

Imagine the result

HERCULES

Sludge Characterization and Bench Scale Treatability Report

Hattiesburg, Mississippi

20 August 2010

DEQ-ECED

Craig A. Derouer, P.E.

Senior Engineer

John Ellis, P.G. Principa Scientist/Geologist

David R. Escudé, P.E. Vice President/Principal Engineer

Sludge Characterization and Bench Scale Treatability Report

Hattiesburg, Mississippi

Prepared for: Hercules Incorporated

Prepared by ARCADIS U.S., Inc. 10352 Plaza Americana Drive Baton Rouge Louisiana 70816 Tel 225 292 1004 Fax 225 218 9677

Our Ref OH003000.MS24.00002

Date 20 August 2010

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential, and exempt from disclosure under applicable law. Any dissemination, distribution, or copying of this document is strictly prohibited.

Table of Contents

Exe	cutive	Summa	ary	i
1.	Intro	ductio	n	1
2.	Obje	ectives		1
3.	Reg	ulatory	History	1
4.	Rati	onale		2
5.	Slud	lge Cha	racterization	2
	5.1	Mass a	and Volume Verification	2
	5.2	Sampl	e Collection	3
		5.2.1	Analytical Sample Collection	3
		5.2.2	Treatability Sample Collection	5
	5.3	Analyti	ical Testing and Results	5
		5.3.1	Sludge Analytical Results	5
		5.3.2	Native Soil Analytical Results	6
		5.3.3	Investigation-Derived Waste (IDW)	7
		5.3.4	Dewatered Solids Effluent Analysis	7
6.	Siud	lge Trea	atability Determination	8
	6.1	Overvi	ew	8
	6.2	Dewate	ering Study	8
		6.2.1	Criteria	9
		6.2.2	Centrifuge	9
		6.2.3	Baroid Screening	10
		6.2.4	Filter Press	10
		6.2.5	Gravity Dewatering	11
	6.3	Solidifi	ication Study	11
		6.3.1	Criteria	11
		6.3.2	Methodology	12
		6.3.3	Results	12
7.	Feas	ibility E	Evaluation	13
	7.1	Centrif	uge Dewatering with Off-Site Disposal	13

Ashland/OH3000 MS24/R/1/kp

а

Table of Contents

	7.1.1	Effectiveness	13
	7.1.2	Implementability	14
7.2	Filter F	Press Dewatering with Off-Site Disposal	14
	7.2.1	Effectiveness	14
	7.2.2	Implementability	14
7.3	Gravity	Dewatering with Off-Site Disposal	15
	7.3.1	Effectiveness	15
	7.3.2	Implementability	15
7.4	Solidifie	cation with Off-Site Disposal	16
	7.4.1	Effectiveness	16
	7.4.2	Implementability	16
7.5	Solidific	cation with On-Site Capping	17
	7.5.1	Effectiveness	17
	7.5.2	Implementability	17
7.6	Selecte	d Technology	17

Tables

Fr

1	Summary of	Toxicity	Characteristic	Leaching F	Procedure	(TCLP)	Data

- 2 Summary of Total Analyte Data
- 3 Summary of Quality Assurance/Quality Control Data
- 4 Summary of Treatability Effluent Data

Table of Contents

Figures

- Site Location Map
 2006 Aerial Photography
 Detected TCLP Analyte Concentrations
 Detected Total Analyte Concentrations
 Sampling Protocol
- 6 Cross-Section Location Map
- 7 Cross-Sections A-A', B-B', and C-C'
- 8 Potential Dewatering Locations

Appendices

- A MDEQ Correspondence
- B Field Forms
- C Analytical Reports
- D 95% UCL for TCLP Benzene
- E POTW Effluent Discharge Calculations
- F Dewatering Report
- G Solidification Report
- H Feasibility Evaluation Matrix
- I IB Decommissioning Work Plan

Sludge Characterization and Bench Scale Treatability Report

i

Hattiesburg, Mississippi

Executive Summary

The purpose of the characterization and bench scale treatability project was to evaluate sludge within the impoundment basin (IB) at the Hercules Incorporated facility located at 613 West 7th Street in Hattiesburg, Mississippi. The primary objective was to identify an appropriate strategy for treatment and disposal of sludge within the IB. Based on the data collected during the April 2010 field effort and the subsequent laboratory analysis, an effective sludge management option has been identified.

The sludge sampling and analysis provides adequate characterization to support the project objectives. Using the characterization data, a statistical analysis was completed to determine if the IB sludge would be characteristically hazardous when managed. Based on this analysis, the sludge will be considered a nonhazardous waste for purposes of management and off-site disposal. Because the material is nonhazardous, Land Disposal Restrictions will not apply. Currently, off-site disposal at the Pine Belt Regional Landfill is anticipated.

The treatability work completed indicates the sludge readily dewaters under both passive and active treatment approaches. An evaluation of the technologies, using the criteria of effectiveness, implementability and cost, indicates that gravity dewatering in fabricated drying beds outside the IB is the most appropriate technology for dewatering the sludge prior to off-site disposal. Based on this analysis, an IB Decommissioning Work Plan has been developed. The Decommissioning Work Plan outlines the activities necessary to complete gravity dewatering of the sludge, management of the dewatering effluent through the current wastewater discharge permit, off-site disposal of the dewatered material at the Pine Belt Regional Landfill, backfilling of the IB, and reporting. Detailed plans and specifications will be developed for contractor bidding purposes. In the event another viable option is proposed by a contractor, Hercules will evaluate that option prior to decommissioning the IB.

Once the IB sludge has been effectively managed, monitoring of site-wide groundwater will continue under the Restricted Use Agreed Order (RUAO 5349 07). The purpose of the RUAO is to protect human health and the environment by restricting the use and activities on site while constituents in site-wide groundwater attenuate as described in the Corrective Action Plan Revision 01 (Groundwater & Environmental Services, Inc. dated January 20, 2005).

Because we care 100% recycled paper produced by wind power energy Ashiand/OH3000 MS24/R/1/kp

Sludge Characteriz and Bench Scale Treatability Report

Hattiesburg, Mississippi

1. Introduction

ARCADIS U.S., Inc. (ARCADIS), submitted the Sludge Characterization and Bench Scale Treatability Work Plan (Work Plan) to Hercules Incorporated (Hercules) on March 1, 2010. The Work Plan presented a strategy and procedures for evaluation of the current conditions of an on-site impoundment basin (IB) located at Hercules' 613 West 7th Street facility in Hattiesburg, Mississippi (Figures 1 and 2). The Work Plan was submitted to the Mississippi Department of Environmental Quality (MDEQ) for review prior to implementation. MDEQ approved the Work Plan in a letter dated March15, 2010. Field activities were initiated in April 2010. This report presents the results of the characterization and treatability activities conducted to support the selection of an effective remedy for properly managing the IB sludge and decommissioning the IB.

2. Objectives

The primary objective of the activities conducted was to gather data that can be used to determine the most cost-effective treatment and disposal option for the IB sludge. Data were collected to evaluate technologies that can be implemented to decommission the IB under one of two closure scenarios: 1) dewatering with off-site disposal; and 2) in-place closure. These data included information on the volume, physical characteristics, chemical, and treatability characteristics of the sludge. This objective was established as a result of Hercules' desire to manage the sludge

Regulatory History 3.

In December 2007, Hercules entered into a "Restrictive Use Agreed Order" (RUAO 5349 07) with MDEQ. The purpose of the RUAO is to protect human health and the environment by restricting the use and activities on site while constituents in site-wide groundwater attenuate as described in the Corrective Action Plan Revision 01 (Groundwater & Environmental Services, Inc. dated January 20, 2005).

Permitted water discharge to the City of Hattiesburg Publicly Owned Treatment Works (POTW) has occurred since March 1999. The current State of Mississippi Water Pollution Control Permit number is MSP091286. Because the IB was no longer necessary, Hercules contracted for the removal and disposal of the IB sludge. Following removal of the sludge, the IB would be backfilled to grade and revegetated. Monitoring of site-wide groundwater would continue under the RUAO.

3

Sludge Characterizat and Bench Scale Treatability Report

Hattiesburg, Mississippi

Hercules notified MDEQ of its intent to decommission the IB in a letter dated April 22, 2008. In response to the notification, MDEQ requested, in a letter dated June 8, 2008, additional information regarding the closure operations including a request for Hercules to characterize the sludge within the IB prior to removal from the units. MDEQ also sent a letter to Hercules dated August 25, 2009 (Appendix A), following several meetings and submittal of a draft closure plan. In the letter, MDEQ outlined additional closure procedures. Those closure procedures addressed particular analysis and characterization of the sludge in regard to the management and disposal of the water and sludge from within the IB. Hercules submitted the characterization and treatability Work Plan to MDEQ for review. Based on MDEQ's approval, Hercules implemented the Work Plan to gather the additional data needed to proceed with decommissioning the IB.

4. Rationale

In correspondence dated August 25, 2009, MDEQ outlined a general procedure for closure of the IB, which stated if the characterization indicates that the sludge is nonhazardous for benzene and other constituents, the Land Disposal Restrictions (LDR) in 40 Code of Federal Regulations (CFR) Part 268 would not apply.

An effort was undertaken in April 2010 as part of this characterization plan to preliminarily determine whether the LDR would apply to the IB sludge using the above procedure. The evaluation also gathered data to determine: 1) if the sludge can be dewatered or solidified/stabilized sufficiently to allow for transportation over public roadways to an off-site disposal facility; and 2) if sufficient strength can be imparted to the sludge to hold the weight of an engineered cap for on-site closure. The results of this evaluation are presented in the following sections.

5. Sludge Characterization

Sludge characterization consisted of surveying, sample collection, and laboratory analysis of the IB material. Figures 3 and 4 show the locations where samples were collected in April 2010. Figure 5 is a graphical depiction of the sampling protocol that was followed.

5.1 Mass and Volume Verification

A surveyor licensed by the State of Mississippi surveyed the areal extent of the IB. In addition, the elevations of the top of sludge at each of the locations sampled in the IB

Sludge Characterization and Bench Scale Treatability Report

Hattiesburg, Mississippi

were surveyed. During collection of IB samples, the on-site geologist measured the depth of the sludge material to native soil within the core barrels. Native soil was not encountered in the IBS-1 location at a depth of 10.2 feet below the top of sludge. For boring locations IBS-2 through IBS-8 (Figure 3), native soil was encountered at depths ranging from 4.3 to 9.5 feet below the top of sludge. Sludge was observed in each boring. Distinct upper and lower sludge layers were observed in five of the borings. The layers were visually delineated by color and texture changes. Physical observations and the depths of each layer were noted on Sample/Core Logs (Appendix B). Using the surveyed elevations and the measurements made in the field, the volume of the upper and lower sludge layers encountered in the IB were determined using AutoCAD[®] software. The upper and lower sludge layers contained approximately 3,800 cubic yards (cy) and 900 cy of material, respectively, for a total of approximately 4,700 cy (in-place) of sludge in the IB.

5.2 Sample Collection

Sample collection activities were conducted from April 14, 2010, through April 16, 2010. MDEQ representatives observed the sample collection activities.

5.2.1 Analytical Sample Collection

Sludge and native soil samples were collected from the IB locations shown on Figure 3 using a flat-bottom boat, vibracoring equipment, and/or 1-gallon plastic buckets. The sludge samples collected using vibracoring equipment were brought to the surface and examined by a geologist. It was noted that sludge was present in distinct upper and lower layers. Upper layer sludge was black in color, while lower layer sludge was tan and had a firmer consistency. Only upper layer sludge was encountered at the IBS-3, IBS-4, and IBS-7 sample locations, and these locations terminated in native soil material. Analytical samples collected from the sludge material contain either "US" or "LS" in the sample identifier to indicate upper sludge or lower sludge, respectively. Three cross-sections (Figures 6 and 7) were developed that depict the approximate extent of the upper and lower sludge layers. Soil samples were collected from native materials beneath the lower sludge. The native soil was primarily sandy and/or silty clay material. Sand and silty clay were not observed in the sludge samples. The presence of a native soil layer containing these soil types beneath the IB is consistent with previous subsurface observations noted in this area. Copies of the forms used to log field observations are included in Appendix B.

Sludge Characterization and Bench Scale Treatability Report

Hattiesburg, Mississippi

Sludge samples were collected from the upper and lower half of the total sludge interval at eight IB sample locations and native soil samples were collected at seven sample locations (Figures 3 and 4). Each sample was analyzed for the following constituents:

- Volatile organic compounds (VOCs) by U.S. Environmental Protection Agency (USEPA) Method 8260B;
- Semivolatile organic compounds (SVOCs) by USEPA Method 8270C; and
- Resource Conservation and Recovery Act (RCRA) 8 metals by USEPA Method 6010/7470.

In addition to the total analyte analyses listed above, the sludge samples were also analyzed for:

- Toxicity Characteristic Leaching Procedure (TCLP)-VOCs;
- TCLP-SVOCs;
- TCLP-Pesticides and Herbicides;
- TCLP-Metals; and
- Reactivity, Corrosivity, and Ignitability by USEPA Method 1311.

The results of the TCLP and total analyte testing are included on Tables 1 through 3. Figure 3 depicts the detected TCLP concentrations in the IB and Figure 4 depicts the detected total analyte concentrations. Copies of the laboratory reports are included in Appendix C.

Samples selected for submission to the laboratory, including quality assurance/quality control samples (trip, field, and equipment rinsate blanks), were placed into laboratory-provided sample containers containing the appropriate preservatives. The samples were packaged on ice and shipped to TestAmerica Laboratories, Inc.'s (TestAmerica's), analytical laboratory in Savannah, Georgia, under proper chain-of-custody procedures.

Sludge Characteriz and Bench Scale Treatability Report

Hattiesburg, Mississippi

5.2.2 Treatability Sample Collection

During vibracoring operations to collect analytical sludge samples, it was observed that the majority of the depth of the IB above native soil contained a watery, black sludge in the upper layer (average thickness of 6.1 feet). This sludge appeared to be relatively uniform across the IB. Ten-gallon sludge samples of this material were collected from this layer at the locations shown on Figure 3. Each sludge sample was containerized in two new 5-gallon buckets with sealing lids.

The Work Plan called for the collection of upper and lower sludge samples for treatability testing. While two distinct layers were observed at most locations, the lower sludge layer (average thickness of 2.3 feet) appeared to be consolidated enough to pass the Paint Filter Liquids Test (USEPA Method 9095A) in the state it was observed in the vibracore sample tube. Because the purpose of the treatability sampling was to evaluate dewatering, it was determined that this testing was unnecessary for sludge from the lower layer. Therefore, treatability samples were not collected from the lower

Selected samples were submitted to geotechnical and treatability laboratories after the TCLP analytical results revealed that the sludge was nonhazardous (see Section 5.3.1). One of the sample buckets from each of the selected locations was submitted to Fugro Consultants, LLC (Fugro), in Baton Rouge, Louisiana, for the solidification study and the other buckets were submitted to TMA Environmental, Inc. (TMA), in Gonzales, Louisiana, for the dewatering study. Proper chain-of-custody procedures were followed during the transport and relinquishment of the samples.

5.3 Analytical Testing and Results

Sixteen sludge samples were collected and submitted to TestAmerica for TCLP and total analyte testing using the protocol depicted on Figure 5. Copies of the analytical

5.3.1 Sludge Analytical Results

)

Results of the TCLP testing are included in Table 1. Detected TCLP concentrations are shown on Figure 3. The TCLP results were compared to the toxicity characteristic (TC) levels contained in 40 CFR 261.24. Of the sixteen samples submitted for TCLP analyses, three samples (IBS-1-US, IBS-3-LS, and IBS-7-LS) contained benzene

Sludge Characterization and Bench Scale Treatability Report

Hattiesburg, Mississippi

concentrations above the TC levels. No other TCLP parameters were detected above regulatory levels.

It is not practicable to sample and test the entire volume of sludge in the IB to determine the TCLP-benzene results for all of the sludge in the IB. Additionally, mixing within the sludge will occur during removal, dewatering, solidification, and/or loading for off-site transport during closure of the IB. Therefore, it is appropriate to determine the 95% Upper Confidence Limit (UCL) value (as allowed under SW-846 Chapter 9) of the TCLP-benzene results as a means for assessing the characteristics of the sludge as it is being managed. The 95% UCL is a calculated statistical value used to represent the true mean of a set of data with 95% confidence. A 95% UCL analysis was performed on the TCLP-benzene concentrations. The analysis determined that the 95% UCL TCLP-benzene concentration in the IB is 0.159 milligram per liter (mg/L), well below the 0.5 mg/L benzene TC standard. This result indicates that with 95% confidence, the true mean of the TCLP-benzene concentrations of the entire volume of sludge in the IB is less than the TC standard for benzene. The options presented in this report are based on the non-hazardous characterization of the sludge using the 95% UCL concentration for benzene of 0.159 mg/L. The 95% UCL analysis is described in Appendix D.

Results of the total analyte testing of IB sludge are included in Table 2. All of the detected total analyte concentrations are shown on Figure 4.

5.3.2 Native Soil Analytical Results

Native soil samples were collected from beneath seven of the sludge locations (IBS-2-NS through IBS-8-NS). The native soil layer was not reached at the IBS-1-NS sample location at a depth of 11.5 feet below the water surface (10.2 feet below top of sludge) due to reaching the limit of the sampling device. The samples were submitted to TestAmerica for total analyte testing. The results of the testing are included in Table 2. Detected total analyte concentrations are shown on Figure 4.

The total analyte results for native soil beneath the IB were compared to the MDEQ Tier 1 TRGs for restricted soil use. 2-Nitroaniline, benzene, carbon tetrachloride, chloroform, dibenz(a,h)anthracene, and toluene were detected at concentrations exceeding their respective Tier 1 TRGs. It should be noted that these native soil samples were collected below the water table and, therefore, impacts present in these samples may be representative of groundwater conditions in the vicinity of the IB.

Sludge Characterization and Bench Scale Treatability Report

Hattiesburg, Mississippi

5.3.3 Investigation-Derived Waste (IDW)

IDW, including personal protective equipment, disposable sampling equipment, packaging, etc., was disposed of in a municipal waste landfill. Sludge samples whose TCLP results were within TC limits were returned to the IB. IDW sludge samples from the individual sampling locations that failed the TC testing criteria were disposed of in July 2010 as hazardous waste. The disposal effort was contracted through Ashland Distribution Environmental Services.

5.3.4 Dewatered Solids Effluent Analysis

The Work Plan called for collection and sampling of the centrifuge, filter press, and gravity dewatering effluent water that came out of the *IB* sludge during treatability testing so a determination of how to manage this waste stream during *IB* sludge management could be completed. Effluent generated during the dewatering study was containerized. The analytical testing required by the POTW permit includes the following: VOCs, pH, SVOCs, biochemical oxygen demand (BOD), and oil and grease. Due to the limited volume of effluent generated during treatability testing, not all of the proposed testing was completed. Enough sample volume of the treatability effluent was available to conduct the VOC, pH, and SVOC analyses. There was insufficient volume to analyze the treatability laboratory effluent for BOD and oil and grease.

The results of the treatability effluent water analysis were within the limits set by the current POTW discharge permit, except for the following: IBS-8 Filter Press Filtrate sample had of pH of 11.5 standard units (s.u.), which slightly exceeded the limiting pH effluent range of 5.0 to 11.0 s.u.; benzene was detected at a concentration of 0.0013 mg/L in the IBS-8 Filter Press Filtrate sample; toluene was detected in the IBS-4 Centrifuge Centrate (250 parts per million [ppm] Cation Polymer), IBS-4 Filter Press Filtrate samples at concentrations of 0.00052J mg/L, 0.280J mg/L and 0.100 mg/L, respectively. The effluent water results are listed in Table 4.

The current IB discharge system has pH adjustment capabilities which can ensure that the pH of effluent discharged from the IB is within the limiting pH range.

The POTW permit is based on pounds per day of each parameter discharged to the POTW. The calculations in Appendix E show the limiting permit parameter and the volume of water that can be discharged per day from the IB during closure activities.

Sludge Characterizat and Bench Scale Treatability Report

Hattiesburg, Mississippi

These calculations apply only to the water entrained in the sludge, not the water that is currently discharged from the surface of the IB as a result of rain events.

The calculations in Appendix E were made assuming that there are 856,290 gallons of water contained in the sludge in the IB, based on the lowest in-situ solids content value reported of 10%. The potentially limiting parameter that will govern the pumping of effluent to the POTW is toluene. Using the maximum toluene effluent concentration of 0.280 mg/L as a conservative estimate, a total of 92,764 gallons per day of effluent can be discharged to the POTW during sludge dewatering activities. It should be noted that while the highest toluene value reported by the lab was used in this analysis, there were additional data that indicate lower toluene values. The actual toluene concentrations in water discharged to the POTW will be monitored at the interval specified by MDEQ in the POTW permit to ensure permit limits are met during dewatering activities associated with the IB decommissioning.

- 6. Sludge Treatability Determination
- 6.1 Overview

The bench scale treatability testing consisted of determining the amenability of the sludge to dewatering and solidification processes. Both determinations consisted of testing limited quantities of sludge material. While efforts were made to collect representative sludge samples, the treatability of the sludge during field implementation of any of the evaluated technologies may differ from the observations made during bench scale testing.

Due to the observed uniformity of the upper sludge material and in-situ consolidation of the lower sludge material during characterization sampling activities, only upper sludge material samples were collected for bench scale testing purposes.

6.2 Dewatering Study

Three samples (IBS-2, IBS-4, and IBS-8) were containerized and submitted to TMA for dewatering analysis. TMA tested the sludge material before and after dewatering simulations were performed. The dewatering simulations consisted of:

- Centrifuge simulation;
- Baroid screening;

Sludge Characterization and Bench Scale Treatability Report

Hattiesburg, Mississippi

- Filter press simulation; and
- Gravity dewatering simulation.

The sludge material was analyzed for total solids prior to conducting the simulations. The solids percentage of the raw material (i.e., prior to dewatering) ranged from 12% to 20% by weight.

6.2.1 Criteria

The dewatering study focused on determining the following:

- If dewatered material will pass the Paint Filter Liquids Test (USEPA Method 9095A), indicating a material is dry enough for transportation over public roadways and disposal in a permitted landfill without violating LDRs;
- The percent solids remaining in the samples that pass the Paint Filter Liquids Test (higher solids contents indicate more effective dewatering); and
- The quality of the effluent as related to the limitations of Hercules' POTW discharge permit (see Section 5.3.4 and Appendix E).

6.2.2 Centrifuge

Centrifuge technology was used to induce phase separation of the sample solids contained in a raw material sample from the liquid. The gravitational force of the laboratory centrifuge is a close approximation of the 3,000 times the force of gravity that can be expected for a typical full-scale centrifuge unit.

An initial centrifuge simulation was run on the raw sludge sample collected from IBS-2 without chemical addition and produced a filter cake with 47% solids, although the effluent was not clean. This material passed the Paint Filter Liquids Test. Two additional centrifuge simulations were performed on each of the IBS-2, IBS-4, and IBS-8 samples, one with the addition of 250 ppm cationic polymer, the other with 250 ppm anionic polymer. The simulations were each performed for 2 minutes. Both simulations produced filter cake that passed the Paint Filter Liquids Test for all samples. The resulting centrifuge filter cake solids ranged from 28% to 34%. The effluent had good clarity and light solids; however, the percent solids is less than the initial simulation.

Sludge Characterization and Bench Scale Treatability Report

Hattiesburg, Mississippi

6.2.3 Baroid Screening

Baroid testing on various filter media and chemical treatments was conducted as a screening tool prior to conducting a recessed chamber filter press simulation. The recessed chamber simulation takes approximately 12 times the sample volume as a Baroid unit. All of the Baroid scenarios were conducted at 80 pounds per square inch (psi) and produced filter cake that passed the Paint Filter Liquids Test. The duration of the applied pressure lasted between 3 and 6 minutes. The first scenario was run without the use of a chemical reagent. The resultant filter cake had a solids content of 40 to 42%. While this represents a favorable increase in the percent solids as compared to the in-situ value, the filter cake was described as soft and sticky. The stickiness of the filter cake could pose machine-fouling problems during full-scale operations. Because of this potential problem, the second through seventh Baroid simulations tested the effectiveness of reagent additions to produce a more favorable filter cake.

The second and third Baroid scenarios tested the addition of 0.5% and 1.0% of diatomaceous earth to the sludge. The 0.5% diatomaceous earth addition yielded a good quality filter cake with 47% to 49% solids. The 1.0% diatomaceous earth addition resulted in 50% to 56% solids with a good quality filter cake.

The fourth and fifth Baroid scenarios consisted of adding 0.5% and 1.0% of hydrated lime to the sludge. The 0.5% and 1.0% hydrated lime additions resulted in percent solids ranging from 49% to 62% and 51% to 61% by weight, respectively, with good quality filter cake. The 62% solid content was the highest percent solids measured during Baroid testing.

The sixth and seventh Baroid simulations were conducted with the addition of 0.5% hydrated lime plus 0.5% ferric sulfate and 1.0% hydrated lime plus 0.5% ferric sulfate. The 0.5% hydrated lime plus 0.5% ferric sulfate resulted in fair quality filter cake with percent solids ranging from 45% to 55%. The 1.0% hydrated lime plus 0.5% ferric sulfate yielded a fair quality filter cake with 51% to 56% solids. When compared to the reagent addition with only hydrated lime testing, the ferric sulfate addition did not raise the percent solids content.

6.2.4 Filter Press

Based on the results of the Baroid testing, the 0.5% hydrated lime addition was tested in the recessed chamber filter press simulation unit. This simulation was conducted for

10

Sludge Characterization and Bench Scale Treatability Report

Hattiesburg, Mississippi

5.5 minutes at 120 psi. After the run, the filter cake solids were determined to pass the Paint Filter Liquids Test, be of good quality, and ranged from 55 to 62% solids. These results are the highest percent solids range measured during the dewatering portion of the treatability study.

6.2.5 Gravity Dewatering

A gravity dewatering simulation was conducted by TMA allowing three 1-gallon samples of sludge material to sit in aluminum pans with 1/16th-inch holes drilled in the bottom and spaced 2 inches apart. After 4.5 days, the filter cake from all three samples passed the Paint Filter Liquids Test conducted by TMA (Appendix F). The dewatered TMA samples were submitted to Fugro for additional testing. Two of the dewatered samples were analyzed as received and had total solids contents of 33.5% and 41.0%. Both of these samples passed the Paint Filter Liquids Test. Fugro remixed free liquid contained in the third sample and calculated a solids content of 16.1%. Fugro also conducted a Paint Filter Liquids Test on the TMA sample and this re-mixed material did not pass.

6.3 Solidification Study

A sludge solidification study was conducted to determine if desired characteristics can be imparted to the sludge through reagent amendments. The solidification study consisted of mixing raw sludge samples with Portland cement, quick lime, fly ash, and Calciment[®] in different percentages. The resultant mixtures were tested for paint filter liquids and unconfined compressive strength. The test results are included in Appendix G.

6.3.1 Criteria

The criteria for the solidification study are two-fold because solidified material may be disposed of off site or decommissioned in-place:

- Solidified material must pass the Paint Filter Liquids Test (USEPA Method 9095A), if this material will be disposed of off site, indicating the material is dry enough to transport over public roadways and for disposal in a permitted landfill; or
- The solidified sludge material must have an unconfined compressive strength (UCS) of 8 psi after 3 days, which will ensure that the solidified material can

Ashland/OH3000 MS24/R/1/kp

11

Sludge Characterization and Bench Scale Treatability Report

Hattiesburg, Mississippi

support the weight of an engineered cap if on-site closure is selected as a final remedy.

6.3.2 Methodology

Three 5-gallon samples of sludge material were submitted to Fugro for the solidification study. The raw sludge material (i.e., without the addition of any reagent) was subjected to moisture content, specific gravity, dry bulk density, percent solids, and the Paint Filter Liquids Test. Because all of the untreated material samples failed the Paint Filter Liquids Test, reagents were added to these samples and additional testing was completed. Two sets of sample molds were made of the mixed material, one for strength testing after 3 days and one for strength testing after 7 days.

6.3.3 Results

Portland cement, quick lime, fly ash, and Calciment[®] (a proprietary blend of solidification reagents) were added to the raw sludge in the following percentages: 5% Portland cement, 10% Portland cement, 5% quick lime, 10% quick lime, 15% fly ash, 25% fly ash, 25% quick lime, 10% Calciment[®], and 20% Calciment[®]. Sample containers were molded and allowed to cure for 3 days. After 3 days, the molds were tested for bulk density (to determine weight of the final mixture), for UCS (to determine if the final mixture met the 8 psi criterion), and by the Paint Filter Liquids Test (to determine if the material is suitable for transport over public roadways).

After 3 days, the bulk density of both Portland cement and the 5% and 10% quick lime samples was less than the raw material. This indicates that enough of the water content was driven off by the reaction of the reagent to reduce the overall unit weight of the resultant mixture. The bulk density of the 15% fly ash, 25% fly ash, 25% quick lime 10% Calciment[®], and 20% Calciment[®] samples were 0.3 pound per cubic foot (pcf), 7.7 pcf, 5.9 pcf, 3.1 pcf, and 9.1 pcf greater than the bulk density of the raw sample. This indicates that the reagent additions at these percentages increase the overall weight of the resultant mixture.

None of the reagent additions resulted in a sample that met the 8 psi after 3 day criterion established as the minimum strength required to support the weight of an engineered cap. The 25% addition of quick lime as a reagent mixture was added as a mixture to determine if a reagent addition of this magnitude, although likely economically unfeasible, would impart the required strength to the sludge. Because

Sludge Characterization and Bench Scale Treatability Report

Hattiesburg, Mississippi

this mixture only achieved a UCS of 6.5 psi, the 25% quick lime addition was unsuccessful.

In addition to the 3-day strengths, the remaining molded samples were tested after allowing 7 days for reaction to take place. Only the 25% addition of quick lime yielded a strength (13.6 psi) greater than the required strength of 8 psi.

7. Feasibility Evaluation

This feasibility evaluation was conducted in a manner to explore the merits of applying each of the closure technologies evaluated as the final remedy for the IB sludge. The technologies were evaluated on the following two criteria:

- Effectiveness The ability of the technology to be used to efficaciously decommission the IB; and
- Implementability The ability of the closure technology to be employed within site-specific constraints.

The merits of each technology were evaluated as discussed below. A matrix summarizing the results of the evaluation is included in Appendix H.

7.1 Centrifuge Dewatering with Off-Site Disposal

Centrifuge dewatering would be employed to dewater the IB sludge. The effluent from the centrifuge would be routed back to the IB and discharged under Hercules' POTW permit. The resultant solidified material would be tested for passage of the Paint Filter Liquids Test. Once passage of the Paint Filter Liquids Test was verified, the material would be loaded and transported for disposal at the Pine Belt Regional Landfill (Appendix A).

7.1.1 Effectiveness

Centrifuge technology is capable of dewatering the solidified material to the extent needed to pass the Paint Filter Liquids Test. The resultant effluent can be physically routed for disposal through Hercules' POTW permit. Disposal of the resultant solids can be achieved by transporting the solidified sludge to the Pine Belt Regional Landfill. This technology can be employed effectively at this site.

Sludge Characterization and Bench Scale Treatability Report

Hattiesburg, Mississippi

implementation. Use of a filter press is susceptible to mechanical failures which could adversely affect the schedule. This technology is considered implementable.

7.3 Gravity Dewatering with Off-Site Disposal

Gravity dewatering would be employed by constructing dewatering cells in the vicinity of the IB to passively dewater the sludge material to the extent that the dewatered material would pass the Paint Filter Liquids Test. Once passage of the Paint Filter Liquids Test was verified, the material would be loaded and transported to Pine Belt Regional Landfill.

7.3.1 Effectiveness

Gravity dewatering technology is capable of dewatering the solidified material in the dewatering cells. Further, dewatered material could be augmented with reagent addition (5% Portland cement or 10% quick lime), if required to pass the Paint Filter Liquids Test. The resultant liquid effluent can be physically routed for disposal through Hercules' POTW permit. Disposal of the resultant solids can be achieved by transporting the solidified sludge to the Pine Belt Regional Landfill. This technology can be employed effectively at this site.

7.3.2 Implementability

Gravity dewatering can be accomplished with self-powered equipment. This technology would be implemented by initially stacking the sludge on the west end of the IB, while discharging water through the permitted POTW discharge. If the sludge can be dewatered in the IB, dewatering will take place in the IB. If the sludge cannot be sufficiently dewatered due to groundwater infiltration, a dewatering area(s) located near the site would be constructed as dewatering cells. Potential dewatering sites are shown on Figure 8. The sludge would be excavated and/or pumped to the cell(s). Water discharged from the cell adjacent to the western IB boundary would be drained directly into the IB. The potential dewatering area located south of the IB has a drainage pipe that gravity discharges to the IB. The eastern boundary of the potential dewatering cells located north of the IB is adjacent to a concrete-lined ditch that gravity drains to the industrial sewer system. The concrete-lined ditch gravity discharges to the POTW through Hercules' POTW permit. Because passive dewatering is weather dependent, the duration of active implementation of this technology may be among the longest of the evaluated technologies. This technology is conducted in an open atmosphere; therefore, control of nuisance odors may become necessary during

Sludge Characterization and Bench Scale Treatability Report

Hattiesburg, Mississippi

implementation. Gravity dewatering is not as susceptible to mechanical failures causing project delays as the centrifuge and filter press options. This technology is considered implementable.

7.4 Solidification with Off-Site Disposal

Under this scenario, reagent would be added to the IB sludge for the purpose of passing the Paint Filter Liquids Test. Because groundwater levels in the vicinity of the IB are above the level of the sludge, solidification may be conducted after the sludge is removed from the IB. Once passage of the Paint Filter Liquids Test was verified, the material would be loaded and transported for disposal at the Pine Belt Regional Landfill.

7.4.1 Effectiveness

Solidification is capable of dewatering the solidified material to the extent needed to pass the Paint Filter Liquids Test. The resultant effluent can be physically routed for disposal through Hercules' POTW permit. Disposal of the resultant solids can be achieved by transporting the solidified sludge to the Pine Belt Regional Landfill. This technology can be employed effectively at this site.

7.4.2 Implementability

Solidification can be accomplished with self-powered equipment. This technology would be implemented by discharging water through the permitted POTW discharge. If the sludge can be sufficiently dewatered in the IB, dewatering will take place in the IB. If the sludge cannot be sufficiently dewatered in the IB due to infiltration of groundwater, a mixing area(s) located near the IB will be constructed to facilitate reagent mixing. At the point in which the material is dewatered to the highest extent practicable, the most cost-effective reagent at the time of implementation would be added to the ex-situ sludge. Once an area was mixed, reagent would be added to an adjacent area. A long-reach excavator would be necessary to accomplish the mixing due to the limited access for equipment on the south side of the IB. Once sufficient time has passed for the reagent to react with the sludge, a Paint Filter Liquids Test would be conducted to determine the endpoint of reagent addition. Because reagent additions would occur in the mixing area, this technology is weather dependent. However, by using a reagent with a quick reaction time (3 days), the amount of material that might have to be reworked due to an unexpected rain event would be minimized. Because this technology is conducted in an open atmosphere, control of

Sludge Characterization and Bench Scale Treatability Report

Hattiesburg, Mississippi

nuisance odors may become necessary during implementation. This technology is considered implementable.

7.5 Solidification with On-Site Capping

Solidification with on-site capping was evaluated. Under this scenario, reagent would be added to the IB sludge to yield a compressive strength of 8 psi after 3 days. The solidified material would then be suitable for the installation of an engineered cap.

7.5.1 Effectiveness

The required strength could not be achieved in 3 days. This option is not effective.

7.5.2 Implementability

While waiting 7 days for the 25% quick lime reagent addition to achieve the required strength is technically feasible, this reagent addition is eliminated from consideration due to the amount of reagent and time required to achieve this strength. In addition, mixing under field conditions is not as controlled as during a laboratory simulation and field conditions may require more reagent than the laboratory setting. Further mixing of sludge below the groundwater level within the IB is unlikely to achieve the necessary strength. This technology is not implementable.

7.6 Selected Technology

Based on the above evaluation, the application of centrifuge, filter press, gravity dewatering, and solidification dewatering with off-site disposal are viable options. Because all of these technologies are effective and implementable, cost becomes a differentiating factor. It is recommended to select gravity dewatering with off-site disposal due to the fact it is the simplest, effective, and implementable option among the evaluated technologies. Appendix I contains a work plan that describes how gravity dewatering would be implemented at this site. Detailed plans and specification will be developed for contractor bidding purposes. In the event another viable option is proposed by a contractor, Hercules will evaluate that option prior to decommissioning the IB.

[]

•

Table 1. Summary of Toxicity Characteristic Leaching Procedure (TCLP) Data, Sludge Characteriztion and Bench Scale Treatability Report, Hercules Incorporated, Hattlesburg, Mississippl.

Chemical Name	Location ID: Sample Date: Unit:	RCRA TCLP Limit	iBS-1-LS 4/14/2010	IBS-1-US 4/15/2010	iBS-2-LS 4/16/2010	iBS-2-US 4/16/2010	IBS-3-LS 4/14/2010	IBS-3-US 4/15/2010	IBS-4-LS 4/14/2010	IBS-4-US 4/15/2010
<u>General Chemistry</u> Cyanide - Totai Sulfide Ignitability PH	mg/kg mg/kg mm/sec S.U.	NA NA 60°C <2 or >12.5	1.7J 340 NB 3.27	1.3J 3100 NB 6.64	6.4J 350 NB 3.26	1.2J 3400 NB 6.25	6.8) 480 NB 3.58	 20 610 NB 6.4 	1.6. 790 NB 5	 22 1900 NB 6.36
Metals - TCLP Arsenic Barium Cadmium Chromium Mercury Selenium Silver	7,000 7,000 7,000 7,000 7,000 8,0000 8,00000 8,0000 8,0000 8,0000000 8,00000000	v 6 + v v 9 + r	<pre></pre>	<pre>< 0.2 < 0.2 <</pre>	<pre>< 0.2 < 0.2 <</pre>	<pre>~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</pre>	<pre>~ 0.2 ~ 0.2 ~ 0.02 ~ 0.02 ~ 0.02</pre>	<pre>~ 02 ~ 02 ~ 02 ~ 02 ~ 02 ~ 02 ~ 02 ~ 02</pre>	<pre>6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2</pre>	<pre>6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2</pre>
Organochiorine Pesticides & PCBs (GC)-1 Chlordane Endrin Gamma-Bhc (Lindane) Heptachlor Heptachlor Metroxychior Toxaphene	ласть 1057 1057 1057 1057 1057 1057 1057 1057	0.03 0.02 0.008 0.008 0.008 0.5	 0.1 0.025 0.0025 0.0025 0.0025 0.0025 0.025 	 0.1 0.025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.25 	 0.1 0.025 0.005 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.025 	 0.1 0.025 0.005 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.025 0.025 0.025 0.025 0.25 	 0.1 0.025 0.005 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 0.025 0.25 	 0.1 0.025 0.005 0.0025 0.0025 0.0025 0.0025 0.0025 0.025 0.025 	 0.1 0.25 0.025 0.005 0.0025 0.0025 0.0025 0.0025 0.0025 0.025 0.25 	 0.1 0.025 0.0025 0.0025 0.0025 0.0025 0.0025 0.025 0.25
<u>Herbicides (GC)-TCLP</u> 2.4-D Silvex (2,4,5-TP)	mg/L mg/L	6 ~	< 0.05 < 0.05	< 0,05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05	< 0.05 < 0.05
<u>VOCs - TCLP</u> 1.1-Dichioroethylene 1.2-Dichioroethane 2-Butanone (Mek) Benzene Carbon Tetrachioride	רך 196ער 198ער 1984 1994	0.7 0.5 0.5 0.5	<pre>< 0.02 < 0.02 < 0.2 < 0.2 < 0.2 </pre>	 0.02 0.02 0.02 0.05 <li< td=""><td><pre></pre></td><td> 0.02 0.02 0.058 0.058 </td><td> 0.02 0.02 0.26 0.96 0.96 </td><td><pre>4 0.02 4 0.02 0.12 0.12 0.12</pre></td><td> 0.02 0.02 0.052 0.052 </td><td> 0.02 0.02 0.038 0.038 </td></li<>	<pre></pre>	 0.02 0.02 0.058 0.058 	 0.02 0.02 0.26 0.96 0.96 	<pre>4 0.02 4 0.02 0.12 0.12 0.12</pre>	 0.02 0.02 0.052 0.052 	 0.02 0.02 0.038 0.038
Chlorobenzene Chlorobenzene Chloroform Tetrachloroethylene Vinyi Chloride	2007	0.7 0.7 0.5 0.2	, , , , , , , , , , , , , , , , , , ,	000 000 000 000 000 000 000 000 000 00			<pre>0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02</pre>	× 0.02 × 0.02 × 0.02 × 0.02	 0.02 <li< td=""><td> 0.02 0.02</td></li<>	 0.02 0.02

Because we care 100% recycled paper produced by wind power energy

Ashiand/OH3000.MS24/T/1T1 - TCLP/kp

Page: 1/4

Table 1 Summary of Toxicity Characteristic Leaching Procedure (TCLP) Data, Sludge Characterization and Bench Scale Treatability Report, Hercules Incorporated, Hattiesburg, Mississippi,

Chemical Name	Location ID: Sample Date: Unit:	RCRA TCLP Limit	IBS-1-LS 4/14/2010	IBS-1-US 4/15/2010	1BS-2-LS 4/16/2010	IBS-2-US 4/16/2010	IBS-3-LS 4/14/2010	(BS-3-US 4/15/2010	1BS-4-LS 4/14/2010	1BS-4-US 4/15/2010
SVOCs - TCLP 1.4-Dichicrobenzene 2.4.5-Trichlorophenol 2.4.6-Trichlorophenol 2.4.6-Trichlorophenol 2.4-Dintrotoluene Hexachloroethane Methyl Phenols, Total Nitrobenzene Pentachlorophenol Pentachlorophenol	าช์ 176 176 176 176 176 176 177 177	75 75 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13	 < 0.25 < 1.4 < 1.12 < 1.2 < 1.2 	 4 0.05 5 0.05	<pre>^ ^ 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00</pre>	<pre>^ ^ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05</pre>	<pre>^ 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05</pre>	<pre></pre>	 0.25 1.7 1.7 1.7 1.7 1.1 	 < 0.05 < 0.05
mg/kg mg/L mm/sec NA NB R CRA S VOC T CL P VOCS	Milligram per kilogram. Milligram per liter. Milligram per liter. Not applicable. Not applicable. Not applicable. Not applicable. Standard unit. Standard unit. Standard organic Compoun Toxicity Characteristic Leachin. Volatile Organic Compounds.	during Ignita ecovery Act. ids. g Procedure	bility test.	x						

•

Table 1. Summary of Toxicity Characteristic Leaching Procedure (TCLP) Data, Sludge Characteriztion and Bench Scale Treatability Report, Hercules incorporated, Hattlesburg, Mississippi,

Chemical Name	Location iD: Sample Date: Unit:	RCRA TCLP	1BS-5-LS 4/15/2010	1BS-5-US 4/15/2010	185-6-LS 4/15/2010	1BS-6-US 4/15/2010	IBS-7-LS 4/15/2010	IBS-7-US 4/15/2010	IBS-8-LS 4/15/2010	IBS-8-US 4/15/2010
Change and										
General Chemistry	mo/kn	AN	< 15	4.1J	1.0.1	< 28	5.4J	3.5J	< 20	< 37
Cyanice - 1 otal	Bu/pu	AN	710	4500	1500	3600	1300	1900	1800	370 0
Sumde	Ry Ru	1000 m		g	đ	BN	BN	BN	BN	99 1
ignitability cH	mm/sec S.U.	<2 or >12.5	3.88	6.22	3.67	6.57	6.15	6.55	3.54	6.49
ā										
Metals - TCLP		I		00	201	C 0 V	< U >	< 0.2	< 0.2	< 0.2
Arsenic	mg/L	n	× 0.2	7.0 4	7.0 4	1			- v	v
Barium	mg/L	100	v	v	v	7	, ?			
Cadmium	mg/L	-		< 0.1	< 0.1	v 0,1	- 0 V		50	
Chromium	ma/L	5	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	7 0 7 V 0 7	7 O. 7
	ma/L	S	< 0.2	< 0.2	< 0.2	< 0.2	< 0,2	< 0.2	< 0.2	2.0 2
	100	02	< 0.02	< 0.02	< 0.02	< 0.02	< 0,02	< 0.02	< 0.02	< 0.02
Mercury	- Bui	¦ -	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Selenium		- 4		10	101	0.1	< 0.1	< 0.1	< 0.1	< 0.1
Silver	mg/L	n		5	5		8	8		
BCB - Brotheline - BCB	e (GC).TCI P									
Chancene	mal	0.03	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
	- 1/0m	0.02	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	C 00'0 >
Commo Dhe /l indene)	l/om	0.4	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	<200.0 >
Gamma-Drive (Linuarie)	- 1/0W	0.008	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025
	- 1,6	0.008	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025
Heptachior Epoxide	mg/L	10	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025
Methoxycnior	mg/L	0.5	< 0.25	< 0.25	< 0.25	< 0,25	< 0.25	< 0.25	< 0.25	< 0.25
	•									
Herbicides (GC)-TCLP					10.0	10.01	10.05	20.02	< 0.05	< 0.05
2 4-D	mg/L	6	< 0.05	< 0.05	<0.0 >				200	20.0
Silvex (2,4,5-TP)	mg/L	•	< 0.05	< 0.05	< 0.05	<0.0 >	cn:0 >	60'0 v		
VOCs - TCLP								000	000	50.0
4 1_Dichiomethylene	ma/L	0.7	< 0.02	< 0.02	< 0.02	< 0.02	20.0 2	20.UZ	20.02	20.0
1,	ma/l.	0.5	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	20.0 >	20'0 Y
	- //uw	200	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2	< 0,2	< 0.2	× 0.2
	- I'om	0.5	0.043	0.025	0.14	< 0.02	1.3	< 0,02	0.1	< 0.02
benzene o	- Au	0.5	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	- Jour		< 0.02	< 0.02	< 0.02	< 0,02	< 0,02	< 0.02	< 0.02	< 0.02
Chlorobenzene	- 19/L	ç e	<0 0 ×	< 0.02	< 0.02	< 0.02	< 0,02	< 0.02	< 0,02	< 0.02
Chiorotorm		, c	• 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	- 1/Gui	50	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0,02
Trichioroethylene	mg/L mo/l	20	 0.02 	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
	1.2									

Because we care 100% recycled paper produced by wind power energy

Ashland/OH3000.MS24/T/1T1 - TCLP/kp

Page: 3/4

Table 1. Summary of Toxicity Characteristic Leaching Procedure (TCLP) Data, Sludge Characterization and Bench Scale Treatability Report, Hercules Incorporated, Hattlesburg, Mississippl.

Chemical Name	Location ID: Sample Date: Unit:	RCRA TCLP Limit	IBS-5-LS 4/15/2010	185-5-US 4/15/2010	IBS-6-LS 4/15/2010	IBS-6-US 4/15/2010	IBS-7-LS 4/15/2010	IBS-7-US 4/15/2010	iBS-8-LS 4/15/2010	IBS-8-US 4/15/2010
SVOCs - TCLP 1,4-Dichiorophenoi 2,4,5-Tichiorophenoi 2,4-Dinitrotoluene Hexachioro-1,3-Butadiene Hexachioroethane Methyl Phenachioroethane Methyl Phenachiorophenoi Pentachiorophenoi Pentachiorophenoi Pentachiorophenoi Pentachiorophenoi Pentachiorophenoi Pentachiorophenoi Putroberzene Maß Nitroberzene Nitroberzene Succ NA NB Succ Succ Succ Succ Succ	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	7.5 400 2 0.13 0.13 0.13 3 200 2 2 200 5 5 100 5 5 100 5 curds curds Pro evends	 < 0.05 < 0.0	x 4 4 4 4 4 4 4 4 4 4 4 4 4	<pre>^ / / / / / / / / / / / / / / / / / / /</pre>	* * * * * * * * * * * * * * * * * * *	<pre></pre>	<pre></pre>	 <ul< th=""><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th></ul<>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2. Sudde Characterization and Bench Scale Treatability Report.

Mississippi.
Hattiesburg,
Incorporated,
Hercules

Chemical Name	Location ID: Sample Date: Unit:	MDEQ Tier 1 TRG	1BS-1-LS 4/14/2010	IBS-1-US 4/15/2010	IBS-2-LS 4/16/2010	IBS-2-NS 4/16/2010	IBS-2-US 4/16/2010	IBS-3-LS 4/14/2010	18S-3-NS 4/14/2010	IBS-3-US 4/15/2010	185-4-LS 4/14/2010	IBS-4-NS 4/14/2010	IBS-4-US 4/15/2010	IBS-5-LS 4/15/2010
1 1 1 2-Tetrachloroethane	ng/kg	220000	< 1900000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000	• 990000	< 5500	< 31000	< 520000
1 1 1-Trichloroethane	na/kg	1190000	< 1900000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000	< 990000	< 5500	< 31000	< 520000
1 1 2 2-Tetrachloroethane	na/ka	1000	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000	< 9900000	< 5500	< 31000	< 520000
1 1 2.Trichloroethane	na/ka	1670	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000	< 990000	< 5500	< 31000	< 520000
1 1-Dichlomethane	na/ka	116000	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000	< 990000	< 5500	< 31000	< 520000
1 1-Dichlomethene	na/ka	118	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000	< 990000	< 5500	< 31000	< 520000
1.2.3-Trichloropropane	рубц	818	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000	000066 >	< 5500	< 31000	< 520000
1, 2-Dibromo-3-Chloropropane (Dbcp)	6y/6rt	6 .96	< 38000000	< 79000	< 2300000	< 19000	< 73000	< 610000	< 11000	< 320000	< 200000	< 11000	< 62000	
1.2-Dichloroethane	п9/к9	621	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000	> 990000	< 5500	< 31000	
1.2-Dichloropropane	03/6ri	445	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000	> 000066 >		- 10000	
2-Butanone (Mek)	63/6ri	84500	< 96000000	< 200000	< 5700000	< 46000	< 180000	1800001	< 28000	> 800008 >	480000			
2-Chloro-1,3-butadiene	бу/бл	4080000	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000			21000	
3-Chloro-1-Propene	hg/kg	SN	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	0095 >	< 160000			221000	
2-Hexanone	6y/6ri	81800000	< 9600000	< 200000	< 5700000	< 46000	< 180000	< 1500000	< 28000					
4-Methyl-2-Pentanone (MIBK)	6y/6ri	163000000	< 96000000 >	< 200000	< 5700000	< 46000	< 180000	< 1500000	< 28000	< 800000	< 4900000	000/2 >		
Acetone	D0/kg	104000000	< 190000000	< 390000	< 11000000	< 93000	< 370000	< 3100000	< 58000	< 1800000	< 9900000	00044 >	> 310000	2200000
Acetonitrile	pg/gu	111000	< 770000000	< 1800000	< 48000000	< 370000	< 1500000	< 12000000	< 220000	< 6400000	< 40000000	< 220000	< 1200000	
Acrolein	10/kg	40900000	< 380000000	< 790000	< 23000000	< 190000	< 730000	< 6100000	< 110000	< 3200000	< 20000000	< 110000	< 620000	
Acrytonitrile	DA/BH	10600	< 380000000	< 790000	< 23000000	< 190000	< 730000	< 6100000	< 110000	< 3200000	< 20000000	< 110000	< 620000	< 10000000
Benzene	pg/gu	1360	< 19000000	55000	< 1100000	17000	12000J	55000J	2500J	< 160000	< 9900000	37000	< 31000	000029 >
Bmmoform	Da/kg	90100	< 1900000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000	< 9900000 >	< 5500	< 31000	000025 >
Bromomethane	ua/ka	2970	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5800	< 160000	< 990000	< 5500	< 31000	< 520000
	ua/ka	7970	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000	< 9900000	< 5500	< 31000	< 520000
Carbon Tetrachloride	na/ka	589	< 1900000	< 39000	< 1100000	14000	< 37000	< 310000	< 5600	< 160000	< 990000 >	< 5500	< 31000	< 520000
Dichlorodifluoromethane	пд/ка	40900000	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000	> 990000	< 5500	< 31000	
Chlorobenzene	Dig/kg	1190	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000	< 990000	< 5500	< 31000	
Chlorodibromomethane	03/6rl	68100	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000	< 990000	> 5500	< 31000	
Chlomethane	ng/kg	1970000	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000	> 990000	< 5500	< 31000	< 520000
Chloroform	ua/ka	478	< 19000000	< 39000	< 1100000	2100J	< 37000	< 310000	< 5600	< 180000	< 990000	< 5500	< 31000	< 520000
	na/ka	440000	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000	< 990000	< 5500	< 31000	< 520000
Cie.1 3. Dichlomoronane	no/ka	352	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000	< 990000 >	< 5500	< 31000	< 520000
Dihomomethene	no/ka	20400000	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000	< 990000 >	< 5500	< 31000	< 520000
Dichlomhomomethane		1890	< 1900000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 180000	< 990000	< 5500	< 31000	< 520000
Ethut Methacrutate	na/ka	18400000	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000	< 990000	< 5500	< 31000	< 520000
Ethulhanzana	ua/ka	395000	< 1900000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000	000066 >	< 5500	< 31000	< 520000
Ethylene Dihmmide	ua/ka	67.3	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5800	< 160000	< 9900000	< 5500	< 31000	< 520000
Lungtone Districts	na/ka	SN	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000	< 990000	< 5500	< 31000	< 520000
Isobutvi atcohol	6y/6rl	61300000	< 770000000	< 1600000	< 46000000	< 370000	< 1500000	< 12000000	< 220000	< 6400000	< 4000000	< 220000	< 1200000	

1

and Bench Scale Treatablility Report. 5 ŝ 1 č o trate Š 10F ū Tal

Chemical Name	Location ID: Sample Date: Unit:	MDEQ Tier 1 TRG	IBS-1-LS 4/14/2010	IBS-1-US 4/15/2010	IBS-2-LS 4/16/2010	(BS-2-NS 4/16/2010	IBS-2-US 4/16/2010	IBS-3-LS 4/14/2010	185-3-NS 4/14/2010	185-3-US 4/15/2010	1BS-4-LS 4/14/2010	IBS-4-NS 4/14/2010	IBS-4-US 4/15/2010	1BS-5-LS 4/15/2010
VOCs (Continued)	,					00001	00002	000019	11000			< 11000	< 62000	< 100000
Methyl Methacrylate	5y/6rl	16300000	< 38000000	< 79000	0000062 >		- 700000			~ 2200000			< 62000	< 1000000
Methylacrytonitrile	бу/вн	204000	< 38000000	< 790000	2:300000 × 2:300000 × 2:3000000 × 2:30000000 × 2:3000000000000000000000000000000000000		v)v)vv	< 5 10000	~ 10000	 > 3200000 > 460000 	7400001	< 5500	< 31000	< 520000
Methylene Chloride	By/6rl	21900	< 19000000	< 39000	< 1100000	v058 >	< 3/000	550000				0000 v	< 16000	< 260000
Pentachloroethane	6y/8ri	SN	< 96000000	< 200000	< 5700000	< 46000	< 180000	0000091 >			0000000 -	000017 1		~ 1000000
Propionitrile	6y/8rl	SN	< 380000000	< 790000	< 23000000	< 190000	< 730000	< 6100000	< 110000					
Styrene	63y6rl	384000	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000		0000 ×	00016 >	
Tetrachloroethene	ву/вп	18200	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 180000	000066 >		4 31000	
Toluene	5x/8rt	38000	16000000	820000	940000	290000	640000	6800000	190000	2000000	13000000	000061	000001	
Trans-1,2-Dichloroethene	6y/8rt	3070000	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000			00016 2	
Trans-1.3-Dichloropropene	By/Bri	352	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000	000066 >		00016 >	
Trans-1 4-Dichlorobutene	LIG/KG	NS	< 38000000	< 79000	< 2300000	< 19000	< 73000	< 610000	< 11000	< 320000	< 2000000 >			
Trichlomethene	ng/kg	7920	< 1900000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000	< 990000	< 5500	< 31000	< 520000
Trichlonofluoromethane	na/ka	14300000	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5600	< 160000	• 9900000 >	< 5500	< 31000	> 520000
Vinut Aretate	ua/ka	9130	< 38000000	< 79000	< 2300000	< 19000	< 73000	< 610000	< 11000	< 320000	< 2000000	< 11000	< 62000	< 100000
Vinut Chloride	na/ka	939	< 19000000	< 39000	< 1100000	< 9300	< 37000	< 310000	< 5800	< 160000	< 990000 >	< 5500	< 31000	< 520000
Vuignae Total	no/ka	318000	< 3800000	< 79000	< 2300000	< 19000	< 73000	< 610000	< 11000	< 320000	< 2000000	< 11000	< 62000	< 1000000
11-Bichend	110/kg	10200000	110000	230000	470000	33000	55000	100000	51000	340000	1600000	360000	180000	940000
1,1 - Upticity	na/ka	613000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
1 2 4. Trichlombenzene	na/ka	824000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
1.2.7 Inductor	na/ka	279000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
1 3-Dichlornhenzene	ng/ka	1840000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
1 3-Dinitrobenzene	ng/kg	204000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
1 3 5. Thnitmbenzene	na/ka	102000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	
1 4-Dichlorobenzene	hg/kg	817000	< 140000	< 180000	< 400000	< 38000	< 62000	< 140000	< 8400	< 410000	< 330000	> /2000	000051 >	
1.4-Dioxane	Da/kg	520000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000		< 74000	
1.4-Naphthoquinone	6y/6ri	NS	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200					
1-Naphthylamine	буубгі	NS	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200				× 24000	
2.3.4.6-Tetrachiorophenol	pg/gu	61300000	< 71000	< 88000	< 200000	< 19000	< 31000		4200					< 100000
2.4.5-Trichlorophenol	By/Bri	204000000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200				< 44000	
2.4.6-Trichtorophenol	By/Bri	314000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200			00000		
2.4-Dichlorophenol	ву/бл	613000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	> 200000	0000/1 >	< 38000	< 74000	
2 4-Dimethylohenol	Dy/6rl	4080000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200			20000		
2.4-Dinitrophenol	бубл	408000	< 380000	< 450000	< 1000000	< 99000	< 160000	< 360000	< 22000	< 1000000	< 860000		< 380000	
2 4-Dinttrotoluene	пала	408000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	0000/1 >	> 38000	< /4000	
2. Cichtomatenoi	na/ka	SN	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< /4000	
2, Chaitmtohrens	ua/ka	2040000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	

Table 2. Summary of Total Analyte Data, Sludge Characterization and Bench Scale Treatability Report, Hercules Incorporated, Hattiesburg, Mississippi.

	Location ID: Sample Date:	MDEQ Tier 1 TRG	1BS-1-LS 4/14/2010	IBS-1-US 4/15/2010	1BS-2-LS 4/16/2010	1BS-2-NS 4/16/2010	IBS-2-US 4/16/2010	IBS-3-LS 4/14/2010	IBS-3-NS 4/14/2010	IBS-3-US 4/15/2010	iBS-4-LS 4/14/2010	IBS-4-NS 4/14/2010	1BS-4-US 4/15/2010	IBS-5-LS 4/15/2010
2-Chiomanhthalene	παγκα	16400000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
2-Chlorophenot	na/kg	10200000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
2-Methylnaohthalene	ng/kg	40900000	21000J	15000.1	< 200000	< 19000	< 31000	L0086	680J	< 200000	< 170000	< 38000	< 74000	< 100000
2-Methylohenol	ua/ka	102000000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
2-Naphthylamine	ng/kg	SN	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
2-Nitroaniline	na/ka	492	< 360000	< 450000	< 100000	< 99000	< 160000	< 360000	< 22000	< 1000000	< 860000	< 190000	< 380000	< 530000
2-Nitrobhenol	na/kg	SZ	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
2-Picoline	na/ka	SN	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
2-Acetvlaminofluorene	ng/kg	SN	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
2-Toluidine	рудц	23800	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
3 & 4 Methylphenol	6y/6rl	10200000	12000J	< 88000	< 200000	< 19000	< 31000	< 71000	1600J	< 200000	< 170000	< 38000	< 74000	< 100000
3,3'-Dichlorobenzidine	hg/kg	12700	< 140000	< 180000	< 400000	< 38000	< 62000	< 140000	< 8400	< 410000	< 330000	< 75000	< 150000	< 210000
3,3'-Dimethylbenzidine	6x/8rt	622	< 360000	< 450000	< 1000000	< 990000 ×	< 160000	< 360000	< 22000	< 1000000	< 860000		- 380000	
3-Methylchloranthrene	by/6rl	SN	< 71000	< 88000	< 20000	< 19000	< 31000	< 71000	< 4200	< 200000			< /4000	
3-Nitroaniline	Byβri	NS	< 360000	< 450000	< 1000000	< 990000	< 160000	< 360000						
4,6-Dinitro-2-Methylphenol	By/Brt	204000	_{::} < 360000	< 450000	< 1000000	00066 >	< 180000	< 360000	< 22000	< 100000		- 190000	200000 >	
4-Aminobiphenyi	bg/kg	NS	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200			< 38000	14000	
4-Bromophenyl Phenyl Ether	бу/бл	SN	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	00086 >	< /4000	
4-Chloro-3-Methylphenol	By/Bri	408000000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< /4000	
4-Chlorophenvi Phenvi Ether	pg/kg	SN	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
4-Chloroantline	By/Bri	238000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
4-Nitroanitine	By/Bri	SN	< 360000	< 450000	< 1000000	< 99000	< 160000	< 360000	< 22000	< 1000000	< 860000	< 190000	< 380000	< 530000
4-Nitrophenol	By/Bri	16400000	< 380000	< 450000	< 1000000	> 99000	< 180000	< 360000	< 22000	< 1000000	< 860000	< 190000	< 380000	< 530000
4-Nitroguinoline-N-Oxide	Da/kg	SN	< 710000	< 880000	< 2000000	< 190000	< 310000	< 710000	< 42000	< 2000000	< 1700000	< 380000	< 740000	< 1000000
7_12-Dimethylbenz(a)anthracene	Вубп	NS	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
Acenaphthene	DA/RD	123000000	< 71000	< 88000	< 200000	< 19000	< 31000	100001	L077	< 200000	< 170000	< 38000	< 74000	< 100000
Acenaphthylene	na/kg	12300000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
Acetophenone	5y/6ri	2630000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
Alpha. Alpha-Dimethyl Phenethylamin	вубп а	SN	< 14000000	< 1800000	< 40000000	< 3900000	< 6300000	< 14000000	< 850000	< 4100000	< 34000000	< 7600000	> 10000041 >	
Aniline	By/Bri	100000	< 140000	< 180000	< 400000	< 38000	< 62000	< 140000	< 8400	< 410000	< 330000	< 75000	000051 >	
Anthracene	5y/6ri	613000000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	0000/1 >		14000	
Aramite, Total	6y/6ri	NS	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	0000/1 >	< 38000	< 74000	
Benzo(a)anthracene	бу/бп	7840	< 71000	< 88000	< 200000	< 19000	< 31000	> 1000			1/0000			100000
Benzo(a)pyrene	pg/kg	784	< 71000	< 88000	< 200000	< 19000	< 31000	> /1000	< 4200					
Benzo(b)fluoranthene	6x/6rl	7840	< 71000	< 88000	< 200000	< 19000	< 31000		< 4200		110000		74000	< 10000
Benzo(g,h,i)perylene	By/Brl	61300000	32000J	< 88000	< 200000	< 19000	< 31000		0007					
Benzo(k)fluoranthene	6x/6rl	78400	< 71000	< 88000	< 200000	< 19000	< 31000	0001/ >				< 38000	24000	
Benzyl Alcohol	ву/вл	204000000	< 71000	< 88000	COUDOZ >	10065	< 31000	1000					24000	< 10000
Bis(2-Chloroethoxy)Methane	бу/вп	SN	< 71000	< 88000	< 200000	< 19000			4 200 2 4 200 2 4 200 2 4 200 2 4 200 2 4 200 2 4 2 00 2 4 2 0 2 4 2 0 2 4 2 0 2 4 2 00 2 4 2 0 2 4 2 00 2 4 2 00 2 4 2 00 2 4 2 0 2 4 2 00 2 4 2 0 2 4 2 00 2 4 2 00 2 4 2 00 2 4 2 00 2 4 0 0 2 4 0				24000	
Bis(2-Chloroethyl)Ether	6x/6rt	419	< 71000	< 88000	< 200000	< 19000	< 31000	0001/ >	4200					< 10000
Bis(2-Ethylhexyl) Phthalate	6y/6ri	409000	< 71000	< 88000	< 200000	< 19000	< 31000		0024 >			28000	< 74000	< 100000
Bis(Chloroisopropyt) Ether	53/Brt	9080	< 71000			18000	1000	2000 v 4	12000 ×	~ 20000	< 170000	< 38000	< 74000	< 100000
Butyl benzyl phthalate	бу/бл	928000	< 71000	< 88000			voute >	1000	1200		170000		< 74000	< 100000
Chrysene	By/Bri	784000	< 71000	< 88000	< 20000	v0081 >	31000	< / 1000	0074 1	>>>>>				

Because we care 100% recycled paper produced by wind power energy

Asland/OH3000,MS24/7/1/kp

-

F

Table 2. Summary of Total Analyte Data, Sludge Characterization and Bench Scale Treatablility Report,

	a, Mississippl.	
onitient of road whether parts' process of the parts	Hercules Incorporated: Hattlesburg. Mississippl.	

Chemical Name	Location ID: Sample Date: Unit:	MDEQ Tier 1 TRG	iBS-1-LS 4/14/2010	IBS-1-US 4/15/2010	1BS-2-LS 4/16/2010	IBS-2-NS 4/16/2010	IBS-2-US 4/16/2010	IBS-3-LS 4/14/2010	IBS-3-NS 4/14/2010	IBS-3-US 4/15/2010	IBS-4-LS 4/14/2010	IBS-4-NS 4/14/2010	1BS-4-US 4/15/2010	iBS-5-LS 4/15/2010
SVOCs (Continued)														
Diallate	ряуви	NS	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
Dibenz(a h)anthracene	DA/Bu	784	34000J	< 88000	< 200000	< 19000	< 31000	< 71000	1003	< 200000	< 170000	< 38000	< 74000	< 100000
Dibenzofuran	pg/kg	8180000	< 71000	< 88000	< 200000	< 19000	< 31000	1900	510J	< 200000	< 170000	< 38000	< 74000	< 100000
Diethyl Phthalate	by/6rl	1970000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	470J	< 200000	< 170000	< 38000	< 74000	< 100000
Dimethoate	6y/8rl	NS	27000J	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
Dimethyl Phthalate	6y/6rl	2.04E+10	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
Di-N-Butyl Phthalate	By/Bri	2280000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
Di-N-Octyl Phthalate	D DVBri	4080000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
Dinoseb	By/8rl	204000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
Diphenyl Ether	By/8rl	SN	250000	780000	1400000	120000	160000	2400000	140000	1100000	5200000	1200000	570000	2800000
Disulfoton	63/6rl	8170	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
Ethyl Methanesulfonate	By/6rl	SN	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
Ethyl Parathion	By/6rt	1230000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
Famphur	By/Brl	SN	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
Fluoranthene	Da/kg	81700000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
Fluorene	By/Bri	81700000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	500J	< 200000	< 170000	< 38000	< 74000	< 100000
Hexachlorobutadlene	ByBri	135	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
Hexachlorobenzene	5y/Bri	1650	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
Hexachlorocyclopentadiene	By/6rl	951	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
Hexachloroethane	By/Brt	93300	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
Hexachlorophene (Hcp)	ву/вл	613000	< 3600000	< 4500000	< 100000000	< 9900000 >	< 16000000	< 36000000	< 2200000	< 100000000	< 86000000	< 19000000	< 38000000	< 5300000
Hexachloropropene	бубл	SN	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
Indeno[(1,2,3-Cd)Pyrene	D3/6rl	7840	32000J	< 88000	< 200000	< 19000	< 31000	< 71000	720J	< 200000	< 170000	< 38000	< 74000	< 100000
Isophorone	By/Brt	4570000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
Isosafroie	By/Brt	SN	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
Methapyrilene	hg/kg	SN	< 14000000	< 18000000	< 40000000	< 3900000	< 6300000	< 1400000	< 850000	< 41000000	< 34000000	< 7600000	< 1500000	< 21000000
Methyl Methanesulfonate	бу/бгі	SN	< 71000	< 88000	< 20000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
Methyl Parathion	Ву/вн	408000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
Naphthalene	By/Bri	247000	8000J	< 88000	< 200000	< 19000	< 31000	35000J	2000J	< 200000	< 170000	< 38000	< 74000	< 100000
Nitrobenzene	By/Brl	8410	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
N-Nitro-o-toluidine	By/Brt	173000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
N-Nitrosodiethylamine	6y/8rl	38.2	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
N-Nitrosodimethylamine	бувл	112	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
N-Nitrosodi-n-butylamine	бубп	1060	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
N-Nitrosodi-n-propylamine	вувн	818	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
N-Nitrosodiphenylamine	бу/вп	1170000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	
N-Nitrosomethylethylamine	бу∕вл	260	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
N-Nitrosomorpholine	6y/6rl	SN	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
N-Nitrosoplperidine	By/Brl	NS	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	
N-Nitrosopyrrolidine	63/6rl	2730	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
o.o'.o"-Triethylphosphorothioate	ву/вп	SN	20000J	< 88000	< 200000	8600J	< 31000	< 71000	1200.1	< 200000	< 170000	< 38000	< 74000	< 10000
p-Dimethylamino azobenzene	By/6rl	SN	< 71000	< 88000	< 200000	< 18000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< /4000	

P

Summary of Total Analyte Data, Sludge Characterization and Bench Scale Treatability Report,

Mississippi.
porated, Hattiesburg,
Hercules Incorp

Table 2.

Chemical Name	Location ID: Sample Date: Unit:	MDEQ Tier 1 TRG	iBS-1-LS 4/14/2010	IBS-1-US 4/15/2010	IBS-2-LS 4/16/2010	185-2-NS 4/16/2010	IBS-2-US 4/16/2010	IBS-3-LS 4/14/2010	IBS-3-NS 4/14/2010	IBS-3-US 4/15/2010	IBS-4-LS 4/14/2010	185-4-NS 4/14/2010	IBS-4-US 4/15/2010	185-5-LS 4/15/2010	
SVOCs (Continued) Pentachiorobenzene Pentachioronitrobenzene	63/67 63/67	1630000 22000 23800	 71000 71000 360000 	880008800088000450000	 200000 200000 200000 1000000 	190001900089000	3100031000160000	< 71000 < 71000 < 360000	 4200 4200 22000 4200 	 200000 200000 1000000 200000 	 170000 170000 860000 170000 	 38000 38000 190000 38000 	 74000 74000 380000 74000 	 < 100000 < 100000 < 530000 < 100000 	
Pentachloropnenol Phenacetin Phenanthrene Phenol Phorate	87/84 87/84 87/84 87/84	61300000 123000000 NS	< 71000 6800J < 71000 < 71000 < 71000	 88000 88000 88000 88000 88000 450000 	 200000 200000 200000 200000 1000000 	 < 19000 < 19000 < 19000 < 19000 < 99000 	 < 31000 < 31000 < 31000 < 31000 < 16000 	 71000 11000J 71000 360000 	 4200 1100J 4200 4200 22000 	 200000 200000 200000 200000 1000000 	 4170000 170000 170000 860000 	 38000 38000 38000 190000 	 < 74000 < 74000 < 74000 < 380000 < 74000 	 < 100000 < 100000 < 100000 < 530000 < 50000 	
p-Phenylene dlamine Pronamide Pyrene Pyridine Safrole, Total	69/61 69/61 69/61 89/61 89/61	38800000 NS 81300000 2040000 NS NS	 71000 71000 71000 71000 71000 71000 	 88000 88000 88000 88000 88000 88000 	 20000 20000 200000 200000 200000 200000 	 < 19000 < 19000 < 19000 < 19000 < 19000 < 19000 	 31000 5000J 31000 31000 31000 31000 	 71000 71000 71000 71000 71000 71000 71000 71000 	 4200 4200 4200 4200 4200 4200 4200 	 200000 220000 200000 200000 200000 200000 200000 	 170000 170000 170000 170000 170000 170000 170000 	 38000 38000 38000 38000 38000 38000 	 74000 74000 74000 74000 74000 74000 74000 	 100000 100000 100000 100000 100000 100000 	
Thionazin Metais Arsenic Barlum Cadmlum	64/6ш 83/6ш 83/6ш 83/61	3.82 14300 1020	< 71000 1.5 37 0.24	< 88000 3 28 0.33 29	 2,00000 3.4 3.5 3.6 3.6<!--</td--><td> 2.1 4.2 6.53 6.1.1 </td><td>2.5 23 0.51</td><td>2.5 22 0.27 16</td><td>< 2.1 4 1.6</td><td>2.8 13 0.38</td><td>2.1 13 4 13 4</td><td> 3.5 3.5 0.51 1.5 0.54 </td><td>3.3 27 23 23</td><td>2.5 23 0.55 24</td><td></td>	 2.1 4.2 6.53 6.1.1 	2.5 23 0.51	2.5 22 0.27 16	< 2.1 4 1.6	2.8 13 0.38	2.1 13 4 13 4	 3.5 3.5 0.51 1.5 0.54 	3.3 27 23 23	2.5 23 0.55 24	
Chromium Lead Mercury Selenium Silver	Յչ/ Ցա Յչ/Ցա Յչ/Ցա Յչ/Ցա	30/000 1700 61.3 1020 1020	120 3.8 4.9 0.3	24 0.72 < 5.8 0.24	41 1.1 0.88	1.7 0.012 < 2.7 < 1.1	36 1.1 4.2 4.2	41 0.66 4.5 0.62	2.9 0.012 < 2.6 < 1.1	40 0.24 < 9.6 < 3.8	86 0.26 6.39 0.41	65.0 2.5 0.1		0.4 < 6.6 0.42	
Bolded J MDEQ mg/kg NS SVOCs TTG VOCs	Constitutent has been deter Estimated concentration. Misstssippi Department of E Milligram per kilogram. No Standard. Semivolatile Organic Comp Microgram per kilogram. Volatile Organic Compount	cted Environmental (or soil under a ds.	Quality. restricted use sc	enario.											

Because we care 100% recycled paper produced by wind power energy

2

Asland/OH3000_MS24/T/1/kp

5/10

Table 2. Summary of Total Analyte Data, Sludge Characterization and Bench Scale Treatability Report, Hercules Incorporated, Hattlesburg, Mississippi.

	Location ID: Sample Date:	MDEQ Tier 1 TRG	1BS-5-NS 4/15/2010	IBS-5-US 4/15/2010	IBS-6-LS 4/15/2010	1BS-6-NS 4/15/2010	iBS-6-US 4/15/2010	185-7-LS 4/15/2010	1BS-7-NS 4/15/2010	IBS-7-US 4/15/2010	1BS-8-LS 4/15/2010	IBS-8-NS 4/15/2010	1BS-8-US 4/15/2010
Chemical Name	Unit:												
4 1 1 Totrochiomethane	110/kg	220000	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< 57000
1,1,1,2-1 cuadulul ocularie 1 1 1 Trichloroathana	awar Non	1190000	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< 57000
1,1,1-11.0000000000000000000000000000000	avved	1000	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< 57000
	By/Ari	1670	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< 57000
1,1,2-1 Managhana 4 4 Dishlamathana		116000	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< 57000
1, 1-Dicriptionerhane		118	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< \$7000
1, 1-Ulditul venterie 1, 2, 3, 7 John consciona		818	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< 57000
1,2,3-1110110100000000000000000000000000000	no/ko	6'66	< 510	< 180000	< 750000	< 4800	< 170000	< 1000000	< 19000	< 580000	< 1300000	< 2700	< 110000
1 2-Dichinmethane	na/ka	621	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< 57000
1,2-Dichlomomoane	na/ka	445	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< 57000
		84500	< 1300	< 450000	< 1900000	< 12000	< 410000	< 2500000	< 49000	< 1400000	< 3300000	840J	< 290000
2-Dulation (e (wick) 2 Chicar 1 3 hutediane	award a	408000	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< 57000
2 Chiom 1 Decore		SN	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< 57000
3-Unioro-I-Properie	RyAd	R1R0000	< 1300	< 45000	< 1900000	< 12000	< 410000	< 2500000	< 49000	< 1400000	< 3300000	< 8600	< 290000
	RuAn	16300000	1300	< 450000	< 190000	< 12000	< 410000	< 2500000	< 49000	< 1400000	< 3300000	< 6600	< 290000
4-Methyl-Z-Pentanone (MIBN)	By/Bri	10000000	21001	< 910000	< 3700000	< 24000	< 830000	< 5000000	< 97000	< 2900000	< 6600000 >	< 13000	< 570000
Acetone	Rujen Rujen	111000	< 10000	< 3600000	< 1500000	< 97000	< 3300000	< 20000000	< 390000	< 12000000	< 26000000	< 53000	< 2300000
	Bulli	4090000	< 5100	< 1800000	< 7500000	< 48000	< 1700000	< 10000000	< 190000	< 5800000	< 13000000	< 27000	< 1100000
Acrolett	By Rd	10600	< 5100	< 1800000	< 7500000	< 48000	< 1700000	< 10000000	< 190000	< 5800000	< 13000000	< 27000	< 1100000
Berrano	By Al	1360	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	110000	< 290000	< 660000	390J	< 57000
Denizerie		90100	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< 57000
		2970	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< 57000
		0262	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< 57000
	By Rd	569	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< 57000
Carbon 1 etracritoride	Bulli	40900000	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< 57000
Chievehooreon	Gypti Gypti	1190	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< 57000
Chlorodithomomethane	aver Not	68100	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< 57000
Chiomethane	na/ka	1970000	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	000/9 >
Chloroform	na/ka	478	< 280	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	000/9 >
Chlommethane	na/ka	440000	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	000/9 >
Circle 1 3 Dichlomoropane	na/ka	352	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	000/9 >
Cist 1,	na/ka	20400000	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< 57000
Distantantana		1890	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	000/9 >
Cicilio Oli	6 WON	18400000	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 680000	< 1300	< 57000
Cuty Meniadyane Cthyhonyone		395000	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< 57000
citytensensense Ethytene Altmuide	no/ka	67.3	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 860000	< 1300	000/9 >
	10/40	SN	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	000/9 >
localization leadurad alcohol	na/kg	613000000	< 10000	< 3600000	< 1500000	< 97000	< 3300000	< 20000000	< 390000	< 12000000	< 26000000	< 53000	< 2300000

P

P

Table 2.

Summary of Total Analyte Data, Sludge Characterization and Bench Scale Treatability Report, Hercules Incorporated, Hattiesburg, Mississippi.

Chemical Name	Location iD: Sample Date: Unit:	MDEQ Tier 1 TRG	18S-5-NS 4/15/2010	IBS-5-US 4/15/2010	185-6-LS 4/15/2010	IBS-6-NS 4/15/2010	1BS-6-US 4/15/2010	1BS-7-LS 4/15/2010	185-7-NS 4/15/2010	1BS-7-US 4/15/2010	IBS-8-LS 4/15/2010	IBS-8-NS 4/15/2010	IBS-8-US 4/15/2010
VOCs (Continued)													
Methyl Methacrylate	6x/6rt	16300000	< 510	< 180000	< 750000	< 4800	< 170000	< 1000000	< 19000	< 580000	< 1300000	< 2700	< 110000
Methylacrylonitrile	5y/6rt	204000	< 5100	< 1800000	< 7500000	< 48000	< 1700000	< 10000000	< 190000	< 5800000	< 13000000	< 27000	< 1100000
Methylene Chloride	By/Brl	21900	< 260	< 91000	420000	< 2400	< 83000	< 500000	< 9700	< 290000	610000J	1600	< 57000
Pentachloroethane	вубл	SN	< 1300	< 450000	< 1900000	< 12000	< 410000	< 250000	< 49000	< 1400000	< 3300000	< 6600	< 290000
Propionitrile	Ву/вл	SN	< 5100	< 1800000	< 7500000	< 48000	< 1700000	< 10000000	< 190000	< 5800000	< 13000000	< 27000	< 1100000
Styrene	63/6rl	384000	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< 57000
Tetrachloroethene	бу/бгі	18200	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< 57000
Toluene	бу/бгі	38000	1100	980000	1400000	33000	180000	590000	70000	280000	1400000	17000	810000
Trans-1,2-Dichloroethene	бу/бгі	3070000	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< 57000
Trans-1, 3-Dichloropropene	бу/6гі	352	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< 57000
Trans-1,4-Dichiorobutene	р9/вц	SN	< 510	< 180000	< 750000	< 4800	< 170000	< 1000000	< 19000	< 580000	< 1300000	< 2700	< 110000
Trichloroethene	буубгі	7920	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 860000	< 1300	< 57000
Trichlorofluoromethane	бу/вн	14300000	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< 57000
Vinyl Acetate	рялац	9130	< 510	< 180000	< 750000	< 4800	< 170000	< 1000000	< 19000	< 580000	< 1300000	< 2700	< 110000
Vinyi Chloride	By/6rl	626	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< 57000
Xylenes, Total	ba/bd	318000	< 510	< 180000	< 750000	< 4800	< 170000	< 1000000	< 19000	< 580000	< 1300000	< 2700	< 110000
SVOCs													
1,1'-Biphenyi	6y/8rl	10200000	< 4300	160000J	800000	290000	140000J	620000	18000	230000	760000	< 4600	100055
1,2,4,5-Tetrachlorobenzene	бу/бгі	613000	4 300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
1,2,4-Trichlorobenzene	54/6rl	824000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
1,2-Dichlorobenzene	бубл	279000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
1,3-Dichlorobenzene	ву/вл	1840000	< 4300	< 190000	< 180000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
1,3-Dinitrobenzene	бу/8л	204000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
1,3,5-Trinitrobenzene	Ву/бгі	102000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
1,4-Dichlorobenzene	бу/вп	817000	< 8600	< 380000	< 320000	< 41000	< 380000	< 220000	< 7900	< 380000	< 270000	< 9100	< 480000
1,4-Dioxane	6x/8rl	520000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
1,4-Naphthoquinone	6x/6rt	SN	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
1-Naphthytamine	6y/8ri	SN	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
2,3,4,6-Tetrachlorophenol	ву/вп	61300000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
2,4,5-Trichlorophenol	ву/вп	204000000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
2,4,6-Trichlorophenol	Ву/вп	314000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
2,4-Dichlorophenol	6xy6r1	613000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
2,4-Dimethylphenol	бу/вп	40800000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
2,4-Dinitrophenol	By/Bri	408000	< 22000	< 980000	< 840000	< 110000	< 980000	< 580000	< 20000	< 970000	< 690000	< 23000	< 1200000
2,4-Dinitrotoluene	By/6r1	408000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
2,6-Dichlorophenol	бу/бл	SN	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
2,6-Dinitrotoluene	ву/вн	2040000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000

Because we care 100% recycled paper produced by wind power energy

Asland/OH3000,MS24/T/1/kp

.

Table 2. Summary of Total Analyte Data, Sludge Characterization and Bench Scale Treatability Report,

	Ť
,	, Mississipp
	Hattiesburg,
	orporated,
	Hercules Inc
	-

Chemical Name	Location ID: Sample Date: Unit:	MDEQ Tier 1 TRG	iBS-5-NS 4/15/2010	IBS-5-US 4/15/2010	IBS-6-LS 4/15/2010	185-6-NS 4/15/2010	IBS-6-US 4/15/2010	18S-7-LS 4/15/2010	IBS-7-NS 4/15/2010	tBS-7-US 4/15/2010	iBS-8-LS 4/15/2010	IBS-8-NS 4/15/2010	IBS-8-US 4/15/2010
SVOCs (Continued)									0007	000001	000001	0037.5	
2-Chloronaphthalene	5y/8rl	164000000	< 4300	< 190000	< 160000				4000		< 130000	< 4600	< 240000
2-Chlorophenoi	Bx/6rl	00000201	< 4300							< 190000	< 130000	< 4600	< 24000
2-Methyinaphthalene	5y/6rl	4090000	< 4300	< 190000 -							< 130000	< 4600	< 240000
2-Methylphenol	By/6rl	102000000	< 4300						4000		< 130000	< 4600	< 240000
2-Naphthyiamine	6y/6rl	SN	< 4300	< 190000	< 160000	00012 >		000011 >	00000 v	> 130000			< 120000
2-Nitroaniline	6y/6rl	492	3500J	< 980000	< 840000	< 110000	< 980000					100057 >	
2-Nitrophenol	6x/8r1	NS	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000		130000	4600	240000
2-Picoline	6y/8rl	NS	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000		< 4600	< 240000
2-Acetylaminofluorene	6y/8rl	NS	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
2-Toluidine	5y/6rl	23800	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	000061 >	000061 >	< 4600	< 24000
3 & 4 Methylphenol	бу/бгі	10200000	630J	< 19000 0	< 160000	< 21000	< 190000	25000J	530J	< 190000	< 130000	< 4600	< 240000
3.3'-Dichlorobenzidine	вувп	12700	< 8600	< 380000	< 320000	< 41000	< 380000	< 220000	< 7900	< 380000	< 270000	0018 >	< 480000
3.3Dimethvlbenzidine	Dg/kg	622	< 22000	< 980000	< 840000	< 110000	< 980000	< 580000	< 20000	< 970000	< 690000	< 23000	< 1200000
3-Methylchloranthrene	pa/au	NS	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
3-Nitroaniline	ng/kg	SN	< 22000	< 980000	< 840000	< 110000	< 980000	< 580000	< 20000	< 970000	< 690000	< 23000	< 1200000
4 6-Dinter-2-Methylohenol	na/ka	204000	< 22000	< 980000	< 840000	< 110000	< 980000	< 580000	< 20000	< 970000 >	< 890000	< 23000	< 1200000
4.Aminchichenul	na/ka	SN	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
4 Brownhand Phanul Ether	ayyon	SN	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
4-Chloro-3-Methylphenol	na/ka	40800000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
4-Chiomohenvi Phenvi Ether	na/ka	SN	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
4-Chiomaniline	na/ka	238000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
4-Nitmaniline	na/ka	SN	< 22000	< 980000	< 840000	< 110000	< 980000	< 580000	< 20000	< 970000	< 690000	< 23000	< 1200000
4-Nitronhenol	uaña	16400000	< 22000	< 980000	< 840000	< 110000	< 980000	< 580000	< 20000	< 970000	< 690000	< 23000	< 1200000
4-Nitroduinoline-N-Oxide	na/ka	SN	< 43000	< 1900000	< 1600000	< 210000	< 1900000	< 1100000	< 40000	< 1900000	< 1300000	< 46000	< 2400000
7 12-Dimethylhenzialanthracene	no/va	SN	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Arenanhthene	na/ka	12300000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Acenaphtiviene	na/ka	12300000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Acetoohenone	па/ка	2630000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Alpha Alpha-Dimethyl Phenethylamine	na/ka	SN	< 880000	< 39000000	< 3300000	< 4200000	< 39000000	< 23000000	< 810000	< 38000000	< 27000000	< 930000	< 49000000
Aniline	D3/Bri	1000000	< 8600	< 380000	< 320000	< 41000	< 380000	< 220000	< 7900	< 380000	< 270000	< 9100	< 480000
Anthracene	pa/gu	613000000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Aramite. Total	hg/kg	SN	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Benzo(a)anthracene	Ву/бл	7840	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 24000
Benzo(a)ovrene	D3/00	784	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Benzo(b)fluoranthene	By/Bri	7840	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Benzo(a.h.i)perviene	Dig/Bri	61300000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Benzo(k)fluoranthene	By/6n	78400	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Benzvi Alcohol	By/Brl	204000000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Bis(2-Chloroethoxv)Methane	By/Bri	NS	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 24000
Bis(2-Chloroethyl)Ether	By/Brt	419	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Bis(2-Ethvihexvi) Phthalate	Ву/вл	409000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Bis(Chloroisopropyl) Ether	р9/6ц	9080	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4500	240000
Butvi benzvi phthalate	53/6rl	928000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	> 190000	> 130000	< 4600	240000
Chrysene	6y/6rl	784000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000		< 40UU	000047 >

Because we care 100% recycled paper produced by wind power energy

Asland/OH3000_MS24/T/1/kp

ARCADIS

Summary of Total Analyte Data, Sludge Characterization and Bench Scale Treatability Report, Hercules Incorporated, Hattlesburg, Mississippi.

Table 2.

										31.7.00.	212.201	IRS.A.NS	IBS-8-US
	Location ID: Sample Date:	MDEQ Tier 1 TRG	185-5-NS 4/15/2010	18S-5-US 4/15/2010	1BS-6-LS 4/15/2010	IBS-6-NS 4/15/2010	1BS-6-US 4/15/2010	IBS-7-LS 4/15/2010	115/2010 4/15/2010	4/15/2010	4/15/2010	4/15/2010	4/15/2010
Chemical Name	Cuitt												
(perchange of the								< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
SVOCs (continued)	na/ka	୍ NS	< 4300	< 190000	< 160000	21000		< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Dialiate		784	< 4300	< 190000	< 160000			< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Dibenz(a,h)anthracene		8180000	< 4300	< 190000	< 160000	< 21000			4000	< 190000	< 130000	< 4600	< 240000
Dibenzofuran	Ry/Art	100000	< 4300	< 190000	< 160000	< 21000	< 190000				< 130000	< 4600	< 240000
Diethyl Phthalate	By/6rl			< 190000	< 160000	< 21000	< 190000	< 110000	< 4000		< 130000	< 4600	< 240000
Dimethoate	5y/8rl	02 CL			< 160000	< 21000	< 190000	< 110000	< 4000		130000	< 4600	< 240000
Dimethyl Phthalate	fay/6ri	2.04E+10	< 4300		< 16000	< 21000	< 190000	< 110000	< 4000	000001 >	130000	< 4600	< 240000
DI-N-Burby Phthalate	ba/bri	2280000	< 4300		< 16000	< 21000	< 190000	< 110000	< 4000	> 190000		1600	< 240000
Di-N-Ochi Phthalate	8y/8rl	4080000	< 4300		< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	130000	1004	1100001
Cinced	By/Brl	204000	< 4300		250000	830000	40000	2100000	59000	680000	00000	1000	240000
Dishend Ether	6y/6r1	NS	12000	530000		< 21000	< 190000	< 110000	410J	< 190000			< 240000
	63/6rl	8170	< 4300			< 21000	< 190000	< 110000	< 4000	< 190000	130000		< 240000
Ulsuioloi rata Mathanasi ifanate	Ву/бгі	NS	< 4300	> 190000		< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	4000	
	By/Bri	1230000	< 4300	< 190000		21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4000	
	na/ka	SN	< 4300	< 190000	< 160000			< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Famphur		81700000	< 4300	< 190000	< 160000				< 4000	< 190000	< 130000	< 4600	< 240000
Fluoranthene	BurRid	R170000	< 4300	< 190000	< 160000	< 21000			4000	< 190000	< 130000	< 4600	< 240000
Fluorene	Ry/Rri	135	< 4300	< 190000	< 160000	< 21000	000061 >			< 190000	< 130000	< 4600	< 240000
Hexachiorobutadiene	By/Bri	1850	< 4300	< 190000	< 16000	< 21000	< 190000			< 190000	< 130000	< 4600	< 240000
Hexachiorobenzene	By/Bri	1000	< 4300	< 190000	< 160000	< 21000	< 190000			< 10000	< 130000	< 4600	< 240000
Hexachiorocyclopentadlene	10/Kg	108	0001 /	< 190000	< 160000	< 21000	< 190000	< 110000	- 000000		< 69000000 ×	< 2300000	< 120000000
Hexachloroethane	5y/6rl	00000			< 8400000	< 11000000	< 98000000	< 58000000	> 2000		< 130000	< 4600	< 240000
Hexachlorophene (Hcp)	By/Bri	613000			< 180000	< 21000	< 190000	< 110000	< 4000		< 130000	< 4600	< 240000
Hexachioropropene	6y/6rl	SN C		< 190000	< 160000	< 21000	< 190000	< 110000	< 4000		< 130000	< 4600	< 240000
Indenoi(1,2,3-Cd)Pyrene	By/Brl	049/			< 160000	< 21000	< 190000	< 110000	< 4000	190000	130000	< 4600	< 240000
Isophorope	63/6rl	4570000	4300		< 16000	< 21000	< 190000	< 110000	< 4000	190000			< 4900000
tecestrole	ву/бл	NS	< 4300			< 4200000	< 3900000	< 23000000	0 < 810000	< 38000000	< 2/00000		< 240000
Mathaourtiene	6y/6rl	NS	< 880000	< 3800000	 460000 460000 	< 21000	< 190000	< 110000	< 4000	< 190000			< 240000
Meulapymene Mathanasulfonate	6y/6rl	SN	< 4300			< 21000	< 190000	< 110000	< 4000	< 190000		0004 1	< 240000
Meutyl Mediancountry	p:0/kg	408000	< 4300			< 21000	< 190000	< 110000	< 4000	< 190000	000051 >		
Meuryl Falaumon	By/6rl	247000	< 4300	< 190000		21000	< 190000	< 110000	< 4000	< 190000	< 130000		000002 /
	By/6rl	8410	< 4300	00006L >		< 21000	< 190000	< 110000	< 4000	< 190000			200000
	110/kg	173000	< 4300	< 190000		1 24000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4500	
al lininino-o-olliN-N		38.2	< 4300	< 190000		00017		< 110000	< 4000	< 190000	< 130000	< 4600	000047 >
N-Nitrosodiethylamine		112	< 4300	< 190000	< 160000	00012 >			< 4000	< 190000	< 130000	< 4600	< 240000
N-Nitrosodimethylamine		1060	< 4300	< 190000	< 180000	< 21000			< 4000 ×	< 190000	< 130000	< 4600	< 240000
N-Nitrosodi-n-butyiamine	Sy/Bri	818	< 4300	< 190000	< 160000	< 21000	< 190000			< 190000	< 130000	< 4600	< 240000
N-Nitrosodi-n-propylamine	Sy/Bri	112000	< 4300	< 190000	< 160000	< 21000	< 190000			< 190000	< 130000	< 4600	< 240000
N-Nitrosodiphenylamine	w/Bri		< 4300	< 190000	< 160000	< 21000	< 190000			< 190000	< 130000	< 4600	< 240000
N-Nitrosomethylethylamine	Sy/Bri		< 4300	< 190000	< 160000	< 21000	< 190000			< 190000	< 130000	< 4600	< 240000
N-Nitrosomorpholine	w6n		< 4300	< 190000	< 160000	< 21000	< 190000			< 190000	< 130000	< 4600	< 240000
N-Nitrosopiperidine	w/Bri	0240	< 4300	< 190000	< 160000	< 21000	000061 >			< 190000	< 130000	< 4600	< 240000
N-Nitrosopyrrolidine	w.fbri		< 4300	< 190000	< 160000	< 21000	000061 >			< 190000	< 130000	< 4600	< 240000
o,o',a"-Triethylphosphorothioate	aven.		< 4300	< 190000	< 160000	< 21000	< 190000	20001L >	>>>+ +				
p-Dimethylamino azobenzene	2/RH	5											

Û

Summary of Total Analyte Data, Sludge Characterization and Bench Scale Treatablilly Report, Hercules Incorporated, Hattiesburg, MississippI. Table 2.

Chemical Name	Location ID: Sample Date: Unit:	MDEQ Tier 1 TRG	IBS-5-NS 4/15/2010	iBS-5-US 4/15/2010	IBS-6-LS 4/15/2010	IBS-6-NS 4/15/2010	iBS-6-US 4/15/2010	IBS-7-LS 4/15/2010	IBS-7-NS 4/15/2010	IBS-7-US 4/15/2010	IBS-8-LS 4/15/2010	IBS-8-NS 4/15/2010	IBS-8-US 4/15/2010
SVOCs (Continued)													
Pentachlorobenzene	by/6rl	1630000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Pentachloronitrobenzene	бу/бл	22000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Pentachlorophenol	hg/kg	23800	< 22000	< 980000	< 840000	< 110000	< 980000	< 580000	< 20000	< 970000	< 690000	< 23000	< 1200000
Phenacetin	6y/6rl	NS	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Phenanthrene	by/bri	61300000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Phenol	By/Bri	123000000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Phorate	by/bri	NS	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
p-Phenylene diamine	5y/6rt	38800000	< 22000	< 980000	< 840000	< 110000	< 980000	< 580000	< 20000	< 970000	< 690000	< 23000	< 1200000
Pronamide	5y/6rt	NS	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Pyrene	By/Bri	61300000	< 4300	< 190000	< 180000	< 21000	< 190000	< 110000	490J	< 190000	15000J	< 4600	< 240000
Pyridine	By/Bri	2040000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Safrole, Total	By/6n	SN	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Sulfotep	Da/kg	SN	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Thionazin	6x/6rl	SN	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Metals													
Arsenic	By/ɓɯ	3.82	2	3.6	1.3	7	3.4	3.1	< 2.1	2.6	3.3		< 14
Banum	mg/kg	14300	120	18	16	150	18	18	18	12	37	120	15
Cadmium	ву/вш	1020	0.18	0.52	0.31	< 0.59	0.61	0.47	< 0.52	0.48	0.67	< 0,61	< 3.6
Chromium	mg/kg	3070000	18	27	17	13	15	31	7.3	24	25	15	23
Lead	By/Bw	1700	12	28	51	7.6	43	27	2.6	32	100	13	38
Mercury	mg/kg	61.3	< 0.024	0.25	0.43	< 0.021	0.33	0.52	< 0.023	0.59	0.86	< 0.022	0.48
Selenium	6y/6w	1020	۲ ۲	< 13	< 5,3	ۍ ۲	< 14	< 7.5	< 2.6	< 8,9	< 9.8	< 3.1	< 18
Silver	6y/6w	1020	0.15	< 5.2	0.53	<1.2	0.52	0.3	5	< 3,6	0.51	< 1.2	<7.2
Rolded (Constitutent has been detect	ted											
	Telimoted seasontration												
-	esumated concentration.												
MDEQ	Mississippl Department of Er	nvironmental Q	uality.										
mg/kg	Milligram per kilogram.												
I SN	No Standard.												
SVOCs	Semivolatile Organic Compo	ounds.											
TRG	Target Remediation Goal for	r soil under a re	stricted use s	cenario.									
1 DyGt	Microgram per kilogram.												
vocs	Volatile Organic Compounds	5											

Because we care 100% recycled paper produced by wind power energy

.

Summary of Quality Assurance/Quality Control Data, Sludge Characterization and Bench Scale Treatability Report, Hercules Incorporated, Hattiesburg, Mississippi.

Chemical Name	Location ID: Sample Date: Unit	Field Blank 4/15/2010	Field Blank 4/16/2010	Rinsate Blank 4/16/2010	Trip Blank 4/14/2010	Trip Blank 4/15/2010
Metais				< 20	NA	NA
Arsenic	µg/L	NA	NA	20	ΝΔ	NA
Barium	µg/L	NA	NA	2.0	NA	NA
Cadmium	µg/L	NA	NA	< 10	NΔ	NA
Chromium	µg/L	NA	NA	< 10	NA	NA
Lead	µg/L	NA	NA	< 0.2	NA	NA
Mercury	µg/L	NA	NA	< 20	ΝΔ	NA
Selenium	µg/L	NA	NA	< 10	ΝΔ	NA
Silver	µg/L	NA	NA			
VOCs			- 1	< 1	< 1	< 1
1,1,1,2-Tetrachloroethane	µg/L	< 1		<1	< 1	< 1
1,1,1-Trichloroethane	µg/L	< 1	< 1	< 1	< 1	< 1
1,1,2,2-Tetrachloroethane	µg/L	< 1	< 1	< 1	< 1	< 1
1,1,2-Trichloroethane	µg/L	< 1	21	< 1	< 1	< 1
1,1-Dichloroethane	μg/L	< 1 	~ 1	< 1	< 1	< 1
1,1-Dichloroethene	hð\r	< 1	21	< 1	< 1	< 1
1,2,3-Trichloropropane	µg/L	< 1 2 4	~ 1	< 1	< 1	< 1
1,2-Dibromo-3-Chloropropane	µg/L	< 1	~ 1	< 1	< 1	< 1
1,2-Dichloroethane	µg/L	< 1	< 1	< 1	< 1	< 1
1,2-Dichloropropane	µg/L	< 1	471	121	< 10	< 10
2-Butanone (MEK)	µg/L	1.5J	1.75	< 1	< 1	< 1
2-Chloro-1,3-butadiene	µg/L	< 1	< 10	< 10	< 10	< 10
2-Hexanone	µg/L	< 10	< 1	< 1	< 1	< 1
3-Chloro-1-propene	µg/∟	< 10	< 10	< 10	< 10	< 10
4-Methyl-2-pentanone (MIBK)	, µg/∟	< 10	771	9.5.1	5.0J	< 25
Acetone	µg/L	8.4J	7.75	< 40	< 40	< 40
Acetonitrile	µg/L	< 40	< 20	< 20	< 20	< 20
Acrolein	hð\r	< 20	< 20	< 20	< 20	< 20
Acrylonitrile	µg/L	< 20	< 1	< 1	< 1	< 1
Benzene	µg/L	< 1	< 1	< 1	< 1	< 1
Bromoform	µg/L	~ 1	21	< 1	< 1	< 1
Bromomethane	µg/L	< 1	62	< 2	< 2	< 2
Carbon disulfide	µg/L	~ 2	< 1	<1	< 1	< 1
Carbon tetrachloride	µg/L	< 1	< 1	< 1	< 1	< 1
Chlorobenzene	µg/L	< 1	< 1	< 1	< 1	< 1
Chlorodibromomethane	µg/L	< 1	< 1	<1	< 1	< 1
Chloroethane	µg/L	< 1	< 1	< 1	< 1	< 1
Chloroform	µg/L	< 1	< 1	< 1	< 1	< 1
Chloromethane	µg/L	< 1	< 1	< 1	< 1	< 1
cis-1,3-Dichloropropene	µg/L	< 1	< 1	< 1	< 1	< 1
Dibromomethane	pg/L	< 1	< 1	< 1	< 1	< 1
Dichlorobromomethane	µg/L	< 1	< 1	< 1	< 1	< 1
Dichlorodifluoromethane	µg/L	< 1	< 1	< 1	< 1	< 1
Ethyl methacrylate	µg/L	0 18.1	0.14J	< 1	< 1	< 1
Ethylbenzene	µy/L	< 1	< 1	< 1	< 1	< 1
Ethylene Dibromide	µy/L	< 5	< 5	< 5	< 5	< 5
lodomethane	µy/L	< 40	< 40	< 40	< 40	< 40
Isobutyl alcohol	hðir Hðir	< 20	< 20	< 20	< 20	< 20
Methacrylonitrile	µg/L	< 1	< 1	< 1	< 1	< 1
Methyl methacrylate	py/c	< 5	< 5	< 5	< 5	< 5
Methylene Chloride	P9/L	< 5	< 5	< 5	< 5	< 5
Pentachloroethane	hâvr	< 20	< 20	< 20	< 20	< 20
Propionitrile	µg/L	< 1	< 1	< 1	< 1	< 1
Styrene	µg/L	21	< 1	< 1	< 1	< 1
Tetrachloroethene	µg/L	27	2.5	1.3	< 1	< 1
Toluene	µg/L	4.1 2 1	< 1	< 1	< 1	< 1
trans-1,2-Dichloroethene	µg/L	~ 1	< 1	< 1	< 1	< 1
trans-1,3-Dichloropropene	µg/L	~ 1	< 2	< 2	< 2	< 2
trans-1,4-Dichloro-2-butene	µg/L	~ 2	< 1	< 1	< 1	< 1
Trichloroethene	µg/L			•		

ARCADIS Table 3.

Summary of Quality Assurance/Quality Control Data, Sludge Characterization and Bench Scale Treatability Report, Hercules Incorporated, Hattiesburg, Mississippi.

Chemical Name	Location ID: Sample Date: Unit	Field Blank 4/15/2010	Field Blank 4/16/2010	Rinsate Blank 4/16/2010	Trip Blank 4/14/2010	Trip Blank 4/15/2010
······			····			
VOCs (Continued)						
Trichlorofluoromethane	ua/L	< 1	< 1	< 1	< 1	< 1
Vinvl acetate	ua/L	< 2	< 2	< 2	< 2	< 2
Vinvl chloride	uo/L	< 1	< 1	< 1	< 1	< 1
Xylenes, Total	µg/L	0.39J	0.40J	< 2	< 2	< 2
<u>SVOCs</u>						
1,1'-Biphenyl	µg/L	NA	NA	< 9.4	NA	NA
1,2,4,5-Tetrachlorobenzene	µg/L	NA	NA	< 9.4	NA	NA
1,2,4-Trichlorobenzene	µg/L	NA	NA	< 9.4	NA	NA
1,2-Dichlorobenzene	µg/L	NA	NA	< 9.4	NA	NA
1.3.5-Trinitrobenzene	µg/L	NA	NA	< 9.4	NA	NA
1.3-Dichlorobenzene	ua/L	NA	NA	< 9.4	NA	NA
1 3-Dinitrobenzene	µa/L	NA	NA	< 9.4	NA	NA
1 4-Dichlorobenzene	uo/l	NA	NA	< 9.4	NA	NA
1 4-Dioxane	µg/⊑ µn/l	NA	NA	< 9.4	NA	NA
1 4-Naphthoquinone	P9'E	NΔ	NΔ	< 9.4	NΔ	NA
	עמיג ו	NA	NA NA	201	NA	
	hðir ti	NA NA	1424	~ 3,4	N/A N/A	NA NA
2,3,4,6-1 etrachiorophenol	µg/L	NA NA	NA NA	< 9.4	N/A	NA
2,4,5-1 richiorophenoi	µg/L	NA	NA	< 9.4	NA	NA
2,4,6-1 richlorophenol	µg/L	NA	NA	< 9.4	NA	NA
2,4-Dichlorophenol	µg/L	NA	NA	< 9.4	NA	NA
2,4-Dimethylphenol	µg/L	NA	NA	< 9.4	NA	NA
2,4-Dinitrophenol	µg/L	NA	NA	< 47	NA	NA
2,4-Dinitrotoluene	µg/Ł	NA	NA	< 9.4	NA	NA
2,6-Dichlorophenol	µg/L	NA	NA	< 9.4	NA	NA
2,6-Dinitrotoluene	µg/L	NA	NA	< 9.4	NA	NA
2-Acetylaminofluorene	µg/L	NA	NA	< 9.4	NA	NA
2-Chloronaphthalene	µg/L	NA	NA	< 9,4	NA	NA
2-Chlorophenol	µg/L	NA	NA	< 9.4	NA	NA
2-Methylnaphthalene	µg/L	NA	NA	< 9.4	NA	NA
2-Methylohenol	µg/L	NA	NA	< 9.4	NA	NA
2-Naphthylamine	ua/L	NA	NA	< 9.4	NA	NA
2-Nitroaniline	ua/L	NA	NA	< 47	NA	NA
2-Nitrophenol	ug/l	NA	NA	< 9.4	NA	NA
2-Picoline	ug/l	NA	NA	< 9.4	NA	NA
2 Toluidino	ug/L	NA	NA	< 9.4	NA	ΝΔ
	µg/L		NA	< 9.4	NA	
3 & 4 Methylphenol	µg/L			< 57	N/4	NA NA
3,3-Dichlorobenzigine	µg/L	NA	NA NA	< 57	IN/A	NA NA
3,3 -Dimethylbenzidine	µg/L	NA	NA	< 19	NA	NA
3-Methylcholanthrene	µg/L	NA	NA	< 9.4	NA	NA
3-Nitroaniline	µg/L	NA	NA	< 47	NA	NA
4,6-Dinitro-2-methylphenol	µg/L	NA	NA	< 47	NA	NA
4-Aminobiphenyl	µg/L	NA	NA	< 9.4	NA	NA
4-Bromophenyl phenyl ether	µg/L	NA	NA	< 9.4	NA	NA
4-Chioro-3-methylphenol	µg/L	NA	NA	< 9.4	NA	NA
4-Chloroaniline	µg/L	NA	NA	< 19	NA	NA
4-Chlorophenyl phenyl ether	µg/L	NA	NA	< 9.4	NA	NA
4-Nitroaniline	µg/L	NA	NA	< 47	NA	NA
4-Nitrophenol	ug/L	NA	NA	< 47	NA	NA
4-Nitroquinoline-1-oxide	µa/L	NA	NA	< 19	NA	NA
7 12-Dimethylbenz(a)anthracene	uo/L	NA	NA	< 9.4	NA	NA
Acenaphthene	10/i	NA	NA	< 9.4	NA	NA
Acenanhthylene	μα/l	NA	NA	< 9.4	NA	NA
Acetonhenone	10/l	NA	NΔ	< 0.4	NΔ	NA
alaha alaha Dimothul charathulan	Hyre No Hor	NA NA	11/7	< 1000	NA	N/A
apna,apna-Dimetnyi pnenetnyiami	ne µg/L	INA) NA	INA NA	< 1900 < 40	NA NA	IN/A
Aniine	hðir h	INA NA	NA	5 19	NA	NA
Anthracene	µg/L	NA	NA	< 9,4	NA	NA
Aramite, i otal	µg/L	NA	NA	< 9.4	NA	NA
Benzo[a]anthracene	µg/L	NA	NA	< 9.4	NA	NA
Benzo[a]pyrene	µg/L	NA	NA	< 9,4	NA	NA

ARCADIS Table 3.

Summary of Quality Assurance/Quality Control Data, Sludge Characterization and Bench Scale Treatability Report, Hercules Incorporated, Hattiesburg, Mississippi.

	Location ID: Sample Date:	Field Blank 4/15/2010	Field Blank 4/16/2010	Rinsate Blank 4/16/2010	Trip Blank 4/14/2010	Trip Blank 4/15/2010
Chemical Name						
					NA	NA
SVOCs (Continued)	ua/L	NA	NA	< 9.4	NA	NA
Benzolojnuorannene	ug/L	NA	NA	< 9,4	NΔ	NA
Benzold'u''	ug/L	NA	NA	< 9.4	NΔ	NA
Benzolkjinuoranniene	ug/L	NA	NA	< 9.4	NΔ	NA
Benzyl alconol	ug/L	NA	NA	< 9.4	NA	NA
Bis(2-Chioroetholy)methance	ug/L	NA	NA	< 9.4	NA	NA
Bis(2-Chloroethy)ethe	ug/L	NA	NA	< 9.4	NA	NA
Bis(2-ethylnexy) philliplate	ug/L	NA	NA	< 9.4	NA	NA
bis(chiproisopropyi) ether	ug/L	NA	NA	< 9.4	NA	NA
Butyl benzyl philalate	ug/L	NA	NA	< 9.4	NA	NA
	µg/L	NA	NA	< 9,4	NA	NA
	µg/L	NA	NA	< 9.4	NA	NA
Dibenzofuran	µg/L	NA	NA	- 3.4	NA	NA
Dipenzolulari Diothyl obthalate	µg/L	NA	NA	< 9.4	NA	NA
Dimethoste	µg/L	NA	NA	 - 3,4 - 0 A 	NA	NA
Dimethyl obthalate	µg/L	NA	NA	< 34 < 0 A	NA	NA
Dimentity primate	µg/L	NA	NA	~ 7.4	NA	NA
Dia octyl philipiale	µg/L	NA	NA	< 3.4 < 0.4	NA	NA
Diseash	µg/L	NA	NA	< 9.4	NA	NA
Dinused	µg/L	NA	NA	< 9.4	NA	NA
Disundion	μg/L	NA	NA	< 9.4	NA	NA
Envi Reathion	µg/L	NA	NA	< 9.4	NA	NA
Envirantion	µg/L	NA	NA	< 9.4	NA	NA
Famphul	µg/L	NA	NA	< 9.4	NA	NA
Fluorantinene	µg/L	NA	NA	< 9.4	NA	NA
HereeblorobenZEDB	µg/L	NA	NA	< 9.4	NA	NA
Hexachlorobutadiene	µg/L	NA	NA	< 9.4	NA	NA
Hexachiorocyclopentadiene	µg/L	NA	NA	< 9.4	NA	NA
Hexachioroethane	µg/L	NA	NA	< 4700	NA	NA
Hexachiorophene	μg/L	NA	NA	< 9.4	NA	NA
Hexachioropropena	µg/L	NA	NA	< 9.4	NA	NA
Indepo[1 2 3-cd]pvrene	µg/L	NA	NA	< 9.4	NA	NA
Indendi 1,2,5-56 jp) to the	µg/L	NA	NA	< 9.4	NA	NA
Isopafrole	µg/L	NA	NA	< 1900	NA	NA
Methanyrilene	μg/L	NA	NA	< 9.4	NA	NA
Methyl methanesulfonate	µg/L	NA	NA	< 9.4	NA	NA
Methyl Parathion	µg/L	NA	NA NA	< 9.4	NA	NA
Nanhthaiene	µg/L	NA	NA NA	< 9.4	NA	NA
Nitrobenzene	µg/L	NA	NA NA	< 9.4	NA	NA
N-Nitro-o-toluidine	µg/L	NA	NA NA	< 9.4	NA	NA
N-Nitrosodiethylamine	µg/L	NA	NA NA	< 9.4	NA	NA
N-Nitrosodimethylamine	µg/L	NA	NA	< 9.4	NA	NA
N-Nitrosodi-n-butylamine	µg/L	NA	NA NA	< 9.4	NA	NA
N-Nitrosodi-n-propylamine	µg/L	NA	NΔ	< 9.4	NA	NA
N-Nitrosodiphenylamine	µg/L	NA		< 9.4	NA	NA
N-Nitrosomethylethylamine	µg/L	NA	NA NA	< 9.4	NA	NA
N-Nitrosomorpholine	µg/L	NA	NA NA	< 9.4	NA	NA
N-Nitrosopiperidine	µg/L	NA	NA NA	< 9.4	NA	NA
N-Nitrosopyrrolidine	µg/L	NA	NA	< 9.4	NA	N/
o p'.o"-Triethylphosphorothioat	e µg/L	NA	NA NA	< 9.4	NA	NA
p-Dimethylamino azobenzene	µg/L	NA	NA NA	< 9.4	NA	N/
Pentachlorobenzene	µg/L	NA	NA NA	< 9.4	NA	N/
Pentachloronitrobenzene	µg/L	NA		< 47	NA	N
Pentachlorophenol	µg/L	NA	NA NA	< 9.4	NA	N
Phenacetin	µg/L	. NA	IN/A NA	< 9.4	NA	N
Phenanthrene	µg/L	. NA	N/A N/A	< 9.4	NA	N
Phenol	µg/L	. NA	INA MA	< 9.4	NA	N
Phorate	µg/L	. NA	NA NA	< 1900	NA	N
- Phenylene diamine	µg/L	NA	NA NA	< 9.4	NA	N
Pronamide	µg/l	_ NA	NA			
FIUIAIIIUU	. •					

ARCADIS Table 3.

Summary of Quality Assurance/Quality Control Data, Sludge Characterization and Bench Scale Treatability Report, Hercules Incorporated, Hattiesburg, Mississippi.

Chemical Name	Location ID: Sample Date: Unit	Field Blank 4/15/2010	Field Blank 4/16/2010	Rinsate Blank 4/16/2010	Trip Blank 4/14/2010	Trip Blank 4/15/2010
SVOCS (Continued) Pyrene	uo/l	NA	NA	< 94	NΔ	NA
Pyridine	µg/L	NA	NA	< 47	NA	NA
Safrole, Total	µg/L	NA	NA	< 9.4	NA	NA
Sulfotepp	µg/L	NA	NA	< 9.4	NA	NA
Thionazin	µg/L	NA	NA	< 9.4	NA	NA

SVOCs µg/L VOCs Semivolatile Organic Compounds. Microgram per liter. Volatile Organic Compounds.

Table 4.

Summary of Treatability Test Effluent Analytical Data, Hercules Incorporated, Hattiesburg, Mississippi Sample Results

POTW Discharge Permit Parameter	Units	IBS-4 Centrifuge Centrate (250 ppm Anion Polymer)	IBS-4 Centrifuge Centrate (250 ppm Cation Polymer)	IBS-4 Centrifuge Centrate (No Polymer)	IBS-4 Fliter Press Flitrate	IBS-4 Gravity Dewatering Liquid	IBS-8 Filter Press Filtrate
		6/23/2010	6/23/2010	6/23/2010	6/23/2010	6/23/2010	6/23/2010
Flow Ethnent		42	44				
Oil and Grease Effluent	ma/L	<u></u> 2	<u></u> ≤ ≥	2	ž	A S	¥2
Oxygen Demand, Biochemical,	0	:	2	2	2	2	2
5-day (20 degrees Celsius) Effluent	mg/L	≥	≥	2	≥	≥	2
pH Effluent	SU	9	6.5	9	9.5	9	11.5
Solids (Total Suspended) Effluent	mg/L	≥	≥	2	≥	2	2
1,1,1-Trichloroethane Effluent	mg/L	< 0.001	< 0.001	< 0.001	< 0.500	< 0.001	< 0.001
1.1.2-Trichloroethane Effluent	mg/L	< 0,001	< 0.001	< 0.001	< 0.500	< 0.001	< 0.001
1,1-Dichloroethane Effluent	mg/L	< 0.001	< 0.001	< 0.001	< 0.500	< 0.001	< 0.001
1,1-Dichloroethylene Effluent	mg/L	< 0.001	< 0.001	< 0.001	< 0.500	< 0.001	< 0.001
1,2,4-Trichlorobenzene Effluent	mg/L	< 0,067	< 0.067	< 0.050	< 0.330	< 0.010	< 0.029
1,2-Dichlorobenzene Effluent	mg/L	< 0.067	< 0.067	< 0.050	< 0.330	< 0.010	< 0.029
1,2-Dichloroethane Effluent	mg/L	< 0,001	< 0,001	< 0.001	< 0.500	< 0.001	< 0.001
1,2-Dichloropropane Effluent	mg/L	< 0.001	< 0.001	< 0.001	< 0.500	< 0.001	< 0.001
1,2-Transdichloroethylene Effluent	mg/L	< 0.001	< 0.001	< 0,001	< 0,500	< 0.001	< 0.001
1,3-Dichlorobenzene Effluent	тgЛ	< 0.067	< 0.067	< 0,050	< 0.330	< 0.010	< 0.029
1,3-Dichloropropylene, cls Effluent	mg/L	< 0.001	< 0,001	< 0.001	< 0,500	< 0.001	< 0.001
1,3-Dichloropropylene, trans Effluent ⁽¹⁾	mg/L	< 0,001	< 0.001	< 0.001	< 0.500	< 0.001	< 0.001
1,4-Dichlorobenzene Effluent	mg/L	< 0,067	< 0,067	< 0.050	< 0.330	< 0.010	< 0.029
2-Nitrophenol Effluent	mg/L	< 0.067	< 0.067	< 0.050	< 0,330	< 0.010	< 0.029
4,6-UInitro-o-cresol Effluent	mg/L	< 0,330	< 0.330	< 0.250	< 0,170	< 0.050	< 0.140
4-Nitrophenol Effluent	mg/L	< 0.330	< 0.330	< 0.250	< 0.170	< 0.050	< 0.140
Acenaphynene Emilent	mg/L	< 0.067	< 0,067	< 0,050	< 0.330	< 0.010	< 0,029
	mg/L	< 0.067	< 0.067	< 0.050	< 0.330	< 0.010	< 0.029
Denzene Emiliem Diaro attuiteautottalaio Edinari	mg/L	< 0,001	< 0.001	< 0.001	< 0.500	< 0.001	0.0013
bis(2-emyinexy);primalate criticent	mg/L	< 0.067	< 0.067	< 0.050	< 0,330	< 0.010	< 0.029
	mg/L	< 0.001	< 0.001	< 0.001	< 0.500	< 0.001	< 0.001
Chlorobenzene Effluent	mg/L	< 0.001	< 0.001	< 0.001	< 0.500	< 0,001	< 0.001
Chioroethane Effluent	mg/L	< 0.001	< 0.001	< 0.001	< 0.500	< 0.001	< 0.001
Chloroform Effluent	mg/L	< 0.001	< 0.001	< 0.001	< 0,500	< 0.001	< 0.001
Diethyl phthalate Effluent	mg/L	< 0.067	< 0.067	< 0,050	< 0,330	< 0.010	< 0.029
Dimetny! phthalate Effluent	mg/L	< 0.067	< 0.067	< 0,050	< 0.330	< 0.010	< 0.029
Di-N-Butyl Phthalate Effluent		< 0.067	< 0,067	< 0,050	< 0.330	< 0.010	< 0.029
Ethyl benzene Effluent	mg/L	< 0.001	< 0,001	< 0.001	< 0.500	< 0,001	< 0.001
Fluoranthene Effluent	mg/L	< 0.067	< 0.067	< 0.050	< 0,330	< 0.010	< 0.029
Fluorene Effluent	mg/L	< 0,067	< 0.067	< 0,050	< 0.330	< 0.010	< 0.029

Because we care 100% recycled paper produced by wind power energy

•

Ashland/OH3000_MS24/T/3/kp

Page: 1/2

P

Table 4.

Summary of Treatability Test Effluent Analytical Data, Hercules Incorporated, Hattiesburg, Mississippi. .

				Sample Results			
POTW Discharge Permit Parameter	Units	IBS-4 Centrifuge Centrate (250 ppm Anion Polymer)	IBS-4 Centrifuge Centrate (250 ppm Cation Polymer)	IBS-4 Centrifuge Centrate (No Polymer)	IBS-4 Filter Press Filtrate	IBS.4 Gravity Dewatering Liquid	IBS-8 Filter Press Filtrate
		6/23/2010	6/23/2010	6/23/2010	6/23/2010	6/23/2010	6/23/2010
Hexachiorobenzene Effluent	mg/L	< 0.067	< 0.067	< 0.050	< 0,330	< 0.010	< 0.029
Hexachiorobutadiene Effluent	mg/L	< 0.067	< 0.067	< 0.050	< 0.330	< 0.010	< 0.029
Hexachloroethane Effluent	mg/L	< 0.067	< 0,067	< 0.050	< 0.330	< 0,010	< 0.029
Methyl Chioride (Chloromethane) Effluent	mg/L	< 0.001	< 0.001	< 0.001	< 0.500	< 0,001	< 0.001
Methylene Chloride Effluent	mg/L	< 0.005	< 0,005	< 0.005	< 2.500	< 0.005	< 0.005
Naphthalene Effluent	mg/L	< 0,067	< 0.067	< 0.050	< 0.330	< 0,010	< 0.029
Nitro-Benzene Effluent	mg/L	< 0.067	< 0,067	< 0.050	< 0.330	< 0.010	< 0.029
Phenanthrene Effluent	mg/L	< 0.067	< 0.067	< 0.050	< 0,330	< 0.010	< 0,029
Pyrene Effluent	- mg/L	< 0.067	< 0.067	< 0.050	< 0.330	< 0,010	< 0.029
Tetrachloroethylene Effluent	mg/L	< 0.001	< 0.001	< 0.001	< 0.500	< 0.001	< 0,001
Toluene Effluent	mg/L	< 0.001	0.00052J	< 0.001	0.280J	< 0.001	0.100
Trichloroethylene Effluent	mg/L	< 0.001	< 0.001	< 0.001	< 0,500	< 0.001	< 0.001
Vinyl chloride Effluent	mg/L	< 0.001	< 0.001	< 0.001	< 0.500	< 0.001	< 0.001
			2				
(1)	The MDEQ P	OTW DIscharge Permit lis	Is a discharge limit for	1,3-Dichloropropylene. Th	is limit		
2	was used for 1	mele volume to an this te	sted.				

Insufficient sample volume to run this test. Estimated concentration. Milligrams per liter. Not applicable. Publicly Owned Treatment Works. Standard units. J J Mg/L SU SU