

JAN 2 4 2003

FILE COPY

INTERIM GROUNDWATER MONITORING REPORT

Hattiesburg, Mississippi

PREPARED FOR: Hercules, Incorporated

JANUARY 2003

Prepared by:

Eco-Systems, Inc. Consultants, Engineers, and Scientists 439 Katherine Drive, Suite 2A Jackson, Mississippi 39232 (601) 936-4440

Jackson, MS · Houston, TX · Mobile, AL

TABLE OF CONTENTS

1.0 INTRODUCTION	. 1
2.0 FIELD ACTIVITIES	3
2.1 Protocol Sampling 2.2 Groundwater Monitoring 2.3 Groundwater Elevations	3
3.0 LABORATORY ANALYTICAL RESULTS	. 5
3.1 Protocol Sampling	5 5
4.0 FINDINGS AND CONCLUSIONS	. 7
5.0 RECOMMENDATIONS	. 8

TABLES

TABLE 1	SUMMARY OF GROUNDWATER ELEVATON DATA
TABLE 2	SUMMARY OF PROTOCOL SAMPLING ANALYTICAL RESULTS
TABLE 3	SUMMARY OF GROUNDWATER ANALYTICAL RESULS

FIGURES

FIGURE 1	SITE LOCATION MAP
FIGURE 2	POTENTIOMETRIC SURFACE MAP

APPENDICES

APPENDIX A	ANALYTICAL PROTOCOLS
APPENDIX B	BORING LOGS AND WELL CONSTRUCTION DIAGRAMS
APPENDIX C	SAMPLE COLLECTION LOGS
APPENDIX D	LABORATORY ANALYTICAL REPORTS

1.0 INTRODUCTION

Eco-Systems, Inc (Eco-Systems) has been retained by Hercules, Incorporated (Hercules) to conduct site investigations at the Hercules plant in Hattiesburg, Mississippi. The site location is shown on Figure 1. This report is an interim report on progress to date in conducting site investigations in accordance with *Hercules' Site Investigation Work Plan* (Eco-Systems, February 1999) and additional comments of the Mississippi Department of Environmental Quality (MDEQ) approval letter dated April 5, 1999. In addition, the locations of MW-8 and MW-9 were changed in accordance with the MDEQ approval on February 1, 2000 based on information contained in Eco-Systems'submittal on December 27, 1999.

The work described in the approved work plan centered on efforts to determine whether the pesticide Dioxathion was present in site soil and groundwater. The work plan included installation of 5 additional groundwater monitoring wells, MW-7, MW-8, MW-9, MW-10, and MW-11, to provide groundwater quality information near the former Dioxathion production area and near former wastewater sludge pits. The work also included installation of 14 temporary piezometers and 4 staff gauges. The piezometers and staff gauges were installed to provide hydrogeologic information in the uppermost saturated interval and to establish the relationship, if any, of the uppermost saturated interval to Green's Creek. Monitoring well and piezometer locations are shown on Figure 2. The staff gauges have been washed out, or otherwise destroyed, between the time of their installation and the present.

Installation of the temporary piezometers was conducted in April/May 1999. Installation of monitoring wells was conducted in February 2000. However, prior to sampling the additional monitoring wells, questions arose regarding analytical methods for Dioxathion and the quality of Dioxathion for use as a laboratory standard. In the ensuing months, Hercules, in conjunction with MDEQ's consultant, Mississippi State University (MSU) developed analytical protocols for soil and groundwater (Appendix A). Since the quality of available analytical standards was questionable, Hercules contracted with Sigma Aldritch to synthesize Dioxathion standards. In August 2002 Dioxathion had been manufactured of a suitable quality to be used as laboratory standard, and Hercules and the MDEQ had agreed to a laboratory protocol. In October 2002, groundwater samples were collected from four wells (MW-1, MW-4, MW-5, and MW-6), and those samples were analyzed by Bonner Analytical and Testing Company (BATCO) and the Mississippi State Chemical Laboratory (MSCL) to test the newly established laboratory protocol. Comparison of the results from the two laboratories was deemed acceptable by MDEQ and the site investigation was resumed.

On December 4 and 5, 2002, groundwater samples were collected from the eleven site monitoring wells, and those samples analyzed for Dioxathion. At the request of the MDEQ, samples from the wells installed in 2000 (MW-7 through MW-11) were also analyzed for volatile organic compounds (VOC) and semi-volatile organic compounds

(SVOC). Due to the extended time required to implement all phases of the work plan and the number of alterations to the original work plan that have occurred, periodic documentation of investigative efforts at the site was deemed appropriate. Boring logs and well construction diagrams for the additional monitoring wells and the temporary piezometers were provided to the MDEQ in a letter report dated August 28, 2002 and are also included in Appendix B. This *Interim Groundwater Monitoring* report has been prepared to document the results of the analytical protocol sample analysis and advise the MDEQ of the results of the groundwater monitoring conducted in December 2002.

2.0 FIELD ACTIVITIES

Groundwater sample collection was conducted in accordance with the work plan and the EPA Region IV's <u>Standard Operating Procedures and Quality Assurance Manual</u> (November 2001). Groundwater samples were collected using a peristaltic pump and Teflon® tubing. Low flow/low stress sampling techniques were utilized for wells where there was sufficient recharge. If there was insufficient recharge for low flow/low stress sampling techniques to be utilized, traditional volume-based sampling techniques were used. Copies of the sample collection logs for both the protocol sampling and the groundwater monitoring are included in Appendix C.

Groundwater samples were collected directly from the discharge tubing into containers provided by BATCO. A BATCO representative was on site during sample collection and samples to be analyzed by BATCO were delivered directly to the BATCO site representative. Samples to be analyzed by the MSCL were placed in an iced cooler and shipped via overnight courier. Chain-of-custody documentation was maintained for all samples collected.

2.1 PROTOCOL SAMPLING

Groundwater samples were collected to evaluate the Dioxathion analytical protocol on October 14, 2002 from monitoring wells MW-1, MW-4, and MW-5. Quality assurance/ quality control (QA/QC) samples were also collected. The QA/QC samples included a rinsate blank, a matrix spike and a matrix spike duplicate sample. All samples were analyzed for Dioxathion by both BATCO and MSCL. At the request of the MDEQ, samples were also collected from monitoring wells MW-5 and MW-6 for VOC and SVOC analyses. Samples submitted for VOC and SVOC analysis were analyzed by BATCO. Representatives of the MDEQ were on site during protocol sample collection but did not elect to split samples.

2.2 GROUNDWATER MONITORING

On December 4 and 5, 2002, Eco-Systems collected groundwater samples from the eleven groundwater monitoring wells at the site. As with the protocol sampling, QA/QC samples were also collected and include rinsate blank, trip blank, blind duplicate, matrix spike and matrix spike duplicate samples. At the request of the MDEQ, the sample collected from MW-4 was analyzed for VOCs and samples collected from monitoring wells MW-7, MW-8, MW-9, MW-10 and MW-11 were analyzed for VOCs and SVOCs. Samples were delivered to the BATCO site representative for analysis. Representatives of the MDEQ were on site December 4, 2002 and collected a split sample from monitoring well MW-11.

2.3 GROUNDWATER ELEVATIONS

Water level information was collected from the existing monitoring wells and piezometers on December 4, 2002. As mentioned in Section 1.0, staff gauges installed in Green's Creek in 1999 have been destroyed. Depth to water measurements were subtracted from well casing elevations to determine groundwater elevations. Groundwater elevations are summarized in Table 1. A potentiometric surface map based on the December 4, 2002 groundwater elevations has been prepared and is included as Figure 2.

Groundwater in the uppermost, saturated interval beneath the site tends to mimic surface topography. In the active portions of the plant operations, which are located in the southeastern portion of the site, the potentiometric surface indicates the presence of a southwest to northeastward trending divide. The potentiometric surface map indicates that groundwater northwest of the divide would tend to move northwestward towards Green's Creek. Likewise, groundwater southeast of the divide would tend to move southeastward. On the north side of Green's Creek, the potentiometric surface indicates that groundwater in the uppermost, saturated interval moves generally southward towards Green's Creek.

3.0 LABORATORY ANALYTICAL RESULTS

Samples were analyzed for Dioxathion according to the analytical protocol established by Hercules and approved by the MDEQ. Samples submitted for VOC and SVOC analysis were analyzed according to U.S. EPA SW-846 methods 8260 and 8270, respectively, for the target compound list (TCL) compounds. Analytical data for detected parameters are summarized in Table 2 and Table 3. Copies of the analytical reports are included in Appendix D.

The following sections are intended to provide a brief overview of the laboratory analytical results, and not an exhaustive discussion of the analytical data.

3.1 PROTOCOL SAMPLING

Samples collected for evaluation of the Dioxathion protocol were analyzed for cis-Dioxathion, trans-Dioxathion, and Dioxenethion. Analysis of the protocol samples by MSCL was conducted by both high performance liquid chromatography/mass spectrometry (HPLC/MS) methods and ultraviolet (HPLC/UV) methods. Analysis of the protocol samples by BATCO was conducted by Gas Chromatography/Mass Spectrometry (GC/MS). The results of the Dioxathion analyses are shown in Table 2.

VOCs and SVOCs were not detected in the groundwater samples collected from MW-5 and MW-6.

3.2 GROUNDWATER MONITORING

Samples collected during the groundwater monitoring event were analyzed using GC/MS methods by BATCO. Concentrations of cis-Dioxathion were detected in the groundwater samples collected from monitoring wells MW-4 and MW-9. Concentrations of trans-Dioxathion were detected in the groundwater sample collected from monitoring well MW-8. Concentrations of total Dioxathion (i.e. the sum of the concentrations of cis-Dioxathion and trans-Dioxathion) above the target remediation goal (TRG) of 54.8 were not detected in the groundwater samples collected from the site. The TRGs are found in the Tier 1 Target Remedial Goal Table of the <u>Final Regulations Governing Brownfields</u> <u>Voluntary Cleanup And Redevelopment In Mississippi</u>, published by the Mississippi Commission on Environmental Quality and adopted May 1999 and revised March 2002.

Concentrations of Dioxenethion were detected in the groundwater samples collected from monitoring wells MW-4, MW-6, MW-7, MW-8, MW-9, and MW-11. There is not a TRG for Dioxenethion.

Neither Dioxathion isomers nor Dioxenethion were detected in the groundwater samples collected from MW-1, MW-2, MW-3, MW-5, and MW-10.

Eight VOCs were detected in the groundwater sample collected from MW-4. Four of the eight VOCs, benzene, carbon tetrachloride, chloroethane, and chloromethane were detected at concentrations exceeding their respective TRGs.

Twenty-eight VOCs were detected in the groundwater sample collected from MW-8. Fourteen of the 28 VOCs were detected at concentrations above their respective TRGs.

Three VOCs were detected in the groundwater sample collected from MW-9. One of the three VOCs detected in the sample collected from MW-9 was above its TRG.

Two VOCs were detected in the groundwater sample collected from MW-11. One of the two VOCs detected in the groundwater sample collected from MW-11 was above the applicable TRG.

VOCs were not detected in the groundwater samples collected from monitoring wells MW-7 and MW-10.

One SVOC was detected in the groundwater sample collected from MW-8 at a concentration less than its TRG. SVOC were not detected in the groundwater samples collected from MW-7, MW-9, MW-10, and MW-11.

4.0 FINDINGS AND CONCLUSIONS

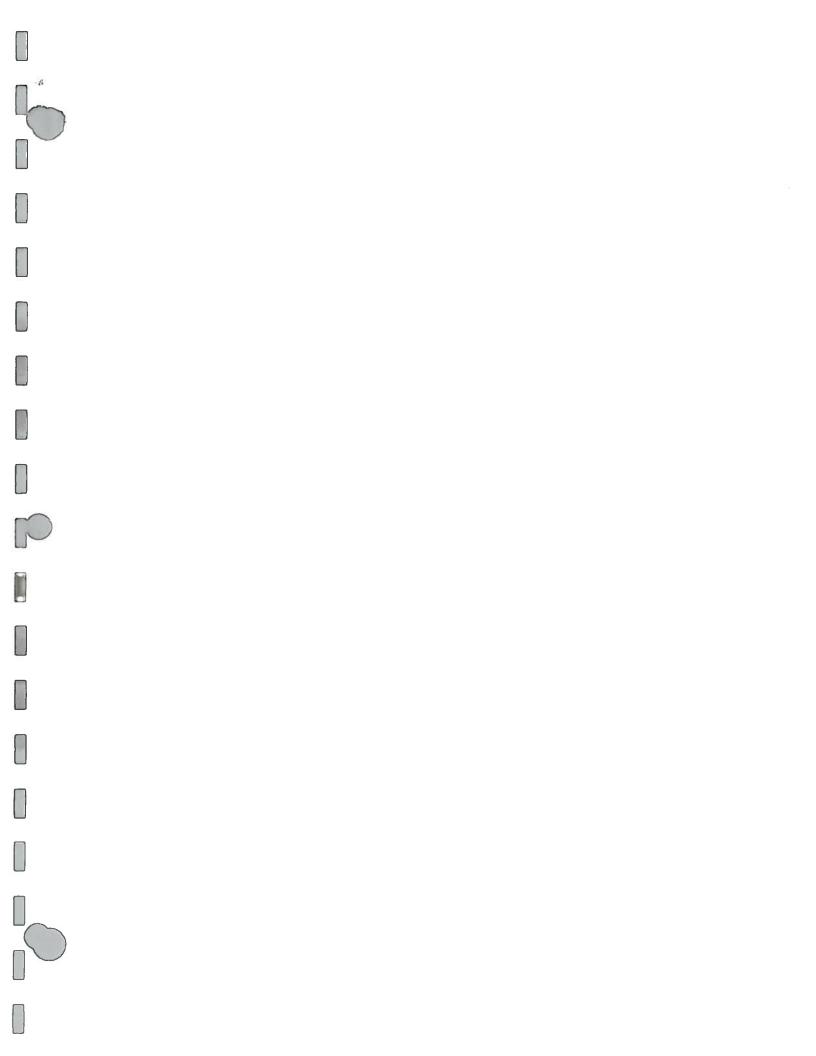
The findings and conclusions of this report are based on, or reasonably ascertainable from, published information, field observations, and the results of specific laboratory analyses.

- Groundwater beneath the site tends to mimic surface topography. In the active portions of the plant operations, the potentiometric surface indicates the presence of a southwest to northeast trending divide. Groundwater northwest of the divide would tend to move northwestward towards Green's Creek. Groundwater southeast of the divide would tend to move southeastward. North of Green's Creek, the potentiometric surface indicates that groundwater in the uppermost saturated interval moves generally southward towards Green's Creek.
- Dioxathion isomers, Dioxenethion, VOCs and SVOCs were not detected in the groundwater samples collected from monitoring well MW-5. Monitoring well MW-5 is located immediately downgradient of the landfill. The analytical results for the samples collected from monitoring well MW-5 do not indicate that Dioxathion isomers, Dioxenethion, VOCs and/or SVOCs are migrating from the landfill via groundwater in the uppermost saturated interval.
- Concentrations of Dioxathion isomers were detected in samples collected from MW-4, MW-8 and MW-9 at concentrations less than the TRG. Monitoring well MW-8 is located northwestward of the former Dioxathion production area. Monitoring well MW-11 is located southward, and downgradient, of the wastewater sludge pits. Concentrations of Dioxenethion were detected in the groundwater samples collected from MW-4, MW-6, MW-7, MW-8, MW-9, and MW-11. There is no TRG for Dioxenethion.
- Concentrations of VOCs above their respective TRGs were detected in groundwater samples collected from MW-4, MW-8, and MW-9. Monitoring well MW-4 is located southward, and downgradient, of the wastewater sludge pits. As stated above, monitoring well MW-8 is located northwestward of the former Dioxathion production area. Monitoring well MW-9 is located eastward of the former Dioxathion production area.

5.0 RECOMMENDATIONS

Based on the information obtained during the completed portions of the site investigation Eco-Systems recommends the following:

• Groundwater samples should be collected from monitoring wells MW-4, MW-8, MW-9, and MW-11 to confirm the presence and concentrations of VOCs. These confirmation samples are scheduled to be collected on February 11, 2003.


Pending review and approval of MDEQ, Eco-Systems recommends the following:

- Staff gauges should be re-installed in Green's Creek to provide necessary information to evaluate the relationship, if any, between the uppermost saturated interval and Green's Creek.
- Schedule technical discussion between Hercules/BATCO and MDEQ/MSCL to consider raising the method detection limit for Dioxathion from 1 ppb to 10 ppb.
- Proceed with the completion of Hercules' Site Investigation Work Plan (Eco-Systems, February 1999) with the following modifications:
 - Field observations and topography will be used to establish the boundaries of the landfill instead of excavating test pits.
 - Schedule technical discussion between Hercules and MDEQ to define the objectives of the geophysical investigation that has been requested by MDEQ.
- Surface water samples should be collected from the staff gauge locations along Green's Creek to evaluate the potential for discharge to the creek of groundwater containing Dioxathion and VOCs.
- Investigate the potential for non-aqueous phase liquids (NAPLs) in areas of elevated VOC concentrations.

TABLES

S:\projects\HER22073\Hercules Interim Report

TABLE 1 SUMMARY OF GROUNDWATER ELEVATION DATA

December 4, 2002

Hercules, Incorporated

Hattiesburg, Mississippi

WELL NO.	TOC ELEVATION	WATER DEPTH	GROUNDWATER
	(ft.) ¹	(ft) ²	ELEVATION (ft.)
	PERMANEN	T MONITOR WELLS	
MW-1	174.12	5.15	168.97
MW-2	160.07	5.50	154.57
MW-3	160.03	6.04	153.99
MW-4	159.75	9.92	149.83
MW-5	160.99	8.05	152.94
MW-6	174.05	7.73	166.32
9	PIE	ZOMETERS	
TP-1	172.18	4.54	167.64
TP-2	171.72	10.81	160.91
TP-3	169.74	8.90	160.84
TP-4	163.64	3.92	159.72
TP-5	160.54	7.42	153.12
TP-6	158.63	6.69	151.94
TP-7	167.17	8.77	158.40
TP-8	183.79	13.65	170.14
TP-9	163.44	6.35	157.09
TP-10	179.69	13.81	165.88
TP-11	162.26	8.26	154.00
TP-12	159.95	9.87	150.08
TP-13	156.99	6.83	150.16
TP-14	164.35	6.90	157.45

¹ TOC = "top of casing" measured relative to mean sea level (ft. MSL).

 $^{2}\;$ Water depth is a relative depth measured from the TOC.

³ Date water level survey was completed is presented in parentheses for each site.

TABLE 2

SUMMARY OF PROTOCOL SAMPLING ANALYTICAL RESULTS

October 14, 2002

Hercules, Incorporated Hattiesburg, Mississippi

		Concentra	tions in parts per b	illion (ppb)
		MS	\mathbf{CL}^{1}	BATCO ²
Well	Isomer	HPLC/MS	HPLC/UV	GC/MS
MW-1	Dioxenethion	nd ³	nd	nd
	cis-Dioxathion	nd	nd	nd
	trans-Dioxathion	nd	1.5	nd
MW-4	Dioxenethion	32	25	19.22
	cis-Dioxathion	nd	nd	4.80
	trans-Dioxathion	nd	nd	1.61
MW-5	Dioxenethion	nd	nd	5.09
	cis-Dioxathion	nd	nd	1.70
	trans-Dioxathion	0.92	10	1.44
Rinsate	Dioxenethion	nd	nd	nd
	cis-Dioxathion	nd	nd	nd
	trans-Dioxathion	nd	nd	nd

1 - MSCL = Mississippi State Chemical Laboratory

2 - BATCO = Bonner Analytical & Testing Company

3 - nd = Analyte not detected at or above the practical quantitation limit.

C

TABLE 3 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS December 4 and 5, 2002

Hercules, Incorporated Hattiesburg, Mississippi

		_		റ്റ	ncentrat	ions in p	arts per b	Concentrations in parts per billion (ppb)	(q			
Analytes	MW-1	MW-2	MW-3	MW-4	MW-5	9-WW	7-WM	MW-8	9-WW	MW-10	MW-11	TRG ¹
Dioxathion												
cis-Dioxathion	pu	pu	pu	3.34	pu	pu	pu	pu	12.8	pu	Ś	
trans-Dioxathion	pu	pu	pu	pu	pu	pu	pu	53.9	pu	pu	pu	
total	pu	pu	pu	3.34	pu	pu	pu	53.9	12.8	pu	5	54.8
Dioxenethion	nd ²	pu	pu	12.9	pu	1.12	9.57	94.3	5.9	pu	50.3	na
Volatiles												
1,1-dichloroethene	na ³	na	na	pu	na	na	pu	17	5.92	pu	pu	7
benzene	na	na	na	14	na	na	pu	6900	9.15	pu	114	5
trichloroethene	na	na	na	pu	па	na	pu	5.8	pu	pu	pu	5
toluene	Da	na	na	pu	na	Da	pa	78	pu	pa	pa	1000
chlorobenzene	na	113	na	1.81	B	na	pa	290	pa	P	Ы	100
bromodichloromethane	na	na	DIA	pa	Ba	BB	B	6.84	pa	pa	pa	0.168
bromomethane	na	na	na	pu	na	na	pu	4.07	pa	pu	pu	8.52
carbon tetrachloride	na	na	na	10	na	na	pu	16000	pu	pu	pu	5
chloroethane	na	na	na	63	na	na	pu	99	pu	pu	pu	3.64
chloroform	na	na	na	pu	na	na	Pa	1800	pu	pa	pa	0.155
chloromethane	na	na	Da	1.72	na	Da	B	39.2	pa	B	B	1.43
dibromochloromethane	na	na	na	pa	na	na	Pa	4.45	pu	P	pg	0.126
l,2-dichlorobenzene	na	na	na	pu	na	na	рп	2.71	pu	pu	pu	600
I,3-dichlorobenzene	na	na	na	pu	na	na	pu	3.75	pu	pu	pu	5.48
1,4-dichlorobenzene	na	na	na	pu	na	na	pu	3.8	pu	pu	pu	75
1,2-dichloroethane	Da	Ba	Ba	Ы	a	Da	pa	20	pa	pa	3.11	
cis-1,2-dichloroethene	Da	na	Da	pa	8	IIA	pa	19	В	pu	р	٩
ethyl benzene	Da	na	Da	pu	na	na	B	55.6	pu	pa	pu	700
isopropylbenzene	na	na	na	1.26	na	na	pu	4.6	2.48	pu	pa	619
p-isopropyltoluene	na	na	na	pu	na	na	pu	23.9	pu	pu	pu	na
methylene chloride	na	na	na	pu	na	па	pu	26.1	pu	pu	pu	5
naphthalene	Da	Da	Da	5.38	BI	Da	pa	9.14	pa	pu	pa	62
tetrachloroethene	na	na	na	pu	na	na	pa	8.51	pu	pa	pa	S

TABLE 3 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

December 4 and 5, 2002

Hercules, Incorporated

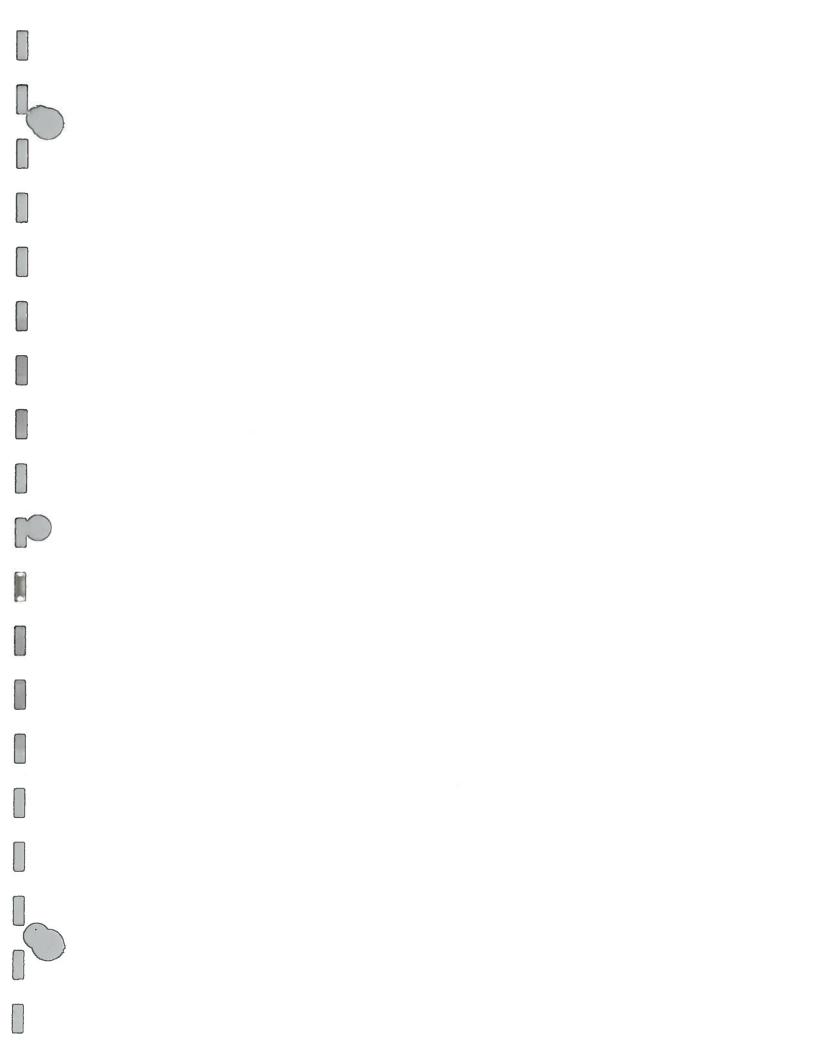
Hattiesburg, Mississippi

				ပိ	ncentrat	Concentrations in parts per billion (ppb)	urts per b	illion (pp	(9			
Analytes	MW-1	MW-1 MW-2	MW-3	MW-4	MW-5	MW-4 MW-5 MW-6 MW-7	MW-7	MW-8	MW-9	MW-10	MW-8 MW-9 MW-10 MW-11	TRG ¹
Volatiles - continued												
1,2,3-trichlorobenzene	na	na	na	1.81	na	па	pu	2.55	pu	pu	pg	na
1,2,4-trichlorobenzene	na	na	na	pu	na	na	pu	2.86	pu	pu	pu	70
1,2,4-trimethylbenzene	na	na	na	pa	na	na	pu	1.81	pu	pu	pu	12.3
xylenes (total)	na	na	na	pu	na	BB	pa	61	P	pa	pa	10000
vinyl chloride	na	na	na	pa	na	na	g	1.62	pa	В	B	7
Semi-Volatiles												
4-methylphenol	na	na	na	pu	na	na	pu	13.16	pu	pu	pu	183
↓	1 - Target Remediation	mediation G	oals are take	an from the	Tier 1 Targe	Goals are taken from the Tier 1 Target Remedial Goal Table of the Final Regulations Governing	Soal Table o	of the Final R	aculations -	Governing		

I arget кете

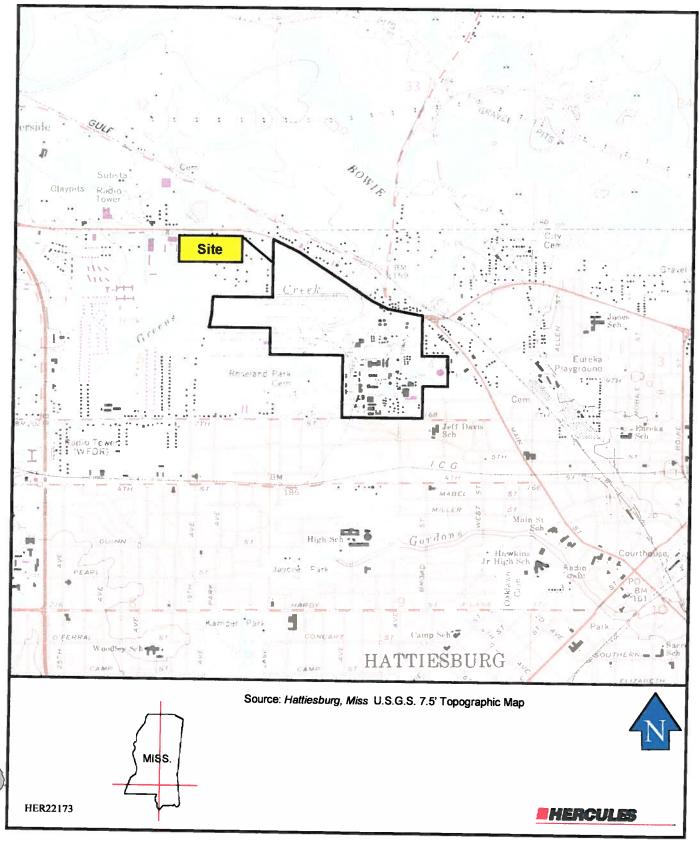
mediation Goals are taken from the Tier 1 Target Remedial Goal Table of the Final Regulations Governing Brownfields Voluntary Cleanup and Redevelopment in Mississippi, MDEQ, March 2001.

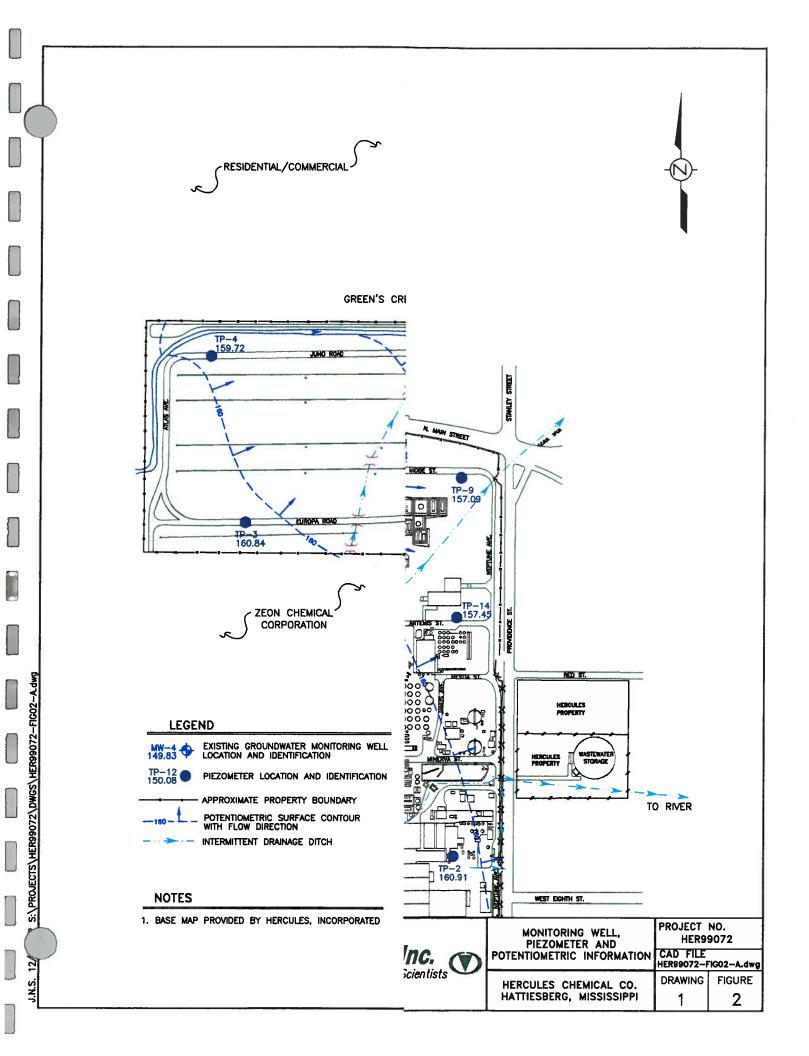
Bold Text indicates concentrations above applicable TRGs


2 - nd = Analyte not detected at or above the practical quantitation limit.

3 - na = Not analyzed

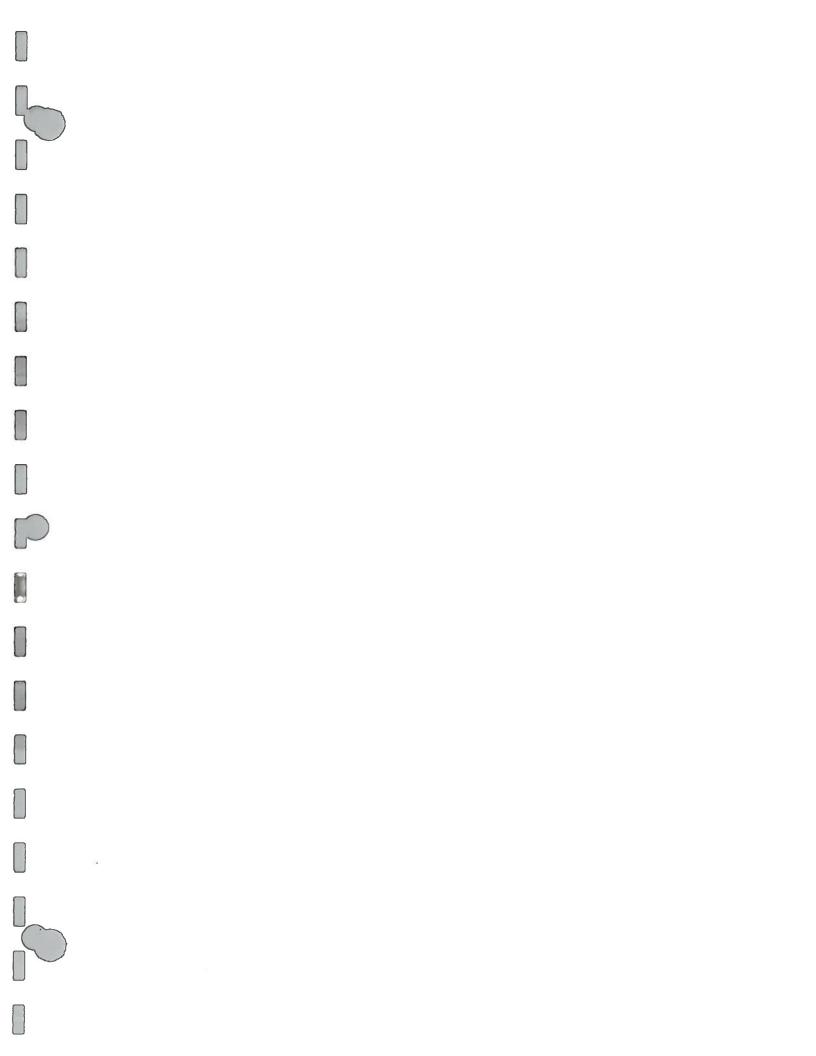
FIGURES


S:\projects\HER22073\Hercules Interim Report



Eco-Systems, Inc. Consultants, Engineers and Scientists

SITE LOCATION MAP HERCULES, INC. HATTIESBURG, MS


APPENDICES

S:\projects\HER22073\Hercules Interim Report

APPENDIX A

ANALYTICAL PROTOCOLS

SAMPLING AND ANALYSIS PROTOCOL FOR THE DETERMINATION OF DIOXATHION IN WATER

Recent results of analyses of well water samples from the Hercules Incorporated plant in Hattiesburg, Mississippi, have exhibited a wide range in the levels of dioxathion reported. Discussions among representatives from the analytical laboratories demonstrated that the samples analyzed to date were not true split samples and that the analytical methods were applied differently. In order to minimize the effects from different water samples and from inconsistent application of the analytical methods, the following protocol has been assembled by agreement between Hercules Incorporated and the Mississippi State Chemical Laboratory. This protocol will be used in a study to determine the proper sampling and analysis methods to be used for all future water monitoring programs at the Hattiesburg plant.

1.) <u>SAMPLE COLLECTION</u>

Water samples will be withdrawn from the well using a peristaltic pump with Teflon tubing. The contents of the bailer will be placed into a large glass or Teflon container (one gallon, or more, in size). The container should have a Teflon-lined screw cap. Successive bailers of water will be removed from the well and placed into the container until there is enough water to supply split samples to each laboratory participating in the study. The contents of the large container will then be mixed thoroughly. After the composited water sample in the large container has been mixed, equal amounts of water will be poured into each sample jar. The sample jars should have Teflon-lined screw caps. This procedure will be repeated for each well.

Each analytical batch of a given matrix (up to 20 samples) will require the analysis of a method blank, Laboratory Control Standard (LCS), Matrix Spiked sample (MS) and Matrix Spike Duplicate (MSD). Alternately, a duplicated sample may be substituted for the (MSD). The MS and the MSD are counted as part of the analytical batch (aka Sample Delivery Group) which may be held open for up to seven (7) days.

Water samples collected from Wells #1, #4 and #5 will be submitted in duplicate to each laboratory. That is, two separate sample jars from Well #1, Well #4 and Well #5 will be filled and sent to each laboratory for analysis.

NOTE: The sample collected for the MS/MSD will require six (6) one-liter samples.

2.) EXTRACTION OF SAMPLES

All samples will be extracted with methylene chloride following the details described in the latest revision of U.S. EPA SW-846 Method 3510 C. The solvent should be exchanged into hexane, and all extracts will be adjusted to a final volume of ten milliliters (10 mL) before analysis.

3.) <u>CLEANUP OF EXTRACTS</u>

In order to minimize interferences in the determination of dioxathion, sample extracts that appear to contain interferences will be cleaned up using the latest revision of U.S. EPA SW-846 Method 3620, Florisil Cleanup. The volume of eluting solvent necessary for quantitative recovery of dioxathion from the Florisil column will be determined in each laboratory using the dioxathion and dioxenethiol reference standards supplied for calibration of the GC methods.

4.) SULFUR CLEANUP

If there is significant interference from sulfur compounds, the extracts may be cleaned up according to U.S. EPA SW-846 Method 3660, copper option.

5.) ANALYSIS OF EXTRACTS

Previous work performed by Bonner Analytical and Testing (BATCO) has revealed that trans dioxathion undergoes thermal degradation in the Gas Chromatograph column therefore the protocol is changed to a lower temperature analytical method. For All sample extracts will be analyzed by High Performance Liquid Chromatography (HPLC)) using a Photo Diode Array (PDA), operated in . U.S. EPA SW-846 Method 8321 A will be used as general guidance for HPLC methodology. A five-point calibration curve will be used to calculate the results of analyses. The lowest point on the calibration curve should be equal to, or slightly higher than, the limit of detection of the GC-PDA system. The highest point on the calibration curve should be the end of the linear portion of the PDA response profile. All laboratories will follow the QA/QC criteria described in the analytical method. Those results will be stored at each laboratory for review at a later date, if necessary.

Instrumentation

HPLC – Hewlett Packard Model 10980 Series II Liquid Chromatograph with Diode Array Detector Fluoresence Detector Hewlett Packard Series 1100 HPLC Column: Supelco Discovery C18, 250 mm X 4.6 mm ID, 5 µm Particle Size.

Method Parameters

Mobile Phase : Isocratic, 30% Deionized water and 70 % Acetone Flow: 1.2 mls/min Injection Volume: 25 μLs Run Time: 20 Minutes Oven Temperature 35 °C Detector Wavelengths Diode Array: Excitation at 200, 210 and 270 nms Fluorescence: Excitation at 250 nms, Emission at 410 nms

Surrogate/Internal Standards: A surrogate will be chosen that does not coelute with any dioxathion isomer. Internal standards may or may not be used.

6.) <u>CONFIRMATION OF ANALYSES</u>

The preferred method for qualitative and quantitative confirmation of dioxathion and dioxenethiol is Liquid Chromatography/Mass Spectra analysis (LC/MS), however the present time Bonner Analytical and Testing does not own an LC/MS instrument. Therefore, for qualitative and quantitative confirmation of the dioxathion results, all sample extracts will be analyzed by Bonner Analytical and Testing using gas chromatography-mass spectrometry (GC-MS) using the latest revision of U.S. EPA SW-846 Method 8270, or an equivalent mass spectrometry system that is deemed appropriate to give equivalent results. A five-point calibration curve will be used to calculate the results of analyses. The lowest point on the calibration curve should be equal to, or slightly higher than, the limit of detection of the GC-MS system. The highest point on the calibration curve should be the end of the linear portion of the MS detector response profile. All laboratories will follow the OA/OC criteria described in the analytical method. Those results will be stored at each laboratory for review at a later date, if necessary. If significant differences are observed between Bonner Analytical & Testing's results and Mississippi States University Chemical Laboratory'results, BATCO will send the extracts of these samples to a third party laboratory to investigate the reasons for these differences.

<u>GC column</u>: 30-meter X 0.25-mm (or 0.32-mm) DB-5 fused silica capillary column, as specified in Paragraph 4.1.2 in U.S. EPA SW-846 Method 8270.

<u>GC oven and injector conditions</u>: 846 Method 8270.

As specified in Paragraph 7.3 in SW-

The specifications given in Method 8270, Section 4.0, "APPARATUS AND MATERIALS," and Section 5.0, "REAGENTS," will be followed. The guidance in Section 7.0, "PROCEDURE" will be used to perform the GC separations and GC/MS identification and quantitation. Specific criteria for peak identification are given in Section 7.6 of the method. The characteristic ions, both primary and secondary ions, listed in Table 1 of the method will be used. For cis and trans dioxathion and dioxenthiol, the primary ion is m/z 97 with secondary ions at m/z 125, 270, and 153. Instrument tuning criteria are given in Table 3 of the method. For the Internal Standard, chrysene- d_{12} is recommended because it meets the retention time criteria set forth in Section 7.3.2.

7.) <u>GENERAL COMMENTS</u>

- a.) All samples will be extracted and analyzed within the normal holding times for organophosphorus compounds.
- b.) The dioxathion standard to be used by all laboratories will be supplied by the Hercules Incorporated.

10/02/2002

- c.) Water samples spiked with cis or trans dioxathion or dioxenethiol will be prepared by the Mississippi State Department of Environmental Quality (MSDEQ) personnel and distributed to each laboratory for inclusion in this study.
- d.) Within three weeks of receipt of samples, all results of analyses and all confirmatory results will be reported to MSDEQ, who will collate them and distribute the results to the participating laboratories.
- e.) A meeting will be held to review the results of analyses and to decide the next step in the implementation of the analytical methods to be used in monitoring well water samples from the Hercules Incorporated Hattiesburg plant.
- f.) After its approval of this sampling and analysis protocol, MSDEQ will determine the time frame for the completion of all sampling and analysis activities and will set the date and time of the review meeting.
- g.) Only results greater than or equal to the Limit of Quantitation will be reported. The numerical sum of the cis and trans isomers of dioxathion will be reported as dioxathion. Dioxenethiol will be reported as separate compound.

APPENDIX B

BORING LOGS AND WELL CONSTRUCTION DIAGRAMS

S:\projects\HER22073\Hercules Interim Report

PROJECT NAME Here	DUVA, M3 WELL NO. MU-	7
DATE COMPLETED	22 0 0 DRILLING METHOD DRILLING METHOD	H5A
GEOLOGIST RYAN		
PADLOCK	HEIGHT OF TOP OF SURFACE CASING ABOVE GROUND SURFAC	
WEEPHOLE	ELEVATION/HEIGHT OF TOP OF RISER PIPE	
	SIZE AND TYPE OF APRON PAD ELEVATION	
	TYPE OF SURFACE SEAL Portland Coment wi	tu sand
	TYPE OF SURFACE CASING 4" × 4" × 5' Hing	ed Metal
	DEPTH OF SURFACE CASING BELOW GROUND SURFACE	
i e s	TYPE OF RISER PIPE DIAMETER OF BOREHOLE 0 3/4 "	
	TYPE OF BACKFILL Pure bold Bentonice 60	
	TYPE OF BACKFILL TUVE GOIN DEMINION OF	<u> </u>
	DEPTH OF SEAL <u>BENTONITE Chips</u> DEPTH OF TOP OF SAND PACK (INITIAL/POST SURGE/FINAL	L) 8'
	DEPTH OF TOP OF SCREENED SECTION 10. 4	
	TYPE OF SAND PACK _20/40 Filter Park	
	TYPE OF SAND PACK PVC Factory Slott OPENING SPACING IO STOT	ed Pise
$\frac{13.5'}{1200} \sum_{n=1}^{13.5'} \sum_{n=1}^{1200}$		
	INSIDE DIAMETER OF SCREENED SECTION	
	20. 4	
	LENGTH OF BLANK SECTION N/A	
	CENTRALIZER DEPTH OF BOTTOM OF PLUGGED BLANK SECTION 	
	DEPTH OF BOREHOLE 20.8'	

SHEET ____OF___ BORING LOG $M\omega - 7$ BORING IDENTIFICATION _ PROJECT NAME_ 4 **B**" Hatticsburg, NS BORE HOLE DIANETER PROJECT LOCATION____ PROJECT NUMBER _ BORING START GEOLOGIST ____ RYA DATE 2-22-00 CLASSIFICATION SCHEME BORING COMPLETED GLE Service DRILLER DATE 2-22-00 TINE HSA DRILL NETHOD ____ SUDAN & WARM 25 FINAL BORING DEPTH WEATHER FREE PRODUCT GROUNDWATER **ITHOLOGY** RECOVER) (INCHES) PTD/BOL DEPTH THICKNESS INITIAL DEPTH . VOLUME. DEPTH AFTER _____ NINUTES No fampling 0-10' (See TP-8 Log) z 8 DAMP, Med-dense, tan-brown, ef. -fight, Esquist, moistr, lense, tan-brown, ef. -fight, Esquist, wet-sat, Dense, tan-Hiban, f-med, side (14/773) SAT, Med-dense, tan-Hiban, v.f-med, Side (14/773) Coordens Med-ces, Gravel, Dey, stift, tad wherey, clay while 18. Ø 10" 13 19" · STA 3/3 150 tad why stay , 8/3 wel <u>6/Ø</u> 20 TD=20' -15-Eco-Systems, Inc. Environmental Engineers and Sch

		: -		
		MONITOR	ING WELL COMPI	LETION FORM
		Hatticaberg, MS DOR E E ServicesOR	RIGINAL DEPTH RILL METHOD $H SA$ TE2/2 2/60	PAGE I OF I WELL NO MW-9 ORIGINAL WATER LEVEL ORIGINAL WATER
		EL.	EVATION OF TOP OF SURFACE CA	NSING/RISER PIPE 4.0
e dis			IGHT OF TOP OF SURFACE CASIN OUND SURFACE	IG/RISER PIPE ABOVENA
		m	PE OF SURFACE SEAL P_{er}	tland Coment of Sand
			PTH OF SURFACE SEAL BELOW G SIDE DIAMETER OF SURFACE CASI DE OF SURFACE CASING 4	ROUND SURFACE <u>Z 1/2 "</u> NG <u>4"</u> I " x 4" x 5' Hircod Metal Shou 4
РНҮ		DE	PTH OF SURFACE CASING	GROUND 2, 4"
STKMIGRAPHY			PE OF RISER PIPE Pv WETER OF BOREHOLE 6	<u>c</u> 5/4 #
FOR STI	·	TM	PE OF BACKFILL PURE	Gold Bentonte Golf
501 5			evation / depth top of seal B_{ca} for b_{ca}	te Chip's
BORIN			evation / Depth Bottom of Se Pth of top of Sand Pack	4.0"
SEE			PE OF SAND PACK	2940 Filter Vac E
			PE OF SCREENED SECTION	PVC slotted Pipe
			SIDE DIAMETER OF SCREENED SEC	
			evation / depth bottom of sc	CREENED SECTION I 6.0
	-		NGTH OF BLANK SECTION EVATION/DEPTH BOTTOM OF PLUG	0.3"
		TY	PE OF BACKFILL BELOW OBSERVA	1
\bigcirc			EVATION/DEPTH OF HOLE	-
F7N005.()wg			Ecc · Systems

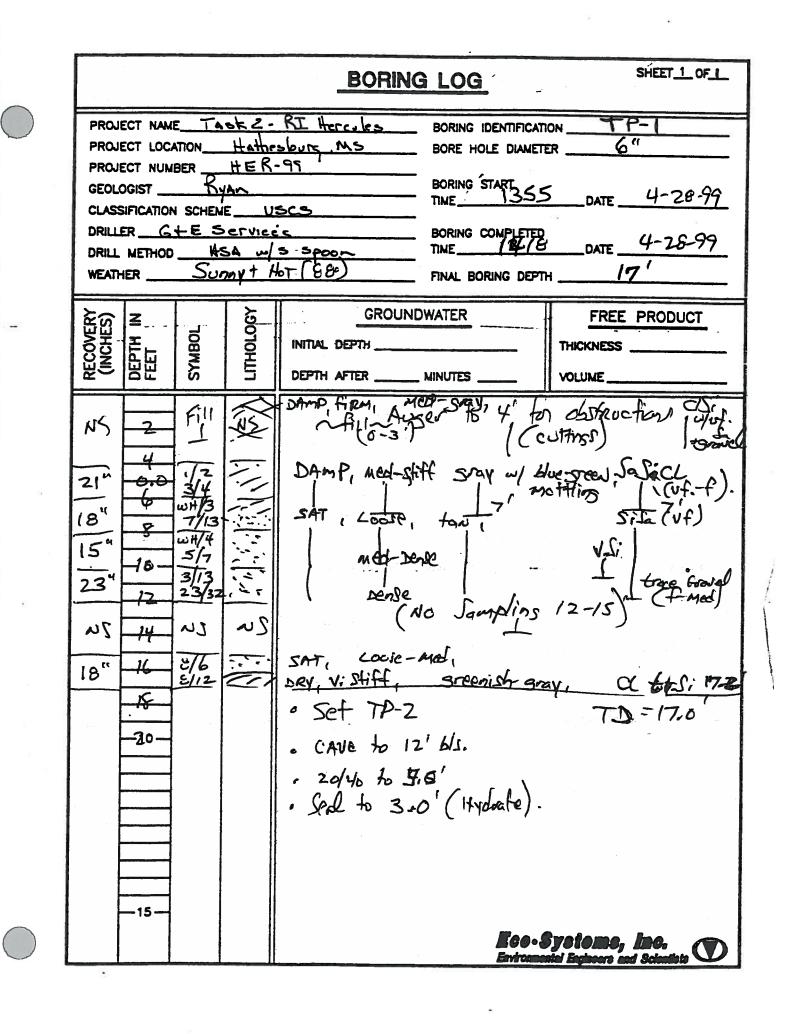
BORING LOG	SHEETOF
	2.8
PROJECT NAME Herevies BORING IDENTIFICATION PROJECT LOCATION	<u>Мш-В</u> <u>6</u> "
PROJECT NUMBER BORING START GEOLOGIST J. Ryn BORING START CLASSIFICATION SCHEME	1 (P)
DRILLER <u>CLE Services</u> DRILL NETHOD <u>HSA</u> TIME <u>1635</u>	DATE 2-22-00 16.3'
AUSS I I I GROUNDWATER AUSS I I I I AUSS I I I I INITIAL DEPTH I I I INITIAL DEPTH I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I	
HISS I HISS I HISTAL DEPTH THE CONCLUSION OF THE HISS I HISS I HISTAL DEPTH AFTER NINUTES VINUTES VINUTE	
NO Sampling	
NO Sampling (See TP-10 Log) · Installed ~ 7' west of	FTP-10
-5 Sef Mw-8 ~6-	-/6 '
Environment	ystoms, Inc. in ingineers and Scientitis

PROJECT NAME LOCATIONHatties	burg, Mo	PAGE OF WELL NO 440 - 91
DATE COMPLETED	108 IUV	DRILLING METHOD HSA
DRILLER G +_ E	Sewices	
GEOLOGIST		
PADLOCK		EIGHT OF TOP OF SURFACE CASING ABOVE GROUND SURFACE
		ELEVATION/HEIGHT OF TOP OF RISER PIPE
		FILLER MATERIALVA
WEEPHOLE		-SIZE AND TYPE OF APRONNA
		PAD ELEVATION NA
		TYPE OF SURFACE SEAL Portland Coment w/ Sand
		•
		INSIDE DIAMETER OF SURFACE CASING
		INSIDE DIAMETER OF SURFACE CASING 4 TYPE OF SURFACE CASING 4 × 4 × 5 Hinged Metal Shu
		DEPTH OF SURFACE CASING BELOW GROUND
		DEPTH OF SURFACE CASING BELOW GROUND DEPTH OF SURFACE SEAL BELOW GROUND SURFACE INSIDE DIAMETER OF RISER PIPE
		TYPE OF RISER PIPE
		DIAMETER OF BOREHOLE 6 3/4 "
		TYPE OF BACKFILL PUVE bold Bentowite bel
		- DEPTH OF TOP OF SEAL (PRE/POST HYDRATION)
LEVEL =		- TYPE OF SEAL BRUTEWITE CHIPS
		- DEPTH OF TOP OF SAND PACK (INITIAL/POST SURGE/FINAL) 5.0
		DEPTH OF TOP OF SCREENED SECTION 7.2
		TYPE OF SAND PACK 20/40 Filter Pack
		TYPE OF SAND PACK
		TYPE OF SCREENED SECTION PVC Factory Slotted tipe
$LEVEL = ___$		TYPE OF SAND PACK TYPE OF SCREENED SECTION PVC Factory Slotted Pipe OPENING SPACING 10 510 + OPENING SIZE 0.01"
		INSIDE DIAMETER OF SCREENED SECTION 2"
		ALTER ALTER ALTER SECTION 17.2
		LENGTH OF BLANK SECTION (T · C
		-CENTRALIZER - DEPTH OF BOTTOM OF PLUGGED BLANK SECTION 17.5'
		- DEPTH OF BOREHOLE
		Eco-Systems, Inc.

SHEET 1 OF BORING LOG MW-9 BORING IDENTIFICATION _ PROJECT NAME_ Hereiles Hattiesburg, MS BORE HOLE DUNETER PROJECT LOCATION_ PROJECT NUNBER __ BORING START DATE 2/22/03 GEOLOGIST _____ T. RVA TINE CLASSIFICATION SCHENE BORING COMPLETED 64E Services DATE 2-22-00 17.5' DRILLER TINE HSA DRILL METHOD ____ WEATHER Sunny, Warm (70°), Windy FINAL EORING DEPTH FREE PRODUCT GROUNDWATER **ITHOLOGY** RECOVERY (INCHES) SYMBOL THICKNESS DEPTH INITIAL DEPTH . VOLUME MINUTES DEPTH AFTER __ No Sampling (0-5-) 643/6 Sundy-Clay, Med-stiff to stiff, mottled coloring (brown, ved, Grey) & sund content increases w/ deptu, no odor, den J'(full) 10 - 2/2 mst Bout, firm, Sray-ton Easilio-12 4/8 wer, Loose, Vus Sing Quinge 14" SP: SAT, Med-dense, white-tan, Grav, Sand CH72 16.6000 Stiff, ban-tan (C-00) _ 166 20" 7/13 TD=17.5' SET MW-9 (15' Screen -20-15-Eco•57810ms, Inc.

MONITORING WELL COMPLETION FORM					
PROJECT NAME <u>Herowles</u> LOCATION <u>Hatties burg</u> A DATE COMPLETED <u>2/23</u> DRILLER <u>GtE Seculers</u> GEOLOGIST <u>JRya</u>	15	PAGE OF WELL NOMW-10 ORIGINAL WATER LEVEL DEPTH INTERVAL			
	ELEVATION OF TOP OF SURFACE CASING/RISER PIPE <u>3.3'</u> HEIGHT OF TOP OF SURFACE CASING/RISER PIPE ABOVE <u>NA</u> GROUND SURFACE TYPE OF SURFACE SEAL <u>Portland</u> Cc-ot <u>V</u> /Sand DEPTH OF SURFACE SEAL BELOW GROUND SURFACE <u>1'</u> INSIDE DIAMETER OF SURFACE CASING <u>Y''</u> <u>Y''X <u>Y''</u><u>X <u>S''</u><u>Hinced</u> <u>Metal</u> <u>Shouel</u> DEPTH OF SURFACE CASING <u>H'''</u><u>Y''X <u>Y''X <u>S''</u><u>Hinced</u> <u>Metal</u> <u>Shouel</u> DEPTH OF SURFACE CASING <u>BELOW</u> GROUND <u>Z.g'''</u> INSIDE DIAMETER OF RISER PIPE <u>Z'''</u> TYPE OF RISER PIPE <u>MC</u> DIAMETER OF BOREHOLE <u>6 <u>3'</u><u>y'''</u> TYPE OF BACKFILL <u>Pure Gold</u> <u>Bentonte</u> <u>Gel</u> ELEVATION / DEPTH TOP OF SEAL TYPE OF SEAL <u>Bentonite</u> <u>Chica</u> ELEVATION / DEPTH BOITOM OF SEAL <u>2.0''</u> DEPTH OF TOP OF SAND PACK <u>40''</u> DEPTH OF TOP OF SAND PACK <u>40''</u> ELEVATION / DEPTH TOP OF SCREENED SECTION <u>6.7''</u></u></u></u></u></u>				
	-TYPE OF SCREENED SECTION - DESCRIBE OPENINGS) C INSIDE DIAMETER OF SCREENED SECTION - ELEVATION / DEPTH BOTTOM OF SCREENED - LENGTH OF BLANK SECTION - ELEVATION/DEPTH BOTTOM OF PLUGGED - ELEVATION/DEPTH BOTTOM OF SAND COI - TYPE OF BACKFILL BELOW OBSERVATION - ELEVATION/DEPTH OF HOLE	NED SECTION 14.7" BLANK SECTION 14.7" PIPE N/A			

\sim	BORING LOG SHEET 1 OF					
	PROJECT NAME PROJECT LOCATION PROJECT NUMBER GEOLOGIST CLASSIFICATION SCHEMI DRILLER DRILL METHOD WEATHER	Hattie Ryan Service	esburg, MS BORE HOLE I		INFIGATION MW - 10 DUNETER 8 T T T T T DUNETER $\frac{2}{23}/00$ DUNETED DATE $\frac{2}{23}/00$ DUNETED DATE $\frac{2}{23}/00$ T DUNETED DATE $\frac{2}{23}/00$ T DUNETED DATE $\frac{2}{23}/00$	
	RECOVERY (INCHES) DEPTH IN FEET SYMBOL		GROU		FREE PRODUCT	
	-10		No		fer to TP-12)	


0

_		ITORING WELL COMP	
J.	PROJECT NAME Hara	Nes Nec	
	DATE COMPLETEDZ/23		WELL NO MUC- 1/
	DATE COMPLETED	DRILL METHOD HSA	ORIGINAL WATER LEVEL
	GEOLOGIST JRYA-	DRILL METHOD $H \leq A$ DATE $\frac{2}{23}/20$	DEPTH INTERVAL
	1		
		ELEVATION OF TOP OF SURFACE C	ASING/RISER PIPE
		HEIGHT OF TOP OF SURFACE CASIN	NG/RISER PIPE ABOVE
21		GROUND SURFACE	
F	KIKIKI		1 1 1
		TYPE OF SURFACE SEAL	-tland Cement w/ Sand
		DEPTH OF SURFACE SEAL BELOW O	
		INSIDE DIAMETER OF SURFACE CAS	NG <u>4 "</u>
		TYPE OF SURFACE CASING 4	"x 4"x 5' Hinged Metal She
		DEPTH OF SURFACE CASING BELOW	GROUND 2.4.
וֿ≰		INSIDE DIAMETER OF RISER PIPE	2*
<u>S</u>		TYPE OF RISER PIPE	Pvc
STKMIGRAPHY		DIAMETER OF BOREHOLE	5 3/4 "
S			
R		TYPE OF BACKFILL	e Gold Bentonite Gel
2		TYPE OF SEAL	ntonite Chips
2		ELEVATION / DEPTH BOTTOM OF SE	EAL - 1.0"
BORIN			3.0"
SEE		DEFIN OF TOP OF SAND FACK	20/40 Filter Pack
<u> </u>		ELEVATION / DEPTH TOP OF SCREE	
		ELEVATION / DEPTH TOP OF SCREE	
			PVC Slotted Pipe
			1 VC = 10 11 co 1. Fe
			10 slot
			CTION O, O I
		ELEVATION / DEPTH BOTTOM OF SC	REENED SECTION Y
		LENGTH OF BLANK SECTION ELEVATION/DEPTH BOTTOM OF PLUG	
		ELEVATION/DEPTH BOTTOM OF PLUG ELEVATION/DEPTH BOTTOM OF SAND	
\rangle	<u> </u>	ELEVATION/DEPTH OF HOLE	14.1

		SHEET 1 OF
	BORING	LOG
	PROJECT NAME HEREICES	BORING IDENTIFICATION
	PROJECT LOCATION Hattics burg MS	BORING START 8:05 DATE 2/23/00
	GEOLOGIST KAN	BORING COMPLETED 2/23/00
	DRILLER <u>GLE Services</u>	TINE <u>9:15</u> DATE <u>2/07</u> FINAL BORING DEPTH <u>14</u>
	WEATHER Cloudy and Mila	IDWATER FREE PRODUCT
		THICKNESS
		o Sampling (reter to TP-13)
		o Sampring
		ст. 12
	- 5 -	
÷*		
	-10-	
		-
	-15-	Eco-Systems, Inc. Environmental Englances and Scientists
		Environmental Engineers and Scientists
	-	

3

PROJECT NAME Here	ster	PAGE OF WELL NOTP~I
GEOLOGIST J RYAN	DRILL METHOD	BOREHOLE WATER LEVEL ~6' STATIC WATER LEVEL ~6.3'64' SCREEN INTERVAL _6.6-16.8'
SEE BORING LOG FOR STRATIGRAPHY	ELEVATION OF TOP OF SURFACE HEIGHT OF TOP OF SUR GROUND SURFACE TYPE OF SURFACE SEAL DEPTH OF SURFACE SEAL DEPTH OF SURFACE SEAL INSIDE DIAMETER OF SUR TYPE OF PROTECTIVE CA DEPTH OF PROTECTIVE CA DEPTH OF PROTECTIVE CA DEPTH OF RISER PIPE DIAMETER OF BOREHOLE TYPE OF BACKFILL ELEVATION / DEPTH TOP TYPE OF SEAL DEPTH OF TOP OF SAND DEPTH OF TOP OF SAND DEPTH OF TOP OF SAND DEPTH OF TOP OF SAND	SURFACE CASING/RISER PIPE $\frac{3.2}{172.18}$ FACE CASING/RISER PIPE ABOVE $\frac{NA}{3.2!}$ $\frac{NA}{172.18}$ FACE CASING/RISER PIPE ABOVE $\frac{NA}{3.2!}$ $\frac{NA}{1100}$ $\frac{NA}{100}$ NA
	LENGTH OF BLANK SECTION	OF PLUGGED BLANK SECTION 17'
	ELEVATION/DEPTH OF HO	LE 17.0 Eco-Systems, Inc. Entrometal Engineers and Scientists

TEMPORARY MONITORING POINT COMPLETION FORM PROJECT NAME _ PAGE OF NS ~~Z LOCATION __ WELL NO BOREHOLE DEPTH _17. 0 DATE COMPLETED BOREHOLE WATER LEVEL DRILLER _ G+E DRILL METHOD ______ GEOLOGIST__________ ____ STATIC WATER LEVEL __ 4-28-99 アーノフ DATE INSPECTED BY ____ SCREEN INTERVAL ELEVATION OF TOP OF SURFACE CASING/RISER PIPE - 71,72 3,0 HEIGHT OF TOP OF SURFACE CASING/RISER PIPE ABOVE NA GROUND SURFACE NA TYPE OF SURFACE SEAL - DEPTH OF SURFACE SEAL BELOW GROUND SURFACE NA -INSIDE DIAMETER OF SURFACE CASING ______ -TYPE OF PROTECTIVE CASING NA DEPTH OF PROTECTIVE CASING BELOW GROUND JA. - INSIDE DIAMETER OF RISER PIPE STRATIGRAPHY ζ(Pvc - TYPE OF RISER PIPE DIAMETER OF BOREHOLE High-folids 5 Bernonite -BORING LOG FOR - TYPE OF BACKFILL - ELEVATION / DEPTH TOP OF SEAL TYPE OF SEAL BENTONITE Chi - ELEVATION / DEPTH BOTTOM OF SEAL 4.5 DEPTH OF TOP OF SAND PACK-20/40 Sand (to 13') SEE Notive 13-1 TYPE OF SAND PACK 6.8 ELEVATION / DEPTH TOP OF SCREENED SECTION No. FILTER SOCK -TYPE OF SCREENED SECTION 10 Stat AVC -DESCRIBE OPENINGS 10 Stat M:\DRWG2\FORMS\FRMC INSIDE DIAMETER OF SCREENED SECTION - ELEVATION / DEPTH BOTTOM OF SCREENED, SECTION - ELEVATION/DEPTH BOTTOM OF PLUGGED BLANK SECTION 10:27 17.0 -ELEVATION/DEPTH BOTTOM OF SAND COLUMN $(7.\rho)$ No THE LENO - TYPE OF BACKFILL BELOW OBSERVATION PIPE 17.0 - ELEVATION/DEPTH OF HOLE Leo-Systems, Inc. Environmental Engineers and Scientists

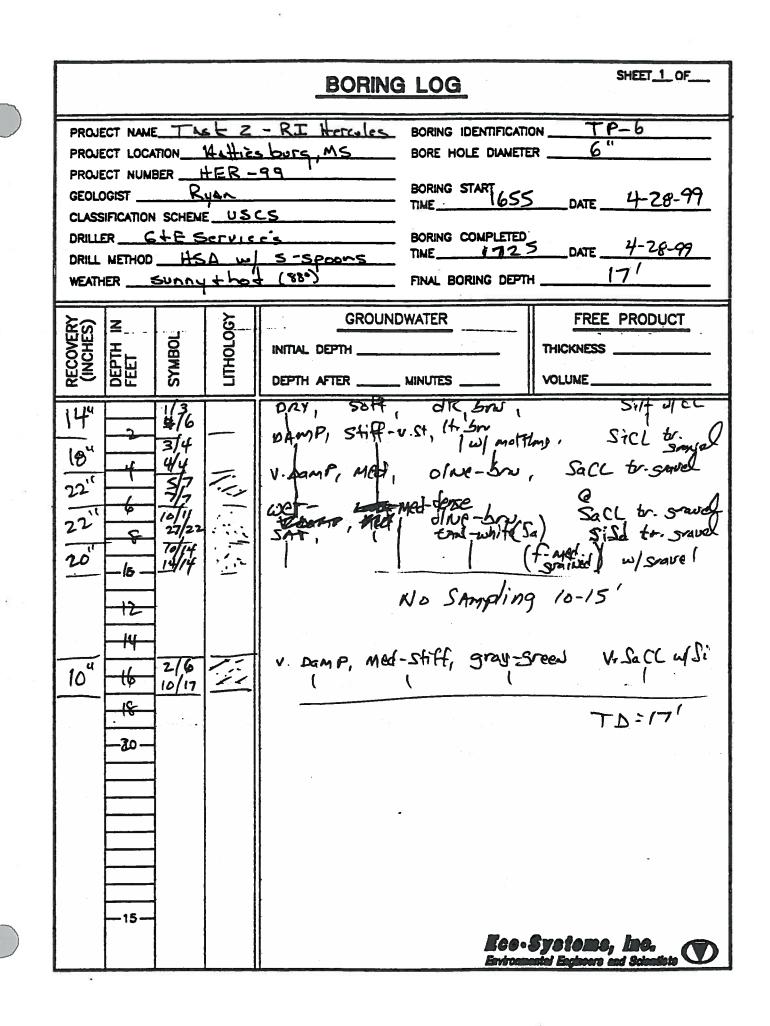
SHEET 1 OF **BORING LOG** PROJECT NAME TASK 2 - RI HERCULES TP-2 BORING IDENTIFICATION _ 2"-76" Harrierburg MS PROJECT LOCATION BORE HOLE DIAMETER _ HER-99 PROJECT NUMBER BORING START TIME 1/35 RVAN GEOLOGIST DATE 4-28-99 USCS CLASSIFICATION SCHEME DRILLER GOE SERVICES, Tak. BORING COMPLETED DATE 4- 29-99 S. Sporns HSA W DRILL METHOD 17.0 280 Sumpt Hot FINAL BORING DEPTH WEATHER ____ GROUNDWATER FREE PRODUCT ITHOLOGY RECOVERY (INCHES) SYMBOL INITIAL DEPTH _ ~ 8 DEPTH FEET THICKNESS _ DEPTH AFTER _____ NINUTES _ VOLUME DAMP-DRY, LOOSE, BROWN, OIGGNILS N/SOB V.f., SaCL (64-Mectoonse, Lt. Sund, V.Sisa (4-f. 20 22' the laminae (6.5' Sisa (UF) f-ued u/gravel SM 214 MOUST SM 23 WET SHA 22" 21" NS 20 3/12 · Set TP-2 fram ~6.5-16.5' .7D=17-0 lê · Bottefill of watere soud to ~ 13' · 20/4c Sand to ~ 4.5' c Pellets to ~ 0.5'. -20 · 15-Eco-Systems, Inc. Environmental Engineers and Scientisto

Ø

		DINT COMPLETION FORM
PROJECT NAME He	restes	$\frac{PAGE}{WELL NO. TP-3}$
DATE COMPLETED 428	les	WELL NO
TRAS		
THE THE	DRILL METHODHS	A STATIC WATER LEVEL
INSPECTED BY	DATE	SCREEN INTERVAL 9,6-14.6
	ELEVATION OF TOF	OF SURFACE CASING/RISER PIPE169,
	HEIGHT OF TOP O	F SURFACE CASING/RISER PIPE ABOVEA/2.5
	GROUND SURFACE	,
	TYPE OF SURFACE	SEAL
		E SEAL BELOW GROUND SURFACE
		DF SURFACE CASING
	TYPE OF PROTECT	ve casingNA
	DEPTH OF PROTEC	TIVE CASING BELOW GROUND
} }	INSIDE DIAMETER (DF RISER PIPE
I RAF	TYPE OF RISER PI	PEI" PVC
ATIO		EHOLE 6"
STRATIGRAPHY		
FOR	TYPE OF BACKFILL	High Solids Bentonte Grout
		H TOP OF SEAL 30
	TYPE OF SEAL	Bentonite Chips
KING	ELEVATION / DEPT	H BOTTOM OF SEAL 5.0'
		B o'
	DEPTH OF TOP OF	
SEE		CK 20/40 Sand (no native)
·····		H TOP OF SCREENED SECTION 9.6 '
	FILTER SOCK	No!
:		
····· X	TYPE OF SCREENE	D SECTION 10510+ 1" PUC
		is includ
		DF SCREENED SECTION
		2 (Area)
		H BOTTOM OF SORESIES SECTION " IN 6
	LEVATION / DEPT	H BOTTOM OF SCREENED SECTION 14.6
		BOTTOM OF PLUGGED BLANK SECTION 14.6'
	ELEVATION/DEPTH	BOTTOM OF SAND COLUMN 16.0'
	TYPE OF BACKFILL	BELOW OBSERVATION PIPE <u>SAND 20/40</u>
)	ELEVATION/DEPTH	OF HOLE 16.0'
	• - =- · · · ·	Eco-Systems, Inc.

l

SHEET_1_OF_ BORING LOG PROJECT NAME TASK Z- RI HERE les TP-3 BORING IDENTIFICATION _ PROJECT LOCATION Hatiesburg, MS " BORE HOLE DIAMETER PROJECT NUMBER ______ BORING START 1500 DATE 4-28-99 GEOLOGIST RVA~ CLASSIFICATION SCHEME USCS .DATE 4-28-99 BORING COMPLETED DRILLER <u>GHE Services</u> DRILL METHOD HSA w/ S-Spoons Ht (88°) WEATHER SUNNY FINAL BORING DEPTH ____ GROUNDWATER FREE PRODUCT TTHOLOGY RECOVERY (INCHES) Z_ SYMBOL DEPTH FEET INITIAL DEPTH THICKNESS DEPTH AFTER _____ MINUTES VOLUME No Sampling 0-4" NS NS OAMP, Med. H-graytbon V.CLG 4-5.1' LOSE, tan, SiSa (5.1') NO Langling (6-9') SAT, Med-dense; tan w/white, Sa w/fi I I I I I (F-med)to: NO Jangeling NO Jangeling Sila to gravel SAT, as above (I4-14, Ei), Sila to gravel SAT, Med-St-Shift, buff-tan, Sila to gravel 4 0.0 2/4 . 4/12 FUIL ş SM 22" 1215 B. 12 14 34 5/5 15 18 16 - set TP-3 to 10+5(2) TD=16.0 18 20 15 Eco-Systems, Inc. Environmental Explosers and Scien


TEMPORARY	MONITORING POINT	COMPLETION FORM
DATE COMPLETED 4/20/99 DRILLER 6+E Scruces	BOREHOLE DEPTH DRILL METHOD HSA DATE	BOREHOLE WATER LEVEL <u>~4'</u>
		RFACE CASING/RISER PIPE 163.64
10.21 M-DIMICS/FINUOS	HEIGHT OF TOP OF SURFA GROUND SURFACE SEAL DEPTH OF SURFACE SEAL INSIDE DIAMETER OF SURF TYPE OF PROTECTIVE CAS DEPTH OF PROTECTIVE CAS DEPTH OF PROTECTIVE CAS DEPTH OF PROTECTIVE CAS DEPTH OF ROTECTIVE CAS DEPTH OF ROTECTIVE CAS INSIDE DIAMETER OF RISE TYPE OF RISER PIPE DIAMETER OF BOREHOLE DIAMETER OF BOREHOLE ELEVATION / DEPTH TOP TYPE OF SEAL ELEVATION / DEPTH BOTT DEPTH OF TOP OF SAND TYPE OF SAND PACK ELEVATION / DEPTH TOP FILTER SOCK TYPE OF SCREENED SECT DESCRIBE OPENINGS INSIDE DIAMETER OF SCR	ACE CASING/RISER PIPE ABOVE
	ELEVATION/DEPTH OF HO	111

SHEET 1 OF **BORING LOG** TP-4 6" PROJECT NAME TASK 2 - RI Hercules BORING IDENTIFICATION ____ PROJECT LOCATION Hatthesburg, MS BORE HOLE DIAMETER PROJECT NUMBER _____ H = R-99 BORING START GEOLOGIST _____ RUAN DATE 4-28-99 CLASSIFICATION SCHEME USCS DRILLER <u>C+E</u> Services BORING COMPLETED TIME 1620 DATE 4-28-99 DRILL METHOD HSA w/ S-SPOONS FINAL BORING DEPTH 14'WEATHER _____ SUNNY + hot (880) GROUNDWATER FREE PRODUCT RECOVERY (INCHES) **TTHOLOGY** SYMBOL DEPTH INITIAL DEPTH ____ THICKNESS DEPTH AFTER _____ MINUTES VOLUNE Damp, firm, Brenn, V-CLSa (UES No Sampling (OSTEND) J V. Damp, Loose, OSTEN, Cuttings) Sile ~4' Moilit, firm, gray-taw, V.Salch offic (UFSh). No Sampling 7-10' V-CLSa (VESA 12 μ 6/7 7/6 1 ę 120 SW DRUS, Stiff (crundly), green-gray, Calcareous V.Stiff, wil bru mottling Sitt. -15 22" CL 12 -/4 7/10 44 TD=14.0 - SAND Zone has ______ pinched in this direction. - Jef 5' soreen 5-16' 6/5-10-15 Eco-Systems, Inc. Environmental Engineers and Scient

			PAGE OF WELL NO
	attiesburg.	<u>s</u>	
DATE COMPLETED	4129199 LE Service		DRILLING METHOD
GEOLOGISTR	SAFTOF		
PADLOCK			NG ABOVE GROUND SURFACE.
		ELEVATION/HEIGHT OF TOP OF R	
	100	FILLER MATERIAL	
		SIZE AND TYPE OF APRON	NA
		PAD EL	
·		GROUND SURFA	ACE ELEVATION
		TYPE OF SURFACE SEAL	
			sing4
		TYPE OF SURFACE CASING	
		DEPTH OF SURFACE CASING BELC	W GROUND NA
		DEPTH OF SURFACE SEAL BELOW	1
		TYPE OF RISER PIPE	" PYC
		DIAMETER OF BOREHOLE	6"
		TYPE OF BACKFILL High	Sotids Bentoute Grov
		DEPTH OF TOP OF SEAL (PRE/	
		TYPE OF SEAL BEAT	
			(INITIAL/POST SURGE/FINAL) 7'
		DEPTH OF TOP OF SCREENED SEC	CTION9
•			20/40 SAN d/10FAM
			10-5/0 + Scice 1 10-5/0+
		DEPTH OF BOTTOM OF SCREENED LENGTH OF BLANK SECTION	SECTION 14
		CENTRALIZER DEPTH OF BOTTOM OF PLUGGED TYPE OF BACKFILL BELOW OBSERV	VATION PIPE
		DEPTH OF BOREHOLE	15
			ystems, Inc. 🕜

SHEET 1_OF___ **BORING LOG** TP-5 PROJECT NAME TASK 2 -Hereales BORING IDENTIFICATION _ 6 " PROJECT LOCATION Hattics burg. M.S. BORE HOLE DIAMETER __ PROJECT NUMBER __ 4ER-95 BORING START TIME 1700 DATE 4/29/99 GEOLOGIST _____ RUAN VSCS CLASSIFICATION SCHEME __ BORING COMPLETED TIME 17/3 DATE 4/29/99 DRILLER GTE SETVICES DRILL METHOD HSA - S-SPODAS 15 WEATHER _ SUNNY + ho-FINAL BORING DEPTH _____ GROUNDWATER FREE PRODUCT RECOVERY (INCHES) **ITHOLOG** SYMBOL INITIAL DEPTH _____91 DEPTH FEET THICKNESS DEPTH AFTER ______ II worsture density gen color doscorrightm danp 100 se no Black Si SA L/conrise Scall glabs DEPTH AFTER _____ MINUTES __ VOLUME 3/3 78 11 No SAmp 2-5 24 damp stiff no gray Horonge S.C./ 2/7 Ð 416 v 5 saturated loose no tran CISA no sampling 12-13 2/5; possipling 12-13 2/5; -12 7/11 18 17 15 13 5 alwated 10050 00 tan 5. Sn (9-14') to S.CI (14-15 1.41. 70⁷ 2/7 15 10. · TDC 15' · Set T. P-5 screen @ 9-14' · Care in to 13' · 20/40 to 7' 15-· Seal to 6' Eco-Systems, Inc. ere and Sci

Ţ	TEMPORARY MONITORING POINT COMPLETION FORM
ŀ	PAGE OF
	LOCATION HATTER burg, MS WELL NO. TP-C
	DATE COMPLETED 4/28/95 BOREHOLE DEPTH BOREHOLE WATER LEVEL
٦	DRILLER BERCHOLE DEPTH BOREHOLE DEPTH DRILL METHOD STATIC WATER LEVEL
	GEOLOGISTDRILL METHOD SCREEN INTERVAL
1	INSPECTED BY DATE
	ELEVATION OF TOP OF SURFACE CASING/RISER PIPE 158.63
J	
	HEIGHT OF TOP OF SURFACE CASING/RISER PIPE ABOVE
J	GROUND SURFACE
-	
5	TYPE OF SURFACE SEAL
	DEPTH OF SURFACE SEAL BELOW GROOND CONTROL INSIDE DIAMETER OF SURFACE CASING
	THE OF PROTECTIVE CASING
	CASING BELOW GROUND
	E INSIDE DIAMETER OF RISER PIPE
	TYPE OF RISER PIPE
	DIAMETER OF BOREHOLE
J	
	FLEVATION / DEPTH TOP OF SALE
	a bar of stall Beakparty Chips
_	ELEVATION / DEPTH BOTTOM OF SEAL
	ELEVATION / DEPTH TOP OF SCREENED SECTION
3	FILTER SOCKNO!
	TYPE OF SCREENED SECTION ID-Shot Screen
	TYPE OF SCREENED SECTION
7	8 DESCRIBE OPENINGS 10.3/67
	INSIDE DIAMETER OF SCREENED SECTION
	ELEVATION / DEPTH BOTTOM OF SCREENED SECTION
	LENGTH OF BLANK SECTION
	INSIDE DIAMETER OF SCREENED SECTION /** ELEVATION / DEPTH BOTTOM OF SCREENED SECTION /5' LENGTH OF BLANK SECTION //4 ELEVATION/DEPTH BOTTOM OF PLUGGED BLANK SECTION /5' ELEVATION/DEPTH BOTTOM OF SAND COLUMN /5' ELEVATION/DEPTH BOTTOM OF SAND COLUMN /5' TYPE OF BACKFILL BELOW OBSERVATION PIPE ELEVATION
1	TYPE OF BACKFILL BELOW OBSERVATION PIPE
יו	
J	Environmental Engineers and Scientists
î	

	Hereoles Hiroburg, MS 4/28/99 E Services Rym	METHOD OF DEVELOPMENT
GEOLOGIST		
PADLOCK	-	URFACE CASING ABOVE GROUND SURFACE
WEEPHOLE	FILLER MATERIAL	
	GINTER OF SURFACE S	PAD ELEVATION NA
	TYPE OF SURFACE OF	SURFACE CASING PA
	DEPTH OF SURFACE	CASING BELOW GROUND NA SEAL BELOW GROUND SURFACE RISER PIPE
	DIAMETER OF BOREH	OLE B' Hish-Solid Benforite Growt
STATIC	DEPTH OF TOP OF	SEAL (PRE/POST HYDRATION)
	DEPTH OF TOP OF	SAND PACK (INITIAL/POST SURGE/FINAL)
	DEPTH OF TOP OF S	ZO/40 Sand (bo Hon 1 NAT)
	TYPE OF SCREENED	SECTION <u>20/40 Sand (bo Hon 1' NAT</u> SECTION <u>20-5675crech</u> 10-567
		SCREENED SECTION
	LENGTH OF BLANK	OF SCREENED SECTION
		OF PLUGGED BLANK SECTION 703 BELOW OBSERVATION PIPE Notres Sands E 12

SHEET 1 OF BORING LOG Inst 2-RI PROJECT NAME_ Hercules BORING IDENTIFICATION 6 " PROJECT LOCATION Hattes burg MS BORE HOLE DIAMETER _ PROJECT NUMBER HER-99 BORING START TIME 1605 DATE 2/-29-99 GEOLOGIST RVAN/Sartor USCS CLASSIFICATION SCHEME BORING COMPLETED DRILLER CHE Services _DATE __________ w/ 5-500005 DRILL METHOD _____ A FINAL BORING DEPTH _____ /2 ' WEATHER ______ GROUNDWATER FREE PRODUCT **ITHOLOGY** RECOVER' 6' SYMBOL DEPTH INITIAL DEPTH _____ THICKNESS DEPTH AFTER _____ MINUTES VOLUME deasih 01-DAmp loose no 12 4/Pent deposits pro som plar 2.5 Dany loose no gray (A.f.) S.S. Mary loose no gray (A.f.) S.S.S. Mary loose no gray (A.f.) S.S.S.C. Mar San plan 7-10 (from sister de Dans soft also gamp 1 S. CIC Instand brown u/per Z/6 16" 5-7 9/11 4/4 22 · TOC 12' · Convert for TP.7 10. . Comein + 9' 20/40 +0 4.0 Seal to 3.0' 15-Eco-Systems, Inc. Environ

Image: Second	TEMPORARY MONITORING POINT COMPLETION FORM
ELEVATION OF TOP OF SURFACE CASING/RISER PIPE 153.75 HEIGHT OF TOP OF SURFACE CASING/RISER PIPE ABOVE NA GROUND SURFACE SA DEPTH OF SURFACE SEAL NA DEPTH OF SURFACE SEAL BELOW GROUND SURFACE NA DEPTH OF SURFACE SEAL BELOW GROUND NA DEPTH OF SURFACE SEAL BELOW GROUND NA DEPTH OF PROTECTIVE CASING NA DEPTH OF PROTECTIVE CASING BELOW GROUND NA DEPTH OF PROTECTIVE CASING BELOW GROUND NA DEPTH OF RISER PIPE /// DUAMETER OF RISER PIPE /// DUAMETER OF BOREHOLE 6// DUAMETER OF DO FALL 10' DUAMETER OF DO FALL 10' DUAMETER OF DO FO SAND PACK 20//00 DELEVATION / DEPTH TOP OF SAND PACK 20//00 DEPTH OF TOP OF SAND PACK 20//00 DEPTH OF TOP OF SAND PACK 20//00 DEPTH OF OF OF SAND PACK 20//00 DEPTH OF TOP OF SAND PACK 20//00 DECVATION / DEPTH BOT	ECT NAME HEFCLULES PAGE 1 OF 1 INON Hattice burg, MS Well NO. TP-S DATE COMPLETED 1/2995 BOREHOLE DEPTH BOREHOLE WATER LEVEL DRILLER GATE Servic's DRILL METHOD HSA STATIC WATER LEVEL GEOLOGIST R Sartor DATE DATE SCREEN INTERVAL 12,5-17,5
The Andrews and Schedulets	ELEVATION OF TOP OF SURFACE CASING/RISER PIPE 133.15 HEIGHT OF TOP OF SURFACE CASING/RISER PIPE ABOVENA

SHEET 1 OF BORING LOG PROJECT NAME TASKZ-RI Hercoles TP-8 BORING IDENTIFICATION _ PROJECT LOCATION Hatterburg, MS BORE HOLE DIAMETER PROJECT NUMBER _________ BORING START Ryan /Sartor GEOLOGIST TIME 1450 DATE CLASSIFICATION SCHEME USCS BORING COMPLETED DRILLER GHE Services TINE 14821 DATE _ DRILL METHOD 1+SA w/ 5-Spoons WEATHER ______ BUNNY /10+ FINAL BORING DEPTH __ FREE PRODUCT GROUNDWATER **UTHOLOGY** ECOVER) INCHES) SYMBOL 13' INITIAL DEPTH _____ THICKNESS JEPTH FEET VOLUME DEPTH AFTER __ brown 18 " BC15-4 No sampling Z-5 NS Damp medshift dor gray head S.C. 1811 5-7 mo som pling 7-10 moist Med-Juse oder ange (f-m) 3, Sa /or Ave 15 HH KO 0-12-10" no san ple 11-15 water 17 NS (IF4) Satura ta Look and high (F-MJ. Sand 0,213/17 18″ PARP, The sampling 17-18,5 S.C.I 24/17 c/dgrade NS 18/2 18,5-20,5 5 | 5 9 | i 2 10 · Carphted 15.20 18.5' · Convert to TP-8, server @ 12.5.17.5' · Convert to 18' 20/40 to 10 15 · Seal to 9' Eco-Systems, Inc. Environmental Engineers and Science

TEMPORARY MONITORING POINT	COMPLETION FORM
RILLER <u>GTE Services</u> RILLER <u>RS FFEC</u> DOBIST <u>RS FFEC</u> DATE DATE <u>DATE</u>	PAGE OF WELL NOTP-9 BOREHOLE WATER LEVEL STATIC WATER LEVEL SCREEN INTERVAL SCREEN INTERVAL
HEIGHT OF TOP OF SURFACE ROUND SURFACE TYPE OF SURFACE SEAL. DEPTH OF SURFACE SEAL. DEPTH OF SURFACE SEAL. DEPTH OF PROTECTIVE CAS TYPE OF PROTECTIVE CAS DEPTH OF PROTECTIVE CAS DEPTH OF PROTECTIVE CAS DEPTH OF ROTECTIVE CAS DEPTH OF ROTECTIVE CAS DEPTH OF ROTECTIVE CAS DEPTH OF SURFACE SEAL. TYPE OF BACKFILL ELEVATION / DEPTH TO DEPTH OF OF SEAL. ELEVATION / DEPTH BO DEPTH OF TOP OF SAN TYPE OF SAND PACK. ELEVATION / DEPTH TO DESCRIBE OPENINGS INSIDE DIAMETER OF S ELEVATION / DEPTH BO DESCRIBE OPENINGS INSIDE DIAMETER OF S ELEVATION / DEPTH BO DESCRIBE OPENINGS INSIDE DIAMETER OF S ELEVATION / DEPTH BO DESCRIBE OPENINGS INSIDE DIAMETER OF S	ACE CASING/RISER PIPE ABOVE

ł

SHEET 1_OF___ BORING LOG ; P.9 BORING IDENTIFICATION __ PROJECT NAME TASK Z-RI Hereoles PROJECT LOCATION Hattiesburg, MS BORE HOLE DIAMETER _ PROJECT NUMBER ______ AER- 99 BORING START GEOLOGIST RUN /SAFtor USCS CLASSIFICATION SCHEME ___ BORING COMPLETED DRILLER GYE Services DATE DRILL METHOD ______ HSA w S-spoons WEATHER ______ Sunny Hot TIME. FINAL BORING DEPTH ___ FREE PRODUCT GROUNDWATER UTHOLOG) INITIAL DEPTH _____4 SYMBOL THICKNESS DEPTH VOLUME DEPTH AFTER _____ MINUTES _____ 2/2 init damp loos sonder Blacksfor Sisa/ 2/2 init damp loos sonpling 2-5 store 4 18" dame stift noder gray IIIn Sici 10" *[]*// No Sough 7-10 damp stiff to grayfire S.C./ No sampling 12-15 damp stiff no grayfiren S.C./ AD. 2/3 4/6 20 " 5 2/3 10/11 ZO ~ 0 50ming 17-20 i C 10 419 Edwarp danse no gree Clu/s./f 10-20 + Drill new Boring to 10ft bas Screen @ 4.9' ·SotTP.9 ·CANIN to 8' 15 · 20/40 +03' Eco. Systems, Inc. · Sea + +0 2' Environmental Engineers and Scient · Seat to 2'

PROJECT NAME	Hercoles	·	PAGE OF
	Hatticsburg	MS	WELL NO 7 - 10
DATE COMPLETED	4/29/99 '		DRILLING METHOD
DRILLER 6+	E Services	т.	METHOD OF DEVELOPMENT
GEOLOGISTR	Sartor		8-14,51
PADLOCK			ING ABOVE GROUND SURFACE
	· · · · · · · · · · · · · · · · · · ·	ELEVATION/HEIGHT OF TOP OF I	RISER PIPE 179.69/2
WEEPHOLE		FILLER MATERIAL	NA
			<u>NA</u>
		PAD E	LEVATION NA
		GROUND SUR	FACE ELEVATION N K
		TYPE OF SURFACE SEAL	<u> </u>
		INSIDE DIAMETER OF SURFACE C	ASINGΥ
		TYPE OF SURFACE CASING DEPTH OF SURFACE CASING BEL	
		DEPTH OF SURFACE CASING BEL	V GROUND SURFACE 41/2
		- INSIDE DIAMETER OF RISER PIPE	
		INSIDE DIAMETER OF RISER PIPE	" PVC
	┝┼┼┽┥	DIAMETER OF BOREHOLE	<u> </u>
		TYPE OF BACKFILL	· · · · · · · · · · · · · · · · · · ·
		DEPTH OF TOP OF SEAL (PRE	
		TYPE OF SEAL Bent	partechips INI
		DEPTH OF TOP OF SAND PACH	(INITIAL/POST SURGE/FINAL)
		DEPTH OF TOP OF SCREENED S	
80 - 10 10		TYPE OF SAND PACK 26	140 Sand Pack (Abustive) 10-5/0 + PVC
			in all all
			10-5167 100
		OPENING SPACING	
-		INSIDE DIAMETER OF SCREENED	SECTION /
		INSIDE DIAMETER OF SCREENED	
			•
		DEPTH OF BOTTOM OF SCREEN	TD SECTION 141.5
		LENGTH OF BUTTOM OF SCREEN	Flush
		CENTRALIZER DEPTH OF BOTTOM OF PLUGGEI	
		TYPE OF BACKFILL BELOW OBSI	BLANK SECTION 14.5, ERVATION PIPE BLACK
		DEPTH OF BOREHOLE	17
			Bustama Ina
		ECO•1	Systems, Inc.

SHEET 1 OF **BORING LOG** PROJECT NAME TOST Z - RI Hercoles T P-10 BORING IDENTIFICATION _ 1. PROJECT LOCATION Hatties burg MS BORE HOLE DIAMETER . PROJECT NUMBER _462-99 BORING START DATE 1-29-95 Sartac GEOLOGIST __ TIME 1058 CLASSIFICATION SCHEME USCS BORING COMPLETED DRILLER GEE Services 4-29.99 DATE DRILL METHOD HSA w 3-3 POONS 17 Sunny/Hod FINAL BORING DEPTH WEATHER ____ FREE PRODUCT GROUNDWATER RECOVERY (INCHES) **TTHOLOG** INITIAL DEPTH __ ~ // SYMBOI THICKNESS DEPTH AFTER _____ MINUTES . VOLUME Brown/Black (+ AS, SA (S. 11) Dry 22" LOOSE (F-met) Firm ofer Gray 3, Itu, Logse , signaulth off) 5, 54 1Z" 9, 1+ 1/c/A1 12" Noi 4 6052 ĺΖ r) (#.5_ 85 10" saturates ZD ile 14-14,5 Anne still gray when for She white . Complete 115 e 16, 5 TD (14.e. 1/1 4/5 20" 18 10-· Convert to TP-10 (8-14,5') · 20/40 to 51/2 · Sarl to 41/2 , l'of Cavein to 13.5 15. Eco-Systems, Inc. Environmental E

OJECT NAME Hatticsburg, MS PAGE 1 OF 1 DATE COMPLETED Hatticsburg, MS Well NO. TP-11 DATE COMPLETED H29/99 BOREHOLE DEPTH BOREHOLE WATER LEVEL DRILLER GFE Securics DRILL METHOD HSA STATIC WATER LEVEL GEOLOGIST R Sartac DRILL METHOD HSA STATIC WATER LEVEL INSPECTED BY DATE SCREEN INTERVAL 8-13 ELEVATION OF TOP OF SURFACE CASING/RISER PIPE 162.	
DATE COMPLETED 42999 BOREHOLE DEPTH BOREHOLE WATER LEVEL DRILLER 676 Secures GEOLOGIST R Sector DRILL METHOD HSA STATIC WATER LEVEL INSPECTED BY DATE SCREEN INTERVAL 8-13	
GEOLOGIST K STERAL DATE SCREEN INTERVAL 8-13	
ELEVATION OF TOP OF SURFACE CASING/RISER PIPE	
	. 26
HEIGHT OF TOP OF SURFACE CASING/RISER PIPE ABOVE NA	
DEPTH OF SURFACE SEALNA	
INSIDE DIAMETER OF SURFACE CASING NA	
INSIDE DIAMETER OF RISER PIPE	
DIAMETER OF BOREHOLE	
ELEVATION / DEPTH TOP OF SEAL 5.5	<u> </u>
2 ELEVATION / DEPTH BOTTOM OF SEAL 6.5	
DEPTH OF TOP OF SAND PACK	D
ELEVATION / DEPTH TOP OF SCREENED SECTION	
TYPE OF SCREENED SECTION	
DESCRIBE OPENINGS 10 shot Scieen	
ELEVATION / DEPTH BOTTOM OF SCREENED SECTION	
ELEVATION/DEPTH BOTTOM OF SAND COLUMN 13 ELEVATION/DEPTH BOTTOM OF SAND COLUMN 13 TYPE OF BACKFILL BELOW OBSERVATION PIPE 15'	
B ELEVATION/DEPTH OF HOLE Elevation/DEPTH OF HOLE Environmental Engineers and Scient	ctait

SHEET 1 OF **BORING LOG** BORING IDENTIFICATION ____ PROJECT NAME TAGE Here 6 11 BORE HOLE DIANETER _ PROJECT LOCATION Hatherburg, MS AER-95 PROJECT NUMBER __ BORING START TIME 1735 DATE 1/21/99 Kun GEOLOGIST CLASSIFICATION SCHEME USCS BORING COMPLETED S DATE 4/29 64E Services DRILLER w S-Spoons DRILL METHOD _____ WEATHER _____SUNNY/Lot FINAL BORING DEPTH ___ FREE PRODUCT GROUNDWATER ITHOLOGY RECOVERY (INCHES) SYMBOL THICKNESS DEPTH FEET INITIAL DEPTH DEPTH AFTER _____ MINUTES _ VOLUME 9. Sa /gravel damp loose nooder Black 3/1 2/4 20' Z no sample 5-7 NS soden ten S.Salarnel soden ten S.Salarnel soluted loogne nooch gray Saturated tim -oodor gray S.C.L. Saturated tim -oodor gray S.C.L. 2/2 12 12" 5-7 N5 50 3/3 5/9 22" 10-12 Æ 717 20 15/15 4 . TP. 11 sereen 2 8-13' · Cave in to 9' 10 -· 20/40 to 6,5' . Seal to 5.5 15 Eco-Systems, Inc. Environmental Engineers and Sci ¢.

	TEMPOR	ARY MONITORING POINT	COMPLETION FORM
		ercoles	PAGE OF
	DATE COMPLETED	9/95 BOREHOLE DEPTH	
	GEOLOGIST RSAFT	DRILL METHOD HSA	STATIC WATER LEVEL
		ELEVATION OF TOP OF S	URFACE CASING/RISER PIPE
	- WINING	HEIGHT OF TOP OF SUR	FACE CASING/RISER PIPE ABOVE
			NA L BELOW GROUND SURFACE NA
			SINGNA CASING BELOW GROUNDNA
	STRATICRAPHY	INSIDE DIAMETER OF RISI	I" PVC
	FOR STRAI	DIAMETER OF BOREHOLE	the Solids Brotowite Great
	FOC		Bentonite chips
	SEE BORING	DEPTH OF TOP OF SAND	Native to 8 bas 70/40 Sand foil
	5	ELEVATION / DEPTH TOP	P OF SCREENED SECTION 5
		FILTER SOCK	TION No-slot 1"PK
FRNOOS		DESCRIBE OPENINGS	10-5/0+
M:\DRWG2\FORMS\FRMOO5			TTOM OF SCREENED SECTION
9 10:27 M:\D		ELEVATION/DEPTH BOTTO	M OF PLUGGED BLANK SECTION 13
No 20		ELEVATION/DEPTH OF HO	DLE
sk Sk			Environmental Engineers and Scientists

SHEET 1 OF **BORING LOG** P-12 PROJECT NAME TASK 2 -RI BORING IDENTIFICATION _ BORE HOLE DIANETER PROJECT LOCATION Hatticsburg, MS HER-99 PROJECT NUMBER BORING START Rum ISartor DATE 4-29-99 GEOLOGIST TIME _____ CLASSIFICATION SCHEME __ 05C5 BORING COMPLETED DRILLER <u>6+ E Services</u> DATE 4-29-99 DRILL METHOD ______ w S-SPOORS 171 WEATHER _____SUNNY / hot FINAL BORING DEPTH __ FREE PRODUCT GROUNDWATER LITHOLOGY RECOVER) (INCHES) **Z**_. INITIAL DEPTH ~ 7' DEPTH FEET SYMBOI THICKNESS VOLUME ____ MINUTES . DEPTH AFTER _ Sta L/C broundtob orange Damp Loose 6.2 No Samplinsto In Suff S. Sand 80 1 fam jutile S.S. NO Sampling 6-10' saturd togge tan (FAT)9:9 Angram 46 N5 hs 600 5/9 12/13 22' No suppling 12-15 (10 13 (Top day). NS 14 Damp medstillig; A oranget 617 16" H 810 TD=1 · Convert to TP-12 Fro 5'-15' R -20 • Native to 8 . 20/40 to 4' . Seal to 3' ·15· Eco-Systems, Inc. Environmental Engineers and Science ht (

TEMPORARY MONITORING POINT COMPLETION FORM Herevles PAGE PROJECT NAME ____ OF OCATION _____ Hat TP-13 MS _____ WELL NO.____ DUra DATE COMPLETED ____ 4/29/99 BOREHOLE DEPTH _____ BOREHOLE WATER LEVEL _~ 5 $^{\prime}$ DRILLER ____ GIE Services DRILL METHOD HSA _____ STATIC WATER LEVEL ____ GEOLOGIST JRYAN ______ SCREEN INTERVAL ____4-11' INSPECTED BY_ DATE - ELEVATION OF TOP OF SURFACE CASING/RISER PIPE 156.99 HEIGHT OF TOP OF SURFACE CASING/RISER PIPE ABOVE 3 GROUND SURFACE TYPE OF SURFACE SEAL _____ NA - DEPTH OF SURFACE SEAL BELOW GROUND SURFACE -INSIDE DIAMETER OF SURFACE CASING_____ TYPE OF PROTECTIVE CASING -DEPTH OF PROTECTIVE CASING BELOW GROUND - INSIDE DIAMETER OF RISER PIPE ______ FOR STRATIGRAPHY - TYPE OF RISER PIPE _____ PYC - DIAMETER OF BOREHOLE_____6" TYPE OF BACKFILL High Solids Be. ELEVATION / DEPTH TOP OF SEAL . BORING LOG -TYPE OF SEAL Bentenitz Chips - ELEVATION / DEPTH BOTTOM OF SEAL 3'- DEPTH OF TOP OF SAND PACK 20/40 Sand IN. NA fire SEE (21) TYPE OF SAND PACK ELEVATION / DEPTH TOP OF SCREENED SECTION _____ FILTER SOCK -TYPE OF SCREENED SECTION 10-510+1"PVC -DESCRIBE OPENINGS 10-5/0+ INSIDE DIAMETER OF SCREENED SECTION - ELEVATION / DEPTH BOTTOM OF SCREENED SECTION _____ - LENGTH OF BLANK SECTION _____ Flus ż - ELEVATION/DEPTH BOTTOM OF PLUGGED BLANK SECTION 111 10:27 -elevation/depth bottom of sand column 14'- TYPE OF BACKFILL BELOW OBSERVATION PIPE ______ - ELEVATION/DEPTH OF HOLE _____ 14' Loo-Systems, / ba. d Enchoern and Scientists

SHEET 1 OF BORING LOG PROJECT NAME TASK 2 - RI HORE LAS P-13 BORING IDENTIFICATION _ PROJECT LOCATION Hattesburg MS BORE HOLE DIANETER PROJECT NUMBER ______ BORING START DATE 4-29-99 GEOLOGIST _____ SAT- tor TINE 810 CLASSIFICATION SCHEME USCS DRILLER 648 Services BORING COMPLETED TIME 835 DATE 4-29-99 DRILL NETHOD ______ HSA w/ S-Spoons______ FINAL BORING DEPTH _____14' FREE PRODUCT GROUNDWATER LIHOLOGY RECOVER) (INCHES) ~ 5' SYMBOL INITIAL DEPTH ____ THICKNESS DEPTH DEPTH AFTER _____ NINUTES ___ VOLUME, ben -sray, DRY, LOSE, CL-a (0-2' 18" Non-P Lood Inglillralian), (2'-5') Saturita (5') Med-dense (vf-f) S. Sa a/trace (5-7') (f-med) Gravelly Sand of Silon A Loose (f) VGravelly Sand of Silon A Damp Stiff brom toray S.C. 10-1058 Molling 194 8 2 10 10 14 " · Convert to TP-13 for 4-11'. TD=14' 46 · Add filter sock + 20/40 from T.D. 18 -20. -15 -Eco-Systems, Inc. tel Engineers and Sch Environm

TEMPORARY	MONITORING POINT	COMPLETION FORM
DATE COMPLETED _ 5/10/99 DRILLER _ GEE Service	BOREHOLE DEPTH	PAGE OF
		URFACE CASING/RISER PIPE 164.84
	HEIGHT OF TOP OF SURI GROUND SURFACE	FACE CASING/RISER PIPE ABOVE
	DEPTH OF SURFACE SEAL	NA L BELOW GROUND SURFACE NA RFACE CASING
	TYPE OF PROTECTIVE CA	SINGNA CASING BELOW GROUNDNA
STRATICRAPHY	TYPE OF RISER PIPE	Pvc 6"
LOG FOR SI	ELEVATION / DEPTH TO	High Salids Benton, tr Grout POFSEAL I'
BORING LC	DEPTH OF TOP OF SAN	D PACK-5,6
SE	ELEVATION / DEPTH TO	P OF SCREENED SECTION 7.6
	FILTER SOCK	CTION 10-Slot 1"PUC
us/Francos	DESCRIBE OPENINGS	<u>io-slot</u> Creened Section <u>l''</u>
10:27 M.\DRWG2\FORMS\FRM005	D FNGTH OF BLANK SEU	TION OF SCREENED SECTION 126"
	ELEVATION/DEPTH BOT	TOM OF PLUGGED BLANK SECTION <u>12,6</u> TOM OF SAND COLUMN <u>14</u> LOW OBSERVATION PIPE <u>Notect</u>
37	ELEVATION/DEPTH OF	HOLEIY" Eco-Systems, Inc. Environmental Engineers and Scientists

u. ² . Set easy search in ¹⁷n Africa ^a

SHEET 1 OF BORING LOG -RI Herevles BORING IDENTIFICATION _ 7 PROJECT NAME THE Hattiesburg, MS BORE HOLE DIAMETER PROJECT LOCATION___ HER-95 PROJECT NUMBER __ BORING START 30 DATE 5-10.99 GEOLOGIST _____ USCS CLASSIFICATION SCHEME_ BORING COMPLETED DRILLER <u>GtE</u> Services DATE 5-18-99 TIME_ HSA w STSPOONS DRILL METHOD FINAL BORING DEPTH WEATHER FREE PRODUCT GROUNDWATER **ITHOLOGY** RECOVERY (INCHES) Z DEPTH FEET SYMBOI THICKNESS INITIAL DEPTH VOLUME DEPTH AFTER _____ MINUTES DAMP, firm, BROWN, CLSC Moint (22) Hable Staned - Fill old (4.5'-D.) Bump (35) LOOSE, H. BRW, Sisa tr.cl Moist (5'), firm, Brew, Off_ (5'-7') 2 4 6 wet-sat, Loose, Ct. Sens, SAT Sila f-med 2 Frace, the 10 w/ mare 7 14 TD=14' TP-4 fb Pellets to 1.3' Is - 20/40 = 5 51 screens Bas:/2.6" -10-Native @ 9.3 T9-74' 15-Eco-Systems, Inc. Environmental Engineers and Scientists

£

Hercules, Incorporated Interim Groundwater Monitoring Report January, 2003

APPENDIX C

SAMPLE COLLECTION LOGS

Environmental Engineers and Scientists

Groundwater Sample Collection Log

Page 1 of 1.

Project Name: Project Number:

HER99072

Hercules

Boring ID: <u>MW-1</u> Site Location: <u>Hatties</u>

Hattiesburg, Mississippi

Water Level Measurements								
Date	Time	Water Level (TOC)						
10/14/2002	9:31	5.53						

2				
	Start Date:	10/14/2002		Finish Date: 10/14/2002
1	Sample Technician:	Charles Cone	y and Rodney Sartor	
J	Purge/Sample Method:	Peristaltic Pur	np	
	Well Diameter:	2"		
	Total Depth of Well:	17		
j	Approximate Depth of	Water Column		
1	(h= TD of well - water	level [TOC]):	11.47	
	Calculated Well Volum	e (V=6hd²)		
J	(V = vol in gal; D = we	ll diam. in ft):	1.9	

	WELL DEVELOPMENT/PURGING DATA								
	Date/Time	Cumulative Volume (gal)	pH	Specific Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments
	10/14/2002 10:20	2	6.19	125.6	20.5	13.7			
	10:30		6.14	74.9	20.7	13.7			
	10:40	2	6.05	140.2	20.8	13.2			
	11:02		6.06	129.5	22.5	13.3			
	11:15		5.91	127.0	22.5	14.3			
1991									
			3	11		· · · · · · · · · · · · · · · · · · ·			
						: 			
				· · · · · · · · · · · · · · · · · · ·					
	· · · · · · · · · · · · · · · · · · ·								
Ļ	×								
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·		·			
	· · · · · · · · · · · · · · · · · · ·				.				· · · · · · ·

Sample Identification:			GROU
		Date	Ti
Weather Conditions Dur	ing Sampling:	10/14/2002	11:
Comments:			
dure:	Date:		

Environmental Engineers and Scientists

Groundwater Sample Collection Log

Page_1_of_1.

Project N	lame:
Project N	Number:

Hercules HER99072 Boring ID:

<u>MW-4</u>

Site Location: Hattie

Hatticsburg, Mississippi

Water Level Measurements										
Date	Time	Water Level (TOC)								
10/14/2002	12:24	10.40								
	• • • • •									

Start Date:	10/14/2002	<u> </u>	Finish Date: 10/14/2002
Sample Technician:	Charles Cone	y and Rodney Sa	rtor
Purge/Sample Method	Peristaltic Pur	mp	
Well Diameter:	2"		
Total Depth of Well:	15		· · · · · · · · · · · · · · · · · · ·
Approximate Depth of	Water Column	L .	
(h= TD of well - water	level [TOC]):	4.60	
Calculated Well Volum	ne (V=6hd²)		
(V = vol in gal; D = wol	ell diam. in ft):	0.8	

	WELL DEVELOPMENT/PURGING DATA								
	Date/Time	Cumulative Volume (gal)	pН	Specific Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments
	10/14/2002 12:40	0.5	6.07	644.0	22.7	7.18			
	12:50	1.0	6.16	621.0	21.7	5.03		<u> </u>	
U	12:55	1.25	6.12	566.0	21.7	4.67			
	-	· · · · · · · · · · · · · · · · · · ·							
	· ···			· · · · · · · · · · · · · · · · · · ·			_		
						2			
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·					
								· · · · · · · · · · · · · · · · · · ·	

Sample Identification:	
Weather Conditions During Sampling:	·····
Comments:	
dure:	Date:

GROUNDWATER SAMPLE CONTAINERS								
Time	Sample Container	Preservative						
13:05								
	Time	Time Sample Container						

Environmental Engineers and Scientists

Groundwater Sample Collection Log

Page 1 of 1.

Project Name: Project Number:

HER99072

Hercules

Boring ID: MW-5

Site Location:

Hattiesburg, Mississippi

Start Date:	10/14/2002		Finish Date:	10/14/2002			
Sample Technician:	Charles Cone	y and Rodney Sarton					
Purge/Sample Method:	Peristaltic Pur	Peristaltic Pump					
Well Diameter:	2"						
Total Depth of Well:	15			¥			
Approximate Depth of	Water Column						
(h= TD of well - water]	level [TOC]):	6.3					
Calculated Well Volume (V=6hd ²)							
(V = vol in gal; D = web	ll diam. in ft):	1.1					

 $\textcircled{\blue}{\blue}$

Date	Time	Water Level (TOC)
10/14/2002	13:47	8.7

Water Level Measurements

WELL DE VELOPMENT/PURGING DATA								
Date/Time	Cumulative Volume (gal)	pН	Specific Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments
10/14/2002 14:05		6.68	484.0	26.2	3.28			
14:16		6.78	483.0	25.8	2.35			
14:20		6.72	396.0	25.5	2.52			
14:22		6.71	896.0	25.2	1.69			
14:25	2.5	6.72	560.0	25.1	1.61			P
14:30	3.5	6.64	734.0	25.3	1.43			
14:34		6.64	428.0	24.9	2.87			
14:37		6.6	555.0	24.6	1.60			
14:41	4	6.54	325.0	24.6	1.67			
14:44		6.51	294.0	24.7	2.28			
14:46	4.5	6.62	416.0	24.4	1.61			
14:49	4.75	6.47	442.0	24.6	1.76			
					·······			
			· · · · · · · · · · · · · · · · · · ·					

Sample Identification: Weather Conditions During Sampling:

Comments:

lure:

Date:

GROUNDWATER SAMPLE CONTAINERS						
Date Time Sample Container Preservativ						
10/14/2002	14:50					
		†				

Environmental Engineers and Scientists

Groundwater Sample **Collection Log**

Page 1 of 1.

Water Level (TOC)

8.05

Project Name:
Project Number:

Hercules HER99072 Boring ID:

MW-6

Site Location: Hattiesburg, Mississippi

Date

10/14/2002

 1	-	_

Water Level Measurements

Time

15:52

Start Date:	10/14/2002		Finish Date: 10/14/2002
Sample Technician:	Charles Cone	y and Rodney Sartor	
Purge/Sample Method:	Peristaltic Pur	mp	
Well Diameter:	2"		
Total Depth of Well:	18		
Approximate Depth of	Water Column	L	
(h= TD of well - water	level [TOC]):	9.95	
Calculated Well Volum	e (V=6hd²)		
(V = vol in gal; D = we)	ll diam. in ft):	1.7	

WELL DEVELOPMENT/PURGING DATA								
Date/Time	Cumulative Volume (gal)	pН	Specific Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments
10/14/2002 16:00		6.72	110.6	24.9	1.93			
16:03		5.75	118.5	24.6	1.58		d a	
16:05		5.68	104.2	24.5	1.26			
16:08		5.56	147.7	24.4	1.26			
16:09		5.61	120.2	24.2	1.09		20	
16:11		5.57	181.7	24.0	1.26			
16:13		5.63	80.0	23.9	1.48			
16:15		5.55	170.0	24.0	1.30			
16:17		5.57	186.8	24.2	1.18			
16:19		5.49	184.8	24.1	1.05			
					· · ·			
			· · ·		······································			
			한 분					
					·· _ ·· · · · · · · · · · · · · · · · ·			
			•					

Sample Identification: Weather Conditions During Sampling: _____ Comments:

GROUNDWATER SAMPLE CONTAINERS Date Time Sample Container Preservative 10/14/2002 16:22

áre:

Date:

Eco-Systems, Inc.

Environmental Engineers and Scientists

Groundwater Sample Collection Log

Page 1 of 1.

Project Name: Project Number:

HER99072

Hercules

Boring ID: Site Location:

MW-1

Hattiesburg, Mississippi

Date	Time	Water Level (TOC)
12/4/02	9:10	5.15
		
	· · · · · ·	

1			
Start Date:	12/4/02		Finish Date: 12/4/02
Sample Technician:	Charles Coney	/	
Purge/Sample Method:	Peristaltic Pur	n p	
Well Diameter:	2"		
Total Depth of Well:	20.5		
Approximate Depth of	Water Column		
(h= TD of well - water	level [TOC]):	15.35	
Calculated Well Volum	e (V=6hd²)		
V = vol in gal; D = we	ll diam. in ft):	2.6	

 \bigcirc

	WELL DEVELOPMENT/PURGING DATA								
	Date/Time	Cumulative Volume (gal)	pН	Specific Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments
	12/4/02 10:04	2.5	6.70	198.1	19,1	9.4	1.36		
1	10:21	5.0	6.70	181.5	19.6	8.9	0.91		
	10:42	7.5	6.71	170.8	20.4	9.0	0.69		
L			· · - · · ·				1	· · · · · · · · · · · · · · · · · · ·	
						·····			
						····			
-									
						· · · · · · · · · · · · · · · · · · ·			
Ц					-				

Sample Identification: <u>MW-1</u>

Weather Conditions During Sampling: cloudy and warm, low 60's

Signature: Sponon Trickel Date:

Comments: _Delivered sample directly to Glenn Jones of Bonner Laboratory_

12

710]

	Date	Time	Sample Container	Preservative
	12/4/02	10:45	1 L Amber	none
L				
				· · · ·
Г				

GROUNDWATER SAMPLE CONTAINERS

Eco-Systems, Inc.

Environmental Engineers and Scientists

Groundwater Sample Collection Log

Page 1 of 1.

Project Name: Project Number:

Hercules HER99072 Boring ID: Site Location:

MW-2

Hattiesburg, Mississippi

J				
	Start Date:	12/4/02	<u> </u>	Finish Date: <u>12/4/02</u>
1	Sample Technician:	Charles Cone	<u>у</u>	<u></u>
	Purge/Sample Method:	Peristaltic Pur	mp	
	Well Diameter:	2"		
1	Total Depth of Well:	20.5		
	Approximate Depth of	Water Column		
	(h= TD of well - water l	evel [TOC]):	14.95	····
1	Calculated Well Volume	e (V=6hd²)		
5	(V = vol in gal; D = well	ll diam. in ft):	2.5	

Water	Level Measur	ements
Date	Time	Water Level (TOC)
12/4/02	15:18	5.55
	15:21	5.70
	15:25	5.70

				WELL DEVEL	LOPMENT/PU	RGING DATA			
	Date/Time	Cumulative Volume (gal)	pН	Specific Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments
	12/4/02 15:25	0.25	5.77	104.6	19.8	5.6	3.40		
	15:30	0.5	5.76	103.4	19.8	5.8	2.72		
	15:35	0.75	5.68	103.1	19.7	6.7	2.52		
\cup	15:40	1.0	5.60	102.9	19.8	4.1	1.98		
								· · · · · · · · · · · · · · · · · · ·	
							+		
						· · · · · · · · · · · · · · · · · · ·		····	
. U						···· · · · · · · · · · · · · · · · · ·			
	······································					••••		·····	
								·····	
								5	

Sample Identification: <u>MW-2</u>	
Weather Conditions During Sampling: very cloudy, breezy, lower 60's	_
Comments: _Delivered samples directly to Bonner Analytical	-
Signature: Sponcer Trickel Date: 12/17/02	_

	GROUNDWATER SAMPLE CONTAINERS								
Date	Preservative								
12/4/02	15:45	1 L amber	none						
			·····						
	0								

Eco-Systems, Inc.

Groundwater Sample

Environmental Engineers and Scientists

Collection Log

 Project Name:
 Hercules
 Boring ID:
 MW-3

 Project Number:
 HER99072
 Site Location:
 Hattiesburg, Mississippi

 Start Date:
 12/4/02
 Finish Date: 12/4/02
 Water Level Measurements

 Sample Technisian:
 Charles Coney
 Date
 Time

1	Sample Technician:	Charles Coney	/
	Purge/Sample Method:	Peristaltic Pum	1p
	Well Diameter:	2"	
1	Total Depth of Well:	18	
]	Approximate Depth of	Water Column	
	(h= TD of well - water	evel [TOC]):	11.75
1	Calculated Well Volum	e (V=6hd²)	
ļ	(V = vol in gal; D = well diam. in ft):		2.0

Water Level Measurements							
Date	Water Level (TOC)						
12/4/02	14:35	6.25					
	14:42	6.25					

WELL DE VELOPMENT/PURGING DATA									
	Date/Time	Cumulative Volume (gal)	pН	Specific Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments
	12/4/02 14:42	0.5	6.70	122.3	19.8	16	2.90		
	14:45	0.75	6.70	131.6	19.5	8.8	2.47		
	14:50	1	6.70	119.6	19.5	7.4	2.22		
\cup	14:55	1.5	6.70	118.2	19.4	8.2	2.02		
						د. سب د د د د ب			
2			2				<u> </u>	····	
			<u>.</u>			<u> </u>			
				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	<u> · · · </u>	·····	
						<u>.</u>		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	· · · · · · · · · · · · · · · · · · ·
						· · · · · · · · · · · · · · · · · · ·		······	
						· · · · · ·			
			<u> </u>				+	······································	
						······································	++		· · · · · · · · · · · · · · · · · · ·
		·····		L	<u> </u>				
_								****	

Sample Identification:	<u>MW-3</u>
Weather Conditions D	uring Sampling: very cloudy, breezy, lower 60's

Comments: _Delivered sample directly to Bonner Laboratory____

Signature: Spanson Trichold Date: 12/17/02

GROUNDWATER SAMPLE CONTAINERS									
L	Date	Time	Sample Container	Preservative					
ſ	12/4/02	15:00	1 L amber	none					
Γ									
Γ				<u>·</u>					
Γ									
t									

Eco-Systems, Inc.

Environmental Engineers and Scientists

Groundwater Sample Collection Log

Page<u>1</u> of <u>1</u>.

Project Name:	Hercules	0	Boring ID:	MW-4			
Project Number:	HER99072	Site Location:	Hattiesburg, Mississippi				
<u> </u>	n			and the second secon			
Start Date:	12/4/02	Finish Date: 12/5/02		Water	Level Measur	ements	
Sample Technician:	Charles Coney			Date	Time	Water Level (TOC)	
Purge/Sample Method:	Peristaltic Pump			12/4/02	10:27	9.92	
Well Diameter:	2"			12/5/02	12:45	9.67	
Total Depth of Well:	18.5			12/5/02	12:55	9.71	
Approximate Depth of	Water Column						
(h= TD of well - water	level [TOC]): 8.58						

Calculated Well Volume (V=6hd²)

(V = vol in gal; D = well diam. in ft): 1.5

	WELL DEVELOPMENT/PURGING DATA								
	Date/Time	Cumulative Volume (gal)	pН	Specific Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments
	12/5/02 12:55	0.2	6.22	382.0	19.6	7.3	0.87		
	13:00	0.3	6.20	367.0	20.0	6.3	0.61		
m	13:05	0.4	6.18	363.0	20.1	3.4	0.57		
	13:10	0.5	6.17	360.0	20.2	2.9	0.51		
1969									
						· · · · · · · · · · · · · · · · · · ·			
					+				
C	· · · · · · · · · · · · · · · · · · ·			·		<u></u>	+		
							+		
Ч			••••	•			<u> </u>		
							1		·
U				· · · · · · · · · · · · · · · · · · ·					
				···· ·································				· · · · · · · · · · · · · · · · · · ·	
								· · · · · · · · · · · · · · · · · · ·	
U									

Sample Identification: <u>MW-4</u>	
Weather Conditions During Sampling: cloudy, breezy, lower 40's	
Comments:Delivered sample directly to Bonner Laboratory	
Signature: Some on True hold Date: 12/0/68	

GROUNDWATER SAMPLE CONTAINERS							
Date	Sample Container	Preservative					
12/5/02	13:15	1L ambers	none				
		40 mL septa vials	HC1				
· · · · · · · · · · · · · · · · · · ·			<u> </u>				

Environmental Engineers and Scientists

Groundwater Sample Collection Log

Page_1_of_1.

Project Name: Project Number:

HER99072

Hercules

Boring ID: <u>MW-5</u> Site Location: <u>Hatties</u>

Hattiesburg, Mississippi

	10/4/00		Einich Date: 12/5/02
Start Date:	12/4/02		Finish Date: 12/5/02
Sample Technician:	Charles Cone	v	
Purge/Sample Method:	Peristaltic Put	mp	
Well Diameter:	2"		
Total Depth of Well:	18.5		
Approximate Depth of	Water Column	l	
(h= TD of well - water	level [TOC]):	10.45	
Calculated Well Volum	e (V=6hd²)		
(V = vol in gal; D = we	ell diam. in ft):	1.8	

Water Level Measurements					
Date Time Water Level					
12/4/02	11:10	8.05			
12/5/02	13:50	7.40			
12/5/02	14:02	8.14			
	<u> </u>	<u> </u>			

WELL DEVELOPMENT/PURGING DATA									
	Date/Time	Cumulative Volume (gal)	pH	S pe cific Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments
	12/5/02 14:02	0.25	6.82	621	15.2	10	0.49		
	14:07	0.75	6.83	319	15.5	9.1	0.43	. <u></u>	
	14:12	1	6.83	619	15.3	7.3	0.38		· · · · · · · · · · · · · · · · · · ·
	14:1 7	1.25	6.83	622	15.3	5.4	0.37		
1								÷.,	
						<u></u>			
							++		
_						·····			
			· · ·			<u> </u>			
U						- <u>.</u>			
	· · · · · · · · · · · · · · · · · · ·							<u> </u>	
	<u> </u>				<u> </u>			··· ···	
\cup							+	<u>.</u>	
				l					I

	Sample Identification:	MW-5	
	Weather Conditions Du	uring Sampling: cloudy, breezy, lower 40's	
J			

Comments: Sample was relinquished directly to Bonner Laboratory_

Signature: Soucer Trichell Date: 12/17/02

Environmental Engineers and Scientists

Groundwater Sample Collection Log

Page 1 of 1.

Project Name: Project Number:

HER99072

Hercules

Boring ID: MW-6 Site Location:

Hattiesburg, Mississippi

Water Level Measurements						
Date Time Water Level (TOC						
12/4/02	11:07	7.73				
	_					
	<u>.</u>					

	10/1/00		Ti
Start Date:	12/4/02		Finish Date: 12/5/02
Sample Technician:	Charles Cone	<u>y</u>	
Purge/Sample Method:	Peristaltic Pur	np, volume based	
Well Diameter:	2"		
Total Depth of Well:	23.25		<u> </u>
Approximate Depth of	Water Column		
(h= TD of well - water	level [TOC]):	15.52	<u></u>
Calculated Well Volum	e (V=6hd²)		
(V = vol in gal; D = we	ll diam. in ft):	2.6	

					OPMENT/PU	RGING DATA	· · · · · · · · · · · · · · · · · · ·		
	Date/Time	Cumulative Volume (gal)	pН	Specific Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments
	12/5/02 14:57	2.6	5.47	163	20.4	5.4	1.82		
0	15:10	5.2	5.46	165	20.6	7.3	1.70		
	15:25	7.8	5.50	167	20.5	4.6	1.75	<u></u>	
\cup									
				· · · · · · · · · · · · · · · · · · ·		<u> </u>	ļ		
6.5		· · · ·		<u> </u>		<u></u>	<u> </u>		
_			•	· <u>·····</u> ·····			· · · ·		
	····				├		<u> </u>		
						<u></u>	2		
							+		
				· · · · · · · · · · · · · · · · · · ·		·		·	
						· · · · · · · · · · · · · · · · · · ·		<u>.</u>	
				<u>.</u>					
U								· · ·	

 Sample Identification:	<u>MW-6</u>
Weather Conditions D	uring Sampling: cloudy, breczy, lower 40's

Comments: Sample was relinquished directly to Bonner Analytical_

Signature Spencer Trichell Date: 12/17/02

	GROUNDWATER SAMPLE CONTAINERS								
Date Time Sample Container Preservativ									
12/5/02	15:30	1L ambers	none						

Environmental Engineers and Scientists

Groundwater Sample Collection Log

 Project Name:
 Hercules
 Boring ID:
 MW-7

 Project Number:
 HER99072
 Site Location:
 Hattiesburg, Mississippi

Start Date:	12/4/02		Finish Date:	12/4/02
Sample Technician:	Spencer Trich	ell		<u></u>
Purge/Sample Method:	Peristaltic Pur	np		
Well Diameter:	2"			· · · · · · · · · · · · · · · · · · ·
Total Depth of Well:	22.5			
Approximate Depth of	Water Column			
(h= TD of well - water	level [TOC]):	8.89		
Calculated Well Volum	e (V=6hd²)			
V = vol in gal; D = we	ll diam. in ft):	1.5		

Water	Level Measur	ements
Date	Time	Water Level (TOC)
12/4/02	11:53	13.61
12/4/02	15:50	13.68

ſ				WELL DEVEL	OPMENT/PU	RGING DATA			
	Date/Time	Cumulative Volume (gal)	pН	Specific Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments
	12/4/02 15:50	1.5	4.33	160	21.3	2.0	3.50		
Ч	16:00	1.75	4.27	180	20.5	1.7	2.75		
C	16:05	2.0	3.78	160	20.2	1.9	2.50		
	16:08	2.25	3.80	150	21.4	1.7	3.10		
	16:13	2.5	3.78	150	21.1	1.9	2.40		
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	
						······································		· · · · · · · · · · · · · · · · · · ·	
	······		······································					. <u>.</u>	
8						· · · · · · · · · · · · · · · · · · ·			

Sample Identification:	<u>MW-7</u>			
Weather Conditions D	iring Sampling: raining,	warm,	lower 60'	s

Comments: _Sample was relinquished directly to Bonner analytical_

Signature: Gencer Trickel Date: 12/17/02

Date	Time	Sample Container	Preservative
12/4/02	16:20	1L ambers	none
		40mL septa vials	HCl

Page 1 of 1.

Eco-Systems,	Inc.
--------------	------

Environmental Engineers and Scientists

Groundwater Sample Collection Log

Page 1 of 1.

Project Name: Project Number:

HER99072

Hercules

Boring ID:

Site Location: Hatti

MW-8

Hattiesburg, Mississippi

Date	Time	Water Level (TO
12/4/02	9:35	14.09
		· · · · · · · · · · · · · · · · · · ·
	······································	

 Start Date:
 12/4/02
 Finish Date: 12/5/02

 Sample Technician:
 Charles Coney

 Purge/Sample Method:
 Peristaltic Pump

 Well Diameter:
 2"

 Total Depth of Well:
 20

 Approximate Depth of Water Column
 (h= TD of well - water level [TOC]):

 Solution (V = vol in gal; D = well diam. in ft):
 1.0

WELL DEVELOPMENT/PURGING DATA Specific Cumulative Temperature Turbidity D.O. ORP Date/Time pН Conductivity Comments Volume (gal) (Celsius) (NTU) (mg/l) (mv) (umohs) 12/5/02 10:57 0.3 5.93 545 21.4 1.0 0.63 11:02 0.40 5.93 543 21.6 1.10 0.6 0.50 11:07 5.92 543 21.7 0.95 0.55 11:12 0.60 5.92 545 21.8 1.00 0.52

Sample Identification: MW-8, MS, and MSD

Weather Conditions During Sampling: cloudy, breezy, lower 40's

Comments: _Relinquished samples directly to Bonner Laboratory_

	GROUND	WATER SAMPLE CC	NTAINERS
Date	Time	Sample Container	Preservative
12/5/02	15:50	40 mL septa vials	HCI
		1L ambers	none
			_

Signature: Spancer Trichell Date: 12/17/02

Environmental Engineers and Scientists

Groundwater Sample Collection Log

Page 1 of 1.

Project Name: Project Number:

HER99072

Hercules

MW-9 Boring ID: Site Location:

Hattiesburg, Mississippi

Start Date:	12/4/02		Finish Date: 12/5/02	
Sample Technician:	Charles Cone	X .		
Purge/Sample Method:	Peristaltic Pur	mp		
Well Diameter:	2"			
Total Depth of Well:	20			
Approximate Depth of	Water Column	1		
(h= TD of well - water	level [TOC]):	8.65		
Calculated Well Volum	e (V=6hd²)			
(V = vol in gal; D = we	ll diam. in ft):	1.5	· · · · · · · · · · · · · · · · · · ·	

 $\textcircled{\blue}{\blue}$

Wate	r Level Measur	ements
Date	Time	Water Level (TOC)
12/4/02	11:05	11.35
12/5/02	9:20	11.32
12/5/02	9:41	11.34
	<u> </u>	
	·····	
	· · · · · · · · · · · · · · · · · · ·	
	<u> </u>	

				WELL DEVEI	OPMENT/PUI	RGING DATA			
	Date/Time	Cumulative Volume (gal)	pН	Sp c cific Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments
	12/5/02 9:31	0.25	5.25	151	13.1	3.4	1.55		
_	9:36	0.35	5.16	147	14.2	3.2	0.81		
	9:41	0.45	5.15	152	13.8	3.7	0.76		
	9:46	0.55	5.80	510	16.1	0.9	0.75		
	9:51	0.65	5.81	526	15.2	1.1	0.67		
	9:56	0.75	5.82	532	14.3	1.1	0.71		
	10:01	0.85	5.8	545	15.5	1.0	0.47		
	10:06	1	5.82	557	16.7	1.0	0.65		
					-				
U					 				
								· · · · · · · · · · · · · · · · · · ·	
						······································			
L								<u> </u>	
						•	++		

Sample Identification: MW-9

Weather Conditions During Sampling: cloudy, breezy, lower 40's

Comments: _Samples relinquished directly to Bonner Analytical_

Signature: Spencer Trichel Date: 12/17/02

	GROUND	WATER SAMPLE CO	NTAINERS
Date	Time	Sample Container	Preservative
12/5/02	10:15	40 mL septa vials	HCl
		1L ambers	none
<u></u>			,

Environmental Engineers and Scientists

Groundwater Sample Collection Log

Page 1 of 1.

Project Name: Project Number:

HER99072

Hercules

Boring ID:

<u>MW-10</u> Site Location:

Hattiesburg, Mississippi

)			
Start Date:	12/4/02		Finish Date: 12/4/02
Sample Technician:	Charles Cone	еу	
Purge/Sample Method:	Peristaltic Pu	ump	
Well Diameter:	2"		
Total Depth of Well:	18.5		
Approximate Depth of	Water Column	n	
(h= TD of well - water	level [TOC]):	8.77	
Calculated Well Volum	e (V=6hd²)		
(V = vol in gal; D = we	ll diam. in ft):	1.5	

Water	Level Measur	ements
Date	Time	Water Level (TOC)
12/4/02	10:18	9.73
	16:00	9.75
	16:11	20:24

\bigcap				WELL DE VEL	OPMENT/PU	RGING DATA			
	Date/Time	Cumulative Volume (gal)	pН	Specific Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments
1	12/5/02 16:14	0.25	5.34	50.1	19.8	37	0.84		slightly turbid at first
)	16:20	0.5	5.41	49.3	20.1	34	0.60		
	16:25	0.75	5.39	47.3	19.7	23	0.62		
U	16:30	1.0	5.35	46.1	19.6	16	0.68		
	16:35	1.25	5.39	45.6	19.5	12	0.74		
						······			
						······································			
0						·····			
								· · · · · · · · · · · · · · · · · · ·	

Sample Identification:	<u>MW-10</u>	
Weather Conditions Du	uring Sampling: raining, lower 60's	
Comments: Samples r	elinquished directly to Bonner Laboratory	

Signature: Sponcon Trichell Date: 12/17/62

	GROUND	WATER SAMPLE C	ONTAINERS
Date	Time	Sample Container	Preservative
12/4/02	16:38	40 mL septa vials	HCl
		1L amber	none

Environmental Engineers and Scientists

Groundwater Sample Collection Log

Page 1 of 1.

Water Level (TOC)

7.05

Project Name: Project Number:

HER99072

Hercules

Boring ID: **MW-11** Site Location:

Hattiesburg, Mississippi

Start Date: 12/4/02 Finish Date: 12/4/02 Sample Technician: Charles Coney Purge/Sample Method: Peristaltic Pump	Water Date 12/4/02	Level Measur Time	ements Wa
		Time	Wa
Purge/Sample Method Derigtablic Purgh	10/4/02		
T are optimite totalion. T allocation T all b	12/4/02	10:38	
Well Diameter: 2"			
Total Depth of Well: 17			
Approximate Depth of Water Column			
(h= TD of well - water level [TOC]): 9.95			
Calculated Well Volume (V=6hd ²)			
(V = vol in gal; D = well diam. in ft): 1.7			

				WELL DEVEI	OPMENT/PU	RGING DATA			
	Date/Time	Cumulative Volume (gal)	pН	Specific Conductivity (umohs)	Temperature (Celsius)	Turbidity (NTU)	D.O. (mg/l)	ORP (mv)	Comments
	12/5/02 11:47	0.25	6.71	347	20.2	6.1	0.66		
	11:52	0.5	6.70	319	19.8	6.5	0.57		
	12:00	- 1	6.70	300	19.7	7.3	0.41		
\cup	12:03	1.25	6.70	300	19.6	6.5	0.45		
6									
						······································			
						······································		· · · · · · · · · · · · · · · · · · ·	

Sample Identification: MW-11

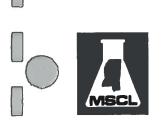
Weather Conditions During Sampling: cloudy and warm

Comments: _Samples were relinquished directly to Bonner Laboratory_

Date Sample Container Time Preservative 12/4/02 12:10 1L amber none 40 mL septa vials HCl

GROUNDWATER SAMPLE CONTAINERS

Signature: Sponcer Trickel Date: 12/17/02


Hercules, Incorporated Interim Groundwater Monitoring Report January, 2003

APPENDIX D

LABORATORY ANALYTICAL REPORTS

S:\projects\HER22073\Hercules Interim Report

Mississippi State Chemical Laboratory

DR. KEVIN L. ARMBRUST State Chemist

Results are presented for the analysis of dioxathion in four well water samples. The only previous experience the aboratory has had with this compound was to perform experiments to qualitatively identify its structural isomers on two occasions. The compounds were characterized by their UV and IR spectra, and were chromatographed both by liquid and gas chromatography (LC and GC). Some infusion and LC experiments with standards were done. No quantitative methods were developed. An extraction method was chosen that is amenable to recovering residues of many pesticides. The samples were buffered and the pH adjusted to 8.0 followed by three extractions with methylene chloride. The extracts were combined and then exchanged into acetonitrile containing internal standard for analysis by HPLC/UV and HPLC/MS. Sample extracts were maintained at 4°C.

The UV and MS data were taken simultaneously from the same injections of samples. The instrument used was a micromass Quattro Micro. The analytical column was an Alltech Altima C-18 (5u), 4.6mm X 250mm and maintained at 35°C. The mobile phase was 75:25 acetonitrile:water, isocratic at 1.0 ml/min. Two UV wavelengths were monitored for the entire run, but residues were quantitated from the 254 nm data for the internal standard and for dioxenethion. Concentrations of cis- and trans-dioxathion were determined from the 200 nm data.

Samples were introduced into the MS by atmospheric pressure chemical ionization at 300°C. The flow rate for the nebulizing gas was 400 L/hr. The ion chosen for quantitation was m/z 270.

Results and quantitation levels are reported for samples based on a signal-to-noise ratio of 5:1 for both detection lechniques.

HPLC/UV RESULTS

MSCL No.	26,523	26,524	26,525	26,526A	26,526B	Laboratory Blank	Lower Level of
Sample ID	MW- 1	MW-4	Rinsate	MW-5	MW-5 Duplicate	Water	Quantitation
Volume	1,000 ml	1,000 ml	625 ml	1,000 ml	1,000 ml	1,000 ml	
9			PA	RTS PER BILL	ON		
Cis- dioxathion	ND*	ND	ND	ND	ND	ND	1.0
Trans- dioxathion	1.5	ND	ND	10	4.3	ND	1.0
Dioxenethion	ND	25	ND	ND	ND	ND	0.30

ND = None Detected

	Spiking Level	Laboratory Spiked Water	Percent Recovery	Spiked MW-5 Replicate	Average MW-5 Replicates	Net Level Found	Percent Net Recovery
			PA	RTS PER BILL	ION		
Cis- dioxathion	42	47	112	36	ND	36	85.7
Trans- dioxathion	42	43	102	40	7.2	33	78.6
Dioxenethion	53	69	130	87	ND	87	164

HPLC/MS RESULTS

MSCL No.	26,523	26,524	26,525	26,526A	26,526B	Laboratory Blank Water	Lower Level of Quantitation
Sample ID	MW-1	MW-4	Rinsate	MW-5	MW-5 Duplicate		
Volume	1,000 ml	1,000 ml	625 ml	1,000 ml	1,000 ml	1,000 ml	
			PA	RTS PER BILL	ION		
Cis- dioxathion	ND	ND	ND	ND	ND	ND	0.21
Trans- dioxathion	ND	ND	ND	0.92	1.0	ND	0.21
Dioxenethion	ND	32	ND	ND	ND	ND	0.53

	Spiking Level	Laboratory Spiked Water	Percent Recovery	Spiked MW-5 Replicate	Average MW-5 Replicates	Net Level Found	Percent Net Recovery
]			PA	RTS PER BILL	ION		
Cis- dioxathion	42	64	152	45	ND	45	107
Trans- dioxathion	42	101	240	59	0.5	58	138
Dioxenethion	53	84	158	50	ND	50	94.3

YOUR COMP. AME:						BONN	IER ANAL	BONNER ANALYTICAL TESTING COMPANY	ESTING	COMPA	VY	HOT
YOUR COMPANY ADDRESS:	613 7 7	S.,					2703 Oak G	2703 Oak Grove Road, Hattiesburg, MS 39402	tiesburg, MS	39402)	d
		1. N. N.		4.0		Phone: (60	1)-264-2854	Phone: (601)-264-2854 Fax: (601)-268-7084 Email: batco@batco.com	-7084 Email:	batco@bat	co.com	9
							M	WWW.BATCO.COM	0.COM			Pres Torro
NAME OF PERSON TO CONTACT:						PAR	PARAMETERS FOR ANALYSIS	ANALYSIS	 		LAB	LABORATORY USE
CONTACT PERSON'S PHONE:	1. A. 55 A. 30	Part Fax:							SHEI	LL	2	Turn Around Time
CONTACT PERSON'S EMAIL:						- -			NIATU			
CLIENT PROJECT NO.	CLIENT P.O.#	CLIENT	CLIENT PROJECT NUMBER	IUMBER								Project Number
						-e - 1			UMBER C	WHESERW		
SAMPLE DESCRIPTION	SCRIPTION	DATE		TIME	MATRIX	1			N	d		File ID
1 N W.		$1 \sigma^4 m e_2$	-						- J		ВТ	
2 M W - H		$F_{2,2}^{(2)}$	<u>-</u>	00 1	1. 2. 1	1				, 360) 19	ВТ	
3 (the A.	. 1 . 1	2. 19 1	1 . 1	À			ξ.		BT	
4 M W S M	10001	1.2/1.00		1501		×			2	\$.	BT	
ъ 2				8							BT	
9				-							ВТ	
7				یرد ارد					i		ВТ	
8					ţ.						BT	
6					n K	8					ВТ	
10						-					BT	
SAMPLE COLLECTOR/RELINQUISHED BY:	ED BY: DATE	TIME	RECEIVED BY:	ž		RELINQUISHED BY:	ΒĶ		DATE	T		RECEIVED BY:
METHOD OF SHIPMENT (If Any)	K158578	RELINQUISHED BY:	BY:		ii Si te	DATE	TiME	RECEIVED FOR BATCO BY:	RATCO BY:			DATE/TIME
REMARKS:				0		🗌 REQUEST	BATCO TO DI	REQUEST BATCO TO DISPOSE OF ALL SAMPLE REMAINDERS (Signature)	SAMPLE REN (Signati	AINDERS 1re)		REVISION NO 1.2
						IF SAMPLE IS DETERMINED TO BE HAZARDOUS, A MINMUM ADDITIONAL CHARGE OF \$30.00 PER SAMPLE WILL BE ASSESSED.	ETERMINED T 0.00 PER SAM	o Be hazardo Ple will be a	JUS, A MINJMI SSESSED.	UTIDA MU	NAL	03/22/01