 2.5 Barium 260 MW-08(7/26/2011) − Beryllium 3.3 MW-23(7/26/2011) 0.5 Cadmium − − 0.5 Chromium [I] 5.0 MW-23(7/26/2011) 5.0 Cobalt 4.2 MW-02(7/27/2011) 0.5 Copper − − 1.5 Nickel 9.7 MW-12(7/27/2011) 5.0 Well and the composition of the composition o				NA	NA			1,000	9.9	NA	ND	NA	NA	0.31	ND	YES	YES
Dioxins (pg/L) 2,3,7,8-TCDD - 11 Total TEQ - 0.00 Inorganics (μg/L) - - - 5.0 Antimony - - - 5.0 Arsenic 42 MW-08(7/26/2011) 2.5 Barium 260 MW-08(7/26/2011) - Beryllium 3.3 MW-23(7/26/2011) 0.5 Cadmium - - 0.5 Cadmium - - - 0.5 Chromium [I] 5.0 MW-23(7/26/2011) 5.0 Cobalt 4.2 MW-02(7/27/2011) 0.5 Copper - - - 5.0 Lead - - - 1.5 Nickel 9.7 MW-12(7/27/2011) 5.0 Selenium - - - 1.0 Thallium - - 1.0 Thallium - - - 1.0 Thallium 5.0 Van				NA	NA			1,000	9.9	NA	ND	NA	NA	18	ND	YES	No
2,3,7,8-TCDD - 11 Total TEQ - 0.00 Inorganics (μg/L) - - 5.0 Arsenic 42 MW-08(7/26/2011) 2.5 Barium 260 MW-08(7/26/2011) - - Beryllium 3.3 MW-23(7/26/2011) 0.5 - Cadmium - 0.5 0.5 - - - - - 0.5 -<	NA	1,000		NA	NA			1,000	9.9	NA	ND	NA	NA	NA	ND	NA	NA
Total TEQ	NIA	4.4		NIA	NIA			4.4	0.0	4 E	ND	VEC	VEC	0.50	ND	VEC	VEC
Norganics (µg/L)	NA NA			NA	NA			11	9.8	4.5 4.5	ND	YES	YES	0.52	ND ND	YES	YES
Antimony - - - 5.0 Arsenic 42 MW-08(7/26/2011) 2.5 Barium 260 MW-08(7/26/2011) - Beryllium 3.3 MW-23(7/26/2011) 0.5 Cadmium - 0.5 Chromium [I] 5.0 MW-23(7/26/2011) 5.0 Cobalt 4.2 MW-02(7/27/2011) 0.5 Copper - - - 5.0 Lead - - - 1.5 Nickel 9.7 MW-12(7/27/2011) 5.0 Selenium - - - 2.5 Silver - - - 1.0 Thallium - - - 1.0 Tin - - - 5.0 Vanadium 16 MW-23(7/26/2011) 10 Zinc 57 MW-19(7/26/2011) 20 Inorganics (μg/L) - - - 0.2) NA	0.00		NA	NA			0.00	0.00	4.5	ND	No	No	0.52	ND	No	No
Arsenic 42 MW-08(7/26/2011) 2.5 Barium 260 MW-08(7/26/2011) - Beryllium 3.3 MW-23(7/26/2011) 0.5 Cadmium - - - 0.5 Chromium [I] 5.0 MW-23(7/26/2011) 5.0 Cobalt 4.2 MW-02(7/27/2011) 0.5 Copper - - - 5.0 Lead - - - 1.5 Nickel 9.7 MW-12(7/27/2011) 5.0 Selenium - - - 2.5 Silver - - - 1.0 Thallium - - - 1.0 Tin - - - 5.0 Vanadium 16 MW-23(7/26/2011) 10 Zinc 57 MW-19(7/26/2011) 20 Inorganics (μg/L) - - - 0.2	NA	5.0		NA	NA			5 0	5.0	6.0	ND	No	No	15	ND	No	No
Barium 260 MW-08(7/26/2011) - Beryllium 3.3 MW-23(7/26/2011) 0.5 Cadmium - - 0.5 Chromium [I] 5.0 MW-23(7/26/2011) 5.0 Cobalt 4.2 MW-02(7/27/2011) 0.5 Copper - - - 1.5 Lead - - 1.5 Nickel 9.7 MW-12(7/27/2011) 5.0 Selenium - - 2.5 Silver - - 1.0 Thallium - - 1.0 Tin - - 5.0 Vanadium 16 MW-23(7/26/2011) 10 Zinc 57 MW-19(7/26/2011) 20 Inorganics (μg/L) - - - 0.2				NA NA	NA NA	42	 MW-08(7/26/2011)	5.0 2.5	2.5	6.0 50	No	No No	No	15 0.05	YES	No YES	No YES
Beryllium 3.3 MW-23(7/26/2011) 0.5 Cadmium - - - 0.5 Chromium [I] 5.0 MW-23(7/26/2011) 5.0 Cobalt 4.2 MW-02(7/27/2011) 0.5 Copper - - - 5.0 Lead - - 1.5 Nickel 9.7 MW-12(7/27/2011) 5.0 Selenium - - 2.5 Silver - - 1.0 Thallium - - 1.0 Tin - - 5.0 Vanadium 16 MW-23(7/26/2011) 10 Zinc 57 MW-19(7/26/2011) 20 Inorganics (μg/L) - - - 0.2	NA NA			NA NA	NA	260	MW-08(7/26/2011)	2.5	2.5	2,000	No	ND	ND	7,300	No	ND	ND
Cadmium - 0.5 Chromium [I] 5.0 MW-23(7/26/2011) 5.0 Cobalt 4.2 MW-02(7/27/2011) 0.5 Copper - 5.0 Lead - 1.5 Nickel 9.7 MW-12(7/27/2011) 5.0 Selenium - 2.5 Silver - 1.0 Thallium - 1.0 Tin - 5.0 Vanadium 16 MW-23(7/26/2011) 10 Zinc 57 MW-19(7/26/2011) 20 Inorganics (μg/L) - 0.2		,		NA	NA	3.3	MW-23(7/26/2011)	0.50	0.50	4.0	No	No	No	7,300	No	No	No
Chromium [I] 5.0 MW-23(7/26/2011) 5.0 Cobalt 4.2 MW-02(7/27/2011) 0.5 Copper - - - 5.0 Lead - - - 1.5 Nickel 9.7 MW-12(7/27/2011) 5.0 Selenium - - - 2.5 Silver - - 1.0 1.0 Thallium - - - 1.0 Tin - - - 5.0 Vanadium 16 MW-23(7/26/2011) 10 Zinc 57 MW-19(7/26/2011) 20 Inorganics (μg/L) - - - 0.2				NA NA	NA	3.3 	10100-23(7/20/2011)	0.50	0.50	5.0	ND	No	No	73 18	ND	No	No
Cobalt 4.2 MW-02(7/27/2011) 0.5 Copper - 5.0 Lead - 1.5 Nickel 9.7 MW-12(7/27/2011) 5.0 Selenium - 2.5 Silver - 1.0 Thallium - 1.0 Tin - 5.0 Vanadium 16 MW-23(7/26/2011) 10 Zinc 57 MW-19(7/26/2011) 20 Inorganics (μg/L) - 0.2	NA NA			NA NA	NA	5.0	 MW-23(7/26/2011)	5.0	5.0	100	No	No	No	0.04 [I]	YES	YES	YES
Copper - 5.0 Lead - 1.5 Nickel 9.7 MW-12(7/27/2011) 5.0 Selenium - 2.5 Silver - 1.0 Thallium - 1.0 Tin - 5.0 Vanadium 16 MW-23(7/26/2011) 10 Zinc 57 MW-19(7/26/2011) 20 Inorganics (µg/L) - 0.2	NA NA	,		NA NA	NA	4.2	MW-02(7/27/2011)	0.50	0.50	2,190	No	No	No	0.04 [i] 11	No	No	No
Lead - 1.5 Nickel 9.7 MW-12(7/27/2011) 5.0 Selenium - 2.5 Silver - 1.0 Thallium - 1.0 Tin - 5.0 Vanadium 16 MW-23(7/26/2011) 10 Zinc 57 MW-19(7/26/2011) 20 Inorganics (µg/L) Mercury - 0.2	NA NA			NA NA	NA	4.2		5.0	5.0	1,300	ND	No	No	1,500	ND	No	No
Nickel 9.7 MW-12(7/27/2011) 5.0 Selenium - 2.5 Silver - 1.0 Thallium - 1.0 Tin - 5.0 Vanadium 16 MW-23(7/26/2011) 10 Zinc 57 MW-19(7/26/2011) 20 Inorganics (μg/L) Mercury - 0.2	NA NA			NA NA	NA NA			1.5	1.5	1,300	ND ND	No	No	0.24	ND ND	YES	YES
Selenium - 2.5 Silver - 1.0 Thallium - 1.0 Tin - 5.0 Vanadium 16 MW-23(7/26/2011) 10 Zinc 57 MW-19(7/26/2011) 20 Inorganics (µg/L) Mercury - 0.2				NA	NA	9.7	MW-12(7/27/2011)	5.0	5.0	730	No	No	No	730	No	No	No
Silver - 1.0 Thallium - 1.0 Tin - 5.0 Vanadium 16 MW-23(7/26/2011) 10 Zinc 57 MW-19(7/26/2011) 20 Inorganics (µg/L) Mercury - 0.2				NA NA	NA	ə.i		2.5	2.5	50	ND	No	No	180	ND	No	No
Thallium - - - 1.0 Tin - - 5.0 Vanadium 16 MW-23(7/26/2011) 10 Zinc 57 MW-19(7/26/2011) 20 Inorganics (μg/L) - - 0.2				NA	NA			1.0	1.0	183	ND	No	No	180	ND	No	No
Tin - 5.0 Vanadium 16 MW-23(7/26/2011) 10 Zinc 57 MW-19(7/26/2011) 20 Inorganics (μg/L) - 0.2				NA NA	NA			1.0	1.0	2.0	ND ND	No	No	0.37	ND	YES	YES
Vanadium 16 MW-23(7/26/2011) 10 Zinc 57 MW-19(7/26/2011) 20 Inorganics (μg/L) Mercury - α - α 0.2				NA NA	NA			5.0	5.0	21,900	ND ND	No	No	22,000	ND	No	No
Zinc 57 MW-19(7/26/2011) 20 Inorganics (μg/L) Mercury – - 0.2	NA NA			NA	NA	16	MW-23(7/26/2011)	10	10	256	No	No	No	22,000 NA	NA	NA	NA
Inorganics (μg/L) - - 0.2	NA NA			NA	NA	57	MW-19(7/26/2011)	20	20	10,950	No	No	No	11,000	No	No	No
Mercury – 0.2	INA	10(1/20/2011) 20		INA	14/7	31	14144 13(1/20/2011)	20	20	10,330	140	140	INO	. 1,000	110	140	140
	NA	0.2		NA	NA			0.2	0.2	2.0	ND	No	No	0.63	ND	No	No
	INA	0.2		INA	14/7			٥.٢	٥.٧	2.0	ND	140	INO	3.00	ND	140	140
	NA	MW-23(7/26/2011) 1.0		NA	NA	7.9	MW-23(7/26/2011)	1.0	1.0	NA	NA	NA	NA	NA	NA	NA	NA
Miscellaneous (mg/L)	14/1	20(1/20/2011) 1.0		14/1	14/1	7.5	20(1/20/2011)	1.0	1.0	14/1	. 47 (14/1	1 10 1	7471	. */ \	. 17.1
Cyanide – - 0.01	NA	0.01		NA	NA			0.01	0.01	0.20	ND	No	No	0.73	ND	No	No

Not detected/ not analyzed/ not applicable.

– μg/L ND NA MDEQ Micrograms per Liter.

Non-detects.
Not analyzed/not applicable.

Mississippi Department of Environmental Quality.

Table 3. Combined Groundwater Screening Evaluation, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

	2011 Data Historic Data Combined
Constituent [a]	Does max Location of Location of Location of Location of Sax Does max Maximum Detection Maximum Detection Sax Does max
TRG	Target Remediation Goal.
USEPA	U.S. Environmental Protection Agency.
RSL	Regional Screening Levels.
DL	Detection limit.
TEQ	Toxic equivalent.
[a]	Only constituents detected at least once are presented.
	For duplicate samples, the highest detected value or the lowest detection limit were used.
[b]	TRG groundwater values source: Subpart II, Mississippi Department of Environmental Quality Risk Evaluation Procedures for Voluntary Cleanup and Redevelopment of Brownfield Sites, Appendix A Tier 1 Target Remediation Goals (February 2002).
[c]	USEPA RSLs (June 2011).
[d]	Technical BHC used as a surrogate.
[e]	Endosufan used as a surrogate.
[f]	Endrin used as a surrogate.
[g]	Aldrin used as a surrogate.
[h]	1,3-Dichloropropene used as a surrogate.
[[]	Bromomethane is used as a surrogate.
UJ	1,4-Dichloro-2-butene used as a surrogate.
[k]	2,4-Dinitrophenol used as a surrogate.
[1]	RSL for chromium (VI) used as a surrogate for total chromium.

Table 4. Combined Surface Water Screening Evaluation, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

Constituent [a] Units Detect Volatile Organic Compounds (µg/L) 1,1,1,2-Tetrachloroethane µg/L — 1,1,1,2-Trichloroethane µg/L — 1,1,2-Trichloroethane µg/L — 1,1,2-Trichloroethane µg/L — 1,1-Dichloroethane µg/L — 1,1-Dichloroethane µg/L — 1,1-Dichloroethane µg/L — 1,2,3-Trichlorobenzene µg/L NA 1,2,4-Trimethylbenzene µg/L NA 1,2,3-Trichloropropane µg/L NA 1,2-Joirhoropropane µg/L NA 1,2-Dibromo-3-Chloropropane µg/L NA 1,2-Dichlorobenzene µg/L NA 1,2-Dichloropenzene µg/L NA 1,2-Dichloropopane µg/L — 2-Butanone (MEK) µg/L — 2-Chloro-1,3-butadiene µg/L NA 2-Hexanone µg/L NA 4-Chlorotoluene [f] µg/L — <tr< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></tr<>																									
Volatile Organic Compounds (µg/L) 1,1,1,2-Tetrachloroethane µg/L — 1,1,1,2-Tetrachloroethane µg/L — 1,1,1,2-Trichloroethane µg/L — 1,1,2-Trichloroethane µg/L — 1,1-Dichloroethane µg/L — 1,2,3-Trichlorobenzene [e] µg/L NA 1,2,4-Trimethylbenzene µg/L NA 1,2,4-Trimethylbenzene µg/L NA 1,2,5-Trimethylbenzene µg/L NA 1,2,5-Trimethylbenzene µg/L NA 1,2,3-Trichloropropane µg/L — 1,2-Dichlorobenzene µg/L NA 1,3-Dichlorobenzene µg/L NA 1,3-Dichlorobenzene µg/L NA 1,3-Dichlorobenzene µg/L NA 1,2-Dichloroethane µg/L — 1,2-Dichloroethane µg/L — 2-Butanone (MEK) µg/L — 2-Chloro-1,3-butadiene µg/L — 2-Chlorotlouene µg/L NA 4-Chlorotlouene µg/L NA 2-Hexanone µg/L — 3-Chloro-1-propene µg/L — 4-Methyl-2-pentanone (MIBK) µg/L — 4-Methyl-2-pentanone (MIBK) µg/L — 8-Carolonitrile µg/L — Acrolein µg/L — Acrolein µg/L — Acrolonitrile µg/L — Bromoform µg/L — Bromoform µg/L — Carbon disulfide µg/L — Bromoform µg/L — Carbon disulfide µg/L — Carbon disulfide µg/L — Carbon disulfide µg/L — Chloroethane µg/L — Chloroethane µg/L — Chloroethane µg/L — Chloroform µg/L — Chloroethane µg/L — Chloroethane µg/L — Chloroethane µg/L — Chloroethane µg/L — Chloromethane µg/L — Chloromethane µg/L — Dibromochloromethane µg/L — Dibromochloromethane µg/L — Dibromochloromethane µg/L — Dibromomethane µg/L — Dibromomethane µg/L — Dibromomethane µg/L — Dichlorobromomethane µg/L —	New N	Max I	Location of Maximum Detection	1 :-	ction mit	Max	Location of Maximum Detection -		ection mit	Max	Location of Maximum Detection -	Dete Lir		National Ambient Water Quality	Does max detect exceed Water	Does max DL exceed Water	Does min DL exceed Water	MDEQ	Does max detect exceed MDEQ	Does max DL exceed MDEQ	Does min DL exceed MDEQ	USEPA	Does max detect exceed	Does max DL exceed	Does mi
1,1,1,2-Tetrachloroethane µg/L — 1,1,1-Trichloroethane µg/L — 1,1,2-Trichloroethane µg/L — 1,1,2-Trichloroethane µg/L — 1,1-Dichloroethane µg/L — 1,1-Dichloroethane µg/L NA 1,2,3-Trichlorobenzene µg/L NA 1,2,3-Trichlorobenzene µg/L NA 1,2,3-Trichloropropane µg/L NA 1,2,3-Trichloropropane µg/L — 1,2-Tichloropropane µg/L — 1,2-Tichloropropane µg/L — 1,2-Dichlorobenzene µg/L NA 1,3-Tichlorobenzene µg/L NA 1,2-Dichlorobenzene µg/L NA 1,2-Dichlorobenzene µg/L NA 1,2-Dichloropane µg/L NA 2-Chloro-1,3-butadiene µg/L NA 2-Chloro-1-propene µg/L NA 4-Chlorotoluene [f] µg/L NA 2-Hexanone µg/L	Units D	Detect		Max	Min	Detect		Max	Min	Detect		Max	Min	Criteria [b]	Criteria?	Criteria?	Criteria?	TRG [c]	TRG?	TRG?	TRG?	RSL [d]	RSL?	RSL?	RSL?
1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,1-Dichloroethane 1,1,1-Dichloroethane 1,1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2,3-Trichloropropane 1,2-Dichlorobenzene 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 2-Chloro-1,3-butadiene 2-Chlorotoluene 1,3-Chlorotoluene 1,3-Dichlorobenzene 1,3-Chlorotoluene 1,3-Chlorotoluene 1,3-Chlorotoluene 1,3-Chlorotoluene 1,3-Chlorotoluene 1,3-Chlorotoluene 1,3-Dichlorobenzene 1,3-Chlorotoluene 1,3-Ch																									
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,1-Dichloroethane 1,1,1-Dichloroethane 1,1,1-Dichloroethane 1,1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,3-Trimethylbenzene 1,2,3-Trimethylbenzene 1,2,3-Trimethylbenzene 1,2,3-Trichloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichloropropane 1,2-Dichloroluene 1,2-Dichl	μg/L	-		1.0	1.0	NA		NA	NA			1.0	1.0	-	ND	NA	NA	0.41	ND	YES	YES	0.50	ND	YES	YES
1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2,3-Trimethylbenzene 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 2-Butanone (MEK) 2-Chloro-1,3-butadiene 2-Chlorotoluene 1-Chlorotoluene 1-Chlorotolue	μg/L	-		1.0	1.0	NA		NA	NA			1.0	1.0	-	ND	NA	NA	200	ND	No	No	7,500	ND	NO	NO
1,1-Dichloroethane 1,1-Dichloroethene 1,1-Dichloroethene 1,2,3-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichlorobenzene 1,2-Dichloropropane 1,2-Dichloroluene 1,2-Dichloropropene 1,2-Dichloropropene 1,2-Dichloropropene 1,2-Dichloropropene 1,2-Dichloropropene 1,2-Dichloropropene 1,2-Dichloropropene 1,2-Dichloropropene 1,3-Dichloropropene 1,2-Dichloropropene 1,2-Dichloropropene 1,2-Dichloropropene 1,2-Dichloropropene 1,2-Dichloropropene 1,2-Dichloropropene 1,2-Dichlorodifluoromethane 1,2-Dichl	μg/L	-		1.0	1.0	NA		NA	NA			1.0	1.0	0.17	ND	YES	YES	0.05	ND	YES	YES	0.066	ND	YES	YES
1,1-Dichloroethene 1,2,3-Trichlorobenzene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2,3-Trichloropropane 1,2,2-Dichlorobenzene 1,3,5-Dichlorobenzene 1,2-Dichlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloropropane 1,2-Dichloroluene 1	μg/L	-		1.0	1.0	NA		NA	NA			1.0	1.0	0.59	ND	YES	YES	5.0	ND	No	No	0.24	ND	YES	YES
2,3-Trichlorobenzene E μg/L NA 2,4-Trimethylbenzene μg/L NA 2,4-Trimethylbenzene μg/L NA 2,4-Trimethylbenzene μg/L NA 3,5-Trimethylbenzene μg/L NA 2,2-Dibromo-3-Chloropropane μg/L – μg/L NA 3,3-Dichlorobenzene μg/L NA 3,2-Dichloropenzene μg/L – μ	μg/L	-		1.0	1.0	NA		NA	NA			1.0	1.0	-	ND	NA	NA	798	ND	No	No	2.4	ND	NO	NO
,2,4-Trichlorobenzene		-		1.0	1.0	5.0	CM-00(9/1/2003)	10	1.0	5.0	CM-00(9/1/2003)	10	1.0	330	No	No	No	7.0	No	YES	No	260	NO	NO	NO
,2,4-Trimethylbenzene				NA	NA	32	CM-01(2/1/2003)	5.0	5.0	32	CM-01(2/1/2003)	5.0	5.0	35	No	No	No	70	No	No	No	5.2	YES	NO	NO
1,3,5-Trimethylbenzene 1,2-Dibromo-3-Chloropropane 1,2-Dibromo-3-Chloropropane 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichloropropane 1,2-Dichloropropane 1,2-Dichloropropane 1,3-Dichloropropane 1,3-Di	μg/L	NA		NA	NA	3.4	CM-01(2/1/2003)	10	5.0	3.4	CM-01(2/1/2003)	10	5.0	35	No	No	No	70	No	No	No	0.99	YES	YES	YES
1,2,3-Trichloropropane μg/L - 2,2-Dibromo-3-Chloropropane μg/L - 2,2-Dichlorobenzene μg/L NA 3,3-Dichlorobenzene μg/L NA 3,4-Dichlorobenzene μg/L NA 4,4-Dichlorobenzene μg/L - 4,2-Dichloropropane μg/L - 2,2-Dichloropropane μg/L - 2,2-Dichloropropane μg/L - 2,2-Dichloropropane μg/L - 2,2-Dichlorotlouene μg/L - 2,2-Dichlorotlouene μg/L - 3,3-Dichloropropane μg/L - 4,4-Dichloropropane μg/L - 5,2-Dichlorotlouene μg/L - 6,2-Chloro-1,3-butadiene μg/L NA 7,6-Chlorotlouene μg/L - 8,1-Dichloropene μg/L - 9,2-Chloro-1-propene μg/L - 9,3-Chloro-1-propene μg/L - 9,4-Dichlorolitile μg/L - 9,4-Dichlorolitile μg/L - 9,4-Dichloropene μg/L - 9,4-Dichloromethane μg/L - 0,5-Dichloropene μg/L - 0,5-Dic	1.0			NA	NA	1.3	CM-01(9/1/2003)	10	1.0	1.3	CM-01(9/1/2003)	10	1.0	_	NA	NA	NA	12	No	No	No	15	NO	NO	NO
д.2-Dibromo-3-Chloropropane д.2-Dichlorobenzene д.3-Dichlorobenzene д.3-Dichlorobenzene д.4-Dichlorobenzene д.4-Dichlorobenzene д.2-Dichloropropane д.2-Dichloropropane д.2-Dichloropropane д.2-Dichloropropane д.2-Dichloropropane д.3-Dichloropropane д.3-Dichloropropane д.3-Dichloropropane д.3-Dichloropropane д.3-Dichloropropane д.3-Dichloropropane д.3-Dichloropropane д.3-Dichlorotluene д.3-Dichlorotluene д.3-Dichlorotluene д.3-Dichlorotluene д.3-Dichlorotluene д.3-Dichloropropane д.3-Chloro-1-propene д.3-Chloro-1-propene д.3-Chloro-1-propene д.3-Chloro-1-propene д.3-Chloro-1-propene д.3-Chloro-1-propene д.3-Chloro-1-propene д.3-Chloro-1-propene д.3-Chloro-1-propene д.3-Chlorolitrile д.3-Dichloromethane д.3-Dichloropropene д.3-Dichloropro	μg/L	NA		NA	NA	1.6	CM-01(9/1/2003)	10	10	1.6	CM-01(9/1/2003)	10	10	_	NA	NA	NA	12	No	No	No	87	NO	NO	NO
д-Dichlorobenzene µg/L NA ,3-Dichlorobenzene µg/L NA ,4-Dichlorobenzene µg/L NA ,2-Dichloroethane µg/L — ,2-Dichloropropane µg/L — ,2-Dichloropropane µg/L — ,2-Dichlorotoluene µg/L — ,2-Chloro-1,3-butadiene µg/L — ,2-Chlorotoluene µg/L NA ,2-Chlorotoluene µg/L NA ,2-Chlorotoluene µg/L NA ,2-Chlorotoluene µg/L NA ,2-Chlorotoluene µg/L — ,2-Chlorotoluene µg/L — ,3-Chloro-1,3-butadiene µg/L — ,3-Chloro-1-propene µg/L — ,3-Chloro-1,3-butadiene µg/L — ,3-Chloro-1,3-butadiene µg/L — ,3-Chloro-1,3-butadiene µg/L — ,3-Chloro-1,3-butadiene µg/L — ,3-Chloroditrile µg/L — ,3-Chlorobenzene [g] µg/L NA ,3-Chloroditrile µg/L — ,3-Chlorodibromomethane µg/L — ,3-Chlorodifluoromethane µg/L — ,3-Chlorodifluoromet	μg/L	-		1.0	1.0	NA		NA	NA			1.0	1.0	-	ND	NA	NA	0.006	ND	YES	YES	0.00065	ND	YES	YES
,3-Dichlorobenzene ,4-Dichlorobenzene ,4-Dichlorobenzene ,2-Dichloropropane ,2-Dichloropropane ,2-Butanone (MEK) ,2-Chloro-1,3-butadiene ,2-Chlorotoluene ,2-Chlorotirile ,2-Chlorotirile ,2-Chlorotoluene ,2-Chlo		-		1.0	1.0	NA		NA	NA			1.0	1.0	-	ND	NA	NA	0.20	ND	YES	YES	0.00032	ND	YES	YES
,4-Dichlorobenzene				NA	NA	3.8	CM-01(9/1/2003)	10	10	3.8	CM-01(9/1/2003)	10	10	420	No	No	No	600	No	No	No	280	NO	NO	NO
,2-Dichloroethane				NA	NA	3.7	CM-00(9/1/2003)	10	10	3.7	CM-00(9/1/2003)	10	10	320	No	No	No	5.5	No	YES	YES	280	NO	NO	NO
1,2-Dichloropropane 1,2-Dichloropropane 2-Butanone (MEK) 2-Chloro-1,3-butadiene 2-Chlorotoluene 1-Chlorotoluene 1-Chlorotolue	μg/L	NA		NA	NA	7.5	CM-00(9/1/2003)	10	10	7.5	CM-00(9/1/2003)	10	10	63	No	No	No	75	No	No	No	0.42	YES	YES	YES
Rebutanone (MEK)	μg/L	_		1.0	1.0	1.7	CM-01(9/1/2003)	10	1.0	1.7	CM-01(9/1/2003)	10	1.0	0.38	YES	YES	YES	5.0	No	YES	No	0.15	YES	YES	YES
Chloro-1,3-butadiene	μg/L	-		1.0	1.0	-	-	10	1.0			10	1.0	0.50	ND	YES	YES	5.0	ND	YES	No	0.38	ND	YES	YES
Chlorotoluene Ch	μg/L	-		10	10	NA		NA	NA			10	10	-	ND	NA	NA	1,906	ND	No	No	4,900	ND	NO	NO
Chlorotoluene [f] µg/L NA -Hexanone µg/L — -Chloro-1-propene µg/L — -Methyl-2-pentanone (MIBK) µg/L — - Loctone µg/L — - Loctone µg/L — - Loctonitrile µg/L — - Loctonitrile µg/L — - Locylonitrile µg/L — - L	μg/L	-		1.0	1.0	NA		NA	NA			1.0	1.0	-	ND	NA	NA	14	ND	No	No	0.016	ND	YES	YES
-Hexanone	μg/L	NA		NA	NA	3.4	CM-00(9/1/2003)	10	10	3.4	CM-00(9/1/2003)	10	10	-	NA	NA	NA	122	No	No	No	180	NO	NO	NO
-Chloro-1-propene	μg/L	NA		NA	NA	4.6	CM-00(9/1/2003)	10	10	4.6	CM-00(9/1/2003)	10	10	-	NA	NA	NA	122	No	No	No	190	NO	NO	NO
-Methyl-2-pentanone (MIBK)	μg/L	-		10	10	NA		NA	NA			10	10	-	ND	NA	NA	1,460	ND	No	No	34	ND	NO	NO
Acetone	μg/L	-		1.0	1.0	NA		NA	NA			1.0	1.0	-	ND	NA	NA	NA	ND	NA	NA	0.63	ND	YES	YES
Accetonitrile Accolein Accylonitrile Accylon	μg/L	-		10	10	NA		NA	NA			10	10	-	ND	NA	NA	139	ND	No	No	1,000	ND	NO	NO
Acrolein	μg/L	-		25	25	160	CM-04(2/7/2007)	25	25	160	CM-04(2/7/2007)	25	25	-	NA	NA	NA	608	No	No	No	12,000	NO	NO	NO
Acrylonitrile	μg/L	-		40	40	NA		NA	NA			40	40	-	ND	NA	NA	125	ND	No	No	130	ND	NO	NO
Benzene µg/L – Bromoform µg/L – Bromobenzene [g] µg/L NA Bromodichloromethane µg/L NA Bromodichloromethane µg/L – Bromodichloromethane µg/L – Carbon disulfide µg/L – Carbon disulfide µg/L – Chlorobenzene µg/L – Chlorodibromethane µg/L – Chlorotomethane µg/L – Chloroform µg/L – Chloromethane µg/L – Chloromethane µg/L – Dibromochloromethane µg/L – Dibromomethane µg/L – Dichlorobromomethane µg/L – Dichlorodifluoromethane µg/L –	μg/L	-		20	20	NA		NA	NA			20	20	6.0	ND	YES	YES	0.04	ND	YES	YES	0.041	ND	YES	YES
Bromoform μg/L – Bromobenzene [g] μg/L NA Bromodichloromethane μg/L NA NA Bromodichloromethane μg/L – NA NA <td>μg/L</td> <td>-</td> <td></td> <td>20</td> <td>20</td> <td>NA</td> <td></td> <td>NA</td> <td>NA</td> <td></td> <td></td> <td>20</td> <td>20</td> <td>0.051</td> <td>ND</td> <td>YES</td> <td>YES</td> <td>0.04</td> <td>ND</td> <td>YES</td> <td>YES</td> <td>0.045</td> <td>ND</td> <td>YES</td> <td>YES</td>	μg/L	-		20	20	NA		NA	NA			20	20	0.051	ND	YES	YES	0.04	ND	YES	YES	0.045	ND	YES	YES
Bromobenzene [g] µg/L NA Bromodichloromethane µg/L NA Bromodichloromethane µg/L — Carbon disulfide µg/L — Carbon tetrachloride µg/L — Chlorobenzene µg/L — Chlorodibromomethane µg/L — Chloroform µg/L — Chloroform µg/L — Chloromethane µg/L — Cis-1,2-Dichloropropene [h] µg/L — Chloromethane µg/L NA Chloromethane µg/L — Chlorodifluoromethane µg/L —	μg/L	_		1.0	1.0	8.4	CM-01(11/6/2006)	1.0	1.0	8.4	CM-01(11/6/2006)	1.0	1.0	2.2	YES	No	No	5.0	YES	No	No	0.39	YES	YES	YES
Bromodichloromethane μg/L NA Bromomethane μg/L – Carbon disulfide μg/L – Carbon tetrachloride μg/L – Chlorobenzene μg/L – Chlorodibromomethane μg/L – Chloroethane μg/L – Chloroform μg/L – Chloromethane μg/L – Chloromethane μg/L – Dibromochloromethane μg/L NA Dibromomethane μg/L – Dichlorobromomethane μg/L – Dichlorodifluoromethane μg/L –	μg/L	-		1.0	1.0	-		10	1.0			10	1.0	4.3	ND	YES	No	8.5	ND	YES	No	7.9	ND	YES	NO
Brommethane	μg/L	NA		NA	NA	13	CM-01(9/1/2003)	10	10	13	CM-01(9/1/2003)	10	10	130	No	No	No	100	No	No	No	54	NO	NO	NO
Carbon disulfide µg/L – Carbon tetrachloride µg/L – Chlorobenzene µg/L – Chlorodibromomethane µg/L – Chloroform µg/L – Chloroform µg/L – Chloromethane µg/L – cis-1,2-Dichloroethene µg/L – cis-1,3-Dichloropropene [h] µg/L – Dibromochloromethane µg/L NA Dibromomethane µg/L – Dichlorobromomethane µg/L – Dichlorodifluoromethane µg/L –	μg/L	NA		NA	NA	_	·	10	1.0			10	1.0	0.55	ND	YES	YES	0.17	ND	YES	YES	0.12	ND	YES	YES
Carbon tetrachloride	μg/L	_		1.0	1.0	_		10	1.0			10	1.0	47	ND	No	No	8.5	ND	YES	No	7.0	ND	YES	NO
Chlorobenzene	μg/L	_		2.0	2.0	NA		NA	NA			2.0	2.0	_	ND	NA	NA	1,043	ND	No	No	720	ND	NO	NO
Chlorodibromomethane	μg/L	_		1.0	1.0	3.0	CM-01(2/1/2003)	10	1.0	3.0	CM-01(2/1/2003)	10	1.0	0.23	YES	YES	YES	5.0	No	YES	No	0.39	YES	YES	YES
Chloroethane µg/L – Chloroform µg/L – Chloromethane µg/L – cis-1,2-Dichloroethene µg/L 7.6 iis-1,3-Dichloropropene [h] µg/L – Dibromochloromethane µg/L NA – Dichlorobromomethane µg/L – – Dichlorodifluoromethane µg/L – –	μg/L	_		1.0	1.0	24	CM-01(11/6/2006)	10	1.0	24	CM-01(11/6/2006)	10	1.0	130	No	No	No	100	No	No	No	72	NO	NO	NO
Chloroethane µg/L — Chloroform µg/L — Chloromethane µg/L — Chloromethane µg/L — Na µg/L — Dibromochloromethane µg/L NA Dibromomethane µg/L — Dichlorobromomethane µg/L — Dichlorodifluoromethane µg/L —		_		1.0	1.0	NA	′	NA	NA		'	1.0	1.0	0.4	ND	YES	YES	0.13	ND	YES	YES	0.15	ND	YES	YES
Chloroform µg/L — Chloromethane µg/L — chloromethane µg/L 7.6 cis-1,2-Dichloropropene [h] µg/L — Dibromochloromethane µg/L NA Dibromomethane µg/L — Dichlorobromomethane µg/L — Dichlorodifluoromethane µg/L —		_		1.0	1.0	21	CM-01(2/1/2003)	12	1.0	21	CM-01(2/1/2003)	12	1.0	_	NA	NA	NA	3.6	YES	YES	No	21,000	NO	NO	NO
Chloromethane	μg/L	_		1.0	1.0	2.3	CM-01(2/1/2003)	10	1.0	2.3	CM-01(2/1/2003)	10	1.0	5.7	No	YES	No	0.15	YES	YES	YES	0.19	YES	YES	YES
is-1,2-Dichloroethene µg/L 7.6 is-1,3-Dichloropropene [h] µg/L — bibromochloromethane µg/L NA bibromomethane µg/L — bichlorobromomethane µg/L — bichlorodifluoromethane µg/L —	ua/l	_		1.0	1.0	_	′	10	1.0		/	10	1.0	_	ND	NA	NA	1.4	ND	YES	No	190	ND	NO	NO
is-1,3-Dichloropropene [h] µg/L — Dibromochloromethane µg/L NA Dibromomethane µg/L — Dichlorobromomethane µg/L — Dichlorodifluoromethane µg/L —		7.6	CM-04(7/29/2011)	1.0	1.0	17	CM-04(11/6/2006)	10	1.0	17	CM-04(11/6/2006)	10	1.0	_	NA	NA	NA	70	No	No	No	28	NO	NO	NO
pibromochloromethane μg/L NA pibromomethane μg/L – pichlorobromomethane μg/L – pichlorodifluoromethane μg/L –		_	/	1.0	1.0	NA	′	NA	NA		/	1.0	1.0	0.34	ND	YES	YES	0.08	ND	YES	YES	0.41	ND	YES	YES
ibromomethane μg/L – iichlorobromomethane μg/L – iichlorodifluoromethane μg/L –		NA		NA	NA	_		10	1.0			10	1.0	0.40	ND	YES	YES	0.13	ND	YES	YES	0.15	ND	YES	YES
ichlorobromomethane		_		1.0	1.0	NA		NA	NA			1.0	1.0	_	ND	NA	NA	61	ND	No	No	7.9	ND	NO	NO
ichlorodifluoromethane μg/L –		_		1.0	1.0	NA		NA	NA			1.0	1.0	0.55	ND	YES	YES	0.17	ND	YES	YES	0.12	ND	YES	YES
· · · · · · · · · · · · · · · · · · ·		_		1.0	1.0	NA		NA	NA			1.0	1.0	_	ND	NA	NA	348	ND	No	No	190	ND	NO	NO
any moundary atc	μg/L	_		1.0	1.0	NA		NA	NA			1.0	1.0	_	ND	NA	NA	548	ND	No	No	420	ND	NO	NO
thylbenzene µg/L –		_		1.0	1.0	57	CM-01(11/6/2006)	10	1.0	57	CM-01(11/6/2006)	10	1.0	530	No	No	No	700	No	No	No	1.3	YES	YES	NO
thylene Dibromide µg/L –		_		1.0	1.0	NA		NA	NA			1.0	1.0	-	ND	NA	NA	0.05	ND	YES	YES	0.0065	ND	YES	YES
domethane [i] µg/L –		_		5.0	5.0	NA		NA	NA			5.0	5.0	47	ND	No	No	8.5	ND	No	No	7.0	ND	NO	NO
sobutyl alcohol µg/L –		_		40	40	NA		NA	NA			40	40	-	ND	NA	NA	1,825	ND	No	No	4,600	ND	NO	NO
sopropylbenzene µg/L NA		NA		NA	NA	_		10	1.0			10	1.0	_	ND	NA	NA	679	ND	No	No	390	ND	NO	NO
p-Isopropyltoluene µg/L NA				NA	NA	_		10	1.0			10	1.0	_	ND	NA	NA	NA	ND	NA	NA	390	ND	NO	NO

2999.6/T/Revised Phase II ESA/1/Table 4/jk

Table 4. Combined Surface Water Screening Evaluation, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

	_			2011 Data				Historic Data				Combined														
Constituent [a]		New Units	Max Detect	Location of Maximum Detection		ction mit Min	Max Detect	Location of Maximum Detection	Li	ection mit Min	Max Detect	Location of Maximum Detection	Dete Lii Max	ction nit Min	National Ambient Water Quality Criteria [b]	Does max detect exceed Water Criteria?	Does max DL exceed Water Criteria?	Does min DL exceed Water Criteria?	MDEQ TRG [c]	Does max detect exceed MDEQ TRG?	Does max DL exceed MDEQ TRG?	Does min DL exceed MDEQ TRG?	USEPA RSL [d]	Does max detect exceed RSL?	Does max DL exceed RSL?	
Methacrylonitrile		μg/L	_		20	20	NA		NA	NA			20	20		ND	NA	NA	1.0	ND	YES	YES	0.75	ND	YES	YES
Methyl ethyl ketone		μg/L	NA		NA	NA	160	CM-04(11/6/2006)	10	10	160	CM-04(11/6/2006)	10	10	_	NA	NA	NA	1,906	No	No	No	4,900	NO	NO	NO
Methyl isobutyl ketone		μg/L	NA		NA	NA	_	/	10	10		′	10	10	_	ND	NA	NA	139	ND	No	No	1,000	ND	NO	NO
Methyl methacrylate		μg/L	_		1.0	1.0	NA		NA	NA			1.0	1.0	_	ND	NA	NA	1,419	ND	No	No	1,400	ND	NO	NO
Methylene Chloride		μg/L	_		5.0	5.0	_		13	5.0			13	5.0	4.6	ND	YES	YES	5.0	ND	YES	No	4.7	ND	YES	YES
Naphthalene		μg/L	NA		NA	NA	NA	_	NA	NA	NA		NA	NA	_	NA	NA	NA	6.2	NA	NA	NA	0.14	NA	NA	NA
Pentachloroethane		μg/L	_		5.0	5.0	NA		NA	NA			5.0	5.0	_	ND	NA	NA	NA	ND	NA	NA	0.56	ND	YES	YES
Propionitrile		μg/L	_		20	20	NA		NA	NA			20	20	_	ND	NA	NA	NA	ND	NA	NA	NA	ND	NA	NA
Styrene		μg/L	-		1.0	1.0	3.2	CM-00(9/1/2003)	10	1.0	3.2	CM-00(9/1/2003)	10	1.0	_	NA	NA	NA	100	No	No	No	1,100	NO	NO	NO
Tetrachloroethene		μg/L	-		1.0	1.0	90	CM-04(11/6/2006)	10	1.0	90	CM-04(11/6/2006)	10	1.0	0.69	YES	YES	YES	5.0	YES	YES	No	0.072	YES	YES	YES
Toluene		μg/L	-		1.0	1.0	21	CM-02(11/6/2006)	10	1.0	21	CM-02(11/6/2006)	10	1.0	1,300	No	No	No	1,000	No	No	No	860	NO	NO	NO
trans-1,2-Dichloroethene		μg/L	-		1.0	1.0	NA		NA	NA			1.0	1.0	140	ND	No	No	100	ND	No	No	86	ND	NO	NO
trans-1,3-Dichloropropene	[h]	μg/L	-		1.0	1.0	NA		NA	NA			1.0	1.0	0.34	ND	YES	YES	0.08	ND	YES	YES	0.41	ND	YES	YES
trans-1,4-Dichloro-2-butene	[j]	μg/L	-		2.0	2.0	NA		NA	NA			2.0	2.0	-	ND	NA	NA	0.001	ND	YES	YES	0.0012	ND	YES	YES
Trichloroethene		μg/L	-		1.0	1.0	26	CM-04(11/6/2006)	10	1.0	26	CM-04(11/6/2006)	10	1.0	2.5	YES	YES	No	5.0	YES	YES	No	0.44	YES	YES	YES
Trichlorofluoromethane		μg/L	-		1.0	1.0	NA		NA	NA			1.0	1.0	_	ND	NA	NA	1,288	ND	No	No	1,100	ND	NO	NO
Vinyl acetate		μg/L	-		2.0	2.0	NA		NA	NA			2.0	2.0	-	ND	NA	NA	412	ND	No	No	410	ND	NO	NO
Vinyl chloride		μg/L	3.2	CM-04(7/29/2011)	1.0	1.0	2.6	CM-04(11/6/2006)	10	1.0	3.2	CM-04(7/29/2011)	10	1.0	0.025	YES	YES	YES	2.0	YES	YES	No	0.015	YES	YES	YES
Xylenes, Total		μg/L	-		2.0	2.0	NA		NA	NA			2.0	2.0	_	ND	NA	NA	10,000	ND	No	No	190	ND	NO	NO

Not detected/ not analyzed/ not applicable.

DL Detection limit.

MDEQ Mississippi Department of Environmental Quality.

NA Not analyzed/not applicable.

ND Non-detects.

[a]

[b]

RSL Regional Screening Levels. TRG Target Remediation Goal.

USEPA U.S. Environmental Protection Agency.

Micrograms per Liter. μg/L

All analyzed constituents are presented.

For duplicate samples, the highest detected value or the lowest detection limit were used.

USEPA National Recommended Water Quality Criteria (human health for the consumption of water and organisms) (USEPA 2009).

TRG groundwater values source: Subpart II, Mississippi Department of Environmental Quality Risk Evaluation Procedures for Voluntary Cleanup and Redevelopment of Brownfield Sites, Appendix A Tier 1 Target Remediation Goals (February 2002).

USEPA Regional Screening Levels (USEPA 2011a).

TRG for 1,2,4-trichlorobenzene used as a surrogate.

TRG for 2-Chlorotoluene used as a surrogate.

TRG for chlorobenzene used as a surrogate.

1,3-Dichloropropene used as a surrogate. Bromomethane is used as a surrogate.

[c]
[d]
[e]
[f]
[g]
[h]
[i] TRG for 1,4-Dichloro-2-butene used as a surrogate.

Table 5. Proposed Soil and Groundwater Sample Location Rationale, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

Sample Location	Area	Sampling Conducted (Phase)	Rationale
AO-GP-01	Sludge Pits	I	Establish conditions on western boundary of sludge pits near the Hercules property.
AO-GP-02	Tall Oil	II	Establish conditions near Tall Oil loading/unloading rack.
AO-GP-03	Tall Oil	I	Establish conditions between Hercules and Zeon Chemical.
AO-GP-04	Tall Oil	1	Establish conditions between Hercules and cemetery.
AO-GP-05	Tall Oil	II	Establish conditions near unit.
AO-GP-06	Hydroperoxides	II	Establish conditions near former tank farm.
AO-GP-07	Hydroperoxides	II	Establish conditions near unit.
AO-GP-08	Hydroperoxides	II	Establish conditions near Hydroperoxides loading/unloading rack.
AO-GP-09	Terpene Derivatives	II	Establish conditions near unit.
AO-GP-10	Terpene Derivatives	II	Establish conditions near unit.
AO-GP-11	Poly-Pale	II	Establish conditions near former Dowtherm storage in unit.
AO-GP-12	Poly-Pale	II	Establish conditions near unit.
AO-GP-13	Vinsalyn/Paste Size	II	Establish conditions near unit.
AO-GP-14	Catalyst Regen	II	Establish conditions near Providence Street boundary.
AO-GP-15	Extracting	II	Establish conditions near unit.
AO-GP-16	Refining	II	Establish conditions near unit.
AO-GP-17	Liquid Loading	II	Establish conditions near unit.
AO-GP-18	Field Storage	II	Establish conditions near former tank farm.
AO-GP-19	Hard Resins	I	Establish conditions near Providence Street boundary.
AO-GP-20	Fuel Storage	I	Establish conditions near fuel storage between Hercules and cemetery.
AO-GP-21	Fuel Storage	I	Establish conditions at former fueling operations in parking area.
AO-GP-22	Field Storage/Laboratory	I	Establish conditions near field storage and laboratory.
AO-GP-23	Field Storage	I	Establish conditions near former tank farm.
AO-GP-24	Fuel Oil Unloading	I	Establish conditions near unloading operation.
AO-GP-25	Near Providence Street Boundary	I	Establish conditions near Providence Street property boundary.
AO-GP-26	Near Providence Street Boundary	l l	Establish conditions near Providence Street property boundary.
AO-GP-27	Near Greens Creek Entrance	I	Establish conditions near property boundary and utility corridor.
AO-GP-28	Near Providence Street Boundary	1	Establish conditions near Providence Street property boundary.
AO-GP-29	Near Providence Street Boundary	I	Establish conditions near Providence Street property boundary.
AO-GP-30	Near Providence Street Boundary	1	Establish conditions near Providence Street property boundary.
AO-GP-31	Near Providence Street Boundary	1	Establish conditions near Providence Street property boundary.
AO-GP-32	Near Hwy 42	1	Establish conditions near Hwy 42 property boundary.

Table 5. Proposed Soil and Groundwater Sample Location Rationale, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

Sample Location	Area	Sampling Conducted (Phase)	Rationale
AO-GP-33	Near Hwy 42	I	Establish conditions near Hwy 42 property boundary.
AO-GP-34	Sludge Pits	II	Establish groundwater conditions near Sludge Pits. Soil will not be sampled.
AO-GP-35	Northeast corner	II	Establish conditions near intersection of Hwy 42 and Providence St.
AO-GP-36	Tall Oil	II	Establish conditions near unit.
AO-GP-37	South of Terpene Derivatives	II	Establish conditions south of Terpene Derivatives Unit
AO-GP-38	Extracting	II	Establish conditions near unit.
AO-GP-39	Refining	II	Establish conditions near unit.
AO-GP-40	Field Storage	II	Establish conditions near field storage area.
AO-SS-09	Delnav	II	Establish soil conditions near unit. Groundwater will not be sampled.
AO-SS-10	Delnav	II	Establish soil conditions near unit. Groundwater will not be sampled.
AO-SS-11	Delnav	II	Establish soil conditions near unit. Groundwater will not be sampled.
AO-SS-12	Delnav	II	Establish soil conditions near unit. Groundwater will not be sampled.
AO-SS-13	Delnav	II	Establish soil conditions near unit. Groundwater will not be sampled.
AO-SS-14	Field Storage	II	Establish soil conditions near unit. Groundwater will not be sampled.
AO-SS-15	Field Storage	II	Establish soil conditions near unit. Groundwater will not be sampled.
AO-SS-16	Field Storage	II	Establish soil conditions near unit. Groundwater will not be sampled.
AO-SS-17	Field Storage	II	Establish soil conditions near unit. Groundwater will not be sampled.
AO-SS-18	Field Storage	II	Establish soil conditions near unit. Groundwater will not be sampled.
AO-SS-19	Field Storage	II	Establish soil conditions near unit. Groundwater will not be sampled.
MW-1	South of Facility	II	Establish groundwater conditions South of facility. Soil will not be sampled.

Table 7. Proposed Surface Water and Sediment Sample Location Rationale, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

Sample Location	Area	Relationship of Flow Direction to Origination on Hercules	Rationale
AO-SW-17	Sludge Pits	Upgradient	Water flowing onto Hercules from residential/commercial area.
AO-SW-18	Sludge Pits	Upgradient	Water flowing onto Hercules from residential/commercial area.
AO-SW-19	Sludge Pits	Downgradient	Water discharging to Greens Creek after flowing through Hercules property.
AO-SW-20	Surface Water Drainage into Greens Creek	Downgradient	Water discharging to Greens Creek after flowing through Hercules property.
AO-SW-21	Surface Water Drainage into Greens Creek	Downgradient	Water discharging to Greens Creek after flowing through Hercules property.
AO-SW-22	Surface Water Drainage into Greens Creek	Downgradient	Water discharging to Greens Creek after flowing through Hercules property.
AO-SW-23	Surface Water Drainage into Greens Creek	Downgradient	Water discharging to Greens Creek after flowing through Hercules property.
AO-SW-24	Surface Water Drainage to offsite Conveyance Leading to the Bouie	Downgradient	Water discharging off site after flowing through Hercules property.
AO-SW-25	Near Zeon Chemical	Upgradient	Water flowing onto Hercules from Zeon Chemical.
AO-SW-26	Near Cemetery	Upgradient	Water flowing onto Hercules from the cemetery.
AO-SW-27	From Tall Oil Plant	Downgradient	Water discharging to Greens Creek after flowing through Hercules property.
AO-SW-28	From Tall Oil Plant	Downgradient	Water discharging to Greens Creek after flowing through Hercules property.
AO-SW-29	Near Cemetery	Upgradient	Water flowing onto Hercules from the cemetery.
AO-SW-30	Former Process Areas	Downgradient	Water discharging to City culvert.
AO-SW-31	Near Providence Street	Downgradient	Water discharging to City culvert after flowing through Hercules property.
AO-SW-32	Former Process Areas	Upgradient	Water flowing through Hercules prior to discharging to City culvert.
AO-SW-33	Former Process Areas	Upgradient	Water flowing through Hercules prior to discharging to City culvert.
AO-SW-34	Near W. 7th Street	Upgradient	Water flowing onto Hercules from the cemetery.
AO-SW-35	Near W. 7th Street	Downgradient	Water flowing through Hercules prior to discharging to City culvert.

Table 8. Noncarcinogenic Toxicity Values for Oral and Dermal Exposure, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

		Oral	RfD (mg/k	g/day) [a]		Adjustment	Derr	nal RfD	(mg/kg/day) [b]	Target Site/	Confidence Level
Constituents		Subchronic	[ref]	Chronic	[ref]	Factor [b]	Subchronic	[ref]	Chronic	[ref]	Critical Effect	Uncertainty Facto
Pesticides												
Alpha-BHC		8.0E-03	С	8.0E-03	Α	1	8.0E-03	С	8.0E-03	Α	NA	NA
Gamma-BHC (Lindane)		3.0E-03	Н	3.0E-04	1	1	3.0E-03	Н	3.0E-04	1	liver, kidney	medium/1000
Herbicides											-	
2,4-D		1.0E-02	Н	1.0E-02	1	1	1.0E-02	Н	1.0E-02	1	blood, liver, kidney	medium/100
Volatile Organic Compounds											•	
Acetone		2.7E+00	СХ	9.0E-01	1	1	2.7E+00	СХ	9.0E-01	1	liver, kidney	medium/1000
Benzene		1.0E-02	Р	4.0E-03	1	1	1.0E-02	Р	4.0E-03	1	blood	medium/100
Bromobenzene		8.0E-03	С	8.0E-03	1	1	8.0E-03	С	8.0E-03	1	liver	medium/1000
Bromodichloromethane		8.0E-03	Р	2.0E-02	1	1	8.0E-03	Р	2.0E-02	1	kidney	medium/1000
Bromoform		2.0E-01	Н	2.0E-02	1	1	2.0E-01	Н	2.0E-02	1	liver	medium/1000
Bromomethane		1.4E-02	Н	1.4E-03	i	1	1.4E-02	Н	1.4E-03	i	forestomach	medium/1000
Carbon Disulfide		1.0E-01	С	1.0E-01	i	1	1.0E-01	С	1.0E-01	i	fetus	medium/100
Carbon Tetrachloride		1.3E-02	СХ	4.0E-03	i	1	1.3E-02	СХ	4.0E-03	i	liver	medium/1000
Chlorobenzene		2.0E-01	CX	2.0E-02	i	1	2.0E-01	CX	2.0E-02	i	liver	medium/1000
Chloroethane		NA	0,1	5.0E-04	•	1	NA	0,1	5.0E-04	•	NA	NA
Chloroform		1.0E-02	н	1.0E-02	1	1	1.0E-02	Н	1.0E-02	1	liver	medium/1000
Chloromethane		NA		NA	•	1	NA		NA	•	NA	NA
2-Chlorotoluene		2.0E-01	Н	2.0E-02	- 1	1	2.0E-01	Н	2.0E-02	1	WB	low/1000
4-Chlorotoluene		7.0E-02	C	2.0E-02	X	1	7.0E-02	c	2.0E-02 2.0E-02	X	WB	low/1000
Dibromochloromethane		7.0E-02 7.0E-02	P	2.0E-02	ì	1	7.0E-02 7.0E-02	P	2.0E-02 2.0E-02	, I	liver	medium/1000
1.2-Dichlorobenzene		9.0E-02	H	9.0E-02	i	1	9.0E-01	Н	9.0E-02	i	NR	low/1000
1.3-Dichlorobenzene	[c]	9.0E-01	Н	9.0E-02 9.0E-02	ls	1	9.0E-01	Н	9.0E-02 9.0E-02	ls	NA NA	NA
,	[c]	7.0E-01		9.0E-02 7.0E-02		1	7.0E-02		7.0E-02		NA NA	NA NA
1,4-Dichlorobenzene		7.0E-02 5.0E-02	С	7.0E-02 5.0E-02	A I	1	7.0E-02 5.0E-02	С	7.0E-02 5.0E-02	A I		medium/100
1,1-Dichloroethene			С					С		-	liver	
cis-1,2-Dichloroethene		1.0E-01	Н	2.0E-03	I	1	1.0E-01	Н	2.0E-03	I	blood	low/3000
1,2-Dichloroethane		2.0E-02	C	6.0E-03	X	1	2.0E-02	C	6.0E-03	X	kidney	low/3000
1,2-Dichloropropane		7.0E-02	A	9.0E-02	A	1	7.0E-02	A	9.0E-02	A	liver	1000
Ethylbenzene		5.0E-02	Р	1.0E-01	ı	1	5.0E-02	Р	1.0E-01	I	liver, kidney	high/1000
Isopropylbenzene		4.0E-01	Н	1.0E-01	ı	1	4.0E-01	Н	1.0E-01	ı	kidney	low/1000
Methyl ethyl ketone		2.0E+00	Н	6.0E-01	ı	1	2.0E+00	Н	6.0E-01	ı	fetus	low/3000
4-Methyl-2-pentanone		8.0E-02	С	8.0E-02	Н	1	8.0E-02	С	8.0E-02	Н	liver, kidney	NA
Methylene Chloride		6.0E-03	С	6.0E-03	ı	1	6.0E-03	С	6.0E-03	I	liver	medium/100
Naphthalene		2.0E-02	С	2.0E-02	ı	1	2.0E-02	С	2.0E-02	I	weight loss	low/3000
Styrene		2.0E+00	CX	2.0E-01	I	1	2.0E+00	CX	2.0E-01	Ţ	liver, RBCs	medium/1000
Tetrachloroethene		6.0E-03	С	6.0E-03	I	1	6.0E-03	С	6.0E-03	1	neurotoxicity	medium/1000
Toluene		8.0E-01	Р	8.0E-02	I	1	8.0E-01	Р	8.0E-02	1	liver, kidney	medium/3000
1,2,3-Trichlorobenzene		8.0E-03	Р	8.0E-04	X	1	8.0E-03	Р	8.0E-04	Χ	NA	low/10000
1,2,4-Trichlorobenzene		9.0E-02	Р	1.0E-02	I	1	9.0E-02	Р	1.0E-02	1	adrenal, brain	medium/1000
Trichloroethene		5.0E-04	С	5.0E-04	I	1	5.0E-04	С	5.0E-04	1	heart, kidney	high/10
1,2,4-Trimethylbenzene	[d]	1.0E-01	Ps	1.0E-02	Ps	1	1.0E-01	Ps	1.0E-02	Ps	liver	medium/10,000
1,3,5-Trimethylbenzene		1.0E-01	Р	1.0E-02	X	1	1.0E-01	Р	1.0E-02	X	liver	medium/10,000
Vinyl Chloride		3.0E-03	С	3.0E-03	ï	1	3.0E-03	С	3.0E-03	ï	liver	medium/30

Table 8. Noncarcinogenic Toxicity Values for Oral and Dermal Exposure, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

		Oral I	RfD (mg/k	g/day) [a]		Adjustment	Derr	nal RfD	(mg/kg/day) [b]	Target Site/	Confidence Level/
Constituents		Subchronic	[ref]	Chronic	[ref]	Factor [b]	Subchronic	[ref]	Chronic	[ref]	Critical Effect	Uncertainty Factor
Semi-Volatile Organic Compou	nds											
1,1'-Biphenyl		5.0E-02	С	5.0E-02	- 1	1	5.0E-02	С	5.0E-02	1	kidney	medium/100
1,4-Dioxane		3.0E-02	1	3.0E-02	- 1	1	3.0E-02	1	3.0E-02	1	NA	NA
3 & 4 Methylphenol	[e]	5.0E-03	Hs	5.0E-03	Hs	1	5.0E-03	Hs	5.0E-03	Hs	CNS, WB	low/1000
o,o,o-Triethylphosphorothioate		NA		NA		1	NA		NA		NA	NA
Phenol		6.0E-01	Н	3.0E-01	1	1	6.0E-01	Н	3.0E-01	1	fetus	medium/300
Inorganics												
Arsenic		3.0E-04	С	3.0E-04	- 1	1	3.0E-04	С	3.0E-04	1	NA	medium/3
Barium		2.0E-01	С	2.0E-01	1	0.07	1.4E-02	С	1.4E-02	1	kidney	medium/300
Beryllium		5.0E-03	Н	2.0E-03	1	0.007	3.5E-05	Н	1.4E-05	1	intestine	low-medium/300
Chromium		2.0E-02	Н	3.0E-03	- 1	0.25	5.0E-03	Н	7.5E-04	1	NR	low/300
Cobalt		3.0E-04	С	3.0E-04	Р	1	3.0E-04	С	3.0E-04	Р	thyroid	low/3000
Nickel		2.0E-02	Н	2.0E-02	- 1	0.04	8.0E-04	Н	8.0E-04	1	WB	medium/300
Sulfide		NA		NA		1	NA		NA		NA	NA
Vanadium		5.0E-03	С	5.0E-03	S	1	5.0E-03	С	5.0E-03	S	hair	low/100
Zinc		3.0E-01	С	3.0E-01	1	1	3.0E-01	С	3.0E-01	1	blood	medium/3

A Agency for Toxic Substances Disease Registry (ATSDR 2012a).

H USEPA, Health Effects Summary Table (HEAST) (USEPA 1997).

USEPA, Integrated Risk Information System (IRIS) (USEPA 2012b).

Provisional Peer Reviewed Toxicity Values (PPRTV) (USEPA 2012c).

S USEPA User's Guide (USEPA 2012d).

X PPRTV Appendix (USEPA 2012e).

c The chronic value is used if available.

CNS Central nervous system.
mg/kg/day Milligrams per kilogram per day.
NA Not available or applicable.

NR None reported.
RfD Reference Dose.
RBCs Red blood cells.

s Value is based on use of a surrogate compound, as indicated.

WB Whole body (includes increased mortality and changes to body weight).

x The uncertainty factor for subchronic to chronic extrapolation was removed.

[a] Toxicity values were obtained following USEPA recommended hierarchy (USEPA 2003).

[b] The oral-to-dermal adjustment factor (oral absorption efficiency) is used to calculate the dermal RfD values (USEPA 2004).

RfD (dermal) = RfD (oral) × Adjustment Factor (oral absorption efficiency).

[c] 1,2-Dichlorobenzene is used as a surrogate.
[d] 1,3,5-Trimethylbenzene is used as a surrogate.
[e] 4-Methylphenol toxicity values are used.

Noncarcinogenic Toxicity Values for Inhalation Exposure, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi. Table 9.

	Inhala	ation RfC (m	g/m³) [a]		Target Site/	Confidence Level
Constituents	Subchronic	[ref]	Chronic	[ref]	Critical Effect	Uncertainty Factor
Pesticides						
Alpha-BHC	NA		NA		NA	NA
Gamma-BHC (Lindane)	NA		NA		NA	NA
Herbicides						
2,4-D	NA		NA		NA	NA
Volatile Organic Compounds						
Acetone	3.1E+01	С	3.1E+01	Α	NA	NA
Benzene	8.0E-02	Р	3.0E-02	- 1	blood	medium/100
Bromobenzene	6.0E-02	С	6.0E-02	1	liver	medium/300
Bromodichloromethane	NA		NA		NA	NA
Bromoform	NA		NA		NA	NA
Bromomethane	5.0E-03	Н	5.0E-03	I	nasal	high/100
Carbon Disulfide	7.0E-01	С	7.0E-01	1	PNS	medium/30
Carbon Tetrachloride	1.0E-01	С	1.0E-01	1	liver	medium/100
Chlorobenzene	5.0E-02	С	5.0E-02	Р	liver,kidney	low/1000
Chloroethane	1.0E+01	Н	1.0E+01	1	fetus	medium/300
Chloroform	2.4E-01	Α	9.8E-02	Α	liver, kidney, CNS	low-med/100
Chloromethane	9.0E-01	сх	9.0E-02	ı	brain	medium/1000
2-Chlorotoluene	NA		NA		NA	NA
4-Chlorotoluene	NA		NA		NA	NA
Dibromochloromethane	NA		NA		NA	NA
1,2-Dichlorobenzene	2.0E+00	Н	2.0E-01	Н	WB	NA/1000
1,3-Dichlorobenzene [b]	2.0E+00	Н	2.0E-01	Hs	NA	NA
1,4-Dichlorobenzene	2.5E+00	Н	8.0E-01	i	liver	medium/100
1,1-Dichloroethene	2.0E-01	С	2.0E-01	ı	liver	medium/30
cis-1,2-Dichloroethene	NA		NA		NA	NA
1,2-Dichloroethane	7.0E-03	С	7.0E-03	Р	liver	low/3000
1,2-Dichloropropane	1.3E-02	Н	4.0E-03	ı	nasal	high/300
Ethylbenzene	9.0E+00	Р	1.0E+00	1	developmental	medium/100
Isopropylbenzene	4.0E-01	С	4.0E-01	1	kidney, adrenal	medium/1000
Methyl ethyl ketone	5.0E+00	C	5.0E+00	1	developmental	medium/300
4-Methyl-2-pentanone	3.0E+00	С	3.0E+00	1	fetus	low-med/300
Methylene Chloride	6.0E-01	С	6.0E-01	1	NA	NA
Naphthalene	3.0E-03	С	3.0E-03	1	nasal	medium/3000
Styrene	3.0E+00	Н	1.0E+00	1	CNS	medium/30
Tetrachloroethene	4.0E-02	С	4.0E-02	1	neurotoxicity	medium/1000
Toluene	5.0E+00	P	5.0E+00	ı	CNS	medium/300
1,2,3-Trichlorobenzene	NA		NA		NA	NA
1,2,4-Trichlorobenzene	2.0E-02	Р	2.0E-03	Р	liver	medium/3000
Trichloroethene	2.0E-03	С	2.0E-03	1	heart, kidney	high/10
1,2,4-Trimethylbenzene	1.0E-01	P	7.0E-03	Р	lung	low/3000
1,3,5-Trimethylbenzene	1.0E-02	Р	0.0E+00		NS	low/3000
Vinyl Chloride	1.0E-01	С	1.0E-01	ı	liver	medium/30
Semi-Volatile Organic Compound						
1,1'-Biphenyl	4.0E-04	С	4.0E-04	Р	liver,kidney	300
1,4-Dioxane	3.6E+00	С	3.0E+00	С	NA	NA
3 & 4 Methylphenol	NA		NA		NA	NA
o,o,o-Triethylphosphorothioate	NA		NA		NA	NA
Phenol	2.0E-01	С	2.0E-01	С	NA	NA
Inorganics						
Arsenic	1.5E-05	С	1.5E-05	С	developmental/reproductive	NA
Barium	5.0E-03	Н	5.0E-04	Н	fetus	NA/1000
Beryllium	2.0E-05	С	2.0E-05	1	lung	medium/10
Chromium	1.0E-04	С	1.0E-04	1	lung	medium/300
Cobalt	6.0E-06	С	6.0E-06	Р	respiratory	medium to low/30
Nickel	9.0E-05	С	9.0E-05	Α	NA	NA
Sulfide	NA		NA		NA	NA
Vanadium	1.0E-04	С	1.0E-04	Α	NA	NA
Zinc	NA		NA		NA	NA

Table 9. Noncarcinogenic Toxicity Values for Inhalation Exposure, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

References [ref]:

A Agency for Toxic Substances Disease Registry (ATSDR 2012a).

C CalEPA, Toxicity Criteria database (CalEPA 2012f).

H USEPA, Health Effects Summary Table (HEAST) (USEPA 1997).

I USEPA, Integrated Risk Information System (IRIS) (USEPA 2012b).

Provisional Peer Reviewed Toxicity Values (PPRTV)v(USEPA 2012c).

The chronic value is used if available.

CNS Central nervous system.
mg/m³ Milligrams per cubic meter.
NA Not available or applicable.

NS Nervous system.

PNS Peripheral nervous system. RfC Reference Concentration.

Value is based on use of a surrogate compound, as indicated.
 WB Whole body (includes increased mortality and changes to body weight).
 The uncertainty factor for subchronic to chronic extrapolation was removed.

[a] Toxicity values were obtained following USEPA recommended hierarchy (USEPA 2003).

[b] 1,2-Dichlorobenzene is used as a surrogate.

Table 10. Carcinogenic Toxicity Values for Oral and Dermal Exposure, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

Constituents	Oral CSF [a] (mg/kg/day) ⁻¹	[ref]	Adjustment Factor [b]	Dermal CSF [b] (mg/kg/day) ⁻¹	Tumor Site	Weight of Evidence Classification [c]
Pesticides						
Alpha-BHC	6.3E+00	- 1	1	6.3E+00	liver	B2
Gamma-BHC (Lindane)	1.1E+00	С	1	1.1E+00	liver	B2-C
Herbicides						
2,4-D	NA		1	NA	_	NA
Volatile Organic Compounds						
Acetone	NA		1	NA	_	D
Benzene	5.5E-02	- 1	1	5.5E-02	leukemia	Α
Bromobenzene	NA		1	NA	_	NA
Bromodichloromethane	6.2E-02	- 1	1	6.2E-02	kidney	B2
Bromoform	7.9E-03	- 1	1	7.9E-03	intestine	B2
Bromomethane	NA		1	NA	_	D
Carbon Disulfide	NA		1	NA	_	NA
Carbon Tetrachloride	7.0E-02	- 1	1	7.0E-02	liver	B2
Chlorobenzene	NA	-	1	NA	_	D
Chloroethane	NA		1	NA	_	C
Chloroform	3.1E-02	С	1	3.1E-02	_	B2
Chloromethane	NA	•	1	NA	_	D
2-Chlorotoluene	NA		1	NA	_	NA
4-Chlorotoluene	NA		1	NA	_	NA
Dibromochloromethane	8.4E-02	- 1	1	8.4E-02	liver	C
1,2-Dichlorobenzene	NA		1	NA	_	D
1,3-Dichlorobenzene	NA		1	NA	_	D
1,4-Dichlorobenzene	5.4E-03	С	1	5.4E-03	liver	C
1,1-Dichloroethene	NA	•	1	NA	_	Ċ
cis-1,2-Dichloroethene	NA		1	NA	_	D
1,2-Dichloroethane	9.1E-02	ı	1	9.1E-02	circulatory system	B2
1,2-Dichloropropane	3.6E-02	Ċ	1	3.6E-02	liver	B2
Ethylbenzene	1.1E-02	Ċ	1	1.1E-02	_	D
Isopropylbenzene	NA	_	1	NA	_	D
Methyl ethyl ketone	NA		1	NA	_	D
4-Methyl-2-pentanone	NA		1	NA	_	NA
Methylene Chloride	7.5E-03	- 1	1	7.5E-03	liver	B2
Naphthalene	NA	•	1	NA	_	C
Styrene	NA		1	NA	_	NA
,						Likely to be
	-					carcinogenic in
Tetrachloroethene	2.1E-03	I	1	2.1E-03	bladder, blood	humans by all routes
						of exposure
Toluene	NA		1	NA	_	D
1,2,3-Trichlorobenzene	NA		1	NA	_	NA
1,2,4-Trichlorobenzene	2.9E-02	Р	1	2.9E-02	_	D
					liver, kidney,	carcinogenic to
Trichloroethene	4.6E-02	- 1	1	4.6E-02	lymphoma	humans
1,2,4-Trimethylbenzene	NA		1	NA		NA
1,3,5-Trimethylbenzene	NA		1	NA	_	NA
Vinyl Chloride	7.2E-01	1	1	7.2E-01	liver	Α
Semi-Volatile Organic Compounds	-			-	-	
1,1'-Biphenyl	8.0E-03		1	8.0E-03	_	D
1,4-Dioxane	1.0E-01	ı	1	1.0E-01	nasal cavity	B2
3 & 4 Methylphenol	NA	•	1	NA	_	C
o,o,o-Triethylphosphorothioate	NA		1	NA	_	NA
Phenol	NA		1	NA	_	D

Table 10. Carcinogenic Toxicity Values for Oral and Dermal Exposure, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

Constituents	Oral CSF [a] (mg/kg/day) ⁻¹	[ref]	Adjustment Factor [b]	Dermal CSF [b] (mg/kg/day) ⁻¹	Tumor Site	Weight of Evidence Classification [c]
Inorganics						
Arsenic	1.5E+00	I	1	1.5E+00	skin	Α
Barium	NA		0.07	NA	_	D
Beryllium	NA		0.007	NA	_	B1
Chromium	5.0E-01	J	0.25	2.0E+00	_	Α
Cobalt	NA		1	NA	_	NA
Nickel	NA		0.04	NA	_	NA
Sulfide	NA		1	NA	_	NA
Vanadium	NA		1	NA	_	NA
Zinc	NA		1	NA	_	D

C CalEPA, Toxicity Criteria database (CalEPA 2012).

I USEPA, Integrated Risk Information System (IRIS) (USEPA 2012a).

J New Jersey Department of Environmental Protection (NJDEP 2009).

P Provisional Peer Reviewed Toxicity Values (PPRTV) (USEPA 2012b).

Not applicable.

(mg/kg/day)-1 Inverse milligrams per kilogram per day (risk per unit dose).

[a] Toxicity values were obtained following USEPA recommended hierarchy (USEPA 2003).

[b] The oral-to-dermal adjustment factor (oral absorption efficiency) as used to calculate the dermal CSFd values (USEPA 2004a).

CSF (dermal) = CSF (oral) / Adjustment Factor (oral absorption efficiency)

[c] USEPA cancer weight-of-evidence categories are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen .

B1 - limited evidence of carcinogenicity in humans

B2 - sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate or no evidence).

Group E: Evidence of Noncarcinogenicity for Humans (no evidence of carcinogenicity in adequate studies).

Table 11. Carcinogenic Toxicity Values for Inhalation Exposure, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

	Inhalation Unit Risk (IUR) [a]		Weight of Evidence
Constituents	(mg/m ³) ⁻¹	[ref]	Tumor Site	Classification [b]
Pesticides				
Alpha-BHC	1.8E+00	I	liver	B2
Gamma-BHC (Lindane)	3.1E-01	С	_	B2-C
Herbicides				
2,4-D	NA		_	NA
Volatile Organic Compounds				
Acetone	NA		_	D
Benzene	7.8E-03	1	leukemia	A
Bromobenzene	NA	-	_	NA
Bromodichloromethane	3.7E-02	С	_	B2
Bromoform	1.1E-03	i	intestine	B2
Bromomethane	NA	•	_	D
Carbon Disulfide	NA NA		_	NA
Carbon Tetrachloride	6.0E-03	1	liver	B2
Chlorobenzene	NA	•		D
Chloroethane	NA NA		_	C
Chloroform	2.3E-02	1	- livor	B2
Chloromethane	2.3E-02 NA	'	liver	D D
	NA NA		_	NA
2-Chlorotoluene			_	
4-Chlorotoluene	NA 2.7E-02	0		NA
Dibromochloromethane		С	liver	C
1,2-Dichlorobenzene	NA		_	D
1,3-Dichlorobenzene	NA 1 15 00		_	D
1,4-Dichlorobenzene	1.1E-02	С	_	С
1,1-Dichloroethene	NA		_	C
cis-1,2-Dichloroethene	NA		_	D
1,2-Dichloroethane	2.6E-02	ı	circulatory system	B2
1,2-Dichloropropane	1.0E-02	С	_	B2
Ethylbenzene	NA		_	D
Isopropylbenzene	NA		_	D
Methyl ethyl ketone	NA		_	D
4-Methyl-2-pentanone	NA		_	NA
Methylene Chloride	4.7E-04	I	lung, liver	B2
Naphthalene	NA		respiratory	С
Styrene	NA		_	NA
				Likely to be carcinogenic ir
Tetrachloroethene	2.6E-04	I	bladder, blood	humans by all routes of
				exposure
Toluene	NA		_	D
1,2,3-Trichlorobenzene	NA		_	NA
1,2,4-Trichlorobenzene	NA		_	D
Trichloroethene	4.1E-03	I	liver, kidney, lymphoma	carcinogenic to humans
1,2,4-Trimethylbenzene	NA		_	NA
1,3,5-Trimethylbenzene	NA		_	NA
Vinyl Chloride	4.4E-03	1	liver	A
Semi-Volatile Organic Compounds	00	•		• •
1,1'-Biphenyl	NA		_	D
1,4-Dioxane	7.7E-03	С	_	B2
3 & 4 Methylphenol	7.7L-03 NA	O	_	C
o,o,o-Triethylphosphorothioate	NA NA		-	NA NA
o,o,o- i neu iyipi lospi lotoli lloale	INA		_	INA

Table 11. Carcinogenic Toxicity Values for Inhalation Exposure, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

	Inhalation Unit Risk (IUR) [a]		Weight of Evidence
Constituents	(mg/m ³) ⁻¹	[ref]	Tumor Site	Classification [b]
norganics				
Arsenic	4.3E+00	1	lung	Α
Barium	NA		_	D
Beryllium	2.4E+00	1	lung	B1
Chromium	8.4E+01	1	lung	Α
Cobalt	9.0E+00	Р	lung	NA
Nickel	2.6E-01	С	_	NA
Sulfide	NA		_	NA
/anadium	NA		_	NA
Zinc	NA		_	D

C CalEPA, Toxicity Criteria database (CalEPA 2012).

I USEPA, Integrated Risk Information System (IRIS) (USEPA 2012a).

P Provisional Peer Reviewed Toxicity Values (PPRTV; USEPA 2012b).

Not applicable.

(mg/m³)⁻¹ Inverse milligrams per cubic meter.

[a] Toxicity values were obtained following USEPA recommended hierarchy (USEPA 2003).

[b] USEPA cancer weight-of-evidence categories are as follows:

Group A: Human Carcinogen (sufficient evidence of carcinogenicity in humans).

Group B: Probable Human Carcinogen.

B1 - limited evidence of carcinogenicity in humans.

B2 - sufficient evidence of carcinogenicity in animals with inadequate or lack of evidence in humans.

Group C: Possible Human Carcinogen (limited evidence of carcinogenicity in animals and inadequate or lack of human data).

Group D: Not Classifiable as to Human Carcinogenicity (inadequate or no evidence).

Group E: Evidence of Noncarcinogenicity for Humans (no evidence of carcinogenicity in adequate studies).

Table 12. Dermal Absorption Parameters, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

		Permeabilit				.	ion Parameters	[c]	DA_2hr
Constituents	ABSd	Kp (cm/	, t i	FA	τ	t*	В (:::)		[d]
	[a]	Value	[Ref]	(unitless)	(hour)	(hour)	(unitless)	Source	(mg/cm²/event)
Pesticides									
Alpha-BHC	0	1.6E-02	EPI	0.9	4.46	10.70	0.105	calc	1.19E-04
Gamma-BHC (Lindane)	0.04	1.1E-02	DRA	0.9	4.57	10.97	0.0722	DRA	8.27E-05
Herbicides									
2,4-D	0.05	6.6E-03	calc	1.0	1.80	4.40	0.04	calc	3.48E-05
Volatile Organic Compounds									
Acetone	0	5.1E-04	calc	1.0	0.22	0.53	0.0015	calc	1.25E-06
Benzene	0	1.5E-02	DRA	1.0	0.29	0.70	0.0501	DRA	3.75E-05
Bromobenzene	0	2.0E-02	calc	1.0	0.80	1.90	0.095	calc	7.15E-05
Bromodichloromethane	0	4.0E-03	DRA	1.0	0.88	2.12	0.0229	DRA	1.47E-05
Bromoform	0.1	2.4E-03	DRA	1.0	2.79	6.70	0.0132	DRA	1.53E-05
Bromomethane	0	2.8E-03	DRA	1.0	0.36	0.87	0.0107	DRA	7.69E-06
Carbon Disulfide	0	1.1E-02	DRA	1.0	0.30	0.72	0.06	DRA	2.88E-05
Carbon Tetrachloride	0	1.6E-02	DRA	1.0	0.78	1.86	0.0767	DRA	5.76E-05
Chlorobenzene	0	2.8E-02	DRA	1.0	0.46	1.09	0.1169	DRA	7.94E-05
Chloroethane	0	6.1E-03	DRA	1.0	0.24	0.59	0.0187	DRA	1.49E-05
Chloroform	0	6.8E-03	DRA	1.0	0.50	1.19	0.0285	DRA	2.03E-05
Chloromethane	0	3.3E-03	DRA	1.0	0.20	0.49	0.009	DRA	7.83E-06
2-Chlorotoluene	0	8.6E-02	EPI	1.0	0.54	1.30	0.373	calc	2.51E-04
4-Chlorotoluene	0	5.3E-02	calc	1.0	0.54	1.30	0.23	calc	1.56E-04
Dibromochloromethane	0.1	2.9E-03	DRA	1.0	1.57	3.77	0.0178	DRA	1.42E-05
1,2-Dichlorobenzene	0	4.1E-02	DRA	1.0	0.71	1.71	0.1912	DRA	1.38E-04
1,3-Dichlorobenzene	0	5.8E-02	DRA	1.0	0.71	1.71	0.2705	DRA	1.95E-04
1,4-Dichlorobenzene	0	4.2E-02	DRA	1.0	0.71	1.71	0.1959	DRA	1.41E-04
1,1-Dichloroethene	0	1.2E-02	DRA	1.0	0.37	0.89	0.0438	DRA	3.23E-05
cis-1,2-Dichloroethene	0	7.7E-03	calc	1.0	0.37	0.89	0.029	calc	2.08E-05
1,2-Dichloroethane	0	4.2E-03	DRA	1.0	0.38	0.92	0.0158	DRA	1.15E-05
1,2-Dichloropropane	0	7.8E-03	DRA	1.0	0.46	1.10	0.0319	DRA	2.25E-05
Ethylbenzene	0	4.9E-02	DRA	1.0	0.42	1.01	0.192	DRA	1.32E-04
Isopropylbenzene	0	9.0E-02	EPI	1.0	0.49	1.18	0.59	calc	2.45E-04
Methyl ethyl ketone	0	9.6E-04	DRA	1.0	0.27	0.65	0.0031	DRA	2.43E-06
4-Methyl-2-pentanone	0	2.7E-03	DRA	1.0	0.39	0.93	0.0102	DRA	7.47E-06
Methylene Chloride	0	3.5E-03	DRA	1.0	0.32	0.76	0.0126	DRA	9.29E-06
Naphthalene	0.13	4.7E-02	DRA	1.0	0.56	1.34	0.205	DRA	1.41E-04
Styrene	0	3.7E-02	DRA	1.0	0.41	0.98	0.145	DRA	9.98E-05
Tetrachloroethene	0	3.3E-02	DRA	1.0	0.91	2.18	0.163	DRA	1.25E-04
Toluene	0	3.1E-02	DRA	1.0	0.35	0.84	0.113	DRA	8.01E-05
1,2,3-Trichlorobenzene	0	1.1E-01	EPI	1.0	1.09	2.62	0.58	calc	4.57E-04
1,2,4-Trichlorobenzene	0	6.6E-02	DRA	1.0	1.11	2.66	0.335	DRA	2.72E-04
Trichloroethene	0	1.2E-02	DRA	1.0	0.58	1.39	0.0529	DRA	3.62E-05
1,2,4-Trimethylbenzene	0	1.3E-01	EPI	1.0	0.49	1.18	0.561	calc	3.64E-04
1,3,5-Trimethylbenzene	0	9.4E-02	EPI	1.0	0.49	1.18	0.398	calc	2.61E-04

Table 12. Dermal Absorption Parameters, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

		Permeabilit	y Constant	Non-S	Steady State D	ermal Absorpti	on Parameters	[c]	DA_2hr
Constituents	ABSd	Kp (cm/l	nour) [b]	FA	τ	t*	В		[d]
	[a]	Value	[Ref]	(unitless)	(hour)	(hour)	(unitless)	Source	(mg/cm²/event)
Vinyl Chloride	0	8.4E-03	DRA	1.0	0.24	0.57	0.017	DRA	2.06E-05
Semi-Volatile Organic Compounds									
1,1'-Biphenyl	0	1.5E-01	EPI	1.0	0.76	6.30	0.7164	calc	5.11E-04
1,4-Dioxane	0.1	3.3E-04	DRA	1.0	0.33	0.80	0.0012	DRA	8.77E-07
3 & 4 Methylphenol	0.1	7.8E-03	DRA	1.0	0.43	1.03	0.0314	DRA	2.20E-05
o,o,o-Triethylphosphorothioate	0.1	8.8E-03	RAIS	_	_	_	_	_	1.75E-05
Phenol	0.1	4.3E-03	DRA	1.0	0.36	0.86	0.016	DRA	1.17E-05
Inorganics									
Arsenic	0.03	1.0E-03	DRA	_	_	_	_	_	2.00E-06
Barium	0	1.0E-03	DRA	_	_	_	_	_	2.00E-06
Beryllium	0	1.0E-03	DRA	_	_	_	_	_	2.00E-06
Chromium	0	2.0E-03	DRA	_	_	_	_	_	4.00E-06
Cobalt	0	4.0E-04	DRA	_	_	_	_	_	8.00E-07
Nickel	0	2.0E-04	DRA	_	_	_	_	_	4.00E-07
Sulfide	0	1.0E-03	DRA	_	_	_	_	_	2.00E-06
Vanadium	0	1.0E-03	DRA	_	_	_	_	_	2.00E-06
Zinc	0	6.0E-04	DRA		_	_	_	_	1.20E-06

calc Calculated value (USEPA 2004a).

cm Centimeter

DRA Dermal Risk Assessment Guidance (USEPA 2004a). The B values are calculated but are consistent with values presented in the guidance manual.

EPI USEPA 2011d.

RAIS Oak Ridge National Laboratory (ORNL), Risk Assessment Information System (RAIS) (ORNL 2012).

[a] Dermal absorption efficiency for uptake of constituents from a soil matrix (unitless) (USEPA 2004a).

[b] Permeability coefficient for dermal contact with constituents in water (centimeters per hour).

[c] Absorption parameters for use in the non-steady state model for dermal contact with constituents in water.

 τ = Lag time for dermal absorption through the skin.

t* = Time required to reach steady state.

B = Ratio of the permeability coefficient through the stratus corneum relative to the permeability coefficient across the viable epidermis.

FA = Fraction of absorbed water.

[d] DA calculated according to equations presented in USEPA 2004a (using Equation [0], [1], or [2] as indicated in Tables 17 and 18 based on exposure time (ET) = 2 hour.

Table 13. Receptor Exposure Parameters, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

Parameter		Symbol	Units	Outdoor Site Worker	[ref]	Construction Worker	[ref]	Adolescent Trespasser (6-16 years)	[ref]
General Fact	<u>ors</u>								
Averaging Tir	me (cancer)	ATc	days	25,550	[1,2,a]	25,550	[1,2,a]	25,550	[1,2,a]
Averaging Tir	ne (noncancer)	ATnc	days	9,125	[1,2,a]	182	[1,2,a]	3,650	[1,2,a]
Body Weight	,	BW	kg	70	[1,2]	70	[1,2]	44	[6]
Exposure Fre	quency	EF	days/year	225	[3]	130	PJ	52	PJ [b]
Exposure Dur	ration	ED	years	25	[1,2]	1	PJ	10	ΡĴ
Age-Depende	ent Adjustment Factor	ADAF	unitless	NA		NA		3	[5]
Inhalation		ГТ	haur/day	0	PJ	0	PJ	4	PJ
Exposure Tim		ET	hour/day	8	PJ	8	PJ	1	PJ
Conversion F	actor	CF	day/hour	0.042		0.042		0.042	
	- Ingestion (Oral)	ID	l (dec.			0.005	Б.		
	Ingestion Rate - Dermal Contact	IRgw	L/day	_		0.005	PJ	_	
		004	2			0.000	[0]		
•	Surface Area	SSAgw	cm²	_		3,300	[3]	_	
•	ne; groundwater contact	ETgw	hours/day	_		2	PJ	_	
Soil - Ingestic									
Incidental Soi	I Ingestion Rate	IRs	mg/day	100	[3]	330	[3]	50	[6]
Fraction Inge	sted from Souce	FI	unitless	1		1		1	
Soil - Dermal									
Exposed Skin	Surface Area	SSAs	cm ²	3,300	[3]	3,300	[3]	3,054	[6,f]
	dherence Rate	SAR	mg/cm²/day	0.2	[4,c]	0.3	[4,d]	0.07	[4,e]
	<i>gestion (Oral)</i> diment Ingestion Rate	IRsed	mg/day	_		-		25	PJ [g]
Sediment - De	ermal Contact								
Exposed Skin	Surface Area	SSAsed	cm ²	-		_		3,054	[6,f]
Exposure Fre	quency	EFsed	days/year	_		_		52	PJ [b]
Sediment-to-S	Skin Adherence Rate	SedAR	mg/cm²/day	_		-		0.07	[4,e]
Surface Water	er - Ingestion (Oral) and E	Dermal Con	<u>tact</u>						
Surface Water	er Ingestion Rate	IRsw	L/hour	-		_		0.005	PJ [h]
Exposed Skin	Surface Area	SSAsw	cm ²	_		_		3,054	[6,f]
Exposure Fre	quency	EFsw	days/year	_		_		52	PJ [b]
Exposure Tim	ne	ETsw	hours/day	-		-		1	PJ
References:									
	USEPA 1989	[4]	USEPA 2004a						
	USEPA 1991	[5]	USEPA 2005						
	USEPA 2002	[6]	USEPA 2011b						
				-4.70					
	The averaging time for cand								
	The averaging time for non-			, ,		•			
	The exposure frequency for								
ICI	The skin adherence rate for 2004a).	the outdoor	site worker is base	ed on the 50" perce	entile weig	ghted adherence fa	actor for u	tility workers (U	SEPA
IOI	The skin adherence rate for (USEPA 2004a).	the construc	ction worker is base	ed on the 95 th perce	entile wei	ghted adherence fa	actor for o	construction wor	kers
[e]	The skin adherence rate for	the adolesce	ent trespasser is ba	ased on the geome	etric mear	adherence factor	for garde	eners (USEPA 20	004a).
Iti	The skin surface area (SSA therefore, the SSA is the ag	,				•			
Ini	The incidental sediment ingradolescent trespasser.	estion rate fo	or the adolescent tr	espasser is based	upon one	e half the incidentia	al soil inge	estion rate for the	Э
[h]	The surface water ingestion scenario (0.05 L/hour).	rate for an a	dolescent trespas	ser that is wading is	s assume	ed to be 1/10th the	ingestion	rate of a swimm	ner
2	,								
	Centimeter squared. Kilogram.	L mg	Liter. Milligram.	NA	Not appl	icable.			
9	·ogram.	y	ngrann.						

Receptor Exposure Parameters - Mutagenic Mode of Action, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi. Table 14.

							Off-Site	Resident			
Paramet	ter	Symbol	Units	0-2 Y	ears	2-6 \	ears_	6-16	Years	16-30	Years
General	Factors										
	g Time (cancer)	ATc	days	25,550	[1,2,a]	25,550	[1,2,a]	25,550	[1,2,a]	25,550	[1,2,a
•	g Time (noncancer)	ATnc	days	730	[1,2,a]	1,460	[1,2,a]	3,650	[1,2,a]	5,110	[1,2,a
Body We	• ,	BW	kg	8	[4]	17	[4]	44	[4]	72	[4]
•	e Frequency	EF	days/year	350	[1,2]	350	[1,2]	350	[1,2]	350	[1,2]
•	e Duration	ED	years	2	[.,-]	4	[-,-]	10	[.,-]	14	[.,-]
•	endent Adjustment Factor	ADAF	unitless	10	[3]	3	[3]	3	[3]	1	[3]
nhalatio	•										
xposure		ET	hour/day	24	PJ	24	PJ	24	PJ	24	PJ
•	on Factor		day/hour	0.042	. 0	0.042	. 0	0.042	. 0	0.042	
Soil - Inc	gestion (Oral)		•								
	al Soil Ingestion Rate	IRs	mg/day	200	[5]	200	[5]	100	[5]	100	[5]
	Ingested from Souce	FI	unitless	1	[-1	1	[-1	1	[-1	1	[-]
	ermal Contact		dilliooo			•		•		•	
	Skin Surface Area	SSAs	cm²	1,133	[4]	1,543	[4]	3,054	[4]	4,213	[4]
•	kin Adherence Rate	SAR	mg/cm²/day	0.2	[5]	0.07	[5]	0.07	[5]	0.07	[5]
	nt - Ingestion (Oral)	0,	mg/om/aay	0.2	[0]	0.0.	[0]	0.0.	[0]	0.07	[0]
	al Sediment Ingestion Rate	IRsed	mg/day	100	PJ [b]	100	PJ [b]	50	PJ [b]	50	PJ [b
	nt - Dermal Contact	1000	g, aa,		. 0 [0]		. 0 [0]		. 0 [0]	00	. 0 [0
	Skin Surface Area	SSAsed	cm²	1,133	[4]	1,543	[4]	3,054	[4]	4,213	[4]
•	e Frequency	EFsed	days/year	26	PJ [d]	26	PJ [d]	26	PJ [d]	26	PJ [d
•	t-to-Skin Adherence Rate	SedAR	mg/cm²/day	0.2	[5]	0.07	[5]	0.07	[5]	0.07	[5]
	Water - Ingestion (Oral) and		mg/om /day	0.2	[0]	0.07	[o]	0.07	[o]	0.07	[0]
	water Ingestion Rate	IRsw	L/hour	0.005	PJ [c]	0.005	PJ [c]	0.005	PJ [c]	0.005	PJ [c
	•	SSAsw	cm ²	1,133							
•	Skin Surface Area				[4]	1,543	[4]	3,054	[4]	4,213	[4]
•	e Frequency	EFsw	days/year	26	PJ [d]	26	PJ [d]	26	PJ [d]	26	PJ [d]
Exposure		ETsw	hours/day	2	PJ	2	PJ	2	PJ	2	PJ
ngestion		156.1		0.0040		0.0000	F 43	0.0047		0.0047	
-ish Inge	estion Rate	IRfish	kg/day	0.0012	[4]	0.0026	[4]	0.0017	[4]	0.0017	[4]
eference	es:										
1]	USEPA 1989	[4]	USEPA 2011b								
2]	USEPA 1991	[5]	USEPA 2011c								
3]	USEPA 2005										
_											
a]	The averaging time for car		· ·			-					
	The averaging time for nor		•			-					
b]	The incidental sediment in	•	•		•						
c]	The surface water ingestio L/hour).	n rate for the off-s	site resident that is v	vading is as	sumed to b	oe 1/10th th	ne ingestic	on rate of a	swimmer	scenario (0).05
d]	The exposure frequency to	sediment and su	ırface water is assur	med to be 1	day a wee	k for 6 moi	nths a yea	r during th	e summer	months.	
2					5.						
m^2	Centimeter squared.	L	Liter.		PJ	Profession	onal judgm	nent.			
g	Kilogram.	mg	Milligram.		_	Not appli					

Table 15. Physical and Chemical Properties, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

Constituents	Molecu Weigh (MW) (g/mo	nt	Water Solubility (S) (mg/L 25 °C)	[ref]	Henry's Law Constant at 25 °C (atm-m³/mol)	Henry's Law Constant at 25 °C (unitless)	[ref]	Diffusivity in Air (cm²/sec)	[ref]	Diffusivity in Water (cm²/sec)	[ref]	Kd (L/kg)	[ref]	Enthalpy of Vaporization at Boiling Point (DHv,b) (cal/mol)	[ref]	Normal Boiling point (Tb) (K)		Critical Temperature (Tc) (K)	,
Pesticides																			
Alpha-BHC	290.8	3 RSL	2.00E+00	RSL	5.14E-06	2.10E-04	RSL	4.33E-02	RSL	5.06E-06	RSL	2.81E+03	RSL	1.50E+04	J&E	5.97E+02	HSDB	8.39E+02	J&E
Gamma-BHC (Lindane)	290.8	3 RSL	7.30E+00	RSL	5.14E-06	2.10E-04	RSL	4.33E-02	RSL	5.06E-06	RSL	2.81E+03	RSL	1.26E+04	calc	5.97E+02	SCDM	8.39E+02	J&E
Herbicides																			
2,4-D	221.0	4 RSL	6.77E+02	RSL	3.54E-08	1.45E-06	RSL	5.20E-02	RSL	6.07E-06	RSL	2.96E+01	RSL	_	_	4.33E+02	SCDM	6.50E+02	calc
Volatile Organic Compounds																			
Acetone	58.08	RSL	1.00E+06	RSL	3.50E-05	1.43E-03	RSL	1.06E-01	RSL	1.15E-05	RSL	2.36E+00	RSL	6.96E+03	J&E	3.29E+02	SCDM	5.08E+02	J&E
Benzene	78.11	RSL	1.79E+03	RSL	5.55E-03	2.27E-01	RSL	8.95E-02	RSL	1.03E-05	RSL	1.46E+02	RSL	7.34E+03	J&E	3.53E+02	SCDM	5.62E+02	J&E
Bromobenzene	157.0		4.46E+02	RSL	2.47E-03	1.01E-01	RSL	5.37E-02	RSL	9.30E-06	RSL	2.34E+02	RSL	8.82E+03	calc	4.29E+02	HSDB	6.44E+02	calc
Bromodichloromethane	163.8	3 RSL	3.03E+03	RSL	2.12E-03	8.66E-02	RSL	5.63E-02	RSL	1.07E-05	RSL	3.18E+01	RSL	7.80E+03	J&E	3.63E+02	SCDM	5.86E+02	J&E
Bromoform	252.7	3 RSL	3.10E+03	RSL	5.35E-04	2.19E-02	RSL	3.57E-02	RSL	1.04E-05	RSL	3.18E+01	RSL	9.48E+03	J&E	4.22E+02	SCDM	6.96E+02	J&E
Bromomethane	94.94	RSL	1.52E+04	RSL	7.34E-03	3.00E-01	RSL	1.00E-01	RSL	1.35E-05	RSL	1.32E+01	RSL	5.71E+03	J&E	2.77E+02	SCDM	4.67E+02	J&E
Carbon Disulfide	76.13	RSL	2.16E+03	RSL	1.44E-02	5.88E-01	RSL	1.06E-01	RSL	1.30E-05	RSL	2.17E+01	RSL	6.39E+03	J&E	3.19E+02	SCDM	5.52E+02	J&E
Carbon Tetrachloride	153.8		7.93E+02	RSL	2.76E-02	1.13E+00	RSL	5.71E-02	RSL	9.78E-06	RSL	4.39E+01	RSL	2.76E+04	calc	3.50E+02	SCDM	5.57E+02	J&E
Chlorobenzene	112.5		4.98E+02	RSL	3.11E-03	1.27E-01	RSL	7.21E-02	RSL	9.48E-06	RSL	2.34E+02	RSL	8.41E+03	J&E	4.05E+02	SCDM	6.32E+02	J&E
Chloroethane	64.52		6.71E+03	RSL	1.11E-02	4.54E-01	RSL	1.04E-01	RSL	1.16E-05	RSL	2.17E+01	RSL	5.88E+03	J&E	2.85E+02	SCDM	4.60E+02	J&E
Chloroform	119.3		7.95E+03	RSL	3.67E-03	1.50E-01	RSL	7.69E-02	RSL	1.09E-05	RSL	3.18E+01	RSL	6.99E+03	J&E	3.34E+02	SCDM	5.36E+02	J&E
Chloromethane	50.49			RSL	8.82E-03	3.60E-01	RSL	1.24E-01	RSL	1.36E-05	RSL	1.32E+01	RSL	5.11E+03	J&E	2.49E+02	SCDM	4.16E+02	J&E
2-Chlorotoluene	126.5			RSL	3.57E-03	1.46E-01	RSL	6.29E-02	RSL	8.72E-06	RSL	3.83E+02	RSL	1.03E+03	HSDB	4.32E+02	HSDB	3.81E+02	HSDB
4-Chlorotoluene	126.5			RSL	4.38E-03	1.79E-01	RSL	6.26E-02	RSL	8.66E-06	RSL	3.75E+02	RSL	1.02E+04	HSDB	4.36E+02	HSDB	3.86E+02	HSDB
Dibromochloromethane	208.2			RSL	7.83E-04	3.20E-02	RSL	3.66E-02	RSL	1.06E-05	RSL	3.18E+01	RSL	5.90E+03	J&E	4.16E+02	SCDM	6.78E+02	J&E
1,2-Dichlorobenzene	147	RSL		RSL	1.92E-03	7.85E-02	RSL	5.62E-02	RSL	8.92E-06	RSL	3.83E+02	RSL	9.70E+03	J&E	4.54E+02	SCDM	7.05E+02	J&E
1,3-Dichlorobenzene	147	SCDI		J&E	3.09E-03	1.26E-01	J&E	6.92E-02	J&E	7.86E-06	J&E	1.98E+03	J&E	9.23E+03	J&E	4.46E+02	SCDM	6.84E+02	J&E
1,4-Dichlorobenzene	147	RSL		RSL	2.41E-03	9.85E-02	RSL	5.50E-02	RSL	8.68E-06	RSL	3.75E+02	RSL	9.27E+03	J&E	4.47E+02	SCDM	6.85E+02	J&E
1,1-Dichloroethene	96.94			RSL	2.61E-02	1.07E+00	RSL	8.63E-02	RSL	1.10E-05	RSL	3.18E+01	RSL	6.25E+03	J&E	3.05E+02	SCDM	5.76E+02	J&E
cis-1,2-Dichloroethene	96.94			RSL	4.08E-03	1.67E-01	RSL	8.84E-02	RSL	1.13E-05	RSL	3.96E+01	RSL	7.19E+03	J&E	3.34E+02	SCDM	5.44E+02	J&E
1,2-Dichloroethane	98.96			RSL	1.18E-03	4.82E-02	RSL	8.57E-02	RSL	1.10E-05	RSL	3.96E+01	RSL	7.64E+03	J&E	3.57E+02	SCDM	5.61E+02	J&E
1,2-Dichloropropane	112.9			RSL	2.82E-03	1.15E-01	RSL	7.33E-02	RSL	9.73E-06	RSL	6.07E+01	RSL	7.59E+03	J&E	3.70E+02	SCDM	5.72E+02	J&E
Ethylbenzene	106.1		1.69E+02	RSL	7.88E-03	3.22E-01	RSL	6.85E-02	RSL	8.46E-06	RSL	4.46E+02	RSL	8.50E+03	J&E	4.09E+02	SCDM	6.17E+02	J&E
Isopropylbenzene	120.2			RSL	1.15E-02	4.70E-01	RSL	6.03E-02	RSL	7.86E-06	RSL	6.98E+02	RSL	1.03E+04	J&E	4.26E+02	SCDM	6.31E+02	J&E
Methyl ethyl ketone	72.11			RSL	5.69E-05	2.33E-03	RSL	9.14E-02	RSL	1.02E-05	RSL	4.51E+00	RSL	7.48E+03	J&E	3.53E+02	SCDM	5.37E+02	J&E
4-Methyl-2-pentanone	100.1		1.90E+04	RSL	1.38E-04	5.64E-03	RSL	6.98E-02	RSL	8.35E-06	RSL	1.26E+01	RSL	8.24E+03	J&E	3.90E+02	SCDM	5.71E+02	J&E
Methylene Chloride	84.93		1.30E+04	RSL	3.25E-03	1.33E-01	RSL	9.99E-02	RSL	1.25E-05	RSL	2.17E+01	RSL	6.71E+03	J&E	3.13E+02	SCDM	5.10E+02	J&E
Naphthalene	128.1			RSL	4.40E-04	1.80E-02	RSL	6.05E-02	RSL	8.38E-06	RSL	1.54E+03	RSL	1.04E+04	J&E	4.91E+02	SCDM	7.48E+02	J&E
Styrene	104.1		3.10E+02	RSL	2.75E-03	1.12E-01	RSL	7.11E-02	RSL	8.78E-06	RSL	4.46E+02	RSL	8.74E+03	J&E	4.18E+02	SCDM	6.36E+02	J&E
	a] 34.08		4.37E+06	RSL	1.58E-06	6.45E-05	EPI	—	_	- C.1 62 66	_	—	_	3.36E+03	HSDB	2.12E+02	HSDB	3.74E+02	HSDB
Tetrachloroethene	165.8			RSL	1.77E-02	7.23E-01	RSL	5.05E-02	RSL	9.46E-06	RSL	9.49E+01	RSL	8.29E+03	J&E	3.94E+02	SCDM	6.20E+02	J&E
Toluene	92.14			RSL	6.64E-03	2.71E-01	RSL	7.78E-02	RSL	9.20E-06	RSL	2.34E+02	RSL	7.93E+03	J&F	3.84E+02	SCDM	5.92E+02	J&E
1,2,3-Trichlorobenzene	181.4			RSL	1.25E-03	5.11E-02	RSL	3.95E-02	RSL	8.38E-06	RSL	1.38E+03	RSL	9.47E+03	calc	4.94E+02	CFATE	7.41E+02	calc
1,2,4-Trichlorobenzene	181.4			RSL	1.42E-03	5.80E-02	RSL	3.96E-02	RSL	8.40E-06	RSL	1.36E+03	RSL	1.05E+04	J&E	4.86E+02	SCDM	7.41E102 7.25E+02	J&E
Trichloroethene	131.3			RSL	9.85E-03	4.03E-01	RSL	6.87E-02	RSL	1.02E-05	RSL	6.07E+01	RSL	7.51E+03	J&E	3.60E+02	SCDM	5.44E+02	J&E
1,2,4-Trimethylbenzene	120.2			RSL	6.16E-03	2.52E-01	RSL	6.07E-02	RSL	7.92E-06	RSL	6.14E+02	RSL	9.37E+03	J&E	4.42E+02	RAIS	6.49E+02	J&E
1,3,5-Trimethylbenzene	120.2			RSL	8.77E-03	3.58E-01	RSL	6.02E-02	RSL	7.84E-06	RSL	6.02E+02	RSL	9.32E+03	J&E	4.42E+02 4.38E+02	RAIS	6.37E+02	J&E
Vinyl Chloride	62.5			RSL	2.78E-02	1.14E+00	RSL	1.07E-01	RSL	1.20E-05	RSL	2.17E+01	RSL	5.25E+03	J&E	4.50E+02 2.59E+02	SCDM	4.32E+02	J&E
Semi-Volatile Organic Compour		NOL	0.00L+03	NOL	2.10L-02	1.17LT00	INOL	1.07 L-01	NOL	1.202-03	INOL	Z. 17 LTU 1	NOL	J.2JLTUJ	UGL	2.002	GODIVI	7.02LT02	UXL
1,1'-Biphenyl	154.2	1 RSL	6.94E+00	RSL	3.08E-04	1.26E-02	RSL	4.71E-02	RSL	7.56E-06	RSL	5.13E+03	RSL	1.09E+04	J&E	5.29E+02	SCDM	7.89E+02	J&E
1,4-Dioxane	88.11			RSL RSL	4.80E-06	1.96E-04	RSL	4.71E-02 8.74E-02	RSL RSL	1.05E-05	RSL	2.63E+00	RSL	1.09E+04 —	J&E —	3.75E+02	SCDM	5.62E+02	calc
				RSL RSL	1.20E-06	4.90E-05	SCDM		RSL RSL	9.78E-06	RSL	3.07E+02	RSL		— HSDB	3.75E+02 464-476	HSDB	5.02E+02 —	calc
o,o,o-Triethylphosphorothioate	b] 108.1	4 KSL RAIS		RSL RAIS	1.20E-06 2.62E-04	4.90E-05 1.07E-02	RAIS	8.37E-02 2.67E-02	RSL RAIS	9.78E-06 6.64E-06	RAIS	3.07E+02 1.31E+02	RSL RAIS	1.19E+04		464-476 5.01E+02	RAIS		
	198													_	_			7.52E+02	calc
Phenol	94.11	RSL	8.28E+04	RSL	3.33E-07	1.36E-05	RSL	8.34E-02	RSL	1.03E-05	RSL	1.87E+02	RSL	_	_	4.55E+02	SCDM	6.82E+02	calc

Table 15. Physical and Chemical Properties, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

Constituents	Molecular Weight (MW) (g/mol)	[ref]	Water Solubility (S) (mg/L 25 °C)	[ref]	Henry's Law Constant at 25°C (atm-m³/mol)	Henry's Law Constant at 25 °C (unitless)	[ref]	Diffusivity in Air (cm²/sec)	[ref]	Diffusivity in Water (cm²/sec)	[ref]	Kd (L/kg)	[ref]	Enthalpy of Vaporization at Boiling Point (DHv,b) (cal/mol)	[ref]	Normal Boiling point (Tb) (K)		Critical Temperature (Tc) (K)	;
Inorganics																			
Arsenic	74.9216	RSL	insoluble	HSDB	_	_	_	_	_	_	_	2.90E+01	Kd-SCDM	_	_	7.47E+02	EPI	1.12E+03	calc
Barium	137.33	RSL	insoluble	SCDM	_	_	_	_	_	_	_	4.10E+01	Kd-SCDM	_	_	1.91E+03	SCDM	2.87E+03	calc
Beryllium	9.01	RSL	insoluble	SCDM	_	_		_	_	_		7.90E+02	Kd-SCDM	_	_	3.24E+03	SCDM	4.86E+03	calc
Chromium	52	RSL	1.69E+06	RSL	_	_		_	_	_		1.90E+01	Kd-SCDM	_	_	2.92E+03	SCDM	4.37E+03	calc
Cobalt	58.93	RSL	insoluble	SCDM	_	_	_	_	_	_	_	4.50E+01	Kd-SCDM	_	_	3.37E+03	SCDM	5.06E+03	calc
Nickel	58.69	RSL	insoluble	SCDM	_	_	_	_	_	_	_	6.50E+01	Kd-SCDM	_	_	3.00E+03	SCDM	4.50E+03	calc
Vanadium	50.94	RSL	0.00E+00	RSL	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Zinc	65.38	RSL	insoluble	SCDM	_	_	_	_	_	_	_	6.20E+01	Kd-SCDM	_	_	1.18E+03	SCDM	1.77E+03	calc

Parameters were obtained from USEPA Regional Screening Level (RSL) Table (USEPA 2011a) where available, otherwise, they were obtained from literature sources cited as follows: CFATE (SRC 2012); HSDB (NLM 2012); EPISuite (USEPA 2011d); J&E (USEPA 2004b); RAIS (ORNL 2012); SCDM (USEPA 2012d).

[a] Hydrogen sulfide physical and chemical properties are displayed.

[b] Cresols (CAS No. 1319-77-3) physical and chemical properties are displayed.

Not applicable.

atm-m³/mol Atmospheres x cubic meters per mole.

°C Degrees Celsius. CAS No. Chemical Number cal/mol Calorie per mole.

cm²/sec Square centimeters per second.

calc Calculated. g/mol Grams per mole. K Kalvin.

Kd Soil-water distribution coefficient (inorganics).

L/kg Liters per kilogram. mg/L Milligrams per liter.

Table 16. Risk and Hazard Equations for Exposure to Soil, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

ROUTE-SPECIFIC RISK/HAZARD:

$$\frac{\text{Inhalation:}}{\text{or HQ}_{i}} = \frac{\text{EPC}_{i} \times \text{ET} \times \text{CF} \times \text{EF} \times \text{ED} \times \text{ADAF}}{(\text{VF or PEF}) \times (\text{AT}_{C} \text{ or AT}_{NC}) \times ([1/\text{IUR}] \text{ or RfC})}$$

VF =
$$\frac{Q/C_{vol} \times [3.14 \times D_A \times T]^{1/2}}{2 \times \rho_b \times D_A \times (10,000 \text{ cm}^2/\text{m}^2)}$$
 used for volatiles

$$PEF = \frac{Q/C_{wind} \times (3,600 \text{ sec/hr})}{RPF \times (1-V) \times (Um/Ut)^3 \times Fx}$$
 used for non-volatiles

$$D_{A} = \frac{ \left[\left(\theta_{as}^{10/3} \times D_{air} \times H_{o} \right) + \left(\theta_{ws}^{10/3} \times D_{wat} \right) \right] / \theta_{T}^{2} }{ \left(\rho_{b} \times Kd \right) + \theta_{ws} + \left(\theta_{as} \times H_{o} \right) }$$

$$EPC_i = MINIMUM [EPCs, C_{sat}] OR = EPCs when C_{sat} is not relevant$$

$$C_{\text{sat}} = \frac{S}{\rho_{\text{b}}} \times \left[(\text{Koc} \times \text{Foc} \times \rho_{\text{b}}) + \theta_{\text{ws}} + (\text{H}_{\text{o}} \times \theta_{\text{as}}) \right]$$

C_{sat} is relevant only for organic constituents with melting point below 30°C.

TOTAL CANCER RISK:

$$ELCR = ELCR_o + ELCR_d + ELCR_i$$

TOTAL NON-CANCER HAZARD:

$$HI = HQ_0 + HQ_d + HQ_i$$

Variable Definitions:

Air-filled porosity of the soil (unitless). θ_{as}

 θ_{T} Total soil porosity (unitless).

 θ_{ws} Water-filled porosity of the soil (unitless).

Dry soil bulk density (g/cm³).

ABSd Dermal absorption efficiency (unitless) (Table 12).

ADAF Age-Dependent Adjustment Factor for evaluation of risk from constituents with a mutagenicity mode of action.

 AT_C Averaging time for cancer effects (days) (Table 13 and Table 14). Averaging time for noncancer effects (days) (Table 13 and Table 14). AT_{NC}

BW Body weight (kg) (Table 13 and Table 14).

CF Conversion Factor 0.042 day/hour.

 C_{sat} Constituent saturation limit in soil (mg/kg).

Cancer slope factor for oral (CSFo) or dermal (adjusted to an absorbed dose, CSFa) exposure (kg-day/mg [inverse **CSF**

mg/kg/day]) (Table 10).

 D_A Apparent diffusivity in soil (cm²/sec).

Constituent diffusivity in air (cm²/sec) (Table 15). D_{air} $\mathsf{D}_{\mathsf{wat}}$ Constituent diffusivity in water (cm²/sec) (Table 15). ED Exposure duration (years) (Table 13 and Table 14). EF Exposure frequency (days/year) (Table 13 and Table 14).

ELCR Excess lifetime cancer risk (unitless).

Table 16. Risk and Hazard Equations for Exposure to Soil, Revised Phase II Sampling and Analysis Work Plan,

Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

EPCs Exposure point concentration in soil (mg/kg).

EPC_i Exposure point concentration relevant to inhalation (mg/kg) (minimum of EPCs and C_{sat}).

ET Exposure time (hrs/day) (Table 13 and Table 14).

FI Fraction ingested from area of concern (unitless) (Table 13 and Table 14).

Foc Fraction organic carbon in the soil (unitless).

Fx Function of Ut/Um (unitless); Fx = $0.18 \times (8x^3 + 12x) \times \exp[-(x^2)]$, where x = $0.886 \times (Ut/Um)$.

H Henry's law constant (atm-m³/mol) (Table 15).

HI Hazard index for non-cancer effects (unitless); sum of the HQs.

 H_o Dimensionless Henry's law constant (unitless); calculated as $H_o = H / RT$.

HQ Hazard quotient for non-cancer effects (unitless).

IRs Ingestion rate of soil (mg/day) (Table 13 and Table 14).

IUR Inhalation Unit Risk (m³/mg) (Table 11).

Kd Soil-water distribution coefficient.

PEF Particulate emission factor (m³/kg).

 $Q/C_{vol} \qquad \quad \mbox{Volatile emission flux per unit concentration } [(g/m^2/sec)/(kg/m^3)]. \\ Q/C_{wind} \qquad \quad \mbox{Particulate emission flux per unit concentration } [(g/m^2/sec)/(kg/m^3)].$

RfC Reference concentration (mg/m³) (Table 9).

RfD Reference dose for oral (RfDo) and dermal (adjusted to an absorbed dose, RfDa), exposure (mg/kg/day) (Table 8).

RPF Respirable particle fraction (0.036 g/m²/hr).

RT Product of the universal gas constant (R = 8.206 × 10⁻⁵ atm-m³/mol/K) and the relevant Kelvin

temperature (T = 298.15 K); RT = 0.02447 atm-m³/mol.

S Constituent solubility limit in water (mg/L).

SAR Soil-to-skin adherence rate (mg/cm²/day) (Table 13 and Table 14).

SSAs Exposed skin surface area for soil contact (cm²) (Table 13 and Table 14).

T Exposure interval (sec).

Um Mean annual wind speed (m/sec).

Ut Equivalent threshold value of windspeed at 7 meters (11.32 m/sec).

V Fraction of vegetative cover (unitless).

VF Volatilization factor (m³/kg).

x Intermediate value in the calculation of PEF; $x = 0.886 \times (Ut/Um)$.

Table 17. Risk and Hazard Equations for Exposure to Groundwater, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

ROUTE-SPECIFIC RISK/HAZARD:

$$\underline{\text{Oral}}$$
: $\underline{\text{ELCR}}_{\text{o}}$ $\underline{\text{EPCgw}} \times \underline{\text{IRgw}} \times \underline{\text{EF}} \times \underline{\text{ED}}$

or
$$HQ_o$$
 = BW × $(AT_C \text{ or } AT_{NC}) \times ([1/CSF_o] \text{ or } RfD_o)$

or
$$HQ_d$$
 = BW × $(AT_C \text{ or } AT_{NC})$ × $([1/CSF_a] \text{ or } RfD_a)$

Inorganics: DA [0] =
$$\frac{K_p \times ETgw}{1000 \text{ cm}^3/L}$$

Organics: DA [1] =
$$\frac{2 \text{ FA} \times \text{K}_p}{1000 \text{ cm}^{3/l}} \times \sqrt{(6 \tau \times \text{ETgw})/\pi} \text{ if } \text{ETgw} \le t^*$$

$$or \qquad \quad DA \ [2] \ = \qquad \frac{ \quad FA \ \times \ K_p \quad }{1000 \ cm^3/L} \quad \times \quad \left(\ \frac{ETgw}{1+B} \ + \ \frac{2 \, \tau \, (\, 1+3 \, B+3 \, B^2 \,)}{(1+B)^2} \ \right) \ \ if \ \ ETgw > t^*$$

$$\underline{\text{Inhalation:}} \qquad \qquad \text{ELCR}_{i} \qquad \qquad \text{EPC}_{i} \,\, \times \,\, \text{ET} \, \times \,\, \text{CF} \, \times \,\, \text{EF} \,\, \times \,\, \text{ED}$$

or
$$HQ_i$$
 = $\frac{}{(VF) \times (AT_C \text{ or } AT_{NC}) \times ([1/IUR] \text{ or } RfC)}$

 $ELCR = ELCR_o + ELCR_d + ELCR_i$ **TOTAL CANCER RISK:**

TOTAL NON-CANCER HAZARD: $HI = HQ_0 + HQ_d + HQ_i$

Variable Definitions:

Lag time for dermal absorption through the skin (hour) (Table 12). AT_{C} Averaging time for cancer effects (days) (Table 13 and Table 14).

Averaging time for non-cancer effects (days) (Table 13 and Table 14). $\mathsf{AT}_{\mathsf{NC}}$

В Dimensionless ratio of the permeability coefficient of a compound through the stratum corneum

relative to its permeability coefficient across the viable epidermis (unitless) (Table 12).

ВW Body weight (kg) (Table 13 and Table 14).

CF Conversion Factor 0.042 day/hour.

Cancer slope factor for oral (CSFo) or dermal (adjusted to an absorbed dose, CSFa) exposure (kg-day/mg [inverse **CSF**

mg/kg/day]) (Table 10).

DΑ Dermal absorption factor (L/cm²/day), calculated using Equation [0], [1], or [2], as appropriate.

ED Exposure duration (years) (Table 13 and Table 14). EF Exposure frequency (days/year) (Table 13 and Table 14).

ELCR Excess lifetime cancer risk (unitless).

EPCgw Exposure point concentration in groundwater (mg/L)

ETgw Exposure time for groundwater contact (hours/day) (Table 13 and Table 14).

FΑ Fraction of absorbed water (unitless) (Table 12).

н Hazard index for non-cancer effects (unitless); sum of the HQs.

HQ Hazard quotient for non-cancer effects (unitless).

IRgw Ingestion rate of groundwater (L/day) (Table 13 and Table 14).

IUR Inhalation Unit Risk (m³/mg) (Table 11). Permeability coefficient (cm/hour) (Table 12). Κp RfC Reference concentration (mg/m³) (Table 9).

RfD Reference dose for oral (RfDo) and dermal (adjusted to an absorbed dose, RfDa), exposure (mg/kg/day).

SSAgw Exposed skin surface area for groundwater contact (cm²) (Table 13 and Table 14).

t* Time required to reach steady state (hour) (Table 12).

Volatilization factor. VF

Table 18. Risk and Hazard Equations for Wadding Exposure to Surface Water, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

ROUTE-SPECIFIC RISK/HAZARD:

or
$$HQ_0$$
 = BW × $(AT_C \text{ or } AT_{NC}) \times ([1/CSF_0] \text{ or } RfD_0)$

$$\underline{\text{Dermal}}: \qquad \underline{\text{ELCR}_d} \qquad \underline{\text{EPCsw} \times \text{DA} \times \text{SSAsw} \times \text{EF} \times \text{ED} \times \text{ADAF}}$$

or
$$HQ_d$$
 BW × $(AT_C \text{ or } AT_{NC})$ × $([1/CSF_a] \text{ or } RfD_a)$

$$\underline{Inorganics}: DA [0] = \frac{K_p \times ETsw}{1000 \text{ cm}^3/L}$$

Organics: DA [1] =
$$\frac{2 \text{ FA} \times \text{K}_p}{1000 \text{ cm}^3/\text{L}} \times \sqrt{\frac{6 \tau \times \text{ETsw}}{\pi}}$$
 if ETsw \leq t*

$$or \qquad \text{DA [2]} \qquad = \qquad \frac{\text{FA } \times \text{ K}_p}{1000 \text{ cm}^3\text{/L}} \quad \times \quad \left(\ \frac{\text{ETsw}}{1 + \text{B}} \ + \ \frac{2 \, \tau \, (\, 1 + 3 \, \text{B} + 3 \, \text{B}^2 \,)}{(1 + \text{B})^2} \right) \qquad \qquad \text{if } \text{ETsw} > t^*$$

$$\frac{\text{Inhalation:}}{\text{or HQ}_{i}} = \frac{\text{EPCsw} \times \text{VFsw} \times \text{ETsw} \times \text{CF} \times \text{EF} \times \text{ED} \times \text{ADAF}}{(\text{AT}_{C} \text{ or AT}_{NC}) \times ([1/IUR] \text{ or RfC})}$$

where: VFsw =
$$\frac{(1000 \text{ L/m}^3)}{(1/k_1) + [1/(H_o \times k_g)]} \times \frac{\text{SA}}{\text{Hb} \times \text{Wb} \times \text{Um}}$$
 (USEPA 1988)

TOTAL CANCER RISK: ELCR = ELCR₀ + ELCR_d + ELCR₁

TOTAL NON-CANCER HAZARD: $HI = HQ_0 + HQ_d + HQ_i$

Variable Definitions:

τ (tau) Lag time for dermal absorption through the skin (hour) (Table 12).

ADAF Age-Dependent Adjustment Factor for evaluation of risk from constituents with a mutagenicity mode of action.

 ${\sf AT}_{\sf C}$ Averaging time for cancer effects (days) (Table 13 and Table 14).

AT_{NC} Averaging time for non-cancer effects (days) (Table 13 and Table 14).

B Dimensionless ratio of the permeability coefficient of a compound through the stratum corneum

relative to its permeability coefficient across the viable epidermis (unitless) (Table 12).

BW Body weight (kg) (Table 13 and Table 14).

CF Conversion Factor 0.042 day/hour.

CSF Cancer slope factor for oral (CSFo) or dermal (adjusted to an absorbed dose, CSFa) exposure (kg-day/mg [inverse

mg/kg/day]) (Table 10).

DA Dermal absorption factor (L/cm²/day), calculated using Equation [0], [1], or [2], as appropriate.

ED Exposure duration (years) (Table 13 and Table 14).

EF Exposure frequency (days/year) (Table 13 and Table 14).

ELCR Excess lifetime cancer risk (unitless).

EPCsw Exposure point concentration in surface water (mg/L).

ETsw Exposure time for surface water (hours/day) (Table 13 and Table 14).

FA Fraction of absorbed water (unitless) (Table 12).

H Henry's law constant (atm-m³/mol) (Table 15).

Hb Height of mixing zone (2 m).

HI Hazard index for non-cancer effects (unitless); sum of the HQs.

Table 18. Risk and Hazard Equations for Wadding Exposure to Surface Water, Revised Phase II Sampling

and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

 H_o Dimensionless Henry's law constant (unitless); calculated as $H_o = H/RT$.

HQ Hazard quotient for non-cancer effects (unitless).

IRsw Incidental ingestion rate of surface water (L/day) (Table 13 and Table 14).

IUR Inhalation Unit Risk (m³/mg) (Table 11).

 $k_g \qquad \qquad \text{Gas-phase mass transfer coefficient (m/sec)} \approx (8.3 \times 10^{-3} \text{ m/sec}) \times [(18 \text{ g/mol})/\text{MW}]^{0.335} \times (\text{T/298})^{1.005}.$ $k_l \qquad \qquad \text{Liquid-phase mass transfer coefficient (m/sec)} \approx (2.0 \times 10^{-5} \text{ m/sec}) \times (\text{T/298}) \times [(32 \text{ g/mol})/\text{MW}]^{1/2}.$

K_p Permeability coefficient (cm/hour) (Table 12).

MW Molecular weight (g/mol) (Table 15).

RfC Reference concentration (mg/m³) (Table 9).

RfD Reference dose for oral (RfDo) and dermal (adjusted to an absorbed dose, RfDa), exposure (mg/kg/day) (Table 8).

RT Product of the universal gas constant (R = 8.206 × 10⁻⁵ atm-m³/mol/K) and the relevant Kelvin

temperature (T = 298.15 K); RT = 0.02447 atm-m³/mol.

SA Source area (1 m²).

SSAgw Exposed skin surface area for surface water contact (cm²) (Table 13 and Table 14).

t* Time required to reach steady state (hour) (Table 12).

Um Mean wind speed (m/sec).

VFsw Volatilization factor from surface water (L/m³).

Wb Width of mixing zone (1 m).

Table 19. Risk and Hazard Equations for Exposure to Sediment, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

ROUTE-SPECIFIC RISK/HAZARD:

Oral: ELCR_o EPCsed x IRsed x EF x ED x ADAF

or HQ_o = $\frac{10^6 \text{ mg/kg} \times BW \times (AT_C \text{ or } AT_{NC}) \times ([1/CSF_o] \text{ or } RfD_o)}{(10^6 \text{ mg/kg}) \times BW \times (AT_C \text{ or } AT_{NC}) \times ([1/CSF_o] \text{ or } RfD_o)}$

<u>Dermal:</u> ELCR_d EPCsed x SSAsed x SedAR x ABSd x EF x ED x ADAF

or HQ_d = $(10^6 \text{ mg/kg}) \times BW \times (AT_C \text{ or } AT_{NC}) \times ([1/CSF_a] \text{ or } RfD_a)$

TOTAL CANCER RISK: ELCR = ELCR_o + ELCR_d

TOTAL NON-CANCER HAZARD: $HI = HQ_o + HQ_d$

Variable Definitions:

ABSd Dermal absorption efficiency (unitless) (Table 12).

ADAF Age-Dependent Adjustment Factor for evaluation of risk from constituents with a mutagenicity mode of action.

 ${\sf AT}_{\sf C}$ Averaging time for cancer effects (days) (Table 13 and Table 14).

AT_{NC} Averaging time for non-cancer effects (days) (Table 13 and Table 14).

BW Body weight (kg) (Table 13 and Table 14).

CSF Cancer slope factor for oral (CSFo) or dermal (adjusted to an absorbed dose, CSFa) exposure (kg-day/mg

[inverse mg/kg/day]) (Table 10).

ED Exposure duration (years) (Table 13 and Table 14).

EF Exposure frequency (days/year) (Table 13 and Table 14).

ELCR Excess lifetime cancer risk (unitless).

EPCsed Exposure point concentration in sediment (mg/kg).

HI Hazard index for non-cancer effects (unitless); sum of the HQs.

HQ Hazard quotient for non-cancer effects (unitless).

IRsed Ingestion rate of sediment (mg/day) (Table 13 and Table 14).

Reference dose for oral (RfDo) and dermal (adjusted to an absorbed dose, RfDa), exposure (mg/kg/day)

(Table 8).

SedAR Sediment-to-skin adherence rate (mg/cm²/day) (Table 13 and Table 14).

SSAsed Exposed skin surface area for sediment contact (cm²) (Table 13 and Table 14).

Table 20. Risk and Hazard Equations for Exposure through Fish Ingestion, Revised Phase II Sampling and Analysis Work Plan, Hercules Incorporated, Hattiesburg, Forrest County, Mississippi.

CANCER RISK:

ELCR =
$$\frac{\text{EPCsw} \times \text{BCF} \times \text{IRfish} \times \text{EF} \times \text{ED} \times \text{CSF}_{o} \times \text{ADAF}}{\text{BW} \times \text{AT}_{C}}$$

NON-CANCER HAZARD:

HQ =
$$\frac{\text{EPCsw} \times \text{BCF} \times \text{IRfish} \times \text{EF} \times \text{ED} \times \text{ADAF}}{\text{BW} \times \text{AT}_{\text{NC}} \times \text{RfD}_{\text{o}}}$$

Variable Definitions:

ADAF Age-Dependent Adjustment Factor for evaluation of risk from constituents with a mutagenicity mode of action.

AT_C Averaging time for cancer effects (days) (Table 14).

AT_{NC} Averaging time for non-cancer effects (days) (Table 14).

BCF Fish bioconcentration factor (L/kg)

BW Body weight (kg) (Table 13 and Table 14).

CSF_o Cancer slope factor for oral exposure (kg-day/mg [inverse mg/kg/day]) (Table 10).

ED Exposure duration (years) (Table 14).

EF Exposure frequency (days/year) (Table 14).

ELCR Excess lifetime cancer risk (unitless).

EPCsw Exposure point concentration in surface water (mg/L).
HQ Hazard quotient for non-cancer hazard (unitless).

IRfish Ingestion rate of fish (kg/day).

RfD_o Reference dose for oral exposure (mg/kg/day).

Figures

HERCULES INCORPORATED 613 W. 7TH STREET HATTIESBURG, MS

Revised Phase II Sampling and Analysis Work Plan

PRELIMINARY CONCEPTUAL SITE MODEL FOR POTENTIAL EXPOSURE PATHWAYS

Hypothetical Future

Current

Biota

Decision Flow Chart for Soil Gas and Vapor Intrusion Within and Beyond Half-Mile Radius of Site

HERCULES INCORPORATED
613 W. 7TH STREET
HATTIESBURG, MS
Revised Phase II Sampling and Analysis Work Plan

DECISION FLOW CHART FOR SOIL GAS AND VAPOR INTRUSION

Decision Flow Chart for Surface Water and Sediment for Areas Outside the Half-Mile Radius

Notes:

- (a) Constituent list will be approved by EPA and MDEQ prior to sampling and will be focused to site-related chemicals.
- (b) Human health and ecological screening levels.

HERCULES INCORPORATED 613 W. 7TH STREET HATTIESBURG, MS Revised Phase II Sampling and Analysis Work Plan

DECISION FLOW CHART FOR SURFACE WATER, SEDIMENT, AND SURFACE SOIL

Decision Flow Chart for Surface Water, Sediment, and Surface Soil for On-site Areas

- (a) Constituent list will be approved by EPA and MDEQ prior to sampling and will be focused to site-related chemicals.
- (b) Human health and ecological screening levels for surface water and seidment. EPA Regional Screening Levels and MDEQ Tier 1 TRGs for surface soil.

HERCULES INCORPORATED 613 W. 7TH STREET HATTIESBURG, MS

Revised Phase II Sampling and Analysis Work Plan

DECISION FLOW CHART FOR SURFACE WATER, SEDIMENT, AND SURFACE SOIL

Decision Flow Chart for Drinking Water and Groundwater

Notes:

(a) Constituent list should be focused to site-related chemicals.

HERCULES INCORPORATED
613 W. 7TH STREET
HATTIESBURG, MS
Revised Phase II Sampling and Analysis Work Plan

DECISION FLOW CHART FOR GROUNDWATER

Decision Flow Chart for On-site Groundwater

- (a) Constituent list should be focused to site-related chemicals.
- (b) EPA Regional Screening Levels and MDEQ Tier 1 TRGs for groundwater.

HERCULES INCORPORATED
613 W. 7TH STREET
HATTIESBURG, MS
Revised Phase II Sampling and Analysis Work Plan

DECISION FLOW CHART FOR GROUNDWATER

Appendix A

Historical Isoconcentration Maps

Appendix B

Boring Logs and Well Construction Diagrams

Appendix B Well Construction Table Hercules Incorporated Hattiesburg, Mississippi

Well No.	Year Installed	Screen Interval (ft. bgs)	Total Depth of Well (ft. bgs)	Casing Diameter (in.)	Construction Material	Total Depth of Borehole (ft. bgs)	Well Completion (FM/AG)	TOC Elevation (ft.)¹
Permanent Monit	oring Wells		, ,				•	
MW-1	1997							174.12
MW-2	1997	5 - 15 ²	152	2	PVC		AG	160.07
MW-3	1997	8 - 18	18	2	PVC		AG	160.03
MW-4	1997	8.74 - 18.74	18.74	2	PVC		AG	159.75
MW-5	1997	8.5 - 18.5	18.5	2	PVC		AG	160.99
MW-6	1997	13.25 - 23.25	23.25	2	PVC		AG	174.05
MW-7	2000	10.4 - 20.4	20.4	2	PVC	20.8	FM	183.96
MW-8	2000	6 - 16	16	2	PVC	16.3	AG	179.99
MW-9	2000	7.2 - 17.2	17.2	2	PVC	17.5	AG	181.97
MW-10	2000	6.7 - 14.7	14.7	2	PVC	14.7	AG	159.88
MW-11	2000	6.7 - 14	14	2	PVC	14	FM	157.18
MW-12	2005	2-12	12	2	PVC	10	AG	162.17
MW-13	2005	8.5 - 18.5	18.5	2	PVC	16	AG	175.23
MW-14	2005	14.3 - 24.3	24.3	2	PVC	22	AG	169.23
MW-15	2005	16.5 - 26.5	26.5	2	PVC	24	AG	172.21
MW-16	2005	18.5-28.5	28.5	2	PVC	26	AG	175.62
MW-17	2005	12.7 - 22.7	22.7	2	PVC	22	AG	186.13
MW-18	2005	7.3 - 17.3	17.3	2	PVC	14	AG	165.31
MW-19	2005	11.1 - 21.1	21.1	2	PVC	22	AG	172.25
MW-20	2009	4 - 14	14	2	PVC	15	AG	168.62
MW-21	2009	6 - 16	16	2	PVC	16	FM	163.66
MW-22	2009	5 - 15	15	2	PVC	17	AG	167.62
MW-23	2009	4 - 14	14	2	PVC	15	FM	162.38
MW-24	2009	3 - 13	13	2	PVC	14	AG	164.98
Piezometers								
TP-1	1999	6.8 - 16.8	16.8	1	PVC	17	AG	Destroyed
TP-2	1999	6.8 - 16.8	16.8	1	PVC	17	AG	171.72
TP-3	1999	9.6 - 14.6	14.6	1	PVC	16	AG	169.74
TP-4	1999	5 - 10	10	1	PVC	14	AG	163.64
TP-5	1999	9 - 14	14	1	PVC	15	AG	160.54
TP-6	1999	10 - 15	15	1	PVC	17	FM ²	158.63
TP-7	1999	5.3 - 10.3	10.3	1	PVC	12	FM ²	167.17
TP-8	1999	12.5 - 17.5	17.5	1	PVC	18.5	FM ²	183.79
TP-9	1999	4 - 9	9	1	PVC	10	FM	Destroyed
TP-10	1999	8 - 14.5	14.5	1	PVC	17	AG	179.69
TP-11	1999	8 - 13	15	1	PVC	15	FM ²	162.26
TP-12	1999	5 - 13	13	1	PVC	17	AG	159.95
TP-13	1999	4 - 11	11	1	PVC	14	AG	156.99
TP-14	1999	7.6 - 12.6	12.6	1	PVC	14	AG	162.59
TP-16								179.72
TP-17								182.71

NOTES:

- 1- Elevations are in feet relative to mean sea level.
- 2 Estimate based on limited data
- -- Data not available

	X 2V	CO.	Sysi	ems, Inc. CD				В	ORING LOG	
Proje	ect:		Hercu	gineers and Scientists les - Hattiesburg			Well/Boring N		Sheet: 1 of	_1
	ct No.			ER22173	Date(s):		11-Aug-03	Logged	By: CVC	
	Boring		ition:		D.::::		01	- h ki O -		
	ng Met			Geoprobe	Drilling Contr Date:	ractor:	Singley Con	Referen		
	h to Gi		water: f Casing:		Inner Casing:			Outer C		-
LIEVA			Table:	-	Date:	_		Referen		
Rema			Groun	dwater was not encountered during o					-	
-	T		1			T	Graphical	T		
e Pt.	ion						Logs		Organic Vapor	
Sampl	Locat			Lithologic Description			uction		Headspace nalysis (ppm)	
Depth, Sample Pt.	Sample Location	Blows				Strata	Well Construction		,	
Ξ			E	dark brown, silty∙sand (ML)	TIIII		T E		
ΙΞ	-		E			111111		=		
Ξ	1		E			-111111				
Ξ						111111		\equiv		
=						111111		E		
=	-	1				- 111111				
5 =		1				111111		E		
Ξ		l _				111111				
=	2	n/a		as above; slight odor		111111				
Ξ	=	1-				111111				
1111111						111111				
Ξ		1	E			- 111111				
=						111111		三		
10	_	1	=	as above; slow probing from	9 - 10	111111				
10_	3		\equiv			ШШ				
ΙΞ	3		E			1000				
1 =						111111		E		
Ξ		1	E	no recovery except small amour	t of wood	111111				
=			E	no received and approximate annual		111111				
Ξ	4	1	E			111111		=		
		1	E			-111111	0			
15			E			11111		三		
=	-	-		Probe refusal at 15.0 feet below gr	ound surface			E		
=	=							=		
ΙΞ	=		E							
Ξ	1		\equiv					E		
=	1									
=	=		E							
.20	1									
=						1				
	-							E		
=			E					=		
			(1)	are applicable to all projects			7			

	100	4	532 8	tems, inc. O			BORING LOG
roje	ct:		Herc	ngineers and Scientists ules - Hattiesburg			Sheet: 1 of ng No.: GP-2
	ct No. Boring			HER22173	Date(s):	11-Aug-	-03 Logged By: CVC
	ng Met		tion:	East of the northeast fence co Geoprobe	Drilling Con	tractor Singley	Construction Company
	to Gr		water:	10.2	Date:	31-Oct-	
			Casing		Inner Casing		Outer Casing: NA
		ater T	able: _	162.79	Date:		Reference: TOC
Rema		woll in	etallad	with 10 ft of 0.01 slot, PVC scre	on w/ wall saak filtor	sand P granular	hantonita and
CUMP	T	T	Istalied	WILL TO It OF 0.01 SIDE, VO SCIE	en w wen sock, men		
£.	E					Graphica Logs	al
Depth, Sample Pt.	Sample Location	Blows	Lithologic Descri		tion	Strata Well Construction	Organic Vapor Headspace Analysis (ppm)
Ξ	1	pi.		dark brown and black, friable,	silty-sand (ML)	<i>(n)</i> ≥ 0	3.5
5 = =	2	n/a		as above; some wood	fragments		
55	3			as above; wet at 10.	5 feet		
Ξ	4			as above; saturate	ed		
20				as above;			
				Probe refusal at 21feet below g	round surface		

				tems, Inc. C	>			BORIN	G LOG	
		alteor		igineers and Scientists					_1 of _	
Proje		_		ules - Hattiesburg		Well/Boring No.: GP-3				
	ct No.			HER22173	Date(s):	11-Au	ıg-03 L	logged By:	CVC	
	Boring		tion:	East of the northeast fence		racton Cinal	0	N O		
	ng Met n to Gi		water:	Geoprobe 11.83	Date:	ractor: Single 31-0		Reference;	TOC	
			vater. Casing		Inner Casing			verence; Outer Casing:	NA NA	
LIGIG		ater T		160.9	Date:	, I mon		Reference:	TOC	
Rema	rks;								100	
remp	orary	well ir	stalled	with 10 ft of 0.01 slot, PVC so	reen w/ well sock, filter			e seal		
ب	_					Graph Log				
Depth, Sample Pt.	Sample Location	Blows		Lithologic Descr	iption	Strata Well Construction		Organic Heads Analysis	pace	
	1	<u>n</u>		dark brown and black, friabl	e, silty-sand (ML)	N O				
5	2	n/a		as abov	e;					
	3			as above; wood fragments an	d resinous material					
	4			Probe refusal at 12.5 feet be	elow ground surface					
20										

		-	Sws	tems, inc.	>			BORING LOG
C	curst	dizm	is, Br	igineers and Scientists				Sheet: 1 of 1
Proje		_		ules - Hattiesburg	P-112	_	Well/Boring No.:	
	ct No.:			HER22173	Date(s):	-	12-Aug-03	Logged By: CVC
	Boring ng Met		tion:	East of the northeast fence Geoprobe	Drilling Contra	ector:	Singley Constr	uction Company
	ig Met i to Gr		water	9.88	Date:	ictor.	31-Oct-03	Reference: TOC
			Casing		Inner Casing:	1 inc		Outer Casing: NA
2.010		ater T		151.96	Date:			Reference: TOC
Rema	rks:							
Temp	orary	well ir	stalled	d with 10 ft of 0.01 slot, PVC so	reen w/ filter sand, & ber	ntonite	seal	
							Graphical	
Depth, Sample Pt.	E C						Logs	
ple	Sample Location	1					5	Organic Vapor
ar	P P			Lithologic Desc	ription		Well Construction	Headspace Analysis (ppm)
Ę	old.	in.	1			Ta	l H	Analysis (ppili)
ept	E E	BIOWS	1			Strata	le /ell	
_ ۵	(i)	20	-			S	50	_
Ξ			Ξ	See Boring Log for TP-1	1 for lithology		00000 10000	E
- 3			E					
Ξ	1		\equiv				₩	=
\equiv			E				I∭ ≡ ∭	
=			=					
Ξ	1							
5 =			\equiv				₩ Ħ₩	
. =	=	l a					I‱ ⊟ ∭	
=	2	n/a					l∭≡∭	
Ξ	1	-	E				$\bowtie = \bowtie$	=
							₩ ≡ ₩	
=		1	\equiv					=
=						1		
Ξ		1	E					=
10	3		E					=
=			=				 	
\equiv			E				l‱≡l∞	=
			E					=
		L	E					=
		1	=					
=	4							=
15 =								=
			E					E
								E
Ξ			E	Boring terminated at 16 fee	t below ground surface			=
=			\equiv					E
=						V	1	E
Ξ	1		\equiv					=
20	1		=				1	E
20-	-		E				1	E
ΗΞ		1	E					=
ΝĒ	1		=					E
	1		=				1	E
Ξ		1						=
	1							=

	1	يستدين الم	Syst	ems, inc.				BORING LOG	
rojec		dre(*)t		ineers and Scientists es - Hattiesburg		Sheet: 1 of 1 Well/Boring No.: GP-10			
rojec	t No.		HE	R22173	Date(s):		12-Aug-03	Logged By: CVC	
		Locat	ion:	East of the northeast fence	corner.				
	g Met			Geoprobe	Drilling Contra	actor:		struction Company	
		oundy		7.99	Date:	1 :	31-Oct-03	Reference: TOC	
levat		op of ater Ta	Casing:	-	Inner Casing: Date:	1 inc	П	Outer Casing: NA Reference: TOC	
Remar		ater 18	ible:		Date.	-		Melerence, 100	
empo	rary	well in	stalled v	with 10 ft of 0.01 slot, PVC so	reen w/ filter sand, & ber	ntonite	seal	1011	
ر ب							Graphical Logs		
Depth, Sample Pt.	Sample Location							Organic Vapor	
립	oca			Lithologic Descr	ription		ë	Headspace	
Sa	e L		1	ū	·	1	Ę (Analysis (ppm)	
Ĕ,	Id.	WS				ata	= ts		
je	San	Blows				Strata	Well Construction		
				See Boring Log for TP-5	for lithology				
\equiv				See burning Log for TP-5	tor ittriology			_	
=	1		Ξ				****	₩Ξ	
\equiv	Т		E					≋ ≣	
\equiv			_			1 3		₩ =	
						1		≋ ≣	
\exists						1	***		
5 =			=					≋ ≣	
\equiv	_	, n				10.0		※ =	
	2	n/a					***	≋ ⊑	
		-					**** =	** =	
=							***	₩ ≡	
\equiv		1				1 3		≋ =	
=		1	_			1. 3	****	₩ ≣	
\equiv			E					※ I=	
.o=	3		\equiv			1		※ ≡	
\equiv			=				***	※ =	
						1	888 - 8	₩ E	
\equiv			5					≋ =	
			E					≋ ≣	
=						1 8		≋ ≡	
\equiv	1						‱ = 8	₩E	
\equiv	4	1						₩ =	
5=								₩ ≡	
_		1	=					XX I Ξ	
		1	=						
				Boring terminated at 16 fee	below ground surface			=	
\equiv			\equiv	•	-			E	
\equiv								=	
	P		=						
20=								E	
\equiv								=	
\equiv								E	
\equiv		1	Ξ					E	
			=					E	
_		1							
\equiv									

	E.	CO.	5328	iems, inc. D			-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	BORING LOG
		iltena.		gineers and Scientists ules - Hattiesburg		,	Well/Boring No	Sheet: 1 of
Project Project				IER22173	Date(s):	-	12-Aug-03	Logged By: CVC
Well/E	Boring	Locat	ion:	East of the northeast fence cor				
Drillin				Geoprobe 8.94	Drilling Contra Date:	ctor:	Singley Cons 31-Oct-03	truction Company Reference: TOC
Depth			vater: Casing		Inner Casing:	1 inc		Outer Casing: NA
215141		ater T		-	Date:			Reference: TOC
Rema Temp		well in	stalled	with 5 ft of 0.01 slot, PVC screen	w/ filter sand, & bento	onite s	eal	
4	_	T					Graphical Logs	
Depth, Sample Pt.	Sample Location	Blows		Lithologic Descripti	ion	Strata	Well Construction	Organic Vapor Headspace Analysis (ppm)
10 15 15 12 20	2	n/a		See Boring Log for TP-4 for Boring terminated at 12 feet belo				

¥.	200	المناس المناس	2526	ens, me CD				BORING LOG
Project:	sulta	nts,	Bogi ercule	incers and Scientists s - Hattiesburg	Detates	_ '	Vell/Boring No	
Project N				R22173 East of the northeast fence corne	Date(s):	_	12-Aug-03	Logged By: CVC
Well/Bori Drilling M				Geoprobe	Drilling Contra	actor:	Singley Cons	truction Company
Depth to			er:	5.27	Date:		31-Oct-03	Reference: TOC
Elevation					Inner Casing:	1 inc	h	Outer Casing: NA
	Water	Table	e:		Date:			Reference: TOC
Remarks: Tempora	ry well	insta	lled w	ith 10 ft of 0.01 slot, PVC screen	w/ filter sand, & ber	ntonite	seal	
- P.	T	1					Graphical Logs	
Depth, Sample Pt. Sample Location	Blows			Lithologic Description	1	Strata	Well Construction	Organic Vapor Headspace Analysis (ppm)
<u>8</u>	ig	1		See Boring Log for TP-1 for li	thology	25	≱ ઇ	
10 3 3 1 2 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	B/u			Boring terminated at 16 feet belo	w ground surface			

	100	00	<u>S</u> 923	vems, me. CD				BORING LOG	
	(Section)	altan	ts, B.	ngineers and Scientists					1
Proje		_		cules - Hattiesburg		_	Well/Boring No.		
	ct No.			HER22173	Date(s):	_	12-Aug-03	Logged By: CVC	
		Loca	ion:	East of the northeast fence corn			6. 1 6 1	P. 8	_
	ng Met			Geoprobe		ractor:		ruction Company	
		round		8.51	Date:		31-Oct-03	Reference: TOC	
Eleva		Top of			Inner Casing:	1 inc	:h	Outer Casing: NA	
17		ater T	able:	167.16	Date:			Reference; TOC	_
Rema		well ir	stalle	d with 10 ft of 0.01 slot, PVC screer	w/ filter sand, & be	entonite	seal		-
	T	T					Graphical		=
Depth, Sample Pt.	LO I			4			Logs		
효	cat			LIMITAL TO THE CONTRACTOR			E .	Organic Vapor	
an	2			Lithologic Description	on	Ψ.	'ਚੋਂ	Headspace Analysis (ppm)	
Ę,	9	lo	1			l la	計	Analysis (ppm)	
ğ	Sample Location	Blows				Strata	Well Construction		
Ω̈́	Sa	0				is	≥ ζ		-
=		-	=	dark brown and black, friable, sa	ndy, silt (ML)			E	
					J (=/			=	
	,		E			11111	88888 8888	=	
=	1		=			1000	1888 H	E	
		1				11111	8884888	=	
		1	=			111113	I‱ ⊟ ⋘	=	
=		-				11111	==	≣	
5 =		1	=			11111	⋙ ⋿⋙	=	
] ==			E	as above; saturated be	11111	I‱ = ₩	⇇		
\equiv	2	ल	\equiv			HIII	⋙ ⋿⋙	=	
		n/a				31111	I‱ = ₩		
=		1				11111	‱ — ∭	£	
		1				11111	I‱ = ₩	=	
=		1	=	aa ahaya		11111	‱ = ₩	E	
		1		as above		10111	₩ 	E	
		1	_			ЩЩ	I‱ ⊨ ⋘	 =	
10=	3	1	_			1000	₩₩ ⋿ ₩	=	
\equiv				gray, fine, sand (SM); sa	turated	1888	l‱ ⊨ ₩	=	
=		1	=				‱ ≡₩	=	
=	-	1	E			1000	I ≡ ≡	E	
	1111	1	E					⊨	
=		1	=		1			E	
=	}	1	E	as above;		10000		=	
I ∃	4	1	E	as above,		10000		=	
15	1	1	Ξ			3000		E	
15 <u>=</u>		1			N. IN	1//		=	
=	_	1	=	gray, plastic, clay (0	JH)	111	postorenini	Ξ	
Ξ			E			10		E	
\equiv	1		=	Boring terminated at 16 feet belo	w ground surface		1	F	
=	1	1		3				E	
	1	1						F	
	1	1	=					E	
	}	1				1			
20_	1	1							
20	1		=					E	
=	1	1	_				1	E	
=	1		E			1			
	1	1					1	=	
=	1		E					E	
	1	1							
	-		-	rm are applicable to all projects					

	1	رسند الأجيم ال	Sysi	ems, inc.			BORING LOG
Projec	'orasi	e Arlegyat	s, En	gineers and Scientists les - Hattiesburg		Well/Boring No.	Sheet: <u>1</u> of
	ct No.:	-		ER22173	Date(s):	12-Aug-03	Logged By: CVC
		Locat		East of the northeast fence cor			
	ng Met			Geoprobe	Drilling Contra	ctor: Singley Constr	ruction Company
		oundv	vater:	4.81	Date:	31-Oct-03	Reference: TOC
Elevat	tion - '	Top of	Casing:		Inner Casing:	1 inch	Outer Casing: NA
	W	ater Ta	able:	169.7	Date:		Reference: TOC
Rema Temp		well in	stalled	with 10 ft of 0.01 slot, PVC screer	n w/ filter sand, & ben	itonite seal	
		1	T			Graphical Logs	
Depth, Sample Pt	Sample Location	Blows		Lithologic Descripti	on	Strata Well Construction	Organic Vapor Headspace Analysis (ppm)
٥	is _	0	=	dark brown and black, friable, sa	ndy silt (MI)	w > o	
	1			Cark DIOWIT AND DIACK, MADIE, SA	ndy, sije (ME)		
			E				
5 =			E	as above		Ш	
5	2	n/a		gray, fine, sand (SM); some o	clayey zones		
10	3			as above; saturate	ed		
15	4			as above;			
				Boring terminated at 16 feet belo	w ground surface		
20							

	Auc		S)	stems, inc. C	>			BORING LOG
⊹⊊ Proje∉	oush	(ខ្មែរស្គា	ts. i	Engineers and Scientists croules - Hattiesburg			Well/Boring No	Sheet: 1 of 1
	ct No.:	_	110	HER22173	Date(s):	-	12-Aug-03	Logged By: CVC
	Boring		tion:			-	227145 00	
	g Metl			Geoprobe		actor:	Singley Const	ruction Company
	to Gr		water		Date:		31-Oct-03	Reference: TOC
	tion - T				Inner Casing:	1 inc		Outer Casing: NA
		ater T			Date:			Reference: TOC
Rema								
Temp	orary v	well ir	istall	led with 10 ft of 0.01 slot, PVC so	creen w/ filter sand, & ber	ntonite	seal	
-		1	T			1	Graphical	
			1				Logs	
		Ι.	1	Lithologic Description			1	Organic Vapor
	0	12		Lithologic Desc	Lithologic Description			Headspace
듇	d d		1			ata	= ts	Analysis (ppm)
Depth	Sample		1			Strata	Well	
			E	dark brown and black, friable, sa	andv. silt (ML): some	Triin		
=	1		=	cinders	andy, one (may, come	IIIIII		=
	_					IIIIII	900000 10000	e <u> </u>
=	-	1	=			ШШ		8 ≔
5 =	2		E	as abov	e	ШШ		≋ ≡
=	_					111111		#E
	-	1	=			IIIIII		(=
10Ξ	3	ı		as above; thin layer of	resin at 9.5 ft	IIIIII		3 E
=	٦		=			ШШ	I‱ — I∭	8=
		n/a				ШШ		8 ≡
=	4	=	=	an abaya. O inabaa af y	in at 15 5 4	ШШ	⋙ =₩	8=
15=	4		E	as above; 2 inches of r	esiii at 15.5 it	111111	₩ = ₩	
1~=			E			ШШ	I‱ = ₩	
-	5					111111	‱≡	(=
=	5			as above; wood fragments, con	crete fragments, resin	11111	Ⅲ	
20=	14		=			ШШ	₩ 	
\equiv	_			as above; charred wood, br	ick fragments resin	HIIII	₩	Æ
	6		E	as above, charred wood, br	ick fragitiones, resiti	ШШ	₩ 	E
\equiv			=			ЩЩ	⋙ =₩	\$ =
25	-		E				⋙≡ ₩	≋ ≡
=	7			gray, med-coarse, micaco	eous, sand (SM)		⋙ =₩	E - 1
\equiv		1					₩	=
_			-			******	(XXX) (XXX)	-
30 =				Boring terminated at 29 feet	below ground surface			E
		1				1		E
I =								= 1
35 =						1		E
=			=					=
=								E
<u></u>			=					=
40_								E
=			=					E
=			E			1		E
_ =			E					E
Motor N	-1 -11		6 414	form are applicable to all projects				

	200	· Om	Susi	ems, inc.				BORIN	IG LOG
Projec	OPST	drewat	e, Eng Hercu	tineers and Solentists les - Hattiesburg			Boring No.	.: GP-16	t: <u>1</u> of <u>1</u>
Projec	et No.			R22173	Date(s):	13-/	Aug-03	Logged By:	CVC
		Locat	ion:	East of the northeast fence corner					
	g Met			Geoprobe	Drilling Contra			ruction Compar	
		oundw		10.88	Date:		Oct-03	_ Reference:	TOC
Elevat			Casing:		Inner Casing:	1 inch		Outer Casing:	
		ater Ta	able:	154.02	Date:			Reference:	TOC
Rema		well in	stalled	with 10 ft of 0.01 slot, PVC screen w/	well sock, filter sa	and, & bent	onite seal		
بر	_						hical		
Depth, Sample Pt.	Sample Location	Blows		Lithologic Description		Strata		Head	c Vapor space is (ppm)
	1	<u>n</u>	—dark	brown and black, fine, sand (ML); so brick fragments, concrete fragmer		S X		0	
5 =			E	yellow⋅brown and white res	in				
10	3	n/a		no recovery					
=		1	E-	sandy, gravel (GM); (fill)		<i>"</i>		E	
	4			gray, soft, plastic, sandy, clay	/ (CH)				
15	5			as above; firm to hard					
20				Boring terminated at 20 feet below g	round surface				

С	Ec	:O−. Itant	Sy: s, E	stems, Inc. on Ingineers and Scientists				Boring	g Log		
Proje				s Chemical	۱۸.	lell/Roring	She No.: B-20 / MW		_1		
	ct No	_	cuica	HER 42029205 Date(s):			2009 Logged By				
				n: West side of Impountment basin between rail r							
	ng Me h to G				ractor		Environmental 2009 Reference:	: Below Top-of-ca	sing		
				Surface: 168.62 Inner Casing	i:	NA	Reference		Sirig		
		ter Ta		162.67 Date:		9/28/2	2009 Reference:	Above MSL			
Rema	arks:	_		Stick up surface completions	Mean Sea Level (MSL)						
_											
e Pt.						Graphical Logs					
Depth, Sample Pt.	Sample Depth	Blow Count		Lithologic Description	Strata	Well Construction		Organic Vapor Headspace Analysis (ppm)	Elevation		
				Moist, Gravel bed for railroad (0-3')			*		шшшшш		
	1		E					VA 3-5' bgs 0.8 ppr) 10:45	^m =		
5 🗏			E						E		
Ξ		۵	E					VA 5-7' bgs 0.9 ppr):54	n@ =		
I≡	2	n/a	E				₩ E '`	,,,,,,	E		
			E				₩ E		E		
lΞ			E	Moist to Saturated (5' bgs), gray, fine, Clayey Sand (3-15')					E		
lΞ			E	Caria (5-13)		▓≣	₩E		E		
10=			E			₩ ≡	₩E		E		
l '°≣			E				₩ E		E		
lΞ			E			▓≣	∭E		E		
≡			E			▓≣	₩ E		E		
			E			 	₩ E		E		
ΙΞ			E				₩E		E		
lΞ			E						Ε		
15=			E	15.00' Auger termination Well screen	100000		E		E		
lΞ			E	set @ 14.00' BGS			=		E		
∃			E		1		E		E		
ΙΞ			E				E		E		
lΞ			E		1		E		E		
=			E				E		E		
20⊑			E				E		E		
			E				E		E		
			E				E		E		
20			E				E		E		
ΙΞ			E				E				
Ξ			E				E				
			E	s form are applicable to all projects					6/91		

Monitoring Well Schematic Eco-Systems, Inc. Consultants, Engineers and Scientists Well/Boring No.: B-21 / MW-21 Hercules Chemical Impoundment Basin Project No. HER 42029205 Drilling Supervisor: C. Brent Eanes Boring Location: North side of I.B. on side of Minerva St under pipes Date(s): 15-Sep-09 **Drilling Method:** Hollow Stem Auger Drilling Contractor: Singley Environmental **NOT TO SCALE** in Leak Resistant Manhole **Existing Surface** Concrete Top of Casing Below Existing Surface Hole: Leakproof Locking Cap with Lock Diameter: 6.25" I.D. **Grout:** Type: Portland Cement 5% Bentonite Casing: Diameter: 2 inch Length: 5.7' Connections threaded Material: PVC sch. 40 0.4 BGS ft, Top of Seal **Bentonite Seal:** 2.5 BGS ft, Bottom of Seal 6 BGS ft, Top of Screen Screen: 0.01 in Slot Size: Groundwater: 10.0 Length: Diameter: 2 in First Encountered, ft 9' BGS PVC 2.28' BTOC Material: Static Level, ft Sand/Gravel Size: 10/20 Material: silica **Bottom Plug** 16.0 BGS ft,Bottom of Screen 16 0 BGS ft, Depth of Bottom Plug Material: PVC 16.0 BGS ft, Depth of Boring Connection: threaded Depth from Surface comments:

6/91

C	E c	O-L Itant	Sy, s, E	Stems, Inc. Co			Boring L	.og		
Project: Hercules Chemical Project No. HER 42029205 Date(s):					Sheet: 1 of 1 Well/Boring No.: B-21 / MW-21 9/15/2009 Logged By: Brent Eanes					
Depth to Groundwater: 2.28 Date: Elevations - Ground Surface: 163.66 Inner Casing: Water Table: 161.38 Date:				ollow Stem Auger Drilling Contrater: 2.28 Date: d Surface: 163.66 Inner Casing:	actor: Singley Environmental 9/28/2009 Reference: Below Top-of-casing					
Depth, Sample Pt.	Sample Depth	Blow Count		Lithologic Description	Strata	Graphical Logs Construction	Organic Vapor Headspace Analysis (ppm)	Elevation		
Der	aus 1	BIO	THE STATE OF THE S	Asphalt / Gravel mixed with dry, medium, Sand (0-2.5')	9	- Ö	Y			
5				Dry to moist, gray and black, medium, Sand Inclusions of amber resin concretions (2.5-5')			OVA 3-5' bgs 2.9 ppm = @ 13:25			
	2	n/a		Moist, gray and orange, firm, Sandy Clay ('5-7')			OVA 5-7' bgs 9.6 ppm @ 13:31			
10=	3			Dy to saturated (9.0' bgs), fine, Sand ('7-13')			OVA 7-9' bgs 28.0 ppm @ 13:34 ☑ U OVA 9-11' bgs 16.4 ppm @ 13:37			
15				Moist, gray, dense, very stiff, Sandy Clay ('13-16')						
20				16.00' Auger termination						

C	E d	CO-L	Systems, Inc. (S), Engineers and Scientists		Boring
Proje Proje Well/ Drillin Dept Eleva	ect: ect No Borir ng Me h to C	Hero D.: Ing Location Bround Ground Ground Ground Hero Hero Hero Hero Hero Hero Hero Hero	ules Chemical HER 42029205 Date(s): ation: South side of impoundment basin and south edge	ge of pavement sector: Singley Enviror 9/28/2009 F NA F 9/28/2009 F	nmental Reference: Below Top-of-casing Reference: Top-of-casing
Pt.				Graphical Logs	
Depth, Sample Pt.	Sample Depth	Blow Count	Lithologic Description	Strata Well Construction	Organic Vapor Headspace Analysis (ppm)
Ē	0,		Dry, gray, fine, Sand and some gravel (0-1')		
5	1 2 3	n/a	Dry to saturated(6' bgs), brown/gray and black staining, fine to medium, Sand -Grain size increasing with depth (1-9')		OVA 3-5' bgs 0.4 ppm @ 15:30 ✓ OVA 5-7' bgs 0.8 ppm @ 15:37 OVA 7-9' bgs 1.0 ppm @ 13:40
10	4		Moist, gray, very stiff/dense/plastic, Clay -poorly sorted with some medium to coarse grain Sand (9- 17')		OVA 9-11' bgs 0.6 ppm @ 13:43
20			17.00' Auger termination		

c	Eco-Systems, Inc. Boring Log Consultants, Engineers and Scientists								
Proje Well/ Drillin Dept Eleva	Project: Hercules Chemical Well/Boring No.: B-23 / MW-23 Project No.: HER 42029205 Date(s): 9/16/2009 Logged By: Brent Eanes Well/Boring Location: East side of impoundment basin between fence and IB but east of pavement Drilling Method: Hollow Stem Auger Drilling Contractor: Singley Environmental Depth to Groundwater: 2.96 Date: 9/28/2009 Reference: Below Top-of-casing Elevations - Ground Surface: 162.68 Inner Casing: NA Reference: Top-of-casing Water Table: 159.42 Date: 9/28/2009 Reference: Above MSL Remarks: Flush mount surface completions Mean Sea Level (MSL)								
Depth, Sample Pt.	Sample Depth	Blow Count		Lithologic Description	Strata	Graphical Logs Construction Construction	Organic Vapor Headspace Analysis (ppm)	Elevation	
	1			Asphalt (0-1') Dry, gray, Silty Sand with some gravel (1.5-2.5')			OVA 1-3' bgs 8.5 ppm @ 07:45		
	2		THE PERSON NAMED IN	Dry, gray, coarse, Sand (2.5-5')			OVA 3-5' bgs 4.7 ppm @ 07:50		
5 =	3	n/a		Moist, gray/orange, soft, Clay poorly sorted with some coarse grain sand (5-9')			OVA 5-7' bgs 3.1 ppm @ 07:53		
	4			como como gram cama (o c)			○ OVA 7-9' bgs 24.8 ppm ○ @ 07:58 ○ ▽		
10	5		ППППППППППППППППППППППППППППППППППППППП	Damp to saturated (8' bgs), gray, fine, Clayey Sand - increasing grain size with depth (9-13.5')			OVA 9-11' bgs 73.8 ppm @ 08:03		
15	6			Moist, gray, very stiff/dense/plastic, Clay poorly sorted with some coarse grain Sand (13.5-15')			OVA 13-15' bgs 13.2 ppm @ 08:09		
20 <u></u>		ntions		15.00' Auger termination / Well set at 14.0' BGS				6/91	

C	E c	O-L Itant	Systems, Inc. (**) 4. Engineers and Scientists			Boring I	
	ect: ect No Boring	4	ules Chemical HER 42029205 Date(s): ation: Across Providence Street in AST Fence		9/16/2009	: B-24 / MW-24 D Logged By: Brent Eanes	
				Singley Envir	ronmental	_	
			dwater: 8.00 Date:	20101		9 Reference: Below Top-of-casing	M
			und Surface: 164.98 Inner Casing:		NA	Reference: Top-of-casing	
	Wat	er Ta			9/28/2009	Reference: Above MSL	
Rem	arks:		Stick up surface completions			Mean Sea Level (MSL)	
_							
mple Pt.	epth	щ	Lithologic Description		Graphical Logs	Organic Vapor Headspace	
Depth, Sample Pt.	Sample Depth	Blow Count	Elalologic Sessipaon	Strata	Well	Analysis (ppm)	Elevation
			Dry to moist, green/orange, fine to medium, Sand (0-3')				
161111	1					OVA 3-5' bgs 0.6 ppm @ 09:40	ШШ
5 =	2	n/a				Upper	
	3		Moist to saturated (7' bgs), gray, medium, Sand(3-13')			OVA 7-9' bgs 0.8 ppm @ 09:51	
10	4					OVA 9-11' bgs 0.7 ppm @ 09:58	
- 3			E				E I
I∃			Moist, gray, very stiff/dense, Clay (13-14')			E	Εl
⊟						E	= 1
45			14.00' Auger termination / Well screen			E	
13 =			set @ 13.0' BGS			E	ΞI
=			E			E	
			E I			E	ΞΙ
HΞ			E			E	ΕI
Ξ			Ė			E	Εl
lΞ			E			E	ΕI
20			E			E	⊨I
			Ė			E S	Εl
=			E			E	=
20						E	
			E			E	Εl
日			Ė			E	
			E	4			=
			of the form are applicable to all projects				6/91

MONITORING WELL COMPLETION FORM PROJECT NAME HOVELICS LOCATION Halties burg, MS DRILLING METHOD HSA DATE COMPLETED 2/234 00 METHOD OF DEVELOPMENT DRILLER 6+ F Services GEOLOGIST_ HEIGHT OF TOP OF SURFACE CASING ABOVE GROUND SURFACE. PADLOCK-ELEVATION/HEIGHT OF TOP OF RISER PIPE FILLER MATERIAL WEEPHOLE . SIZE AND TYPE OF APRON - PAD ELEVATION GROUND SURFACE ELEVATION ___ TYPE OF SURFACE SEAL Portland Coment with INSIDE DIAMETER OF SURFACE CASING TYPE OF SURFACE CASING 4" x 5" Metal Should DEPTH OF SURFACE CASING BELOW GROUND DEPTH OF SURFACE SEAL BELOW GROUND SURFACE INSIDE DIAMETER OF RISER PIPE_ TYPE OF RISER PIPE ____ PV.C DIAMETER OF BOREHOLE TYPE OF BACKFILL Pure Gold Bentonite STATIC - DEPTH OF TOP OF SEAL (PRE/POST HYDRATION) TYPE OF SEAL Bentonite Chips DEPTH OF TOP OF SAND PACK (INITIAL/POST SURGE/FINAL) DEPTH OF TOP OF SCREENED SECTION ____ TYPE OF SAND PACK 20/40 Filter Pack TYPE OF SCREENED SECTION PVC Factory \$10 Hed OPENING SPACING 10 STOT INITIAL 13.5 INSIDE DIAMETER OF SCREENED SECTION DEPTH OF BOTTOM OF SCREENED SECTION LENGTH OF BLANK SECTION CENTRALIZER DEPTH OF BOTTOM OF PLUGGED BLANK SECTION TYPE OF BACKFILL BELOW OBSERVATION PIPE_ Eco-Systems, Inc. Environmental Engineers and Scientists

			BORING LOG
PROJECT NUM GEOLOGIST CLASSIFICATIO DRILLER	ATION	Byan	BORING START TIME 1045 DATE 2-22-00
RECOVERY (INCHES) DEPTH IN FEET	SYMBOL PID/Blass/2	LITHOLOGY	GROUNDWATER FREE PRODUCT INITIAL DEPTH THICKNESS DEPTH AFTER NINUTES VOLUME
10" 13.9 10" 13.9 19" 5.7 19" 5.7 18 19" 5.7 18 19" 15 18 19" 15 18 19" 15 18 19" 15 18 19" 15 18 19" 15 18 18 18 18 18 18 18 18 18 18 18 18 18	3/15/6 31/30/28/16/16 3/3/30/28/16/16 3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/3/	18 1 18 18 18 18 18 18 18 18 18 18 18 18	DAMP, Med-dense, tan-brown, ef. figh, Esa a moist wer-sit, Dense, tan-thom, find sold werse, sat, Med-dense, tan-thom, find sold that the coordinate sold that coordinate sold sold that sold sold sold sold sold sold sold sold

MONITORING WELL COMPLETION FORM PAGE PROJECT NAME LOCATION _ WELL NO. DATE COMPLETED __ ORIGINAL DEPTH ORIGINAL WATER LEVEL G+ E Services DRILL METHOD H SA DATE 2/2 2/00 GEOLOGIST____ DEPTH INTERVAL ELEVATION OF TOP OF SURFACE CASING/RISER PIPE HEIGHT OF TOP OF SURFACE CASING/RISER PIPE ABOVE GROUND SURFACE TYPE OF SURFACE SEAL DEPTH OF SURFACE SEAL BELOW GROUND SURFACE INSIDE DIAMETER OF SURFACE CASING_ 4" x 4" x 5' TYPE OF SURFACE CASING_ DEPTH OF SURFACE CASING BELOW GROUND Z. 4" INSIDE DIAMETER OF RISER PIPE_ STRAIGRAPHY TYPE OF RISER PIPE DIAMETER OF BOREHOLE FOR TYPE OF BACKFILL ELEVATION / DEPTH TOP OF SEAL 901 TYPE OF SEAL_ BORING ELEVATION / DEPTH BOTTOM OF SEAL DEPTH OF TOP OF SAND PACK-TYPE OF SAND PACK__ ELEVATION / DEPTH TOP OF SCREENED SECTION PVC slotted P. TYPE OF SCREENED SECTION DESCRIBE OPENINGS INSIDE DIAMETER OF SCREENED SECTION ELEVATION / DEPTH BOTTOM OF SCREENED SECTION LENGTH OF BLANK SECTION ELEVATION/DEPTH BOTTOM OF PLUGGED BLANK SECTION ELEVATION/DEPTH BOTTOM OF SAND COLUMN TYPE OF BACKFILL BELOW OBSERVATION PIPE ELEVATION/DEPTH OF HOLE Eco-Systems 🕮

			BORIN	G LOG	SHEET_1_OF	
PROJECT NU GEOLOGIST CLASSIFICATI DRILLER	CATION	Rya- E Servi	ees MS	BORING IDENTIFICATION MW-8 BORE HOLE DIANETER 6" BORING START O DATE 2/22/00 BORING COMPLETED DATE 2-22 FINAL BORING DEPTH 16.3'		
RECOVERY (INCHES) DEPTH IN	SYMBOL	гітногост	GROU INITIAL DEPTH DEPTH AFTER		THICKNESS	
	15-			Sampling TP-10 Log) Had ~ 7' west MW-8 ~		

MONITORING WELL COMPLETION FORM PROJECT NAME Hercules PAGE __ WELL NO. HUJ- 9 LOCATION Hatties burg, DATE COMPLETED 2/38/00 DRILLING METHOD ___ DRILLER G+ E Services METHOD OF DEVELOPMENT GEOLOGIST. HEIGHT OF TOP OF SURFACE CASING ABOVE GROUND SURFACE PADLOCK-ELEVATION/HEIGHT OF TOP OF RISER PIPE FILLER MATERIAL_ WEEPHOLE SIZE AND TYPE OF APRON _ - PAD ELEVATION TYPE OF SURFACE SEAL POrtland Comerct INSIDE DIAMETER OF SURFACE CASING TYPE OF SURFACE CASING 4 X 4 X 5 Hinged Metal Shoul DEPTH OF SURFACE CASING BELOW GROUND DEPTH OF SURFACE SEAL BELOW GROUND SURFACE INSIDE DIAMETER OF RISER PIPE_ TYPE OF RISER PIPE ____ DIAMETER OF BOREHOLE TYPE OF BACKFILL Pure bold Bentowite bel STATIC - DEPTH OF TOP OF SEAL (PRE/POST HYDRATION) TYPE OF SEAL Bentonite Chips DEPTH OF TOP OF SAND PACK (INITIAL/POST SURGE/FINAL) 5.0° DEPTH OF TOP OF SCREENED SECTION _____ TYPE OF SAND PACK 20/40 Filter Pack TYPE OF SCREENED SECTION PVC Factory OPENING SPACING 10 510 F INITIAL LEVEL = INSIDE DIAMETER OF SCREENED SECTION DEPTH OF BOTTOM OF SCREENED SECTION C. 3 CENTRALIZER DEPTH OF BOTTOM OF PLUGGED BLANK SECTION TYPE OF BACKFILL BELOW OBSERVATION PIPE_ DEPTH OF BOREHOLE 17.5 Eco-Systems, Inc. Environmental Engineers and Scientists

ROJECT NAME HECCULES	BORING IDENTIFICATION MW-9
ROJECT LOCATION HATELANDER PROJECT NUMBER ECOLOGIST T. RYAN ELASSIFICATION SCHENE PRILLER GT & Services PRILL METHOD HSA PEATHER SUNNY, WOVM (70°), Wi	BORING START TIME 1445 BORING COMPLETED TIME 1518 DATE 2-22-80
	GROUNDWATER FREE PRODUCT THICKNESS VOLUME VOLUME
4" 10 3.9 2/2 mst #0 12 4/8 wet, 14 7/73 SP: SAT 15 13/7 CH3 16.6 DA	No Sampling (0-5') Clay, Med-stiff to stiff, mottled coloning (brown ray), sand content increases w/ depth, no odor, de et, firm, sray-tand salicion, of the siret Loose, white-tan, Gav, Sand Stiff, brutan (trace si strings MW-9 (16' Screen) TD-17.5'

MONITORING WELL COMPLETION FORM PAGE _ LOCATION Hatties burg. M.S. WELL NO ... 2/23 _ ORIGINAL DEPTH ORIGINAL WATER LEVEL DATE COMPLETED ___ DRILLER GLE SCOVERS DRILL METHOD DATE _ 2/23/00 GEOLOGIST____ DEPTH INTERVAL ELEVATION OF TOP OF SURFACE CASING/RISER PIPE HEIGHT OF TOP OF SURFACE CASING/RISER PIPE ABOVE ___ GROUND SURFACE TYPE OF SURFACE SEAL Portland Com. DEPTH OF SURFACE SEAL BELOW GROUND SURFACE INSIDE DIAMETER OF SURFACE CASING_ TYPE OF SURFACE CASING 4" 4 4 X5 Hinged DEPTH OF SURFACE CASING BELOW GROUND INSIDE DIAMETER OF RISER PIPE____ STRAIGRAPHY TYPE OF RISER PIPE DIAMETER OF BOREHOLE FOR TYPE OF BACKFILL ELEVATION / DEPTH TOP OF SEAL 507 TYPE OF SEAL____ Bont BORING ELEVATION / DEPTH BOTTOM OF SEAL DEPTH OF TOP OF SAND PACK-TYPE OF SAND PACK___ ELEVATION / DEPTH TOP OF SCREENED SECTION DESCRIBE OPENINGS INSIDE DIAMETER OF SCREENED SECTION ELEVATION / DEPTH BOTTOM OF SCREENED SECTION LENGTH OF BLANK SECTION ELEVATION/DEPTH BOTTOM OF PLUGGED BLANK SECTION ELEVATION/DEPTH BOTTOM OF SAND COLUMN TYPE OF BACKFILL BELOW OBSERVATION PIPE 14.7" ELEVATION/DEPTH OF HOLE _

,				BORIN	G LOG	SHEET 1 OF	
PROJECT PROJECT GEOLOGICASSI	CT NUMBER GIST FICATION S R METHOD	R T SCHENE	Ryan	reloved, MS	BORING IDENTIFICATION MW-10 BORE HOLE DUNIETER 8" BORING START TIME 9:55 DATE 2/23/00 BORING COMPLETED TIME 10:04 FINAL BORING DEPTH 14		
RECOVERY (INCHES)	DEPTH IN FEET	SYMBOL	LITHOLOGY	GROUN INITIAL DEPTH DEPTH AFTER		FREE PRODUCT THICKNESS VOLUME	
	-10-			No	***	refer to TP-12)	

224 124 1114	N. s. les	PAGE OF
PROJECT NAME	Hercules Latties borg Ms	WELL NO. MW-1/
LOCATION	2/23 OPICINAL DEPTH	
DOILED J.	Z/Z3 ORIGINAL DEPTH HSA	
GEOLOGIST TE	VA DATE _ 2/23/00	DEPTH INTERVAL
<u></u>		
e-		*
1 .	ELEVATION OF TOP OF SURFACE O	ASING/RISER PIPE
1.1	= 1	
	HEIGHT OF TOP OF SURFACE CASI	NG/RISER PIPE ABOVE
	GROUND SURFACE	W.
KKKK :		11 / 1 / 2
	TYPE OF SURFACE SEAL	ortland Coment w/ Sand
	DEPTH OF SURFACE SEAL BELOW	GROUND SURFACE
	INSIDE DIAMETER OF SURFACE CAS	SING
	TYPE OF SURFACE CASING Y	"x4"x5 Hinged Metal Show
	DEPTH OF SURFACE CASING BELOW	W GROUND 2, 4 1
V	INSIDE DIAMETER OF RISER PIPE_	
	TYPE OF RISER PIPE	Pvc
	DIAMETER OF BOREHOLE	5 3/4"
.	TYPE OF BACKFILL PUC	e Gold Bentonite Gel
	ELEVATION / DEPTH TOP OF SEAL	
	TYPE OF SEAL Be	entonite Chips
	ELEVATION / DEPTH BOTTOM OF S	SEAL - 1, 0"
		3.0
	DEPTH OF TOP OF SAND PACK— TYPE OF SAND PACK—	ZOLUN FITTE Park
	TYPE OF SAME PACK	- / 10
	ELEVATION / DEPTH TOP OF SCRE	ENED SECTION
		P. K < 1 1 P:
	TYPE OF SCREENED SECTION	Puc Slotted Pipe
	DESCRIBE OPENINGS	10 5/0+
	INSIDE DIAMETER OF SCREENED S	
	ELEVATION / DEPTH BOTTOM OF S	SCREENED SECTION 14"
	FIGHTH OF BLANK SECTION	
	ELEVATION/DEPTH BOTTOM OF PLU	GGED BLANK SECTION 14"
	ELEVATION/DEPTH BOTTOM OF SAM	O COLUMN
1	TYPE OF BACKFILL BELOW OBSERV	4
	ELEVATION/DEPTH OF HOLE	14"

, m				BORING	LOG		SHEET 1 OF	
PROJECT PROJECT GEOLOC CLASSII DRILLED	T NAME_ T LOCATION T NUMBER SIST FICATION SC R GA METHOD ER (lowdu	TRY HENE_ E Se	ruides	ours, ms	BORING IDENTIFE BORE HOLE OU BORING START TIME AT TIME BORING COMPL TIME 8:15 FINAL BORING	3:05 DAT		
RECOVERY (INCHES)	DEPTH IN	SYMBOL	ПТНОГОСТ	INITIAL CEPTH		THICKN	E	
	-5-			No	Samplin	ay (veter	to TP-13	3)
	-15-					Eco-Sy Environmental	e toms, Ind	d. T

	TEMPO	PRARY MOI	NITORING POINT	COMPLETION FORM
DATE DRIL GEO		DRI DR	REHOLE DEPTH	PAGEOFOF
SEE BORING LOG FOR STRATIGRAPHY			HEIGHT OF TOP OF SURFACE GROUND SURFACE TYPE OF SURFACE SEAL DEPTH OF SURFACE SEAL E INSIDE DIAMETER OF SURFACE TYPE OF PROTECTIVE CASING DEPTH OF PROTECTIVE CASING INSIDE DIAMETER OF RISER TYPE OF RISER PIPE DIAMETER OF BOREHOLE TYPE OF BACKFILL ELEVATION / DEPTH TOP OF TYPE OF SEAL DEPTH OF TOP OF SAND PACE TYPE OF SAND PACK ELEVATION / DEPTH TOP OF	DELOW GROUND SURFACE
				Eco-Systems, Inc.

4340	BORIN	IG LOG SHEET 1 OF L		
PROJECT LOCATION PROJECT NUMBER GEOLOGIST CLASSIFICATION SCHEME DRILLER DRILLER DRILL METHOD WEATHER SUON	USCS ETVICE A w/s speen yt Hot (880)	BORING IDENTIFICATION TP-1 BORE HOLE DIAMETER 6" BORING START TIME 1355 DATE 4-28-99 BORING COMPLETED TIME 4-28-99 FINAL BORING DEPTH 17' NDWATER FREE PRODUCT		
RECOVERY (INCHES) DEPTH IN FEET SYMBOL	GROUN OF INITIAL DEPTH DEPTH AFTER			
21" 6.0 3/4 (8" 8 7/13 15° 16 3/13 17 23/32 NS 14 NJ	SAT, LOOJE MET DENSE SAT, COCIE- SRY, V. SHIFF, SET TP-2 . CAVE to 1	(cuttings) to sold (cut.f). Sita (uf.f). I top (uf.f). Sita (uf.) Law (sold of the sold of the sol		
	11	Eco-Systems, Inc.		

PROJECT NAME TASK 2 - R PROJECT LOCATION HATTIE	BORE HOLE DIAMETE	R 27-76"
PROJECT NUMBER HER-S GEOLOGIST RYAN CLASSIFICATION SCHEME USC DRILLER GFE JER DRILL METHOD HESA W WEATHER SUMMYS HO	BORING COMPLETED TIME 122 FINAL BORING DEPTH	DATE 4-28-99 DATE 4-28-99 17.0 FREE PRODUCT
SYM SEE	DEPTH AFTER MINUTES	THICKNESS
22" 20 13 15 5M. 21" 0.0 13 15 5M. 23" 0.0 13 15 5M. 23" 0.0 13 15 5M. 22" 16 18 5M. 22" 18 18 5M. 22" 18 18 5M. 20" 18 312 505 7. 18 312 505 7. 18 312 505 7.	moist wil gray	mothing, Sisa (vf-f. mothing, Sisa (vf-f. mothing, Sisa (vf) trace gravel f-med al gravel eleaving) hite, Gravelly Sa;

		50	BORING LOG SHEET 1 OF_
PROJECT NAME PROJECT LOCAL PROJECT NUMBER GEOLOGIST CLASSIFICATION DRILLER DRILL METHOD WEATHER	BER Ry I SCHEMI	HICEB HER -C	BORING START 1500 DATE 4-28-99 TIME 1527 DATE 4-28-99
RECOVERY (INCHES) DEPTH IN FEET	SYMBOL	гтногост	GROUNDWATER FREE PRODUCT INITIAL DEPTH THICKNESS TOLUME DEPTH AFTER NINUTES VOLUME
12 14 18 18 18 -20 -	2/4 4/12 12/5 19/5	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	DAMP, Med. H-gray+bru V.CLE 4-5.1' Losse, tan, SiSa (5.1') NO Sampling (6-9') SAT. Med-deuse; thu would be good. NO Sampling SiSa to grave! SIST, Med-St-Shiff, Buff-Ign; SiLI trigrife. SET TP-3 to lots (14-14-6) - Set TP-3 to lots (14-14-6) - Set TP-3 to lots (14-14-6) - Set TP-3 to lots (14-14-6)

TEMPORARY MONITORING POINT COMPLETION FORM PAGE PROJECT NAME_ WELL NO.____ LOCATION ____ BOREHOLE WATER LEVEL_ DATE COMPLETED _ BOREHOLE DEPTH _____ DRILL METHOD _ HSA __ STATIC WATER LEVEL GEOLOGIST____ SCREEN INTERVAL . DATE _ INSPECTED BY ELEVATION OF TOP OF SURFACE CASING/RISER PIPE HEIGHT OF TOP OF SURFACE CASING/RISER PIPE ABOVE _ GROUND SURFACE TYPE OF SURFACE SEAL __ DEPTH OF SURFACE SEAL BELOW GROUND SURFACE __ TYPE OF PROTECTIVE CASING_ - INSIDE DIAMETER OF RISER PIPE_ STRATIGRAPHY TYPE OF RISER PIPE DIAMETER OF BOREHOLE TYPE OF BACKFILL - ELEVATION / DEPTH TOP OF SEAL 500 Bentanite Chips TYPE OF SEAL____ BORING - ELEVATION / DEPTH BOTTOM OF SEAL DEPTH OF TOP OF SAND PACKT (No Native TYPE OF SAND PACK____ ELEVATION / DEPTH TOP OF SCREENED SECTION FILTER SOCK_ -TYPE OF SCREENED SECTION 10-Slot 1" PVC 10-Slot DESCRIBE OPENINGS INSIDE DIAMETER OF SCREENED SECTION____ - ELEVATION / DEPTH BOTTOM OF SCREENED SECTION. LENGTH OF BLANK SECTION _____ ELEVATION/DEPTH BOTTOM OF PLUGGED BLANK SECTION -ELEVATION/DEPTH BOTTOM OF SAND COLUMN_ TYPE OF BACKFILL BELOW OBSERVATION PIPE - ELEVATION/DEPTH OF HOLE ____ 02/1 Eco-Systems, Inc.

	BORING LOG SHEET 1 OF_
PROJECT NAME TASK 2 PROJECT LOCATION HATTE PROJECT NUMBER HER GEOLOGIST RYAN CLASSIFICATION SCHEME L DRILLER GTE SER DRILL METHOD HSA W WEATHER SURMY T	BORING START TIME 1602 DATE 4-28-99 S-SPOODS BORING COMPLETED TIME 1620 DATE 4-28-99
RECOVERY (INCHES) DEPTH IN FEET SYMBOL	GROUNDWATER FREE PRODUCT INITIAL DEPTH THICKNESS TOURS DEPTH AFTER MINUTES VOLUME
15 2 15 17 17 17 17 17 17 17 17 17 17 17 17 17	Day SLAT Corumble grew-gar Calcareous

PROJECT NAME	terrules	PAGE / OF /
OCATION H	Hiesburg, MS	PAGE / OF _/ WELL NO TP- 5
DATE COMPLETED	4/29/99	DRILLING METHOD
ADILI FR 64	E Services	METHOD OF DEVELOPMENT
SEOLOGIST R	SAFTOF	
PADLOCK—	HEIGHT OF TOP OF S	URFACE CASING ABOVE GROUND SURFACE
	ELEVATION/HEIGHT	F TOP OF RISER PIPE WAIZ.6'
WEEPHOLE -	DULED MATERIAL	NA
	SIZE AND TYPE O	F APRON
100000000000	No. of State Concession	PAD ELEVATION NA ROUND SURFACE ELEVATION NA
1 1 1 1 1 1 1		ROUND SURFACE ELEVATION
	TYPE OF SURFACE S	EAL
		SURFACE CASING V4
	TYPE OF SURFACE O	ASING
•		CASING BELOW GROUND
		RISER PIPE
	TYPE OF RISER PIPE	I" PYC
	DIAMETER OF BOREH	. 11
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TYPE OF BACKFILL_	High Solids Bentonte Groot
STATIC		
STATIC LEVEL =	DEPTH OF TOP OF	SEAL (PRE/BOST HYDRATION) 6
	TYPE OF SEAL	Bentonite Chips
	DEPTH OF TOP OF	SAND PACK (INITIAL/POST SURGE/FINAL) 7'
	DEPTH OF TOP OF	
8	DEDTH OF TOP OF	CREENED SECTION 9
	DEPTH OF TOP OF S	CREENED SECTION
~ .	TYPE OF SAND PACE	20/40 Sand (1 of restin
	700	1/1
	TIPE OF SCREENED	
INITIAL LEVEL =	OPENING SPACING	
	2787	1 //
	INSIDE DIAMETER OF	SCREENED SECTION
		111
		OF SCREENED SECTION
	CENTRALIZER	SECTION Flosh
	DEPTH OF BOTTOM	OF PLUGGED BLANK SECTION
	TYPE OF BACKFILL I	BELOW OBSERVATION PIPE No tive
	DEPTH OF BOREHOL	15

Fig.	BORIN	NG LOG	SHEET_1_OF_
PROJECT NAME TACK	Z-RI Hercoles	BORING IDENTIFICATI	
PROJECT LOCATION_H	hesburg MS	BORE HOLE DIAMETE	R6"
	R-95	BORING START	
GEOLOGIST RYAN CLASSIFICATION SCHEME	11500	TIME - 1700	DATE 4/29/19
DRILLER G+E S		BORING COMPLETED	DATE 4/29/99
DRILL METHOD HS A		TIME	
WEATHER SUNNY	+ hot	FINAL BORING DEPT	H/5
₹Ø ₹	GROU	JNDWATER	FREE PRODUCT
E E	INITIAL DEPTH	91	THICKNESS
RECOVERY (INCHES) DEPTH IN FEET SYMBOL	O INITIAL DEPTH	MINUTES	VOLUME
	· anistose dens	ty och	cotos description
1811 - 3/3	dang loo:	se no B	Lak Si SA L/son
	5	54mp 2-5	Sund
5		_	
20 1 2/7	damp stat	t no you	Thing S.C.
	-5	X Y	/
10 -10	- n	san pling 7	-10 unto -9
18 12 11/12 3	potura head	mar no has	OF.
	4	bose no has	13 2/s;
13	5	mophing 2	75 KS
	TE Saharil	// no 1	S. Sn 6-11
15 7/8) TI DATA TES	16052	ASSICICI4
		•	
-10-	·TDO	15	
		_	
	1 · Set	T. P-5 sere	en @ 9-14'
		n to 13'	
	LAVE 1	x 50 /3	•
	. 20/40	to 7'	
-15-	II.		
	Seal +	o 6 Rea	Systems, Inc.

j	J.	les	ITORING POINT	PAGE	OF 1
CATION	HATTIES 4/2	X.1.2.2.	THE PERTY	BOREHOLE W	ATER LEVEL
ATE CON	GHE Ser	DICES	L METHOD H SA	STATIC WATER	LEVEL
FOLOGIS	T Ryan	DRIL	E	SCREEN INTE	RVAL
NSPECTE	D BY	DAT	E	301/2211 11172	
			E EVATION OF TOP OF	SURFACE CASING/RIS	SER PIPE
	nenst		HEIGHT OF TOP OF SU GROUND SURFACE	IRFACE CASING/RISEF	PIPE ABOVE MA
	>>>>> Y		TYPE OF SURFACE SE	AL	NA NA
1		1 1	DEPTH OF SURFACE S INSIDE DIAMETER OF S	THE DELOW GROUND	SURFACE
	1			SURFACE CASING	
			TYPE OF PROTECTIVE DEPTH OF PROTECTIVE	- ALCINIC DELOW CRU	NUNU WY
1	()	117	—— DEPTH OF PROTECTIVE —— INSIDE DIAMETER OF	RISER PIPE	111
≩	-	1	INSIDE DIAMETER	100	vc
₽ I	L	1 1	TYPE OF RISER PIPE	- 1"	Transfer of the
19		1/	DIAMETER OF BOREHO	DLE	1/01
STRATIGRAPHY	1		TYPE OF BACKFILL_	4.1-81	of Beatone to Grouf
		11	TYPE OF BACKFILL ELEVATION / DEPTH	TOD OF SEAL	, ,
FOR .		IA	ELEVATION / DEPTH	10 or 35 Chie	5
50	33	1 1	TYPE OF SEAL_	A POSITE CITY	7.0
		11	ELEVATION / DEPTH	BOTTOM OF SEAL	21
BORING		1k	DEPTH OF TOP OF	SAND PACK	0
			TYPE OF SAND PACE	20/40	Sand
SEE			TIPE OF SALE FIRE	TOP OF SCREENED	SECTION 10
1			ELEVATION / DE	NOI	
0.3	10-		FILTER SOCK		// * * * * * * * * * * * * * * * * * *
1			TYPE OF SCREENED	SECTION 10-	shot screen
				-37 a Ca 1	
			DESCRIBE OPENING	10.51	111
			INSIDE DIAMETER O	F SCREENED SECTION	
-					
					NED SECTION 15/
			ELEVATION / DEPT	H BOTTOM OF SCREE	NEO SECTION
	1	8 1	LENGTH OF BLANK	BOTTOM OF PLUGGE	BLANK SECTION Flos L
2	1	L.	ALL /BEDTU	DATTAM OF SAND U	LUMIN
1965			TYPE OF BACKFILL	BELOW OBSERVATION	PIPE MO/9 VS AND
02/16/195	1				17

	BORING LOG SHEET 1 OF
PROJECT NAME TAST Z - RI H PROJECT LOCATION HATTES DUTY, N PROJECT NUMBER HER - 99 GEOLOGIST RUAN CLASSIFICATION SCHEME USCS DRILLER GTE SCEVISCE DRILL METHOD HSA W S - SPE WEATHER SURNY + hot (888)	BORING START 655 DATE 4-28-99 BORING COMPLETED DATE 4-28-99
OS CHIEF OF THE PER AF	GROUNDWATER FREE PRODUCT THICKNESS VOLUME VOLUME
19 3/4 19 4/4 22' 6 10/1/ 22' 6 10/1/ 22' 6 10/1/ 21/22 20' -16 -14/14	Stiff-v.St, 1th-Sow SiCL to Stiff of CL Stiff-v.St, 1th-Sow SiCL to source Med, of we-Sow, Sacc to source Med done-Sow, Sacc to source Sacc to source Sacc to source (family) w/source! No Sampling 10-15'
10" 16 2/6 V. DGA 10/17 18 -30-	TD=17'
-15	Eco-Systems, Inc.

MONITORING WELL COMPLETION FORM PROJECT NAME_ Hattiesburg, MS WELL NO .___ LOCATION _____ DRILLING METHOD_ DATE COMPLETED _ METHOD OF DEVELOPMENT DRILLER __ GEOLOGIST_ HEIGHT OF TOP OF SURFACE CASING ABOVE GROUND SURFACE 167,17 PADLOCK-ELEVATION/HEIGHT OF TOP OF RISER PIPE _ WEEPHOLE --SIZE AND TYPE OF APRON ______ DA PAD ELEVATION ____ _ GROUND SURFACE ELEVATION _ TYPE OF SURFACE SEAL __ INSIDE DIAMETER OF SURFACE CASING____ TYPE OF SURFACE CASING UA DEPTH OF SURFACE CASING BELOW GROUND____ INSIDE DIAMETER OF RISER PIPE TYPE OF RISER PIPE_ DIAMETER OF BOREHOLE____ TYPE OF BACKFILL STATIC - DEPTH OF TOP OF SEAL (PRE/POST HYDRATION) LEVEL = Benfaste Chy 13 TYPE OF SEAL_ - DEPTH OF TOP OF SAND PACK (INITIAL/POST SURGE/FINAL) DEPTH OF TOP OF SCREENED SECTION ____ TYPE OF SAND PACK_ TYPE OF SCREENED SECTION ___ INITIAL OPENING SPACING _____ LEVEL = . OPENING SIZE INSIDE DIAMETER OF SCREENED SECTION DEPTH OF BOTTOM OF SCREENED SECTION LENGTH OF BLANK SECTION _ CENTRALIZER DEPTH OF BOTTOM OF PLUGGED BLANK SECTION TYPE OF BACKFILL BELOW OBSERVATION PIPE - DEPTH OF BOREHOLE ___ Eco-Systems, Inc. Environmental Engineers and Scientists

			BORING LOG SHEET 1_OF
u .	PROJECT NAME_ PROJECT LOCATION PROJECT NUMBE GEOLOGIST CLASSIFICATION S DRILLER DRILL METHOD WEATHERS	ON Hather RYANS SCHEME US FE SERV HSA	BORING START TIME 1605 DATE 21-29-99 DICES BORING COMPLETED TIME 1620 DATE 4-29-99
	RECOVERY (INCHES) DEPTH IN FEET	SYMВОL: LITHOLOGY	GROUNDWATER FREE PRODUCT INITIAL DEPTH 6' THICKNESS DEPTH AFTER NINUTES VOLUME
0-2	12 12	1/2/2	Dang loose in hom C/S. w/ Ront deposit
5-7		2/6	Dany loose no gray (#+1) Si S, sufal who mother water & to!
	22" (1.8)	强。	Dans stiff also gamen 5, C/C/11
Dec y	-10-		· TDB 12' · Convert fo TP-7 · Convert fo TP-7 · Convert fo TP-7 · 20/40 fo 40'
	-15-		Seal to 3.0' Eco-Systems, Inc.

	MONITORING POINT COMPLETION FORM
DIECT NAME Hereve	7
CATION Hatton burg	MCLE NO.
TE COMPLETED _ 4 29 9 5	BOREHOLE WATER LEVEL
WIED 64E Services	- HSA STATIC WATER LEVEL
OLOGIST R SAFFOR	SCOPEN INTERVAL 12,5-17,5
SPECTED BY	DRILL METHOD SCREEN INTERVAL _12,5-17,5
	ELEVATION OF TOP OF SURFACE CASING/RISER PIPE 183.75
r 🗗	THE PLANT NAME AND
	HEIGHT OF TOP OF SURFACE CASING/RISER PIPE ABOVE NA
	GROUND SURFACE
	TYPE OF SURFACE SEAL NA
	DEPTH OF SURFACE SEAL BELOW GROUND SURFACE NA
	INSIDE DIAMETER OF SURFACE CASING NA
	TYPE OF PROTECTIVE CASING NA
	DEPTH OF PROTECTIVE CASING BELOW GROUND NA
	INSIDE DIAMETER OF RISER PIPE
۲	INSIDE DIAMETER OF RISER PIPE
\$ 1/ K	TYPE OF RISER PIPE // PYC
월 / I /	DIAMETER OF BOREHOLE 6"
STRATIGRAPHY	DIAMETER OF BUILDING
	TYPE OF BACKFILL High solids Bouton ite Grout
E	TIPLETON (DEPTH TOP OF SEAL 7
	TYPE OF SEAL Bentonitechips
99	TYPE OF SEAL
ا لا ا	ELEVATION / DEPTH BOTTOM OF SEAL 10'
BORING	10
8	TYPE OF SAND PACK 26/40 Sand as on 1, 4/2 sale
SEE	TYPE OF SAND PACK
v	ELEVATION / DEPTH TOP OF SCREENED SECTION
	~ o!
	FILTER SOCK
	TYPE OF SCREENED SECTION 10-5/0+9/204
	, //
	DESCRIBE OPENINGS 10 -310T
	INSIDE DIAMETER OF SCREENED SECTION
 	
	ELEVATION / DEPTH BOTTOM OF SCREENED SECTION 17.3
	A STATE OF BLANK SECTION
	E EVATION DEPTH BOTTOM OF PLUGGED BLANK SECTION
	TON OPERTY BOTTOM OF SAND COLUMN
3770002	TYPE OF BACKFILL BELOW OBSERVATION PIPE 20/4034
	8.5
	ELEVATION/DEPTH OF HOLE

	10"					
PROJE PROJE GEOLO CLASS DRILLE DRILLE	CT LOCA CT NUMI OGIST INFICATION ER METHOD	SER SCHEM LE 1+5	Halles LER - US Service Service SA w	cs is	BORE HOLE DIAM BORING START TIME BORING COMPLET TIME 1972	DATE 4/29/99
WEATH	ER	Sun	ny /llo			PTH
RECOVERY (INCHES)	DEPTH IN FEET	SYMBOL	тногосу	2.5	NDWATER /3 / MINUTES	THICKNESS
_	I CO	14/7	ربرز	MOISTUTE OF		
18"	7	44	1/2	Var Meds	fift was to	rang Fill-6" sour BOIS; - 4
18"	4	7/11			shift dor of	2-5 ay 9.C/
	A		NS		pling 7-1	
10"		44/8		moist has	san ple	marge (f-m) 8, 84/61
198	111		NS	٨٥	sanple :	11-15 water 2
18"	62	13/17	-	Salva tal to	d-derlinda	hath- G-M. Sand
	18/2		145	Parp de	sampling!	7-18,5 AFAY S.C/
	-10-	9/12	2	Jamp Si	oder "	9544
		}		· Carple	feel B.	Q 18.5
		1		· Conver	t to TP-	8,50 seen @ 12,5-13
				· Care in	to 18'	
	-15-	1	8 9	, 20/40 t	0 10'	14 00 30
	1.4			· gent to	9' 10	0 · Systoms, Inc.

DIECT NAME HETCH	es	PAGE I OF TP-9
CATION HATTICE	burg, MS	WELL NO.
TE COMPLETED 412919	T DODELOIE DEPTH	BOREHOLE WATER LEVEL
ILLER GLE Servi		
OLOGIST RS AFTOC	DATE	SCREEN INTERVAL 4-9'
SPECTED BY	UNIT	CASING /DISER PIPE 143,44
	ELEVATION OF TOP	OF SURFACE CASING/RISER PIPE
1.5	UPDATE OF TOP O	F SURFACE CASING/RISER PIPE ABOVE WA
	GROUND SURFACE	
	TYPE OF SURFACE	SEAL NA
	OF SUPEA	CE SEAL BELOW GROUND SURFACE
NIXIX.	INSIDE DIAMETER	OF SURFACE CASING
	THE DE PROTECT	TIME CASING NA
	DEPTH OF PROTE	CTIVE CASING BELOW GROUND
2	INSIDE DIAMETER	OF RISER PIPE
4	TYPE OF RISER !	PIPE 1" PVC
[일	DIAMETER OF BO	REHOLE6"
STRATIGRAPHY		4 Solids Bentonita Grant
	TYPE OF BACKFI	His Solids Control
AG.	ELEVATION / DE	PTH TOP OF SEAL 2'
9	TYPE OF SEAL_	Ben Ch. PS
- J	ELEVATION / DE	PTH BOTTOM OF SEAL 3
BORING	t 1	OF CAND PACK
8	DEPTH OF TOP	PACK ZO 40 (I NUTION)
SEE	TYPE OF SAND	EPTH TOP OF SCREENED SECTION
	ELEVATION / DI	
	FILTER SOCK_	No.
- 1	1	ENED SECTION 10-5/0 +
	TYPE OF SCREE	EMED SESTION/
	DESCRIBE OPE	NINGS 10 - 5/0 +
	INSIDE DIAMETE	R OF SCREENED SECTION
1		DEPTH BOTTOM OF SCREENED SECTION
	ELEVATION/DE	PTH BOTTOM OF PLUGGED BLANK SECTION 9
		PTH BOTTOM OF PLUGGED BLANK SECTION PTH BOTTOM OF SAND COLUMN KFILL BELOW OBSERVATION PIPE Na Five
1 1	TYPE OF BACK	KHIT REFOM OBSELVATION

	BORING LOG	SHEET_1_OF
PROJECT NAME Task 2-R PROJECT LOCATION Hathesto PROJECT NUMBER HER-99 GEOLOGIST Ryan /San CLASSIFICATION SCHEME US C DRILLER STE SETUIC DRILL METHOD HSA W WEATHER SUNNY HOT	BORE HOLE DIAMETER BORING START TIME BORING COMPLETED	DATE 4/29/93
	GROUNDWATER NITIAL DEPTH 4 DEPTH AFTER MINUTES	FREE PRODUCT THICKNESS VOLUME
18" 2/2 2/2	lamp los sampling	2-5 water 41
10" 3 11'	TIOME	stay IIIn S.C.
20" 19 4/4	Mo Sough 7-10 dang shift to go	ayler 9.01 2-15
20 2/3	damp stiff no gra	cyprocen S.Cl
20 -10 -4/9	tamp donse no 9' + Orill new Boring to	
-15-	· Set TP.9 · Care in to 8'	Systems, Inc.

MONITORING WELL COMPLETION FORM PROJECT NAME WELL NO .__ DRILLING METHOD__ DATE COMPLETED ___ METHOD OF DEVELOPMENT_ 8-14.51 PADLOCK-HEIGHT OF TOP OF SURFACE CASING ABOVE GROUND SURFACE. ELEVATION/HEIGHT OF TOP OF RISER PIPE 179.69/ 2 FILLER MATERIAL WEEPHOLE --SIZE AND TYPE OF APRON ____ NA ---- PAD ELEVATION ___ - GROUND SURFACE ELEVATION _ TYPE OF SURFACE SEAL INSIDE DIAMETER OF SURFACE CASING____ TYPE OF SURFACE CASING_ DEPTH OF SURFACE CASING BELOW GROUND____ DEPTH OF SURFACE SEAL BELOW GROUND SURFACE 4/2 INSIDE DIAMETER OF RISER PIPE TYPE OF RISER PIPE____ DIAMETER OF BOREHOLE__ TYPE OF BACKFILL STATIC - DEPTH OF TOP OF SEAL (PRE/POST, HYDRATION) DEPTH OF TOP OF SAND PACK (INITIAL/POST SURGE/FINAL) 542" DEPTH OF TOP OF SCREENED SECTION TYPE OF SAND PACK___ TYPE OF SCREENED SECTION INITIAL OPENING SPACING LEVEL = OPENING SIZE INSIDE DIAMETER OF SCREENED SECTION DEPTH OF BOTTOM OF SCREENED SECTION. LENGTH OF BLANK SECTION Flush CENTRALIZER DEPTH OF BOTTOM OF PLUGGED BLANK SECTION 14.5. TYPE OF BACKFILL BELOW OBSERVATION PIPE TYPE OF BACKFILL BELOW OBSERVATION PIPE____ - DEPTH OF BOREHOLE ______17 Eco-Systems, Inc. Environmental Engineers and Scientists

BORIN	G LOG SHEET 1 OF_
PROJECT NAME TOOK Z-RIHERCES PROJECT LOCATION Half, es burg MS PROJECT NUMBER MER-99 GEOLOGIST Sartas CLASSIFICATION SCHEME USCS DRILLER GHE Services DRILL METHOD HSA w/ 3-9 pooms WEATHER Sunny/Hot.	BORING IDENTIFICATION TP-10 BORE HOLE DIAMETER 6 BORING START TIME 1058 DATE 1/-29-95 BORING COMPLETED TIME DATE 429-95 FINAL BORING DEPTH 17 14.3
CRCOVERY (INCHES) (INCHES) SYMBOL SYMBOL STATEM HEAD THEST THE	
12" 00 6/6 12" 00 6/6 12" 00 6/6 12" 00 6/6 12" 00 6/6 12" 00 6/6 12" 00 6/6 12" 00 6/6 12" 00 6/6 14" 00 6/6 15" 00 6/6 16" 00	Simple (F-ME) Simple (F-ME) Simple (F-ME) Signification Signif
, Convert , 20/40 . Soal	10-5 yolomo, Inc. 10-10 (8-14.5') 10-10 (8-14.5') 10-10 (8-14.5') 10-10 (8-14.5') 10-10 (8-14.5')

ROJEC	T NAME	tercules	PAGE OF
1CATTO	N HA	ticsburg, MS	
ATE C	OMPLETED _4	29 99 BOREHOLE DEPTH	BOREHOLE WATER LEVEL
RILLEF	2 GLESE	CU165 11 <	A STATIC WATER LEVEL
	TED BY	DATE	SCREEN INTERVAL 8-13
		ELEVATION OF TO	OP OF SURFACE CASING/RISER PIPE
		1	
		HEIGHT OF TOP	OF SURFACE CASING/RISER PIPE ABOVE NA
		GROUND SURFAC	E .
D	TITITA .		
		TYPE OF SURFA	CE SEAL NA
		DEDTU OF SUR	FACE SEAL BELOW GROUND SURFACE PA
- 1	~~~~	INSIDE DIAMETER	R OF SURFACE CASING
	- 18	TYPE OF PROTE	CTIVE CASINGUA
	E	DEPTH OF PRO	FECTIVE CASING BELOW GROUND NA
≽	.)		R OF RISER PIPE
₹		TYPE OF RISER	PIPE PVC
- S		DIAMETER OF E	OREHOLE 6"
STRATICRAPHY			ALL Solids Bentonite Grout
FOR		TYPE OF BACK	EPTH TOP OF SEAL 5.5
		ELEVATION / E	Bent Chaps
907	1	TYPE OF SEAL	EPTH BOTTOM OF SEAL
NG ING		ELEVATION / C	6.5
BORING		DEPTH OF TOP	PACK 20/40 Sand (4' of falls-ck)
SEE		TYPE OF SAND	PACK
•	1	ELEVATION /	DEPTH TOP OF SCREENED SECTION
		FILTER SOCK_	No!
. 9	de leja .		TOSOF
		TYPE OF SCR	ENED SECTION
		DESCRIBE OP	enings 10 shot scieen
	1	INSIDE DIAMET	ER OF SCREENED SECTION
	-		
		T PATON /	DEPTH BOTTOM OF SCREENED SECTION 13
6	1	LENCTH OF F	HANK SECTION
		FI EVATION / DE	PTH BOTTOM OF PLUGGED BLANK SECTION
	1	DI DIATION (DE	EDTH BOTTOM OF SAND COLUMN
1		TYPE OF BAC	KFILL BELOW OBSERVATION PIPE Native
	4		PTH OF HOLE

				RI Hercules	BORING IDENTIFICA	TION TE	2.11
				oury, MS	BORE HOLE DIAME	TER	"
		BER		15	BORING START		11.6
		RYA-		<u> </u>	BORING START TIME : 1735	DATE _	1/21/99
		C+E			BORING COMPLETE	5 DATE	4/20/
				5-Spoons	- 17		15
WEA	THER	30 N	my lhe	<u>+</u>	_ FINAL BORING DEF	лн	
20	Z		75	GROUI	NDWATER	FREE	PRODUCT
I FE	-	岌	OZ.	INITIAL DEPTH	7.5	THICKNESS	
RECOVER' (INCHES)	DEPTH	SYMBOL	ПТНОГОС	DEPTH AFTER	MINI ITES	VOLUME	
							011
20	1-	3/1		dang loo	so rooder	Black	9. Sa /gran
-	- 4		NS	•	o sample	5-7	
	1		- 1				
12	1	2/2		moist loss	noodn	fun	8.94/grA
->	12	4/5	1				, 7
1	4		N5	. 6.	SAMPline	7-10	and C.
-	50	3/3	· 50.	Selvented Ino	on nooth	gray	S. SA/grav
22		5/9	75.	1 /	SAMPline mode	9544	8,0%
20	161	15/15		saturatedi	tim		
	17			. 1 smal	letel @	15 FL	655
-							
		1		, TP-11	sereen 2	8-13	
1 2	_10-	1	- 1	· Cave in	491	A Williams	
		1		. 20/40	1. 0.5		
	-	+ 1		, Seal +	1 55		
4		1		, Dear	-6 313		1
		+ 1		0.7			
44		1			78	4	
	-15-	-					
1					Loc	-Systems	, inc.

T	TEMPORARY MONITORING POINT COMPLETION FORM							
DATE COMPLE	PE Dervices	PAGE OF / WELL NO. TP-/Z BOREHOLE DEPTH BOREHOLE WATER LEVEL 7' DRILL METHOD HSA STATIC WATER LEVEL DATE SCREEN INTERVAL 5-/3'						
		ELEVATION OF TOP OF SURFACE CASING/RISER PIPE 159.95 HEIGHT OF TOP OF SURFACE CASING/RISER PIPE ABOVE 2.5' GROUND SURFACE TYPE OF SURFACE SEAL BELOW GROUND SURFACE VA INSIDE DIAMETER OF SURFACE CASING NA TYPE OF PROTECTIVE CASING BELOW GROUND NA DEPTH OF PROTECTIVE CASING BELOW GROUND NA						
G LOG FOR STRATIGRAPHY		TYPE OF RISER PIPE TYPE OF BACKFILL TYPE OF BACKFILL LEVATION / DEPTH BOTTOM OF SEAL ELEVATION / DEPTH BOTTOM OF SEAL ELEVATION / DEPTH BOTTOM OF SEAL						
SEE BORING		DEPTH OF TOP OF SAND PACK TYPE OF SAND PACK ELEVATION / DEPTH TOP OF SCREENED SECTION FILTER SOCK TYPE OF SCREENED SECTION DESCRIBE OPENINGS DESCRIBE OPENINGS DESCRIBE OPENINGS Note of Screened Section Describe Openings						
		INSIDE DIAMETER OF SCREENED SECTION / " ELEVATION / DEPTH BOTTOM OF SCREENED SECTION / 3 LENGTH OF BLANK SECTION / SCREENED SECTION / 3 ELEVATION/DEPTH BOTTOM OF PLUGGED BLANK SECTION / 3 ELEVATION/DEPTH BOTTOM OF SAND COLUMN / 7 TYPE OF BACKFILL BELOW OBSERVATION PIPE / NO FINE / 7 ELEVATION/DEPTH OF HOLE / 7						

	BORI	NG LOG SHEET 1 OF			
PROJECT LOCATION PROJECT NUMBER GEOLOGIST CLASSIFICATION SCH DRILLER 6+	HER-99 Ryan /Sartor IENE USCS E Services HSA w/ 3-spoons	BORING IDENTIFICATION TP-12 BORE HOLE DIAMETER 6 BORING START TIME 925 DATE 4-29-99 TIME 0945 DATE 4-29-99 FINAL BORING DEPTH 17			
RECOVERY (INCHES) DEPTH IN FEET	GRO INITIAL DEPTH DEPTH AFTER	UNDWATER FREE PRODUCT THICKNESS WINUTES VOLUME			
22" 27 3/3 200" 0,5 2/3 180"	No salvated by	Loose orange (f) Signafel orange of Signafel orange of for for for for signafel orange of for signafel orange for for signafel orange for for signafel orange of the formal of the signafel orange of the formal orange of the signafel orange or			
16" #6 8/	· Native · 20/40 · Seal	to TP-12 fio 5'-13' to 8' to 4' to 3'			
-15		Eco-Systems, Inc. Environmental Engineers and Scientists			

PROJE	CT NAME	PAGE OF	
		resburg MS WELL NO. TP-13	_
	COMPLETED	11 BURERULE DEFIN DONLINGE WAITH LEVEL	_
	R GHES	DRILL METHOD HISA STATIC WATER LEVEL	
a de la constante de la consta	GIST T RY A	4-11	
INSPEC	STED BI	DATE SOME TO SOME THE	
		ELEVATION OF TOP OF SURFACE CASING/RISER PIPE 156,95	_
		HEIGHT OF TOP OF SURFACE CASING/RISER PIPE ABOVE 3	
		GROUND SURFACE	
R	1/1/1/1		
2	XXXXX	TYPE OF SURFACE SEAL	
		DEPTH OF SURFACE SEAL BELOW GROUND SURFACE	
		INSIDE DIAMETER OF SURFACE CASING	
	10	TYPE OF PROTECTIVE CASING	_
	19	DEPTH OF PROTECTIVE CASING BELOW GROUND NA	_
훒		INSIDE DIAMETER OF RISER PIPE	
8		TYPE OF RISER PIPE / PYC	
STRATIGRAPHY		DIAMETER OF BOREHOLE 6"	_
			100
FOR		TYPE OF BACKFILL High Solids Bentonte Grout	-
		ELEVATION / DEPTH TOP OF SEAL	-
907		TYPE OF SEAL Bentonite Chips	-
BORING		ELEVATION / DEPTH BOTTOM OF SEAL	1
8		DEPTH OF TOP OF SAND PACE 20/40 Sand IN. Na fire	ب
SEE	30 E 1	TYPE OF SAND PACK	-
۱ ۵		ELEVATION / DEPTH TOP OF SCREENED SECTION	
		./	
1		FILTER SOCK YES	
- 1		TYPE OF SCREENED SECTION 10-5 0+ 1"PVC	
		DESCRIBE OPENINGS 10 - 5/0+	
		INSIDE DIAMETER OF SCREENED SECTION / "	
		MODE Brancher of Societies Section	
		ELEVATION / DEPTH BOTTOM OF SCREENED SECTION 11	
		LENGTH OF BLANK SECTION FISC	
		ELEVATION/DEPTH BOTTOM OF PLUGGED BLANK SECTION 11'	
		ELEVATION/DEPTH BOTTOM OF SAND COLUMN TYPE OF BACKFILL BELOW OBSERVATION PIPE 5 2 2 940	-
1			
		ELEVATION/DEPTH OF HOLE	-

	BORING	LOG	SHEET_1_0F
PROJECT NAME TO BE SECONDECT LOCATION HOTHER PROJECT NUMBER HER- GEOLOGIST SAFTAGE CLASSIFICATION SCHEME USE DRILLER 6 HE SECONDECT NUMBER HEAD HEAD HEAD HEAD HEAD WEATHER SUMBOL NUMBER HER SUMBOL NUMBER HER SUMBOL NUMBER NUM	GROUN INITIAL DEPTH	BORE HOLE DIAMETER BORING START TIME BORING COMPLETED TIME BORING DEPTI	DATE 4-29-99 DATE 4-29-99 14' FREE PRODUCT THICKNESS
18" 0.6 5/4 5/5 19" 1.0 4/4 5/5 18" 16.4 4/4 5/5 18" 16.4 5/6 18" 18" 18" 18" 18" 18" 18" 18" 18" 18"	DEPTH AFTER	hopel bruth	of f) S. S. a strace (5) Med) Gravelly Sand of Side Normally Sand of Side 3, C/ 10-10
——————————————————————————————————————		Eco	Systems, Inc.

ROJE	CT NAME	ercules	PAGE OF
		resburg , M	
ATE (COMPLETEDS	10 95 E	BOREHOLE DEPTH BOREHOLE WATER LEVEL
	GIST TRU		DRILL METHOD H SA: STATIC WATER LEVEL
	CTED BY		DATE SCREEN INTERVAL
-		ÉT	ELEVATION OF TOP OF SURFACE CASING/RISER PIPE 164.84
		1 -1	
	www.		HEIGHT OF TOP OF SURFACE CASING/RISER PIPE ABOVE
			TYPE OF SURFACE SEALNA
		V	DEPTH OF SURFACE SEAL BELOW GROUND SURFACE NA
1	15:		INSIDE DIAMETER OF SURFACE CASING U.A.
- 1	(#)		TYPE OF PROTECTIVE CASING NA DEPTH OF PROTECTIVE CASING BELOW GROUND NA
ا⊾	<i>\(\frac{1}{2}\)</i>		INSIDE DIAMETER OF RISER PIPE 14
APH			TYPE OF RISER PIPE PVC
띪		r) T	DIAMETER OF BOREHOLE 6"
STRATICRAPHY			TYPE OF BACKFILL HIS Solids Beatonite Gravi
FOR		Y A	ELEVATION / DEPTH TOP OF SEAL I
20		1	TYPE OF SEAL Bentante Pellets
			ELEVATION / DEPTH BOTTOM OF SEAL
BORING		\$k	DEPTH OF TOP OF SAND PACK
	}		TYPE OF SAND PACK ZO/40 SAND
SEE	79.7		ELEVATION / DEPTH TOP OF SCREENED SECTION 7.6
			4
	E & 11		FILTER SOCK
			TYPE OF SCREENED SECTION 10-51 1"PUC
			DESCRIBE OPENINGS 10-510+
			INSIDE DIAMETER OF SCREENED SECTION L''
			H
			FLEVATION / DEPTH BOTTOM OF SCREENED SECTION 126"
			ELEVATION / DEPTH BOTTOM OF SCREENED SECTION 126
		3 -	ELEVATION/DEPTH BOTTOM OF PLUGGED BLANK SECTION 17.6"
		السا	ELEVATION/DEPTH BOTTOM OF SAND COLUMN 14' TYPE OF BACKFILL BELOW OBSERVATION PIPE NAME OF SAND COLUMN 14'
			ELEVATION/DEPTH OF HOLE

				BORING LOG
PROJECT PROJECT SEOLOGIS CLASSIFIC DRILLER	NUMBER TO STATION	ON ER SCHEME	HER-	scs
(INCHES)		SYMBOL	ПТНОГОСУ	GROUNDWATER INITIAL DEPTH ~ 7' DEPTH AFTER MINUTES VOLUME DAMP GROUNDWATER ARCOUNT CCSc
	2 4 8 10- 12 14 16			DAMP, FIRM, BROWN, GLOCK (\$5'- DAMP (38) LOGIC, H. BRW, SiSa tr.cl MOIST(5'), FIRM, BRUW, GLI_(5'-7') WET-SAT, LOGIC, Ct. SRN, SiSa f-med SAT TP-UT Pellets to 1.3' by Reflets to 1.3'

c	E onsi	C O- ,	Sys is, E	stems, Inc.				BORING LOG Sheet: 1 of
Proje	et:		Hero	cules - Hattiesburg		We	ll/Boring No	
_	ct No	.:		HER24100	Date(s):	-		Logged By; CVC
		g Loc	ation:					
		thod:		Hollow Stem Auger				nstruction Company
		Bround			Date:		25-May-04	Reference: GS
Eleva		Тор			Inner Casing	g: na	_	Outer Casing: na Reference: na
7		ter Ta		na TD = 32 feet b.g.s	Date:	_		Reference: na
(em	arks:	_		No well installed				
£.	_			-		T	Graphical Logs	
Depth, Sample Pt.	Sample Location	Biows		Lithologic Description	on	Strata	Well	Organic Vapor Headspace Analysis (ppm)
<u>B</u>	Sal	B				Str	ຮັບິ	
Ξ			=	dark brown, fine, sand (S	SP);			E
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1	4-18-11-13		tan and gray, gravelly, fine, s saturated;	sand (SP),		NO WELL INSTALLED	
10	2	4-6-8-11		as above				
15	3	6-11-14-21		gray, firm-stiff, slightly sitly, sar	ndy, clay (CH)			
20	4	8-10-13-15		as above, stiff;				

П	E	co-	Sys	stems, Inc.	(4)				BORING LC
C	Cons	ultan	its, E	ngineers and Scie	ntists				Sheet: _1_
Proje	ct:			cules - Hattlesburg			W	ell/Boring No	
Proje				HER24100		_ Date(s):	_	25-May-04	Logged By: CVC
				: North of landfill		Dalling Cont		Cinalau Car	enteration Company
Drillin				Hollow Stem Aug er: 6	jer	Date:	actor.	25-May-04	nstruction Company Reference: GS
			dwate	er: 6 Ising: na		Inner Casing	na	23-Way-04	Outer Casing: na
Eleva			able:	na		Date:	1102		Reference: na
Rema				TD = 17 feet b.g.s		-			
				No well installed					
			1					Graphical	1
بخ	c							Logs	
<u>e</u>	[읉	1						Ē	Organic Vapo
Ĕ	ö	1	Ш	Litholog	ic Description			읥	Headspace
ις,	틸	l.,	III				I	Ĕ	Analysis (ppn
Depth, Sample Pt.	Sample Location	Blows					Strata	Well Construction	
De	Sa	ĕ					St	કૅઇ	
			Ξ	grave	I (GW) (fIII);				E
		1	=						E
Ξ		1	E	dark brown,	sandy, clayey, s	silt (ML),			E
≡		l			(fill);				E
=		ı	=						E
=		l	=				ШШ	=	E
Ξ		1					IIIIII		E
5 🖃		1_	\equiv	я	s above			ST	E
	1	4-4-4					-	NO WELL INSTALLED	E
Ξ	1	4	E	grav. v	silty, sand (SM)				E
\exists		4	\equiv	9.271 **				Œ	=
								5	E
\equiv			E				· min	Z	E
Ξ			E						F
٦٫⊒		1	=						E
10=	531	1	E			1 (61)			E
	2	7.	E	gray, soft, few pe	ea gravel, sandy	ciay (CL)			E
=	10	-1-2-4	E						Œ
Ξ		7 🕆	E				111	3	E
Ξ	1		E	gray, stiff-hard, sl	ightly sandy, hig	gh plasticity,	111	3	E
=			=				111	3	E
Ξ	1		E				111	3	E
15		1	E				111	3	E
\equiv		5	E				111	3	E
=	3	o	E	as above,	some iron stain	ing;	111	3	E
20		4-6-8-12	Ë				1//	7	E
		3	E	Davis - to	stand at 17 fact L	olow ground		l/	E
\equiv	1	1	E	Boring termina	ited at 17 feet b surface	eiow grauna			E
\equiv			=		541400				
\equiv			E				1		=
20⊑		1	=						E
Ξ	1		E						=
=			=						E
\equiv		1	E						E
Ξ	1		E						E
		1	-						appealment and a second a second and a second a second and a second and a second and a second and a second an

c	E c	CO-A	Sy s, E	estems, Inc. C Engineers and Scientis	sts			BORING LO
Proje		_		rcules - Hattiesburg		_	ell/Boring No.	
	ct No			HER24100 n: Northeast of landfill	Date(s):	-	25-May-04	Logged By: CVC
		g Loc thod:	atior	Hollow Stem Auger	Drilling (Contractor	Singley Con	struction Company
		Fround	wat		Date:		25-May-04	Reference: GS
				asing: na	Inner Ca	sing: na		Outer Casing: na
		ter Ta	ble:	na	Date:			Reference: na
Rema	arks:	_		TD = 12 feet b.g.s				
				No well installed				
۲,	_					T	Graphical Logs	
Depth, Sample Pt.	Sample Location	Blows		Lithologic I	Description	Strata	Well	Organic Vapo Headspace Analysis (ppm
=	-		E	gravel (G	W) (fill);	***		
					dy, clayey, silt (ML), (fill);			
Ē							raller	
5	1	2-4-6-9		gray, soft, few pea grave	ત્રો, sandy clay (CL) moi	st;	NO WELL INSTALLED	
		7		It. gray, stiff-hard, slig	htly silty, high plasticity		NO WE	
10	2	8-10-13		as above, so	me iron staining;			
		5.8		Boring terminated อ	at 12 feet below ground urface	1		
15								
20								

	E	co-,	Sys	stems, I	nc. 🗘				BORING LOG
C	Consu	ıltanı	ls, E	ngineers and	d Scientists				Sheet: 1 of 1
Proje				cules - Hatties HER24100	sburg	Date(s):	- W	ell/Boring No. 25-May-04	: EB-4 Logged By; CVC
	ect No Borin	.: g Loc	_		ndfill	Date(s).	-	20-101ay-04	
	ng Me			Hollow Ste		Drilling Cont	ractor:	Singley Con	struction Company
Dept	h to G	round		er: 6		Date:		25-May-04	Reference: GS
Eleva				sing: na		Inner Casing	na na		Outer Casing: na
Dam.		ter Ta		na TD = 27 feet b		Date:	_		Reference: na
Rem	arks.	_		No well install					
							T	Graphical	
<u>ئ</u>	_							Logs	
Depth, Sample Pt.	Sample Location							5	Organic Vapor
am	မိ			LI	ithologic Descripti	on		Well Construction	Headspace
S,	9	yn					1 79	탏	Analysis (ppm)
ept	E S	Blows					Strata	N S S	
<u>-</u> -	S	<u>m</u>	=				hiin	>0	=
Ξ			Ε				Ш		E I
=			Ξ	dark b	rown, sandy, clayey	, silt (ML),			E
10			Ε		(fili);	,			E
Ξ			Ξ					ي ا	E
Ξ			Ε					"	E I
			Ξ					₹	E
5 =	Transi	i_	E					IS	E
Ξ	1	÷	Ξ		no recovery			≝	E
\equiv		6-1-1-1			•			;;	F I
Ξ		0	Ε					\	E
Ξ			Ξ					NO WELL INSTALLED	E I
\equiv			Ξ					Z	E
			Ε						E I
10=	100	1 _	Ξ	dark h	rown, sandy, claye	/ silt (ML)			E I
ΙΞ	2	1-1-2-4	Ξ	Udiku	(fill), saturated;		IIIII		E I
=		÷	Ε				Ш		E
=		1 -	Ξ				Ш		E I
Ξ			Ξ						E I
Ξ			Ξ						⊨ I
Ε Ξ									⊨ I
15=		1 2	Ξ						E I
	3	4-6-8-12	Ξ		as above, black;				E
		ြှေ	Ε						E
		4							E I
			E						E
\equiv									E
20			E		as above;				E
Z <u> </u>			=		6 0 1 2	- L (CL)	111		Ę Ι
	4		E	gray, s	soft, slightly sandy, o wet;	ciay (CH),		3	E I
=	100	1	E		¥*************************************		111	1	E
			E					1	E
=			E				111	1	E
	-						1//	1	-

	E c	CO-	<i>Syste</i> ts, Engi	ems, Inc. C	sts					BORIN		
里roje		_	Her	cules - Hattlesburg		B 1 / 1		ell/Boring No	.: EB-			of 2
Proje	ect No	1	i i	HER24100		Date(s):		25-May-04	_Logi	ged By C	VC	_
Depth, Sample Pt.	Sample Location	Blows		Lithologic E	Description		Strata	Well construction and construction construct		Organi Head Analysi	space	
25	5	Shelby Tube		as above,	firm to stiff			LLED				
35				Boring terminated ground s	at 27 feet b	elow		NO WELL INSTALLED				

c	E c	C O- .iltan	Sy.	Stems Ingineer	s, <i>Inc.</i>	tists				BORING LOG Sheet: 1 of 1			
Proje					lattiesburg			_ We	II/Boring No				
	ct No			HER241		don sito	Date(s):	_	25-May-04	Logged By: CVC			
	Borin ng Me	-			ral area of slu w Stem Aug		Drilling Contr	actor:	Singley Cor	struction Company			
	h to G				6		Date:		25-May-04	Reference: GS			
				asing:	na		Inner Casing			Outer Casing: na			
		ter Ta			na		Date:			Reference: na			
Rema	arks:				feet b.g.s			_					
	-			No well i	nstalled								
e Pt.	ion							L	Fraphical Logs				
Depth, Sample Pt.	Sample Location Blows			Lithologic Description			Strata	Well Construction	Organic Vapor Headspace Analysis (ppm)				
Ξ	S	<u>a</u>			bíack á	& orange, sludg	e.						
5 110	1	Shelby Tube		Shelby Tube	Shelby Tube		black &		ove, saturated			NO WELL INSTALLED	
10	2	5-8-10-13			as	above, gray.			Z				
15				Bori	ing terminate	d at 12 feet bek surface	ow ground						

c	E	<i>CO-</i> ultan	Sysi	ems, Inc.				Sheet: 1 of		
Proje	ct:		Hercu	iles - Hattiesburg		We	ell/Boring No			
Proje	ct No		Н	ER24100	Date(s):	25-May-04 Logged By: CVC				
				Central area of sludge pits						
		thod:		Hollow Stem Auger 6	Drilling Con	tractor:	25-May-04	Reference: GS		
			dwater: of Casi		Inner Casin	a: na	25-Way-04	Outer Casing: na		
_1070		ter Ta		na na	Date:	g. <u></u>		Reference: na		
Rem	arks:		TI) = 7 feet b.g.s						
			No	well installed						
1	ПО					L	Fraphical Logs			
Depth, Sample Pt.	Sample Location	Blows		Lithologic Description	on	Strata	Well Construction	Organic Vapor Headspace Analysis (ppm)		
	S	Ø		black & orange, slu	ıdge	s				
5		npe		as above, satura	ated.	₩	STALI			
	1	Shelby Tube		tan, fine grained, sand (SP),		NO WELL INSTALLED				
10		S		Boring terminated at 7 feet be surface	elow ground		NO W			
=	N									
5 III										

Proje Proje Well Drillin	Consect: Consect No Boring Me Chito C	o.: ig Loc ethod: Groun	Hercu Hercu Hation:	gineers ales - Ha ER2410 Centr Hollov	and Scient attiesburg 0 al area of sluv v Stem Auge 6 na	dge pits	Date(s): Drilling Contr Date: Inner Casing	actor:	sll/Boring No 25-May-04 Singley Cor 25-May-04	.: PB- Log	Sheet: 1 of 1 3 ged By: CVC on Company erence: GS er Casing: na
Rem	Wa arks;	ter Ta	TI	0 = 7 fe o well in			Date:			Refe	erence: na
Depth, Sample Pt.	Sample Location	Blows			Lithologi	c Description		Strata	Well spiriture construction construction		Organic Vapor Headspace Analysis (ppm)
_						range, dry, slud		Str			
5 =	1	Shelby Tube		tan,		sand (SP), sat		 	NO WELL INSTALLED		
10 11 12 12 12 12 12 12 12 12 12 12 12 12	l	She		Borin		l at 7 feet below surface	y ground		NO WE		

C	E o	CO-	<i>Systems</i> is, Engineer	s, Inc. S				BORING LOG Sheet: 1 of 1
Proje			Hercules - H			We	II/Boring No.	
Proje			HER250		Date(s):	_	19-Apr-05	Logged By: CVC
			ation: North		Dalling Cont.		Olas elas Can	tuelles Company
Drillin				w Stem Auger 7.75	Date:	actor.	16-May-05	struction Company Reference: TOC
			dwater: of Casing:	162.17	Inner Casing	· 2 inc		Outer Casing: NA
Eleva			ble:	154.42	Date:	Z IIIO	16-May-05	Reference: TOC
Rema								-
e Pt.	ion					L	Graphical Logs	
Depth, Sample Pt.	Sample Location	Blows		Lithologic Descrip	otion	Strata	Well Construction	
	1		Glayey silt (ML): dark brown; some (topsoil).	roots; some gravel			
	2		E	CL): gray; few sand; fe				
5 =	3		Claye	ey Sand (SC): dk gray; Sandy Clay (CL): It g				
	4	n/a	Clay (C	H): blue-gray; firm; pla staining.				
10	5			as above; firm-stiff; no	o staining.			
				Boring terminated at 1	0 feet bgs			
Ξ								
15			E					E
Ξ	6		E					E
Ξ			Ē					E
=			E					E
Ξ		1	E					E
20_			E					E
=			E					E
=			E					E
Ξ			E					E
Ξ			E					E
=			E					E
N. I	le te stee	v dear	of the fore stage	policable to all projects				

c	E consu	CO-	S y	S1CMS	s, Inc.	entists							RING LO		
Proje	ct.		He	rcules - H	attiesburg				We	II/Borin	a No.:	MW-13	eet: <u>1</u> o	' - -	
Proje	ct No	.:		HER250	80		Date(s):	_		20-Apr		Logged B	y: CVC		
					side of land										
Drillir					w Stem Au	ger		ontrac	ctor:			truction Co			
Depti					7.76 175.23		Date: Inner Ca	Jan 1	Inc		lay-05	Reference			
Eleva		ion - Top of Casing: 175.23 Inner Ca Water Table: 167.47 Date:						ang. 2	g; 2 Inch Outer Casing: NA 16-May-05 Reference: TOC						
Rema		(CI 16	JUIG.	_	107.47					10:11	iay oo	- 1000000000	100	_	
<u> </u>	E C								0	raphic Logs					
Depth, Sample Pt.	Sample Location	Blows			Litholo	gic Descript	ion		Strata	Well Construction					
	S	00	⊨		1 (010)				AMI	W	100	_		-	
Ξ	1	L	E	Silty Sa	na (SM): aa	stump dirt).	resin fragment	S;		111		₽			
Ξ			E		,	,				111		3 ≡			
Ξ		1	E									E		- 110	
Ξ	2		E			as above.		8				E		- 14	
Ξ			E					8			- 65	E			
=			E		s ahove: v	silty; clayey;	saturated.					E			
5 =	3		E		10 aboto, v	only, oldyoy,						E			
10=	4	n/a	HIHI	as abo		nt pea gravel fragments.	; abundant res	n						Y	
	5				Sand (SP)	gray, med-c	oarse gr.								
10=		1	E							₩E		E			
	6		E	as abov	e: fine-coa	rse gr; some	wood fragmen	s.							
	7		E		Sandy Cl	ay (SC): gray	r; hard. 								
E		1	E	XXX 3.3				E		₩E		Ε			
15=	8		E		Clay (CH): gray; sl silty	/; stiff.	_							
20			THITITIES.		Boring tern	ninated at 16	feet bgs								
												E			
20_			E						W			E			
			E									E			
Ξ			E									E			
Ξ			E									E			
Ι Ξ			E									E			
==			E												
Note 1	lot all r	ort or	o of the	is form are a	culcable to off	projection									

	E	co-	System	s, Inc.				BORIN	G LOG
	Cons	ultan	ts, Enginee	ers and Scientists					
Proje		-	Hercules -		Deta(a)	_	oring No.:		CVC
	ect No		HER25	t side of landfill	Date(s):	19-	Apr-05	Logged By:	CVC
		thod:		ow Stem Auger	Drilling Cont	ractor: Sin	aley Cons	struction Comp	anv
			dwater:	15.00	Date:		May-05	Reference:	TOC
			of Casing:	169.23	Inner Casing		may be	Outer Casing	
			ble:	154.23	Date:		May-05	_	TOC
Rem	arks:								
بر	- E						hical gs		
Depth, Sample Pt.	Sample Location	Blows		Lithologic Desc	cription	Strata	onstruction		
=		<u>100</u>	Silty Sa	nd (SM): dark br & bl	ack; some clay; loose	is A		=	
	1		E	(stump di	rt).				
	2			as above	э.				
5	3		Ē	as above: ve	ry silty,				
	4	n/a	E	no recove	ery,	300			
10	5			as above: wood t	fragments,				
10	6			as above: som	e gravel				
	7		as	s above: some wood	fragments; wet.				
15	8			Sand (SP): tan; fine ç	gr; saturated.				
	9			as abov	ve.				
20	10			as above	9.				
20_		1	=	as above	9.			Ξ	
	10			Clay (CH): blue-ç	gray; hard.			E	
			E	oring terminated at 2	22 feet bgs				

~~-	CO-	Sy	Engineers and Scientists			BORING LOG
	ııtan					Sheet: 1 of
ct:	_	He	ercules - Hattiesburg	_ w	ell/Boring No	
		- No.		_	19-Apr-05	Logged By: CVC
				tractor	Singley Co	onstruction Company
				luacio		
				ıg: 2 in		Outer Casing: NA
					16-May-05	Reference: TOC
ırks)	_					
tion				-	_	<u></u>
002			Lithologic Description		ļ ģ	
e L	N. I	1		30	5	
ᄅ	NS NS			ata	= 12	
Sar	Bio			Str	≱ື ຮິ	
		E	Sandy silt (ML): dark brown; abundant roots; loos			<u>77</u> ≡
1		=	(stump dirt).			<u>//</u>
	-	E) =
		Ε	og oboug pocked. Wood fragmonts	111111		% ≡
2		Ξ	as above: packed. Wood fragments			% ≡
		E				% ≡
		E	as above.			N =
3		E))≡
	ā	Ε				N E
4	=	=	as above: damp			N ≡
4		E	as above. camp.	IIIIII		N ≡
		Ε			000	% =
5		Ε	as above: wet.			∅ ≡
ŭ		Ε				
		E				H E
6		Ξ	Class (CLI) blue are a limbally conductions limbally			=
		Ξ	Clay (Ch): blue-gray; slightly sandy; firm; limorite	1//		
	1	Ξ				≅E
7		E	as above: few gravel; some sand partings.		3	₩ E
		E		111		WΕ
		E	as above.	111		Œ
8		E	Silty Sand (SM); fine or: black; saturated; (stump			₩ E
		E	dirt)	1000		₩ E
		Ξ	Sandy Clay (CL): tan 9 it gray; soft			 ■
9		E	Sandy Clay (OL): tan & it gray, soit.			₩ E
_		Ε				® E
40		E	as above: v sandy.			**
10		E				®E
-		Ε				≋ ≡
10		Ε	as above: coarsens downward	////		 ■
10		E	Clavey Sand (SC): tan & It gray.			₩E
		=				
11		E	Sand (SP): tan: loose			₩ E
, ,		E	Boring terminated at 24 feet hos			₩ =
	et No Borin Grand Marks: Under State Control of the Control of th	set No.: Boring Location Location - Top Water Tarks: 1 2 8 9 10 10 10	at No.: Boring Locatio g Method: In to Groundwa ation - Top of C Water Table: In the series I a groundwa ation - Top of C Water Table: I a groundwa ation	to No.: HER25080 Date(s): Soring Location: SW of landfill, near RR track. I hollow Stem Auger Double: I to Groundwater: 18.50 Date: Iton - Top of Casing: 172.20 Inner Casir Date: Water Table: 153.70 Date: I Sandy slit (ML): dark brown; abundant roots; loose (stump dirt). Sandy slit (ML): dark brown; abundant roots; loose (stump dirt). as above: packed. Wood fragments. 3 as above: damp. as above: wet. Clay (CH): blue-gray; slightly sandy; firm; limonite as above: few gravel; some sand partings. Silty Sand (SM): fine gr; black; saturated; (stump dirt). Sandy Clay (CL): tan & lt gray; soft. as above: v sandy. Clayey Sand (SC): tan & lt gray.	tot No.: HER25080 Date(s): Soring Location: SW of landfill, near RR track. g Method: Hollow Stem Auger Drilling Contractor Date: Iton - Top of Casing: 172.20 Inner Casing: 2 In Date: Iton - Top of Casing: 153.70 Date: Inner Casing: 2 In Date: In	as above: packed. Wood fragments. Sandy silt (ML): dark brown; abundant roots; loose (stump dirt). Sandy silt (ML): dark brown; abundant roots; loose (stump dirt). Sandy silt (ML): dark brown; abundant roots; loose (stump dirt). Sandy silt (ML): dark brown; abundant roots; loose (stump dirt). Sandy silt (ML): dark brown; abundant roots; loose (stump dirt). Sandy silt (ML): dark brown; abundant roots; loose (stump dirt). Sandy silt (ML): dark brown; abundant roots; loose (stump dirt). Sandy silt (ML): dark brown; abundant roots; loose (stump dirt). Sandy silt (ML): dark brown; abundant roots; loose (stump dirt). Sandy silt (ML): dark brown; abundant roots; loose (stump dirt). Sandy silt (ML): dark brown; abundant roots; loose (stump dirt). Sandy silt (ML): dark brown; abundant roots; loose (stump dirt). Sandy silt (ML): dark brown; abundant roots; loose (stump dirt). Sandy silt (ML): dark brown; abundant roots; loose (stump dirt). Sandy silt (ML): dark brown; abundant roots; loose (stump dirt). Sandy silt (ML): dark brown; abundant roots; loose (stump dirt). Sandy silt (ML): dark brown; abundant roots; loose (stump dirt). Sandy silt (ML): dark brown; abundant roots; loose (stump dirt). Sandy silt (ML): dark brown; abundant roots; loose (stump dirt). Sandy silt (ML): dark brown; abundant roots; loose (stump dirt). Sandy silt (ML): dark brown; abundant roots; loose (stump dirt). Sandy silt (ML): dark brown; abundant roots; loose (stump dirt). Sandy silt (ML): dark brown; abundant roots; loose (stump dirt).

		ulan	_	rs and Scientists					:_1_ of .	_
Proje		_		Hattiesburg	Dufata V	- We	II/Boring No.		CVC	_
	ect No		HER250		Date(s):	_	20-Apr-05	Logged By:	CVC	_
	ng Me			ner of Appollo and Euro ow Stem Auger		actor	Singley Con	struction Comp	vanu	_
			dwater:	16.45	Date:	actor.	16-May-05	Reference:	TOC	_
			of Casing:	175.62	Inner Casing	2 inc		Outer Casing		
LIGVE			able:	159.17	Date:		16-May-05		TOC	_
Rem	arks:	-								_
<u>P</u>	6					L	Graphical Logs			
Depth, Sample Pt.	Sample Location	Blows		Lithologic Descri	ption	Strata	Well Construction			
<u>a</u> _	Sa	m				S	≥ິບັ	-		_
	1		Silty S	and (SM): black; claye; (stump dirt)						
	2			as above: rock fra	gment.			E		
5 = =	3	m m		as above: wood fragm	ents & fiber					
	4	n/a		as above.						
5 = 10 = 10 = 10	5			as above.						
	6		as ab	ove: resin fragments &	metal fragments.					
	7			as above.						
15=	8			as above.						
HIIII	9		Ē	as above.				E		
20	10		Clayey	Sand (SC): gray & ora fragments; satur						
20	11		Ē	no recovery.						
	12		Sand (SP); blk; coarse gr, abund wood fragments	dant pea gravel;					

E	20-L	Systems, Inc. (**) s, Engineers and Scientists			BORING LOG
oject:	แเลกเ	Hercules - Hattlesburg	W	ell/Boring No	Sheet: 2 of :: .: MW-16
oject No		HER25080 Date(s):	34	20-Apr-05	Logged By: CVC
6				Graphical Logs	
Sample Location	Blows	Lithologic Description	Strata	Well Construction	
13		as above; little wood; some resin fragments.			
	n/a	Boring terminated at 26 feet bgs			

c	E c	C O -	Systems, Inc.				BORING LOG			
Proje			Hercules - Hattiesburg	W	ell/Bo	rina No.:	Sheet: <u>1</u> of _ : MW-17	_		
•	ct No		HER25080 Date(s):			Apr-05	Logged By: CVC			
•			ation: former Delnav production area	-						
Orillin	ng Me	thod	Hollow Stem Auger Drilling Co	ntractor:			struction Company			
			dwater: 16.78 Date:	16-May-05 Reference: TOC						
Eleva			of Casing: 186.13 Inner Cas	ng: 2 ind			Outer Casing: NA			
Rema	Wat arks:	ter Ta	ble:Date:		16-0	May-05	Reference: TOC	_		
ŧ.	L.				Grap Lo	hical gs				
Depth, Sample Pt.	Sample Location	Blows	Lithologic Description	Strata	Well	onstruction				
<u>0</u>	Sa	ă		to to	3	ŭ		_		
			Gravel (GW): abundant concrete fragments; som	ne /			3=			
	1		clay & sand.				3≡			
Ξ	_		E		m		3=			
=			Silty Clay (CL): gr & tan; mottled.		U		3≡			
=	2	1	=				3≡			
Ξ			E				3=			
\equiv			as above: yellow-br				∄			
5 ☰	3	1	E as above, yellow big				3 ≡			
Ξ	_	lg lg	E				=			
=		=	as above: sandy to v. sandy	////			Ξ			
=	4		Sand (SP): white; fine gr; damp.				Ξ			
Ξ	_	1	E Sand (St.). Write, line gr, damp.		S Second	9000	=			
=	1		E		1		Ε			
Ξ	5	1	as above.				Œ			
10≡		1	E			\blacksquare	E			
ΪΞ			E				E			
=	6	l	as above.				Ξ			
Ξ	_		E			\blacksquare	=			
=	1		E				E			
=	7	1	as above: wet.				ii≡			
Ξ	_	1	E				E			
Ξ	1		as above: black & gray; saturated.				E			
15=	8	1	as above, black & gray, saturated.				E			
=	_	1	E				=			
Ξ	1		as above: dk gray; few fine gravel.				Œ			
=	9		as above, or gray, rew fine graves				Œ			
	_	1	E				≣			
_	1		as above: abundant pea gravel				#			
=	10		E				Œ			
20	1_	1	= -	m			E			
=	1	Г	Clay (CH): It gray; stiff-hard.				Œ			
_	10	1	E Gray (Gri). It gray, surriand.				®E			
=	1_	1			4		=			
Ξ	1		Baring terminated at 33 fact has				E			
=	1		Boring terminated at 22 feet bgs				E			
=	3		E							
1 - 1	Mart all a	wetcon	of this form are applicable to oil project							

_	E	co-	Syst	ems	s, Inc. T	>						NG LOG
role		. [] []]			attlesburg			We	:[l/Borin	a No.:	Shee MW-18	et: 1 of _
•	ct No	.:		R250			Date(s):	-	20-Apr		Logged By:	CVC
				adjac	ent to Neptune Rd	and east						
		thod:			w Stem Auger			tractor:			struction Corr	
			dwater:		5.66		Date:	0 1	16-May	y-05	Reference:	TOC
eva			of Casii ible:		163.53 157.87		Inner Casing	g. z inc	n 16-Ma	v-05	Outer Casir Reference:	
ema	arks:				107.07				TO MIC	, 00		100
	LC							1	Graphic Logs	al		
	zatic								5			
Jepui, Sample I I.	Sample Location	Blows			Lithologic Des	scription		Strata	Well Construction			
\exists			E	Gravel	(GW): crushed lim	estone; ha	rd packed.	- 7777	M	1	=	
	1		Ē.		Sandy Clay (CL):		y.		"		Ē	
	2			Sand (SP): grey; fine gr; s		some silt.					
	3			as	s above: little silt or	clay; satu	rated,				Ē	
111111	4	n/a			as abo	ve.						
	5				as above: some	pea grave	ıl,					
Ξ			E								E	
\equiv	6		E		as above: abuno	dant grave	ł,				E	
	7	1	E		as abov	ve.					E	
					Clay (CH): grey	; firm-stiff.					E	
					Boring terminated	at 14 feet	bgs					
11111											Ē	
			=								=	

	Const	ltan	Systems, In s, Engineers and	Scientists					et: 1 of _
Proje	ct: ct No	_	Hercules - Hattiesbi	urg	Date(s):	- We	II/Boring No 21-Apr-05	Logged By	: CVC
			ation: adjacent to I	Ventune Ave betw		nd Dia		Logged by	
	ng Me		Hollow Stem					nstruction Cor	npany
			water: 10.3		Date:		16-May-05	Reference:	TOC
Eleva			of Casing: 172.		Inner Casing	2 inc		Outer Casi	
		ter Ta	ole: 161.	95	Date:		16-May-05	Reference:	TOC
Rema	arks:	_				_		_	
		_							
<u>ئ</u>	_					1	Graphical Logs		
Depth, Sample Pt.	Sample Location						E	7	
am	Ö		Lith	ologic Description	on		Well Construction		
S,	<u>e</u>	L				, m	ţ		
abt	텵	Blows				Strata	ell	l le	
<u> </u>	Š	E .	- 0 1/0140	1.10	Ford Section 1	(i)	<u>0</u> €	<u> </u>	_
Ξ	1			crushed limestone				≋	
			Sandy	Clay (CL): dk gray	; silty.			%	
Ξ		1	E					% ≡	
\equiv	2		Sand	(SP): grey; fine gr	; silty.		111 1	% ≡	
								%	
Ξ		1	Ξ.						
5 ≡	3		as above: so	me v. silty and v.	clayey areas				
	_	a	Ξ				00000	=	
		n/a	Ξ					≋ ⊨	
=	4		as abo	ove: gray; few fine	s, wet.			® E	
Ξ			=				∞ ⊨	₩ E	
	-		Ξ.					≋ ⊨	
10=	5		Ξ.	as above: wet.				 ₩E	
10=		1						₩ E	
Ξ	6		Ξ ,	s above: saturated	1			Œ	
Ξ	ŭ		E	S ADOVO. SOLOTOLO	•,			≋ ≡	
Ξ		1	E					®E	
Ξ	7		as above:	med-coarse qr; so	me gravel			₩ E	
Ξ								=	
Ξ		1	=					Œ	
15=	8	1	Ξ	as above.				₩ E	
Ξ	_		Ξ					Œ	
Ξ								E	
=	9	1	as al	pove: abundant or	avel			E	
Ξ	_	-	8					Œ	
Ξ	40	1		as above.				₩ E	
Ξ	10		E					E	
20	-	-						⊗E	
	11			as above.				Ε	
Ξ	1		=	as above.				₩ E	
		1	_			33333		E	
			Boring	terminated at 22	feet bgs			E	
			-			1	1	_	

Project: Project No Well/Borin Drilling Me Depth to C Elevations	Hercu d: g Loca ethod: Fround	tion: West side of Impountment basin l Hollow Stem Auger	Date(s): between rail road trail brilling Contractor: Date: Inner Casing: Date:	Singley Enviro 9/28/2009 NA 9/28/2009	Anmental Reference: Below Top-of-casing Top-of-casing	og
Depth, Sample Pt. Sample Depth	Blow Count	Lithologic Description	Strata	Graphical segment of the construction constr	Organic Vapor Headspace Analysis (ppm)	Elevation
15 11 11 11 11 11 11 11 11 11 11 11 11 1	n/a	Moist, Gravel bed for railroad (0-3') Moist to Saturated (5' bgs), gray, fine Sand (3-15') 15.00' Auger termination set @ 14.00' BGS			OVA 3-5' bgs 0.8 ppm @ 10:45 OVA 5-7' bgs 0.9 ppm @ 10:54	

Proje Proje Well/ Drillir Dept	ect: ect No Boring Me h to G ations	Hero : g Loc thod:	ation Hodwal	n: North side of impoundment basin buildow Stem Auger Duer: 2.28 Durface: 163.66 In	rilling Contra ate: ner Casing: ate:	va Si ctor:	9/15/2009 and raised p Singley Envir 9/28/2009 NA	Sheet B-21 / MW-2 Logged By: ipes. onmental Reference: Reference: Reference: Mean Sea L	Brent Eanes Below Top-of-casing Top-of-casing Above MSL	1
Depth, Sample Pt.	Sample Depth	Blow Count		Lithologic Description		Strata	Mell Logs Construction	H	ganic Vapor Headspace alysis (ppm)	Elevation
				Asphalt / Gravel mixed with dry, mediur 2.5')	n, Sand (0-			_		
5	1			Dry to moist, gray and black, medium, S Inclusions of amber resin concretions (2	Sand 2.5-5')	,,,,,,		OVA @ 13	3-5' bgs 2.9 ppm 3:25	
	2	n/a		Moist, gray and orange, firm, Sandy Cl	ay ('5-7')			13:3		
5	3			Dy to saturated (9.0' bgs), fine, Sand ("	7-13')			= @13	. 9-11' bgs 16.4 ppm	-
I =	1			Molst, gray, dense, very stiff, Sandy Cla	ау ('13-16')					
20				16.00' Auger termination						

Drillir Depti	ct No Boring Mg Ma	o.: ng L.o ethod Grour	catio		Drilling Co	edge of	9/15/2009 pavement Singley Enviro 9/28/2009	onmental Reference: Be	ent Eanes
Rema	Wa	iter T	able		Date:	ing:			p-of-casing love MSL (MSL)
Depth, Sample Pt.	Sample Depth	ount		Lithologic Des	scription	+	Well construction solution construction	Head	ic Vapor Ispace is (ppm)
	Sample	Blow Count	E			Strata	Well	E	
				Dry, gray, fine, Sand and s	come gravel (0-1')				
	1							OVA 3-5'	bgs 0.4 ppm @
5 = = = = = = = = = = = = = = = = = = =	2	n/a		Dry to saturated(6' bgs), br staining, fine to medium, S increasing with depth (1-9'	and -Grain size			□	bgs 0.8 ppm @
	3							OVA 7-9' @ 13:40	bgs 1.0 ppm
10				Moist, gray, very stiff/dens sorted with some medium 17')	e/plastic, Clay -poorly to coarse grain Sand	(9-		OVA 9-11 @ 13:43	1' bgs 0.6 ppm
2011				17.00' Auger te	rmination	_			

C	onsu	liants	s, E	stems, Inc. ngineers and Scientists Chemical	We	ell/Boring No.:	B-23 / MW-23 B-23 / MW-23
	ct No	_	uies	HER 42029205 Date(s):			Logged By: Brent Eanes
Well/	Boring	Loc	ation	: East side of impoundment basin between fence	and l		
				llow Stem Auger Drilling Contra			onmental
Depti	n to G	round	wat	er: 2.96 Date:		9/28/2009	Reference: Below Top-of-casing
Eleva	itions	- Gro	und	Surface: 162.68 Inner Casing:		NA	Reference: Top-of-casing
	Wat	ег Та	ble:			9/28/2009	Reference: Above MSL
Rema	arks:	_		Flush mount surface completions			Mean Sea Level (MSL)
					-	Graphical	
Depth, Sample Pt.	Sample Depth	Blow Count		Lithologic Description	Strata	Well of Construction s	Organic Vapor Headspace Analysis (ppm) Copper Maria
шш			E	Asphalt (0-1')	200	Willia Willia	OVA 1-3' bgs 8.5 ppm @
Ξ	1		E	Dry, gray, Silty Sand with some gravel (1.5-2.5')		***	E ▼ 07:45
шинш	2			Dry, gray, coarse, Sand (2.5-5')			OVA 3-5' bgs 4.7 ppm @ 07:50
5	3	n/a		Moist, gray/orange, soft, Clay poorly sorted with			OVA 1-3' bgs 8.5 ppm @ 07:45 OVA 3-5' bgs 4.7 ppm @ 07:50 OVA 5-7' bgs 3.1 ppm @ 07:53 OVA 7-9' bgs 24.8 ppm @ 07:58 V OVA 9-11' bgs 73.8 ppm @ 08:03 OVA 13-15' bgs 13.2 ppm @ 08:09
	4			some coarse grain sand (5-9')			OVA 7-9' bgs 24.8 ppm @ 07:58
10=	_			Damp to saturated (8' bgs), gray, fine, Clayey			OVA 9-11' bgs 73.8 ppm @ 08:03
				Sand - increasing grain size with depth (9-13.5')			OVA 13-15' bgs 13.2 ppm
1	4		E	Moist, gray, very stiff/dense/plastlc, Clay poorly sorted with some coarse grain Sand (13.5-15')			@ 08:09
20.				15.00' Auger termination / Well set at 14.0' BGS			

Project No	Hercules	Stems, Inc. Ingineers and Scientists Chemical HER 42029205	Date(s):	9/16/2009	Sheet: 1 of B-24 / MW-24 Logged By: Brent Eanes
Drilling Me Depth to 0 Elevations	Groundwates - Ground ter Table:	low Stem Auger er: 8.00 Surface: 164.98	Drilling Contractor: Date: Inner Casing: Date:	Singley Envir 9/28/2009 NA	Reference: Below Top-of-casing Reference: Top-of-casing Reference: Above MSL Mean Sea Level (MSL)
Depth, Sample Pt. Sample Depth	Blow Count	Lithologic Description	Strata	Well solution with the construction with the	Organic Vapor Headspace Analysis (ppm)
1 5 2 3 10 4	n/a	Dry to moist, green/orange, fine to me (0-3') Moist to saturated (7' bgs), gray, med 13') Moist, gray, very stiff/dense, Clay (13-14.00' Auger termination / Well set @ 13.0' BGS	lium, Sand(3-		OVA 3-5' bgs 0.6 ppm @ 09:40 OVA 5-7' bgs 0.5 ppm @ 09:46 OVA 7-9' bgs 0.8 ppm @ 09:51 OVA 9-11' bgs 0.7 ppm @ 09:58

Appendix C

Historic Potentiometric Surface Maps

Appendix D

Notice of Land Use Restrictions

Prepared By Mississippi Dependment of Environmental Quality P.O. Box 20305 Jackson, MS 39289 (601)961-5171

Mississippi Department of Environmental Quality

NOTICE OF LAND USE RESTRICTIONS

A Restrictive Use Agreed Order has been developed with regard to property located at 613 West 7th Street, Hattiesburg, MS as shown as Parcel 1in the attached survey plat, Exhibit "A". This property, hereafter referred to as the "Site," is situated in Sections 4 and 5, Township 4, Range 13 West, Forrest County, Mississippi, and being more particularly described by metes and bounds as follows, to-wit:

"A description for a parcel situated in Sections 4 and 5, Township 4 North, Range 13 West Forrest County, Mississippi; said parcel being illustrated as parcel 1 on survey plat for Hercules Incorporated by Land Management Services & Mapping, LLC and being more particularly described by metes and bounds as follows: Commencing at a Railroad Spike Found at the NW Corner of Said Section 4 said point having a Mississippi NAD 83 State Plane Coordinate of North: 671932.60' East: 834200.91' and thence run S01°48'08"W 243.97', to a metal pipe found on the south right-of way line of Mississippi Highway 42 for the Point of Beginning; thence leaving said south right of way line run S01°32'45"W 1,065.16', to a wood fence post found; thence run NS8°48'08"W 1,318.98', to a wood fence post found; thence run S01°48'01"W 796.25', to a concrete monument found; thence run S89°40'54"E 1,422.86', to a concrete monument found; thence run S00°21'17"W 129.67', to a concrete monument found; thence run S89°39'18"E 144.76', to a concrete monument found; thence run S00°14'56"W 429.44', to a concrete monument found; thence run S89°52'14"E 1,237.65', to a metal fence post found; thence run S00°54'06"W 1,298.93', to an X-Cut set in concrete on the north right-of-way line of West 7th Street, said street having a 40' right-of-way as per the City of Hattiesburg; thence run along said north right-of-way N89°54'34"E 267.43', to a PK nail set, thence leaving said north right-of-way run; N00°03'00"E 190.92', to a PK nail set; thence run S89°02'44"E 189.42', to a PK nail set; N00°03'00"E 51.37', to a PK nail set; thence run S89°02'44"E 469.81', to an iron pin set; thence run S00°01'08"W 230.27', to an X-Cut set in concrete on the north right-of-way of said 7th street; thence run along said north right-of-way N89°54'34"E 654.88', to a PK nail set at the intersection of the said north right-of-way line and the west right-of-way line of Providence Street, said Providence Street having a 60' right-of-way as per the City of Hattiesburg; thence leaving said north right-of-way line run along said west right-of-way line N00°03'42"W 1,290.00', to an iron pin set; thence continue along said west right-of-way line N89°54'34"E 10.00', to an iron pin set; thence continue along said west right-of-way N00°04'39"W 817.15', to a PK nail set at the intersection of the west right-of-way of said Providence street and the south right-of-way line of Mississippi Highway 42 as per FAP U-008-2(1); thence leaving said west right-of-way line run along said south right-of-way N78°17'33"W 366.13', to an iron pin set; thence continue along said south right-of-way as per PWS Docket # 1043R-71A-EXT S11°42'03"W 10.00' to a concrete right-of-way marker marking the point of curve of a non tangent curve to the right, having a chord bearing of N74°51'58"W, 233.23', and a radius of 1947.42'; thence continue along said south right-of-way westerly along the arc, through a central angle of 06°51'58", a distance of 233.38, to an iron pin set; thence leaving said south right-of-way run S00°00'01"W 103.94', to a fence corner found; thence run West 100.00', to an iron pin set; thence run N00°31'30"W 113.09', to a metal pipe found; thence run East 74.46' to a PK nail set on the aforementioned south right-of way of Highway 42, said point marking the point of curve of a non tangent curve to the right, having a chord bearing of N68°09'32"W, 166.32', and a radius 1,947.42'; thence run along said south right-of-way westerly along the arc, through a central angle of 04°53'41", a distance of 166.37', to an iron pin set; thence leaving said south right-of-way run South 42.85', to an iron pin set; thence run West 50.00', to an iron pin set; thence run North 50.00', to an iron pin set; thence run West 75.00', to a concrete monument found; thence run North 54.74', to an iron pin set on the south right-of-way line of said Highway 42, said point marking the point of curve of a non tangent curve to the right having a chord bearing of N58°38'21"W, 201.65', and a radius of 1,947.42'; thence run along said south right-of-way northwesterly along the arc, through a central angle of 05°56'08", a distance of 201.74', to a right-of-way marker found; thence continue along said south right-of-way N55°42'47"W 145.58', to an iron pin set; thence continue along said south right-of-way S34°06'38"W 20.11', to an iron pin set; thence continue along said south right-of-way thence run N55°40'42"W 230.37'; thence continue along said south right-ofway S34°19'18"W 20.00', to an Iron pin set; thence continue along said south right-of-way N55°40'37"W 570.29', to a right-of-way marker found; thence continue along said right-of-way N55°41'30"W 500.40', to a right-of-way marker found; thence continue along said north right-of-way N33°58'28"E 29.85', to a right-of-way marker found; thence continue along said north right-of-way N55°46'04"W 245.07", to a right-of-way marker found marking the point of curve of a non tangent curve to the left, having a chord bearing of N61°50'00"W, 603.00', and a radius of 2,808.94'; thence continue along said south right-of-way northwesterly along the arc, through a central angle of 12°19'25", a distance of 604.16' back to the Point of Beginning; containing 168.81 acres, more or less; all bearings, coordinates, and distances herein described are grid and are referenced to the west property line and are based on the Mississippi NAD 83 East Zone state plane coordinate system and are referenced to the national spatial reference system through the national geodetic survey's online positioning user service (opus) and are derived from a global positioning system observation, (combined grid factor: 0.99997116; convergence: -0°14'45")."

BOOK 1 0 3 1 PAGE 0 2 4 0

Indexing Instructions: NE, NW, SE, SW of Section 4 & NE of Section 5, Township 4 North, Range 13 West

STATE OF MISSISSIPPI

COUNTY OF FORREST

Soil and groundwater on the Site contains Benzene (CAS #71432), Chlorobenzene (CAS #108907), Carbon Tetrachloride (CAS #56235), Chloroform (CAS #67663), 1,2-Dichloroethane (CAS #107062) and Toluene (CAS #105553) at levels in excess of the Target Remediation Goals (TRGs) as established by the Mississippi Department of Environmental Quality (MDEQ). Other substances are present in the soil and groundwater that do not exceed TRGs have also been identified. In order to protect public health and the environment, certain restrictions are hereby placed on the Site.

The following is a listing of all restrictions for the Site:

1. There shall be no excavating, drilling or other activities to depths that could create exposure to contaminated media without approval from MDEQ;

The groundwater at the Site shall not be used, unless otherwise approved by MDEQ;

Monitoring wells shall be protected and maintained. In the event that a monitoring well is destroyed or damaged or is no longer needed, a plan for repair, reinstallation or abandonment of the well(s) must be submitted to MDEQ for approval; and

No wells shall be installed without prior approval from MDEQ.

Prior to executing any deed or other instrument conveying an interest in the Site, the following conditions must be met:

1. Any conveyance of the property, or any portion thereof, must contain as covenants the restrictions listed above with a statement that the covenants run with the land and continue into perpetuity unless otherwise ordered by the Mississippi Commission on Environmental Quality;

2. Notice must be provided to MDEQ at least 30 days prior to any property transaction involving the Site: and

3. Prior to any change in use of the Site or any portion thereof, notice shall be given to the MDEQ.

The parties that have a legal or equitable surface interest in the Site follow: STATE OF MISSISSIPHI

This Notice may be executed in counterparts.

		The state of mississing of
1. Hercules Incorp	orated	FORREST COUNTY CERTIFY THE INSTRUMENT
Executed, this the 10th day of Decamber:	2007	129454
BY: Shows H Strame JAMI	115/07 for	SOUNTER 52 VALID: 54
NOW TO FIT O THEN EX	, ,	WITHESS MY HAND AND SEAL
TITLE: VP. SHERA		CHANCERY CLERK
PERSONALLY appeared before me, the und	ersigned authority in and	d for the jurisdiction aforesaid
on this the 10th day of Weleuber, 2007	within my jurisdiction, th	he within named
THOMASUSTrang acknowledged that (he)(she) is WP SHE	RA_ of Hercules
Incorporated, a Delaware corporation, and that for and	on behalf of the said o	orporation, and as its act and
deed (he)(she) executed the above and foregoing inst	rument, after first having	g been duly authorized by said
corporation so to do.	1997 1997 (1997) 1998 (1998)	
SWORN TO AND SUBSCRIBED BEFORE ME, this th	e 10/Lay of Dea	2007.
	RHA	
BOOK 1031 PAGE 0241	NOTARY PUBLIC	
MY COMMISSION EXPIRES: No Expleation	FUSHMOND	L. Valuams
BATE	Notary Public S	y secula Stato of Delaware

Page 2 of 2

My Commission Has No Expiration Date

29 <u>Dei.C</u>. § 4323(a)(3)

Appendix E

Field Forms

FIELD INSTRUMENT CALIBRATION LOG

Date:		
ARCADIS Project Name:	Project Number:	
Field Calibration by:	Instrument Source	

Type of Instrument	Manufacturer	Model Number	Time	Standard Concentration	Calibrated Reading	Remarks
				4.00 s.u.		
		1		7.00 s.u.		
pH Meter		()		10.00 s.u.		
	II.			4.00 s.u.		
				7.00 s.u.		
				10.00 s.u.		
				4.00 s.u.		
				7.00 s.u.		
				10.00 s.u.		
				3,000 µmhos/cm		
				5,000 µmhos/cm		
				30,000 µmhos/cm		
	1			3,000 µmhos/cm		
Conductivity Meter				5,000 umhos/cm		
				30,000 µmhos/cm		
				3,000 µmhos/cm		
				5,000 µmhos/cm		
				30,000 µmhos/cm		
				mm Hg		
Dissolved Oxygen				mm Hg		
Calibrate to Water-Saturated Ai	r			mm Hg		
				NTU		
Turbidimeter				NTU		
	7			NTU		
OPP				150 MV		
ORP	1			150 MV		
				150 MV		

FIELD PARAMETER FORM

Well Identification Number:

Job Name/Νι	umber:				Date:				
Water Level ((TOC):				Total Depth	1:			
OVM Reading	g:				3 Well Volu	ımes:			
Start Time:					Total Volun	nes Removed:			
Time	Water Level (ft gmp)	Temp (°F)	Spc. Cond. (µmhos/cm)	Salinity (ppt)	DO (%)	DO (mg/L)	pH (s.u.)	REDOX/ORP (mv)	
Observations/									
errous Iron:			Su	lfide:	_		-		

SOIL/SEDIMENT SAMPLING LOG

PROJECT NAME:		
PROJECT NUMBER:	DATE:	
SITE LOCATION:		
SAMPLE ID NUMBER:	CODED/REPLICATE NO.:	NA
TIME SAMPLING BEGAN:	ENDING:	
WEATHER:		
SITE DESCRIPTION:		
SAMPL	ING DATA	
COLLECTION METHOD:		
DEPTH:	MOISTURE CONTENT:	
COLOR:	ODOR:	
DESCRIPTION:		
ANALYSES REQUIRED	CONTAINER DESCRIP	
	FROM LAB: X OR ARGA	טוס:
	-	
		
SAMPLING MONITORING (TIP, OVA, HNU, etc	2.)	
REMARKS:		
SAMPLING PERSONNEL:		

WELL CONSTRUCTION LOG

		1	ft		1				
7///	1111	1	Land Surf	ace	Project				Well
					Town/City				
		-			County/Parish				State
		1	-	_ inch diameter	Permit Number			-	
			drilled hole	9	Land-Surface Elevation	ion			
					and Datum		_feet		X Surveyed
			-Well casin					-	Estimated
				_inch diameter,					
				PVC	Installation Date(s)				
		_			Drilling Method		_		
	19/2		Backfi		Drilling Contractor			_	
			Grou	it cement	Drilling Fluid				
					-				
				_ft*	Development Technic	ique(s) ar	nd Date(s)		
	500	*	D 1 '1 -		4				
0.00	100	`	Bentonite		-				
	20			slurry	-				
00000	2000		-	_ft* pellets					
					Fluid Loss During Dril				
	-			_ft*	Water Removed Durin		opment		
					Static Depth to Water				feet below M.P.
	= 1000		Well Scree		Pumping Depth to Wa	ater			_feet below M.P.
				_inch diameter	Pumping Duration			hours	
₩≡	= 888		PVC,	0 010 slot	Yield		_gpm	Date	-
					Specific Capacity				_gpm/ft
					Well Purpose Me	Ionitor W	eli		
	≣∰			Gravel Pack					
	•<			Sand Pack					
\\\ ≡				Formation Collapse	Remarks				
⊨	= 33								
₩ 🗏				_ft*					
				34,7					
				_ft*					
				-					

Prepared by

Measuring Point is Top of Well Casing Unless Otherwise Noted,

* Depth Below Land Surface

SAMPLE / CORE LOG

Project No.:		Page 1 o	of 1
	Drilling Started:	Drilling Completed:	
Surveyed: Estimated:	Da	atum:	
	Dri	rilling Method Used:	
	Driller:	Helper:	
	Hammer Weight:	Hammer	
	_		ountered
VISUAL DESCRIPTION	10.0.4	SSS	REMARKS
	Surveyed: Estimated: Silt	Surveyed:Estimated:Drilling Started:Driller:	Drilling Started: Surveyed: Estimated: Datum: Drilling Method Used: Drilling Method Used: Helper: Hammer Hammer Drop (inches): Silt Sandy Silt Silty Sand Acetate Sleeve ✓ Water First Enc. VISUAL VISUAL VISUAL VISUAL PP OVA (wo/F)(w/F)

WATER SAMPLING LOG

Project		Project N	lo		-
Site Location					Date:
Site/Well No.		Replicate	No		Code No
Weather		Sampling	Time: Begin		End
Evacuation Data			Field Pa	rameters	
Measuring Point			Color		
MP Elevation (ft)			Odor		
Land Surface Elevation (ft)			Appearan	ice	
Sounded Well Depth (ft bmp)					
Depth To Water (ft bmp)				vity (mS/cm)	
Water Level Elevation (ft)				vity (µmhos/	
Water Column In Well (ft)				- "	
Casing Diameter/Type				ure(^O C/ ^O F)	
Gallons In Well			Dissolved		7101
Gallons Pumped/Bailed Prior To Sampling			REDOX	,3	
Sample Pump Intake Setting (ft bmp)			Sampling	Method	
Purge Time	Begin:	End	Remarks		
Pumping Rate (gpm)					
Evacuation Method					
Constituents Sampled	Contai	ner Description	_	Number	Preservative
	= =				
	\equiv				
	= =				
Sampling Personnel				-	
Gal./Ft.	1 - 1/2" = 0.09 2" = 0.16	2 - 1/2" = 0.26 3" = 0.37	3 - 1/2" = 0.50 4" = 0.65	6" = 1.47	
bmp Below measuring point OCIOF Degrees Celsius/Fahrer ft Feet gpm Gallons per minute mg/L Milligrams per liter ppt Parts per thousand	t ml	Milliliter		NTU PVC s.u. µmhos/cm VOC SS	Nephelometric Turbidity Units Polyvinyl chloride Standard units Micromhos per centimeter Volatile Organic Compounds Stainless steel

ARCADIS P	roject Name / Nu	mber:	Sample ID:
Matrix:	Collection:	Preservative:	
	1		Date:
Analysis:			Time:
Sampler(s):		Sec. 12.0

92

<u>\$</u>-

y-

63

A A	R	CADI	S
Infrastructure	Water	Environment	Buildings

ID#:			

CHAIN OF CUSTODY & LABORATORY ANALYSIS REQUEST FORM

Page of

Lab Work Order #	10
	Mary Account of
	BOOK TO SEE ST

Contact & Company Name: Address: City State Zip Project Name/Location (City, State): Sampler's Printed Name:	Telephone: Fax: E-mail Address: Project #: Sampler's Signature:					Preservative Filtered (*) # of Containers Container Information PARAMET			ER ANALYSIS & METHO			OD		Preservation Ke A. H,SO ₄ B. HCL C. HNO ₃ D. NaOH E. None F. Other: G. Other: H. Other: Matrix Key: SO - Soil W - Water	Keys Container Information Key: 1. 40 ml Vial 2. 1 L Amber 3. 250 ml Plastic 4. 500 ml Plastic 5. Encore 6. 2 oz. Glass 7. 4 oz. Glass 8. 8 oz. Glass 9. Other: 10. Other: SE - Sediment NL - NAPL/Oil SL - Sludge SW - Sample Wipe
Sample ID	Colle	ection Time	Comp	e (√) Grab	Matrix	/			_	_	_			T - Tissue	A - Air Other:
4															
Considerations (Construction									☐ Special (QA/QC Instru	ictions(√):				
Special Instructions/Comments:															
Laboratory Information and Receipt					quished By			Received B	у	+	Celinquished		Laboratory Received By		
Lab Name:				ted Name:		Printed Name:		Printed Name:			nted Name:				
□ Cooler packed with ice (✓) □ Intact □ Not Intact Signal				Signature:		Signature:			nature:						
Specify Turnaround Requirements: Sample Receipt: Firm:				Firm/Courier:		Firm/Courier:			m:						
Shipping Tracking #: Condition/Cooler Temp: Date/		Time:			Date/Time:			Date/Time:		Da	te/Time:				

CHAIN-OF-CUSTODY SEAL • CHAIN-OF-CUSTODY SEAL

ARCADIS

CHAIN-OF-CUSTODY SEAL • CHAIN-OF-CUSTODY SEAL