infrastructure, environment, buildings

HHERCULES

Sludge Characterization and Bench Scale Treatability Report

Hattiesburg, Mississippi

20 August 2010

ARCADIS

Sludge Characterization and Bench Scale Treatability Report

Hattiesburg, Mississippi

Prepared for
Hercules Incorporated

Prepared by
ARCADIS U.S., Inc.
10352 Plaza Americana Drive
Baton Rouge
Louisiana 70816
Tel 2252921004
Fax 2252189677

Our Ref
OH003000.MS24.00002

Date
20 August 2010

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential, and exempt from disclosure under applicable law. Any dissemination, distribution, or copying of this document is strictly prohibited.
Executive Summary i

1. Introduction 1
2. Objectives 1
3. Regulatory History 1
4. Rationale 2
5. Sludge Characterization 2
5.1 Mass and Volume Verification 2
5.2 Sample Collection 3
5.2.1 Analytical Sample Collection 3
5.2.2 Treatability Sample Collection 5
5.3 Analytical Testing and Results 5
5.3.1 Sludge Analytical Results 5
5.3.2 Native Soil Analytical Results 6
5.3.3 Investigation-Derived Waste (IDW) 7
5.3.4 Dewatered Solids Effluent Analysis 7
6. Sludge Treatability Determination 8
6.1 Overview 8
6.2 Dewatering Study 8
6.2.1 Criteria 9
6.2.2 Centrifuge 9
6.2.3 Baroid Screening 10
6.2.4 Filter Press 10
6.2.5 Gravity Dewatering 11
6.3 Solidification Study 11
6.3.1 Criteria 11
6.3.2 Methodology 12
6.3.3 Results 12
7. Feasibility Evaluation 13
7.1 Centrifuge Dewatering with Off-Site Disposal 13
7.1.1 Effectiveness 13
7.1.2 Implementability 14
7.2 Filter Press Dewatering with Off-Site Disposal 14
7.2.1 Effectiveness 14
7.2.2 Implementability 14
7.3 Gravity Dewatering with Off-Site Disposal 15
7.3.1 Effectiveness 15
7.3.2 Implementability 15
7.4 Solidification with Off-Site Disposal 16
7.4.1 Effectiveness 16
7.4.2 Implementability 16
7.5 Solidification with On-Site Capping 17
7.5.1 Effectiveness 17
7.5.2 Implementability 17
7.6 Selected Technology 17
Tables1 Summary of Toxicity Characteristic Leaching Procedure (TCLP) Data2 Summary of Total Analyte Data3 Summary of Quality Assurance/Quality Control Data4 Summary of Treatability Effluent Data

Figures

1 Site Location Map
22006 Aerial Photography
3 Detected TCLP Analyte Concentrations
4 Detected Total Analyte Concentrations
5 Sampling Protocol
6 Cross-Section Location Map
7 Cross-Sections $\mathrm{A}-\mathrm{A}^{\prime}, \mathrm{B}-\mathrm{B}^{\prime}$, and $\mathrm{C}-\mathrm{C}^{\prime}$
8 Potential Dewatering Locations

Appendices

A MDEQ Correspondence
B Field Forms
C Analytical Reports
D $\quad 95 \%$ UCL for TCLP Benzene
E POTW Effluent Discharge Calculations
F Dewatering Report
G Solidification Report
H Feasibility Evaluation Matrix
I IB Decommissioning Work Plan

ARCADIS

Sludge Characterization and Bench Scale Treatability Report
Hattiesburg, Mississippi

Executive Summary

The purpose of the characterization and bench scale treatability project was to evaluate sludge within the impoundment basin (IB) at the Hercules Incorporated facility located at 613 West $7^{\text {th }}$ Street in Hattiesburg, Mississippi. The primary objective was to identify an appropriate strategy for treatment and disposal of sludge within the IB. Based on the data collected during the April 2010 field effort and the subsequent laboratory analysis, an effective sludge management option has been identified.

The sludge sampling and analysis provides adequate characterization to support the project objectives. Using the characterization data, a statistical analysis was completed to determine if the IB sludge would be characteristically hazardous when managed. Based on this analysis, the sludge will be considered a nonhazardous waste for purposes of management and off-site disposal. Because the material is nonhazardous, Land Disposal Restrictions will not apply. Currently, off-site disposal at the Pine Belt Regional Landfill is anticipated.

The treatability work completed indicates the sludge readily dewaters under both passive and active treatment approaches. An evaluation of the technologies, using the criteria of effectiveness, implementability and cost, indicates that gravity dewatering in fabricated drying beds outside the IB is the most appropriate technology for dewatering the sludge prior to off-site disposal. Based on this analysis, an IB Decommissioning Work Plan has been developed. The Decommissioning Work Plan outlines the activities necessary to complete gravity dewatering of the sludge, management of the dewatering effluent through the current wastewater discharge permit, off-site disposal of the dewatered material at the Pine Belt Regional Landfill, backfilling of the IB, and reporting. Detailed plans and specifications will be developed for contractor bidding purposes. In the event another viable option is proposed by a contractor, Hercules will evaluate that option prior to decommissioning the IB.

Once the IB sludge has been effectively managed, monitoring of site-wide groundwater will continue under the Restricted Use Agreed Order (RUAO 5349 07). The purpose of the RUAO is to protect human health and the environment by restricting the use and activities on site while constituents in site-wide groundwater attenuate as described in the Corrective Action Plan Revision 01 (Groundwater \& Environmental Services, Inc. dated January 20, 2005).

Sludge Characteriz and Bench Scale Treatability Report

1. Introduction

ARCADIS U.S., Inc. (ARCADIS), submitted the Sludge Characterization and Bench Scale Treatability Work Plan (Work Plan) to Hercules Incorporated (Hercules) on March 1, 2010. The Work Plan presented a strategy and procedures for evaluation of the current conditions of an on-site impoundment basin (IB) located at Hercules' 613 West $7^{\text {th }}$ Street facility in Hattiesburg, Mississippi (Figures 1 and 2). The Work March15, 2010. Field activities were initiated in Approved the Work Plan in a letter dated results of the characterization and treatability actipril 2010. This report presents the selection of an effective remedy for properly mactivities conducted to support the decommissioning the IB.

2. Objectives

The primary objective of the activities conducted was to gather data that can be used Data were collected to evaluate technologies that can be implemented to
decommission the IB und disposal; and 2) in-place closure. The closure scenarios: 1) dewatering with off-site physical characteristics, chemical, and treatability chad information on the volume, objective was established as a result of Hercules' characteristics of the sludge. This appropriately and decommission the IB.

3. Regulatory History

In December 2007, Hercules entered into a "Restrictive Use Agreed Order" (RUAO 534907) with MDEQ. The purpose of the RUAO is to proted hur" and the environment by restricting the use and activities is protect human health site-wide groundwater attenuate as described in the constite on site whilents in (Groundwater \& Environmental Services, Inc. date Corrective Action Plan Revision 01 Permitted water disc (POTW) has occurred since March City of Hattiesburg Publicly Owned Treatment Works Pollution Control Permit number is MSP091286. Bent State of Mississippi Water necessary, Hercules contracted for the remova. Because the IB was no longer Following removal of the sludge, the IB would and disposal of the IB sludge. Monitoring of site-wide groundwater would co backfilled to grade and revegetated.

ARCADIS

Sludge Characterizat and Bench Scale Treatability Report

Hattiesburg, Mississippi

Hercules notified MDEQ of its intent to decommission the IB in a letter dated April 22, 2008. In response to the notification, MDEQ requested, in a letter dated June 8, 2008, additional information regarding the closure operations including a units. MDEQ also sent a letter to Hercules dated August 25, 2009 (Appendix A), following several meetings and submittal of a draft closure plan. In the letter, MDEQ outlined additional closure procedures. Those closure procedures add letter, MDEQ analysis and characterization of the sludge in regard to the of the water and sludge from within the IB and treatability Work Plan to MDEQ for review. Bercules submitted the characterization implemented the Work Plan to gather the additional data MDEQ's approval, Hercules decommissioning the IB.

4. Rationale

In correspondence dated August 25, 2009, MDEQ outlined a general procedure for closure of the IB, which stated if the characterization indicates that the sludge is nonhazardous for benzene and other constituents, the Land Disposal Restrictions (LDR) in 40 Code of Federal Regulations (CFR) Part 268 would not apply.

An effort was undertaken in April 2010 as part of this characterization plan to preliminarily determine whether the LDR would apply to the IB sludge using the above procedure. The evaluation also gathered data to determine: 1) if the sludge can be dewatered or solidified/stabilized sufficiently to allow for transportation over public roadways to an off-site disposal facility; and 2) if sufficient strength can be imparted to this evaluation are presented in an engineered cap for on-site closure. The results of

5. Sludge Characterization

Sludge characterization consisted of surveying, sample collection, and laboratory analysis of the IB material. Figures 3 and 4 show the locations where samples were collected in April 2010. Figure 5 is a graphical depiction of the sampling protocol that
was followed.

5.1 Mass and Volume Verification

A surveyor licensed by the State of Mississippi surveyed the areal extent of the IB. In addition, the elevations of the top of sludge at each of the locations sampled in the IB

[^0]Sludge Characterization and Bench Scale Treatability Report
Hattiesburg, Mississippi

Abstract

were surveyed. During collection of IB samples, the on-site geologist measured the depth of the sludge material to native soil within the core barrels. Native soil was not encountered in the IBS-1 location at a depth of 10.2 feet below the top of sludge. For boring locations IBS-2 through IBS-8 (Figure 3), native soil was encountered at depths ranging from 4.3 to 9.5 feet below the top of sludge. Sludge was observed in each boring. Distinct upper and lower sludge layers were observed in five of the borings. The layers were visually delineated by color and texture changes. Physical observations and the depths of each layer were noted on Sample/Core Logs (Appendix B). Using the surveyed elevations and the measurements made in the field, the volume of the upper and lower sludge layers encountered in the IB were determined using AutoCAD ${ }^{\oplus}$ software. The upper and lower sludge layers contained approximately 3,800 cubic yards (cy) and 900 cy of material, respectively, for a total of approximately 4,700 cy (in-place) of sludge in the IB.

5.2 Sample Coilection

Sample collection activities were conducted from April 14, 2010, through April 16, 2010. MDEQ representatives observed the sample collection activities.

5.2.1 Analytical Sample Collection

Sludge and native soil samples were collected from the IB locations shown on Figure 3 using a flat-bottom boat, vibracoring equipment, and/or 1 -gallon plastic buckets. The sludge samples collected using vibracoring equipment were brought to the surface and examined by a geologist. It was noted that sludge was present in distinct upper and lower layers. Upper layer sludge was black in color, while lower layer sludge was tan and had a firmer consistency. Only upper layer sludge was encountered at the IBS-3, IBS-4, and IBS-7 sample locations, and these locations terminated in native soil material. Analytical samples collected from the sludge material contain either "US" or "LS" in the sample identifier to indicate upper sludge or lower sludge, respectively. Three cross-sections (Figures 6 and 7) were developed that depict the approximate extent of the upper and lower sludge layers. Soil samples were collected from native materials beneath the lower sludge. The native soil was primarily sandy and/or silty clay material. Sand and silty clay were not observed in the sludge samples. The presence of a native soil layer containing these soil types beneath the IB is consistent with previous subsurface observations noted in this area. Copies of the forms used to \log field observations are included in Appendix B.

Sludge samples were collected from the upper and lower half of the total sludge interval at eight IB sample locations and native soil samples were collected at seven sample locations (Figures 3 and 4). Each sample was analyzed for the following constituents:

- Volatile organic compounds (VOCs) by U.S. Environmental Protection Agency (USEPA) Method 8260B;
- Semivolatile organic compounds (SVOCs) by USEPA Method 8270C; and
- Resource Conservation and Recovery Act (RCRA) 8 metals by USEPA Method 6010/7470.

In addition to the total analyte analyses listed above, the sludge samples were also analyzed for:

- Toxicity Characteristic Leaching Procedure (TCLP)-VOCs;
- TCLP-SVOCs;
- TCLP-Pesticides and Herbicides;
- TCLP-Metals; and
- Reactivity, Corrosivity, and Ignitability by USEPA Method 1311.

The results of the TCLP and total analyte testing are included on Tables 1 through 3. Figure 3 depicts the detected TCLP concentrations in the IB and Figure 4 depicts the detected total analyte concentrations. Copies of the laboratory reports are included in Appendix C.

Samples selected for submission to the laboratory, including quality assurance/quality control samples (trip, field, and equipment rinsate blanks), were placed into laboratory-provided sample containers containing the appropriate preservatives. The samples were packaged on ice and shipped to TestAmerica Laboratories, Inc.'s (TestAmerica's), analytical laboratory in Savannah, Georgia, under proper chain-of-custody procedures.

[^1]- reçed paper pionach wh wower enelgy

ARCADIS

5.2.2 Treatability Sample Collection

During vibracoring operations to collect analytical sludge samples, it was observed that the majority of the depth of the IB above native soil contained a watery, black sludge in the upper layer (average thickness of 6.1 feet). This sludge appeared to be relatively uniform across the IB. Ten-gallon sludge samples of this material were collected from in two new 5 -gallon buckets with sealing lids. Each sludge sample was containerized The Work Plan called for the collection of upper and lower sludge samples for treatability testing. While two distinct layers were observed sludge layer (average thickness of 2.3 feet) appeared to at most locations, the lower ins the Paint Filter Liquids Test (USEPA Method in to be consolidated enough to in the vibracore sample tube. Because the purod 9095A) in the state it was observed evaluate dewatering, it was determined that this testing the treatability sampling was to from the lower layer. Therefore, treatability samples was unnecessary for sludge sludge layer.

Selected samples were submitted to geotechnical and treatability laboratories after the TCLP analytical results revealed that the sludge was nonhazardous (see Section 5.3.1). One of the sample buckets from each of the selected locations was submitted to Fugro Consultants, LLC (Fugro), in Baton Rouge, Louisiana, for the solidification study and the for the dewatering study. Proper chain-of-custody pral Inc. (TMA), in Gonzales, Louisiana, transport and relinquishment of the samples.

5.3 Analytical Testing and Results

Sixteen sludge samples were collected and submitted to TestAmerica for TCLP and total analyte testing using the protocol depicted on Figure 5. Copies of the analytical reports are included in Appendix C.

5.3.1 Sludge Analytical Results

Results of the TCLP testing are included in Table 1. Detected TCLP concentrations are shown on Figure 3. The TCLP results were compared to the toxicity characteristic (TC) levels contained in 40 CFR 261.24. Of the sixteen samples submitted for TCLP analyses, three samples (IBS-1-US, IBS-3-LS, and IBS-7-LS) contained benzene

ARCADIS

Sludge Characterization and Bench Scale Treatability Report
Hattiesburg, Mississippi

concentrations above the TC levels. No other TCLP parameters were detected above regulatory levels.

It is not practicable to sample and test the entire volume of sludge in the IB to determine the TCLP-benzene results for all of the sludge in the IB. Additionally, mixing within the sludge will occur during removal, dewatering, solidification, and/or loading for off-site transport during closure of the IB. Therefore, it is appropriate to determine the 95% Upper Confidence Limit (UCL) value (as allowed under SW-846 Chapter 9) of the TCLP-benzene results as a means for assessing the characteristics of the sludge as it is being managed. The 95% UCL is a calculated statistical value used to represent the true mean of a set of data with 95% confidence. A 95% UCL analysis was performed on the TCLP-benzene concentrations. The analysis determined that the 95% UCL TCLP-benzene concentration in the IB is 0.159 milligram per liter (mg / L), well below the $0.5 \mathrm{mg} / \mathrm{L}$ benzene TC standard. This result indicates that with 95% confidence, the true mean of the TCLP-benzene concentrations of the entire volume of sludge in the IB is less than the TC standard for benzene. The options presented in this report are based on the non-hazardous characterization of the sludge using the 95% UCL concentration for benzene of $0.159 \mathrm{mg} / \mathrm{L}$. The 95% UCL analysis is described in Appendix D.

Results of the total analyte testing of IB sludge are included in Table 2. All of the detected total analyte concentrations are shown on Figure 4.

5.3.2 Native Soil Analytical Results

Native soil samples were collected from beneath seven of the sludge locations (IBS-2-NS through IBS-8-NS). The native soil layer was not reached at the IBS-1-NS sample location at a depth of 11.5 feet below the water surface (10.2 feet below top of sludge) due to reaching the limit of the sampling device. The samples were submitted to TestAmerica for total analyte testing. The results of the testing are included in Table 2. Detected total analyte concentrations are shown on Figure 4.

The total analyte results for native soil beneath the IB were compared to the MDEQ Tier 1 TRGs for restricted soil use. 2-Nitroaniline, benzene, carbon tetrachloride, chloroform, dibenz(a,h)anthracene, and toluene were detected at concentrations exceeding their respective Tier 1 TRGs. It should be noted that these native soil samples were collected below the water table and, therefore, impacts present in these samples may be representative of groundwater conditions in the vicinity of the IB.

ARCADIS

Sludge Characterization and Bench Scale Treatability Report
Hattiesburg, Mississippi

5.3.3 Investigation-Derived Waste (IDW)

IDW, including personal protective equipment, disposable sampling equipment, packaging, etc., was disposed of in a municipal waste landfill. Sludge samples whose TCLP results were within TC limits were returned to the IB. IDW sludge samples from the individual sampling locations that failed the TC testing criteria were disposed of in July 2010 as hazardous waste. The disposal effort was contracted through Ashland Distribution Environmental Services.

5.3.4 Dewatered Solids Effluent Analysis

The Work Plan called for collection and sampling of the centrifuge, filter press, and gravity dewatering effluent water that came out of the IB sludge during treatability testing so a determination of how to manage this waste stream during IB sludge management could be completed. Effluent generated during the dewatering study was containerized. The analytical testing required by the POTW permit includes the following: VOCs, pH, SVOCs, biochemical oxygen demand (BOD), and oil and grease. Due to the limited volume of effluent generated during treatability testing, not all of the proposed testing was completed. Enough sample volume of the treatability effluent was available to conduct the VOC, pH , and SVOC analyses. There was insufficient volume to analyze the treatability laboratory effluent for BOD and oil and grease.

The results of the treatability effluent water analysis were within the limits set by the current POTW discharge permit, except for the following: IBS-8 Filter Press Filtrate sample had of pH of 11.5 standard units (s.u.), which slightly exceeded the limiting pH effluent range of 5.0 to 11.0 s.u.; benzene was detected at a concentration of $0.0013 \mathrm{mg} / \mathrm{L}$ in the IBS-8 Filter Press Filtrate sample; toluene was detected in the IBS-4 Centrifuge Centrate (250 parts per million [ppm] Cation Polymer), IBS-4 Filter Press Filtrate, and IBS-8 Filter Press Filtrate samples at concentrations of $0.00052 \mathrm{~J} \mathrm{mg} / \mathrm{L}, 0.280 \mathrm{~J} \mathrm{mg} / \mathrm{L}$ and $0.100 \mathrm{mg} / \mathrm{L}$, respectively. The effluent water results are listed in Table 4.

The current IB discharge system has pH adjustment capabilities which can ensure that the pH of effluent discharged from the IB is within the limiting pH range.

The POTW permit is based on pounds per day of each parameter discharged to the POTW. The calculations in Appendix E show the limiting permit parameter and the volume of water that can be discharged per day from the IB during closure activities.

ARCADIS

Sludge Characterizat and Bench Scale Treatability Report

These calculations apply only to the water entrained in the sludge, not the water that is currently discharged from the surface of the IB as a result of rain events. The calculations in Appendix E were made assuming that there are 856,290 gallons of water contained in the sludge in the IB, based on the lowest in-situ solids content value reported of 10%. The potentially limiting parameter that will govern the pumping of effluent to the POTW is toluene. Using the maximum toluene effluent concentration of $0.280 \mathrm{mg} / \mathrm{L}$ as a conservative estimate, a total of 92,764 gallons per day of effluent can be discharged to the POTW during sludge dewatering activities. It should be noted that while the highest toluene value reported by the lab was used in this analysis, there were additional data that indicate lower toluene values. The actual toluene concentrations in water discharged to the POTW will be monitored at the interval specified by MDEQ in the POTW permit to ensure permit limits are met during dewatering activities associated with the IB decommissioning.

6. Sludge Treatability Determination

6.1 Overview

The bench scale treatability testing consisted of determining the amenability of the sludge to dewatering and solidification processes. Both determinations consisted of testing limited quantities of sludge material. While efforts were made to collect representative sludge samples, the treatability of the sludge during field implementation of any of the evaluated technologies may differ from the observations made during bench scale testing.

Due to the observed uniformity of the upper sludge material and in-situ consolidation of the lower sludge material during characterization sampling activities, only upper sludge material samples were collected for bench scale testing purposes.

6.2 Dewatering Study

Three samples (IBS-2, IBS-4, and IBS-8) were containerized and submitted to TMA for dewatering analysis. TMA tested the sludge material before and after dewatering simulations were performed. The dewatering simulations consisted of:

- Centrifuge simulation;
- Baroid screening;

[^2]- Filter press simulation; and
- Gravity dewatering simulation.

The sludge material was analyzed for total solids prior to conducting the simulations. The solids percentage of the raw material (i.e., prior to dewatering) ranged from 12% to 20% by weight.

6.2.1 Criteria

The dewatering study focused on determining the following:

- If dewatered material will pass the Paint Fitter Liquids Test (USEPA Method 9095A), indicating a material is dry enough for transportation over public roadways and disposal in a permitted landfill without violating LDRs;
- The percent solids remaining in the samples that pass the Paint Filter Liquids Test (higher solids contents indicate more effective dewatering); and
- The quality of the effluent as related to the limitations of Hercules' POTW discharge permit (see Section 5.3.4 and Appendix E).

6.2.2 Centrifuge

Centrifuge technology was used to induce phase separation of the sample solids contained in a raw material sample from the liquid. The gravitational force of the laboratory centrifuge is a close approximation of the 3,000 times the force of gravity that can be expected for a typical full-scale centrifuge unit.

An initial centrifuge simulation was run on the raw sludge sample collected from IBS-2 without chemical addition and produced a filter cake with 47% solids, although the effluent was not clean. This material passed the Paint Filter Liquids Test. Two additional centrifuge simulations were performed on each of the IBS-2, IBS-4, and IBS-8 samples, one with the addition of 250 ppm cationic polymer, the other with 250 ppm anionic polymer. The simulations were each performed for 2 minutes. Both simulations produced filter cake that passed the Paint Filter Liquids Test for all samples. The resulting centrifuge filter cake solids ranged from 28% to 34%. The effluent had good clarity and light solids; however, the percent solids is less than the initial simulation.

ARCADIS

Sludge Characterization and Bench Scale Treatability Report
Hattiesburg, Mississippi

6.2.3 Baroid Screening

Baroid testing on various filter media and chemical treatments was conducted as a screening tool prior to conducting a recessed chamber filter press simulation. The recessed chamber simulation takes approximately 12 times the sample volume as a Baroid unit. All of the Baroid scenarios were conducted at 80 pounds per square inch (psi) and produced filter cake that passed the Paint Filter Liquids Test. The duration of the applied pressure lasted between 3 and 6 minutes. The first scenario was run without the use of a chemical reagent. The resultant filter cake had a solids content of 40 to 42%. While this represents a favorable increase in the percent solids as compared to the in-situ value, the filter cake was described as soft and sticky. The stickiness of the filter cake could pose machine-fouling problems during full-scale operations. Because of this potential problem, the second through seventh Baroid simulations tested the effectiveness of reagent additions to produce a more favorable filter cake.

The second and third Baroid scenarios tested the addition of 0.5\% and 1.0\% of diatomaceous earth to the sludge. The 0.5% diatomaceous earth addition yielded a good quality filter cake with 47% to 49% solids. The 1.0% diatomaceous earth addition resulted in 50% to 56% solids with a good quality filter cake.

The fourth and fifth Baroid scenarios consisted of adding 0.5% and 1.0% of hydrated lime to the sludge. The 0.5% and 1.0% hydrated lime additions resulted in percent solids ranging from 49% to 62% and 51% to 61% by weight, respectively, with good quality filter cake. The 62% solid content was the highest percent solids measured during Baroid testing.

The sixth and seventh Baroid simulations were conducted with the addition of 0.5% hydrated lime plus 0.5% ferric sulfate and 1.0% hydrated lime plus 0.5% ferric sulfate. The 0.5% hydrated lime plus 0.5% ferric sulfate resulted in fair quality filter cake with percent solids ranging from 45% to 55%. The 1.0% hydrated lime plus 0.5% ferric sulfate yielded a fair quality filter cake with 51% to 56% solids. When compared to the reagent addition with only hydrated lime testing, the ferric sulfate addition did not raise the percent solids content.

6.2.4 Filter Press

Based on the results of the Baroid testing, the 0.5% hydrated lime addition was tested in the recessed chamber filter press simulation unit. This simulation was conducted for

[^3]100% recysled papper prodused idy in ind nower ei eigy

ARCADIS

Sludge Characterization and Bench Scale Treatability Report

5.5 minutes at 120 psi. After the run, the filter cake solids were determined to pass the Paint Filter Liquids Test, be of good quality, and ranged from 55 to 62% solids. These results are the highest percent solids range measured during the dewatering portion of the treatability study.

6.2.5 Gravity Dewatering

A gravity dewatering simulation was conducted by TMA allowing three 1-gallon samples of sludge material to sit in aluminum pans with $1 / 16^{\text {th }}$-inch holes drilled in the bottom and spaced 2 inches apart. After 4.5 days, the filter cake from all three samples passed the Paint Filter Liquids Test conducted by TMA (Appendix F). The dewatered TMA samples were submitted to Fugro for additional testing. Two of the dewatered samples were analyzed as received and had total solids contents of 33.5% and 41.0%. Both of these samples passed the Paint Filter Liquids Test. Fugro remixed free liquid contained in the third sample and calculated a solids content of 16.1\%. Fugro also conducted a Paint Filter Liquids Test on the TMA sample and this re-mixed material did not pass.

6.3 Solidification Study

A sludge solidification study was conducted to determine if desired characteristics can be imparted to the sludge through reagent amendments. The solidification study consisted of mixing raw sludge samples with Portland cement, quick lime, fly ash, and Calciment ${ }^{\oplus}$ in different percentages. The resultant mixtures were tested for paint filter liquids and unconfined compressive strength. The test results are included in Appendix G.

6.3.1 Criteria

The criteria for the solidification study are two-fold because solidified material may be disposed of off site or decommissioned in-place:

- Solidified material must pass the Paint Filter Liquids Test (USEPA Method 9095A), if this material will be disposed of off site, indicating the material is dry enough to transport over public roadways and for disposal in a permitted landfill; or
- The solidified sludge material must have an unconfined compressive strength (UCS) of 8 psi after 3 days, which will ensure that the solidified material can
support the weight of an engineered cap if on-site closure is selected as a final remedy.

6.3.2 Methodology

Three 5-gallon samples of sludge material were submitted to Fugro for the solidification study. The raw sludge material (i.e., without the addition of any reagent) was subjected to moisture content, specific gravity, dry bulk density, percent solids, and the Paint Filter Liquids Test. Because all of the untreated material samples failed the Paint Filter Liquids Test, reagents were added to these samples and additional testing was completed. Two sets of sample molds were made of the mixed material, one for strength testing after 3 days and one for strength testing after 7 days.

6.3.3 Results

Portland cement, quick lime, fly ash, and Calciment ${ }^{\oplus}$ (a proprietary blend of solidification reagents) were added to the raw sludge in the following percentages: 5% Portland cement, 10\% Portland cement, 5% quick lime, 10% quick lime, 15% fly ash, 25% fly ash, 25% quick lime, 10% Calciment ${ }^{\oplus}$, and 20% Calciment ${ }^{\oplus}$. Sample containers were molded and allowed to cure for 3 days. After 3 days, the molds were tested for bulk density (to determine weight of the final mixture), for UCS (to determine if the final mixture met the 8 psi criterion), and by the Paint Filter Liquids Test (to determine if the material is suitable for transport over public roadways).

After 3 days, the bulk density of both Portland cement and the 5\% and 10\% quick lime samples was less than the raw material. This indicates that enough of the water content was driven off by the reaction of the reagent to reduce the overall unit weight of the resultant mixture. The bulk density of the 15% fly ash, 25% fly ash, 25% quick lime 10% Calciment ${ }^{\oplus}$, and 20% Calciment ${ }^{\oplus}$ samples were 0.3 pound per cubic foot (pcf), $7.7 \mathrm{pcf}, 5.9 \mathrm{pcf}, 3.1 \mathrm{pcf}$, and 9.1 pcf greater than the bulk density of the raw sample. This indicates that the reagent additions at these percentages increase the overall weight of the resultant mixture.

None of the reagent additions resulted in a sample that met the 8 psi after 3 day criterion established as the minimum strength required to support the weight of an engineered cap. The 25% addition of quick lime as a reagent mixture was added as a mixture to determine if a reagent addition of this magnitude, although likely economically unfeasible, would impart the required strength to the sludge. Because

ARCADIS

Sludge Characterization and Bench Scale Treatability Report
Hattiesburg, Mississippi

this mixture only achieved a UCS of 6.5 psi , the 25% quick lime addition was unsuccessful.

In addition to the 3-day strengths, the remaining molded samples were tested after allowing 7 days for reaction to take place. Only the 25% addition of quick lime yielded a strength (13.6 psi) greater than the required strength of 8 psi .

7. Feasibility Evaluation

This feasibility evaluation was conducted in a manner to explore the merits of applying each of the closure technologies evaluated as the final remedy for the IB sludge. The technologies were evaluated on the following two criteria:

- Effectiveness - The ability of the technology to be used to efficaciously decommission the IB; and
- Implementability - The ability of the closure technology to be employed within site-specific constraints.

The merits of each technology were evaluated as discussed below. A matrix summarizing the results of the evaluation is included in Appendix H .

7.1 Centrifuge Dewatering with Off-Site Disposal

Centrifuge dewatering would be employed to dewater the IB sludge. The effluent from the centrifuge would be routed back to the IB and discharged under Hercules' POTW permit. The resultant solidified material would be tested for passage of the Paint Filter Liquids Test. Once passage of the Paint Filter Liquids Test was verified, the material would be loaded and transported for disposal at the Pine Belt Regional Landfill (Appendix A).

7.1.1 Effectiveness

Centrifuge technology is capable of dewatering the solidified material to the extent needed to pass the Paint Filter Liquids Test. The resultant effluent can be physically routed for disposal through Hercules' POTW permit. Disposal of the resultant solids can be achieved by transporting the solidified sludge to the Pine Belt Regional Landfill. This technology can be employed effectively at this site.

[^4]
ARCADIS

implementation. Use of a filter press is susceptible to mechanical failures which could adversely affect the schedule. This technology is considered implementable.

7.3 Gravity Dewatering with Off-Site Disposal

Gravity dewatering would be employed by constructing dewatering cells in the vicinity of the IB to passively dewater the sludge material to the extent that the dewatered material would pass the Paint Filter Liquids Test. Once passage of the Paint Filter Liquids Test was verified, the material would be loaded and transported to Pine Belt Regional Landfill.

7.3.1 Effectiveness

Gravity dewatering technology is capable of dewatering the solidified material in the dewatering cells. Further, dewatered material could be augmented with reagent addition (5% Portland cement or 10% quick lime), if required to pass the Paint Filter Liquids Test. The resultant liquid effluent can be physically routed for disposal through Hercules' POTW permit. Disposal of the resultant solids can be achieved by transporting the solidified sludge to the Pine Belt Regional Landfill. This technology can be employed effectively at this site.

7.3.2 Implementability

Gravity dewatering can be accomplished with self-powered equipment. This technology would be implemented by initially stacking the sludge on the west end of the IB, while discharging water through the permitted POTW discharge. If the sludge can be dewatered in the IB, dewatering will take place in the IB. If the sludge cannot be sufficiently dewatered due to groundwater infiltration, a dewatering area(s) located near the site would be constructed as dewatering cells. Potential dewatering sites are shown on Figure 8. The sludge would be excavated and/or pumped to the cell(s). Water discharged from the cell adjacent to the western IB boundary would be drained directly into the IB. The potential dewatering area located south of the IB has a drainage pipe that gravity discharges to the IB. The eastern boundary of the potential dewatering cells located north of the IB is adjacent to a concrete-lined ditch that gravity drains to the industrial sewer system. The concrete-lined ditch gravity discharges to the POTW through Hercules' POTW permit. Because passive dewatering is weather dependent, the duration of active implementation of this technology may be among the longest of the evaluated technologies. This technology is conducted in an open atmosphere; therefore, control of nuisance odors may become necessary during

Sludge Characterization and Bench Scale Treatability Report
Hattiesburg, Mississippi

implementation. Gravity dewatering is not as susceptible to mechanical failures causing project delays as the centrifuge and filter press options. This technology is considered implementable.

7.4 Solidification with Off-Site Disposal

Under this scenario, reagent would be added to the IB sludge for the purpose of passing the Paint Filter Liquids Test. Because groundwater levels in the vicinity of the IB are above the level of the sludge, solidification may be conducted after the sludge is removed from the IB. Once passage of the Paint Filter Liquids Test was verified, the material would be loaded and transported for disposal at the Pine Belt Regional Landfill.

7.4.1 Effectiveness

Solidification is capable of dewatering the solidified material to the extent needed to pass the Paint Filter Liquids Test. The resultant effluent can be physically routed for disposal through Hercules' POTW permit. Disposal of the resultant solids can be achieved by transporting the solidified sludge to the Pine Belt Regional Landfill. This technology can be employed effectively at this site.

7.4.2 Implementability

Solidification can be accomplished with self-powered equipment. This technology would be implemented by discharging water through the permitted POTW discharge. If the sludge can be sufficiently dewatered in the IB, dewatering will take place in the IB. If the sludge cannot be sufficiently dewatered in the IB due to infiltration of groundwater, a mixing area(s) located near the IB will be constructed to facilitate reagent mixing. At the point in which the material is dewatered to the highest extent practicable, the most cost-effective reagent at the time of implementation would be added to the ex-situ sludge. Once an area was mixed, reagent would be added to an adjacent area. A long-reach excavator would be necessary to accomplish the mixing due to the limited access for equipment on the south side of the IB. Once sufficient time has passed for the reagent to react with the sludge, a Paint Filter Liquids Test would be conducted to determine the endpoint of reagent addition. Because reagent additions would occur in the mixing area, this technology is weather dependent. However, by using a reagent with a quick reaction time (3 days), the amount of material that might have to be reworked due to an unexpected rain event would be minimized. Because this technology is conducted in an open atmosphere, control of

[^5]
ARCADIS

Sludge Characterization
and Bench Scale Treatability Report
Hattiesburg, Mississippi

nuisance odors may become necessary during implementation. This technology is considered implementable.

7.5 Solidification with On-Site Capping

Solidification with on-site capping was evaluated. Under this scenario, reagent would be added to the IB sludge to yield a compressive strength of 8 psi after 3 days. The solidified material would then be suitable for the installation of an engineered cap.

7.5.1 Effectiveness

The required strength could not be achieved in 3 days. This option is not effective.

7.5.2 Implementability

While waiting 7 days for the 25% quick lime reagent addition to achieve the required strength is technically feasible, this reagent addition is eliminated from consideration due to the amount of reagent and time required to achieve this strength. In addition, mixing under field conditions is not as controlled as during a laboratory simulation and field conditions may require more reagent than the laboratory setting. Further mixing of sludge below the groundwater level within the IB is unlikely to achieve the necessary strength. This technology is not implementable.

7.6 Selected Technology

Based on the above evaluation, the application of centrifuge, filter press, gravity dewatering, and solidification dewatering with off-site disposal are viable options. Because all of these technologies are effective and implementable, cost becomes a differentiating factor. It is recommended to select gravity dewatering with off-site disposal due to the fact it is the simplest, effective, and implementable option among the evaluated technologies. Appendix I contains a work plan that describes how gravity dewatering would be implemented at this site. Detailed plans and specification will be developed for contractor bidding purposes. In the event another viable option is proposed by a contractor, Hercules will evaluate that option prior to decommissioning the IB.

Chemical Name	Locatlon ID: Sample Date: Unit:	RCRA TCLP Limit	IBS-1-LS 4/14/2010	$\begin{aligned} & \text { IBS-1-US } \\ & \text { 4/145/2010 } \end{aligned}$	IBS-2-LS 4/16/2010	$\begin{aligned} & \text { IBS-2-US } \\ & \text { 4/16/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-3-LS } \\ & \text { 4/14/2010 } \end{aligned}$	IBS-3-US 4/15/2010	$\begin{aligned} & \text { IBS-4-LS } \\ & \text { 4/14/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-4-US } \\ & \text { 4/15/2010 } \end{aligned}$
General Chemistry										
Cyanide - Total	mg/kg	NA	1.7 J	1.3 J	6.45	1.2 J	6.85	<20	1.6J	<22
Sulfide	$\mathrm{mg} / \mathrm{kg}$	NA	340	3100	350	3400	480	610	790	1900
Ignitabilly	$\mathrm{mm} / \mathrm{sec}$	$<60^{\circ} \mathrm{C}$	NB							
pH	S.U.	<2 or > 22.5	3.27	6.64	3.26	6.25	3.58	6.4	5	6.36
Metals - TCLP										
Arsenic	mg/	5	<0.2	<0.2	<0.2	< 0.2	< 0.2	< 0.2	<0.2	< 0.2
Earium	mg / L	100	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium	mg h	1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1
Chromium	mg / L	5	<0.2	<0.2	< 0.2	<0.2	< 0.2	< 0.2	<0.2	<0.2
Lead	mg / L	5	<0.2	<0.2	< 0.2	< 0.2	<0.2	<0.2	<0.2	< 0.2
Mercury	mg / L	0.2	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Selenium	$\mathrm{mg} / 2$	1	< 0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Silver	mg / L	5	< 0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1
Organochlorine Pesticidas \& PCBs (GC)-TCLP										
Chiordane	mg / L	0.03	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025	< 0.025
Endrin	mg h	0.02	< 0.005	< 0.005	<0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005
Gamma-Bhc (Lindane)	mg / L	0.4	< 0.0025	<0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025
Heptachior	mg / L	0.008	<0.0025	< 0.0025	< 0.0025	< 0.0025	<0.0025	< 0.0025	<0.0025	< 0.0025
Heptachilor Epoxide	mg /	0.008	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025
Methoxychior	mg / L	10	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025
Toxaphene	mg / L	0.5	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	< 0.25	<0.25
Herblcides (GC)-TCLP										
2,4-D	mg / L	10	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Stlvex ($2,4,5-\mathrm{TP}$)	mg h	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
VOCs-TCLP										
1,1-Dichioroethylene	mg/	0.7	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02
1.2-Dichloroethane	mg / L	0.5	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
2-Butanone (Mek)	mg/L	200	<0.2	<0.2	<0.2	< 0.2	-0.2	< 0.2	< 0.2	<0.2
Benzene	mg / L	0.5	0.21	0.65	0.13	0.058	0.96	0.12	0.052	0.038
Carton Tetrachloride	mg / L	0.5	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02
Chlorobenzene	mg / L	100	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chioroform	mgh	6	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Tetrachloroethene	mg / L	0.7	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	<0.02	< 0.02	< 0.02
Trichloroethylene	mg/L	0.5	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02
Vinyl Chioride	mg /	0.2	<0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02

Chemical Name	Location ID： Sample Date： Unit：	RCRA TCLP L．Imit	$\begin{aligned} & \text { IBS-1-LS } \\ & \text { 4/44/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-1-US } \\ & \text { 4/15/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-2-LS } \\ & \text { 4/16/2010 } \end{aligned}$	$\begin{aligned} & \text { 1BS-2.US } \\ & \text { 4/16/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-3-LS } \\ & \text { 4/14/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-3-US } \\ & \text { 4/15/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-4-LS } \\ & \text { 4/14/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-4-US } \\ & 4 / 15 / 2010 \end{aligned}$
SVOCs－TCLP										
1．4－Dichlorobenzene	mg／L	7.5	＜ 0.25	<0.05	<0.05	<0.05	<0.05	<0.05	<0.25	＜ 0.05
2．4，5－Trichlorophenol	mg / L	400	＜ 0.25	<0.05	＜ 0.05	<0.05	＜ 0.05	<0.05	<0.25	＜ 0.05
2，4，6－Trichiorophenol	mg / L	2	<0.25	<0.05	<0.05	<0.05	＜ 0.05	<0.05	＜ 0.25	＜ 0.05
2，4－Dinitrotoluene	mg / L	0.13	＜ 0.25	<0.05	＜ 0.05	<0.05	＜ 0.05	<0.05	<0.25	<0.05
Hexachloro－1，3－Butadiene	mg / L	0.5	＜ 0.25	＜ 0.05	<0.05	<0.05	＜ 0.05	<0.05	＜ 0.25	＜ 0.05
Hexachlorobenzene	mg / L	0.13	<0.25	<0.05	<0.05	<0.05	<0.05	＜ 0.05	<0.25	<0.05
Hexachioroethane	mg / L	3	＜ 0.25	＜ 0.05	＜ 0.05	＜ 0.05	＜ 0.05	<0.05	＜ 0.25	＜ 0.05
Methyl Phenols，Total	mg / L	200	1.4	0.5	0.88	0.15	0.65	0.4	1.7	0.23
Nitrobenzene	mg / L	2	<0.25	<0.05	＜ 0.05	<0.05	＜ 0.05	<0.05	<0.25	<0.05
Pentachlorophenoi	mg / L	100	＜ 1.2	<0.25	＜ 0.25	<0.25	＜ 0.25	<0.25	＜ 1.2	＜ 0.25
Pyridine	mg / L	5	<1.2	<0.25	＜0．25	<0.25	＜ 0.25	<0.25	<1.2	<0.25

[^6]Ashland／OH3000．MS24／T／1T1－TCLP／kp

Chemlcal Name	Location ID: Sample Date: Unit:	RCRA TCLP LImit	$\begin{aligned} & \text { IBS-5-LS } \\ & \text { 4/15/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-5-US } \\ & \text { 4/15/2010 } \end{aligned}$	IBS-6-LS 4/15/2010	$\begin{aligned} & \text { IBS-6-US } \\ & \text { 4/15/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-7-LSS } \\ & \text { //45/2010 } \end{aligned}$	18S-7.US 4/15/2010	IBS-8-LS 4/15/2010	$\begin{aligned} & \text { IBS-B-US } \\ & 4 / 15 / 2010 \end{aligned}$
General Chemlstry										
Cyanide - Total	mg/kg	$\begin{aligned} & \text { NA } \\ & \text { NA } \end{aligned}$	$\begin{aligned} & <15 \\ & 710 \end{aligned}$	$\begin{aligned} & \text { 4.1J } \\ & 4500 \end{aligned}$	1500	3600	1300	1900	1800	3700
Sulfide	mg/kg	NA $<60^{\circ} \mathrm{C}$	NB							
Ignitabillty	$\mathrm{mm} / \mathrm{sec}$	$<60^{\circ} \mathrm{C}$ <2 or >12.5	NB 3.88	${ }_{6.22}$	3.67	6.57	6.15	6.55	3.54	6.49
pH	S.U.	<2 or >12.5								
Metals -TCLP										
Arsenic	mg/L	${ }_{100}$	<0.2	< 0.2	<0.2	<1	<1	<1	<1	<1
Barium	mg/L	100	< <1	<0.1	< 0.1	<0.1	<0.1	<01	<0.1	<0.1
Cadmium	mg ${ }^{\text {m }}$	5	<0.1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2
Chromium	mg / L	5	<0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	< 0.2	<0.2
Lead	$\mathrm{mg} /$		<0.2	< <0.2	<0.2	<0.02	< 0.02	<0.02	<0.02	< 0.02
Mercury	mg /	0.2	<0.02	<0.02		<0.5	< 0.5	< 0.5	< 0.5	< 0.5
Selenium	mg / L	5	<0.5	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1
Silver	mg L	5	< 0.1							
Organochlorine Pestlides \& PCBS (GC)-TCLP										
Chiordane	mg / L	0.03	< 0.025	< 0.025	< 0.025	< 0.025	< <0.025	<0.005	< 0.005	<0.005
Endrin	mg / L	0.02	<0.005	<0.005	< 0.0025	<0.0025	<0.0025	<0.0025	< 0.0025	< 0.0025
Gamma-Bhc (Lindane)	mg/	0.4	< 0.00025	<0.0025	<0.0025	<0.0025	<0.0025	< 0.0025	< 0.0025	< 0.0025
Heptachlor	mg / L	0.008	<0.0025	<0.0025	< 0.0025	<0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025
Heptachlor Epoxide	mg/	0.008 10	<0.0025	<0.0025	<0.0025	<0.0025	< 0.0025	< 0.0025	< 0.0025	< 0.0025
Methoxychlor Toxaphene	mg mg /	0.5	-0.25	<0.25	< 0.25	< 0.25	<0.25	< 0.25	< 0.25	< 0.25
Herbicldes (GC)-TCLP										
2,4-D	mg/L	10	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05
Silvex (2,4,5-TP)	mg/L	1	< 0.05	< 0.05	< 0.05	< 0.05				
1,1-Dichloroethylene	mg $/$			< 0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02
1,2-Dichloroethane	mg $/ \mathrm{L}$	0.5 200	<0.02 <0.2	<0.2	<0.2	< 0.2	<0.2	< 0.2	< 0.2	< 0.2
2-Butanone (Mek)	$\mathrm{mg} /{ }^{\text {mg }}$	0.5	0.043	0.025	0.14	< 0.02	1.3	<0.02	0.1	< 0.02
Benzene	$\mathrm{mg} /{ }^{\text {ch }}$	0.5 0.5	<0.02	<0.02	<0.02	< 0.02	<0.02	< 0.02	< 0.02	< 0.02
Carbon Tetrachloride	mg mg h	100	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chlorobenzene	mgh	100			< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
Chiorotorm	mgh	0.7	<0.02	< 0.02	< 0.02	<0.02	<0.02	< 0.02	< 0.02	< 0.02
Tetrachloroethene	mgh	0.5	<0.02	<0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	<0.02
Trichlorothylene	mgh	0.2	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02

Table 1. Summary of Toxicity Characteristic Leaching Procedure (TCLP) Data, Sludge Characteriztion and Bench Scale Treatability Report, Hercules Incorporated, Hattiesburg, Mississippi.

Chemlcal Name	Location ID: Sample Date: Unit:	RCRA TCLP Llmit	$\begin{aligned} & \text { IBS-5-LS } \\ & 4 / 15 / 2010 \end{aligned}$	$\begin{aligned} & \text { IBS-5-US } \\ & 4 / 15 / 2010 \end{aligned}$	$\begin{aligned} & \text { IBS-6-LS } \\ & \text { 4/15/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-6-US } \\ & \text { 4/15/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-7-LS } \\ & \text { 4/15/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-7-US } \\ & \text { 4/15/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-8-LS } \\ & \text { 4/15/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-8-US } \\ & \text { 4/15/2010 } \end{aligned}$
SVOCS - TCLP										
1,4-Dichiorobenzene	mg / L	7.5	< 0.05	<0.05	<0.05	<0.05	< 0.25	< 0.25	<0.05	< 0.05
2,4,5-Trichiorophenoi	mg / L	400	< 0.05	< 0.05	< 0.05	< 0.05	<0.25	< 0.25	< 0.05	< 0.05
2,4,6-Trichlorophenoi	mg / L	2	<0.05	< 0.05	< 0.05	<0.05	<0.25	<0.25	<0.05	< 0.05
2,4-Dinitrotoluene	mg / L	0.13	<0.05	< 0.05	<0.05	< 0.05	< 0.25	< 0.25	< 0.05	< 0.05
Hexachioro-1,3-Butadiene	mg / L	0.5	<0.05	< 0.05	<0.05	< 0.05	<0.25	<0.25	< 0.05	< 0.05
Hexachiorobenzene	mg / L	0.13	<0.05	<0.05	< 0.05	< 0.05	<0.25	<0.25	<0.05	< 0.05
Hexachloroethane	mg / L	3	< 0.05	< 0.05	< 0.05	< 0.05	<0.25	< 0.25	< 0.05	< 0.05
Methyl Phenols, Total	mg / L	200	0.96	0.21	1.4	0.33	1.8	1.7	0.53	0.14
Nitrobenzene	mg / L	2	<0.05	< 0.05	<0.05	<0.05	<0.25	<0.25	<0.05	<0.05
Pentachlorophenol	mg / L	100	<0.25	<0.25	<0.25	< 0.25	< 1.2	< 1.2	< 0.25	< 0.25
Pyridine	mg / L	5	<0.25	<0.25	<0.25	<0.25	<1.2	<1.2	<0.25	<0.25

Milligram per kilogram.
Milligram per liter.
Millimeter per second.
Not appilcable.
No burn. Material did not burn during ignitablity test.
Resource Conservation and Recovery Act.
Standard unit.
Semivolatile Organic Compounds.
Toxicity Characteristic Leaching Procedure.
Volatile Organic Compounds.

ARCADIS

Table 2.

Summary of Total Analyte Data, Sludge Characterization and Bench Scale Treatabillity Report. Hercules Incorporated, Hattiesburg, Mississippi.

Chemical Name

Summary of Total Analyte Data. Sludge Characterization and Bench Scale Treatablility Report,
Hercules Incorporated, Hattlesburg, Mississippl.

Chemical Name	Location ID: Sample Date: Unit:	MDEQ Tler 1 TRG	IBS-1-LS 4/14/2010	$\begin{aligned} & \text { IBS-1-US } \\ & \text { 4/15/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-2-LS } \\ & \text { 4/16/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-2-NS } \\ & \text { 4/16/2010 } \end{aligned}$	IBS-2-US 4/16/2010	$\begin{aligned} & \text { IBS-3-LS } \\ & \text { 4/14/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-3-NS } \\ & \text { 4/14/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-3.US } \\ & \text { 4/15/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-4-LS } \\ & \text { 4/14/2010 } \end{aligned}$	IBS-4-NS 4/14/2010	$\begin{aligned} & \text { IBS-4-US } \\ & 4 / 15 / 2010 \end{aligned}$	$\begin{aligned} & \text { IBS-5-LS } \\ & 4 / 15 / 2010 \end{aligned}$
VOCs (Continued)														
Methyl Methacrylate	$\mu \mathrm{g} / \mathrm{kg}$	16300000	< 38000000	< 79000	<2300000	<19000	< 73000	<610000	<11000	< 320000	<2000000	< 11000	< 620000	< 100000000
Methylacrylonitrile	$\mu \mathrm{g} / \mathrm{kg}$	204000	< 380000000	< 790000	<23000000	< 190000	< 730000	<6100000	< 110000	< 3200000	< 20000000	$\begin{gathered} <110000 \\ <5500 \end{gathered}$	$\begin{aligned} & <620000 \\ & <31000 \end{aligned}$	$\begin{aligned} & <10000000 \\ & <520000 \end{aligned}$
Methylene Chloride	$\mu \mathrm{g} / \mathrm{kg}$	21900	< 19000000	< 39000	<1100000	< 9300	< 37000	530000	< 280000	< 800000	<4900000	< 27000	< 160000	< 2600000
Pentachloroethane	$\mu \mathrm{g} / \mathrm{kg}$	NS	<96000000	< 200000	< 5700000	< 46000	< 180000	< 1500000	< 28000	< 800000	< 48000000	< 2710000	- 620000	<2600000
Propionitrile	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 380000000	< 790000	< 23000000	< 190000	< 730000	< 6100000	< 110000	< 3200000	<20000000	<110000 <5500	< 620000	<10000000
Styrene	$\mu \mathrm{g} / \mathrm{kg}$	384000	< 19000000	< 39000	< 1100000 <1100000	< 9300	< 37000 <37000	<310000	< 56600	<1600000	< 990000	-5500	< 31000	< 520000
Tetrachloroethene	$\mu \mathrm{g} / \mathrm{kg}$	18200	<19000000	<39000	<1100000 9400000	<93000	$\begin{array}{r}\text { < } 370000 \\ \hline 4000\end{array}$	6800000	190000	2000000	13000000	150000	1100000	9800000
Toluene	$\mu \mathrm{g} / \mathrm{kg}$	38000	160000000	820000 <39000	9400000 <1100000	290000	640000 <37000	6800000 <310000	< 5600	< 160000	<980000	< 5500	< 31000	< 520000
Trans-1,2-Dichloroethene	$\mu \mathrm{gkg}$	3070000	< 19000000	< 39000	< 1100000	<9300	< 37000	<310000	< 5600	<160000	< 990000	< 5500	< 31000	< 520000
Trans-1,3-Dichloropropene	$\mu \mathrm{g} / \mathrm{kg}$	352	< 19000000	< 39000	< 1100000	<9300	< 73000			< 320000	< 2000000	< 11000	< 62000	< 1000000
Trans-1,4-Dichlorobutene	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 38000000	< 79000	< 2300000	< 19000	< 73000	< 610000	- 11000				< 31000	< 520000
Trichloroethene	$\mu \mathrm{g} / \mathrm{kg}$	7920	< 19000000	< 39000	< 1100000	<9300	< 37000	< 310000	< 5600	< 160000	<990000	< 5500	< 31000	< 5200000
Trichlorofluoromethane	$\mu \mathrm{g} / \mathrm{kg}$	143000000	< 19000000	< 39000	< 1100000	8300	< 37000	< 310000	<	< 160000	< 990000	< 11000	-	520000
Vinyl Acetate	$\mu \mathrm{g} / \mathrm{kg}$	9130	< 38000000	< 79000	< 2300000	< 19000	< 73000	-610000	< 11000	< 320000	<2000000	< 11000	< 62000	< 1000000
Vinyl Chloride	$\mu \mathrm{g} / \mathrm{kg}$	939	< 19000000	< 39000	< 1100000	<9300	< 37000	<310000	< 5800	<160000	<990000	< 5500	< 31000	< 520000
Xyienes, Total	$\mu \mathrm{g} / \mathrm{kg}$	318000	< 38000000	< 79000	<2300000	19000	< 73000	< 610000	< 11000	< 320000	<2000000	<11000	< 62000	< 1000000
SVOCs							55000	1000000	51000	340000	1600000	360000	180000	940000
1,1'-B'phenyl	$\mu \mathrm{g} / \mathrm{kg}$ $\mu \mathrm{kg}$	10200000 613000	1100000 <71000	< 2380000	<200000	< 19000	<31000	< 71000	< 4200	<200000	<170000	< 38000	< 74000	< 100000
1.2,4,5-Tetrachlorobenzene 1.2,4-Trichlorobenzene	$\mu \mathrm{g} / \mathrm{kg}$ $\mu \mathrm{g} / \mathrm{kg}$	613000 824000	<71000 <71000	<88000	<200000	<19000	< 31000	< 71000	< 4200	<200000	< 170000	< 38000	<74000	< 100000
1,2-Dichlorabenzene	$\mu \mathrm{g} / \mathrm{kg}$	279000	<71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
1,3-Dichlorobenzene	$\mu \mathrm{g} / \mathrm{kg}$	1840000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	<4200	<200000	<170000	-38000	< 74000	< 100000
1,3-Dinitrobenzene	$\mu \mathrm{g} / \mathrm{kg}$	204000	<71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	<200000	< 170000	< 38000	< 74000	< 100000
1,3,5-Trinitrobenzene	$\mu \mathrm{g} / \mathrm{kg}$	102000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	<170000	< 38000	< 74000	< 100000
1,4-Dichlorobenzene	$\mu \mathrm{g} / \mathrm{kg}$	817000	< 140000	< 180000	< 400000	< 38000	< 62000	< 140000	< 8400	< 410000	< 330000	< 75000	< 150000	< 210000
1.4-Dioxane	$\mu \mathrm{g} / \mathrm{kg}$	520000	< 71000	< 88000	<200000	< 19000	< 31000	< 71000	< 4200	<200000	< 170000	< 38000	< 74000	< 100000
1.4-Naphthoquinone	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	<74000	< 100000
1-Naphthylamine	$\mu \mathrm{g} \mathrm{kg}$	NS	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	<200000	<170000	< 38000	<74000	< 100000
2,3,4,6-Tetrachlorophenol	$\mu \mathrm{g} / \mathrm{kg}$	61300000	< 71000	<88000	< 200000	<18000	< 31000	< 71000	< 4200	<200000	< 170000	<38000	< 74000	< 100000
2,4,5-Tichlorophenol	$\mu \mathrm{g} / \mathrm{kg}$	204000000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	<200000	< 170000	< 38000 <38000	< 74000	< 1000000
2,4,6-Trichlorophenol	$\mu \mathrm{g} / \mathrm{kg}$	314000	< 71000	< 88000	<200000	<19000	< 31000	< 71000	<4200	<200000	<170000			
2,4-Dichlorophenol	$\mu \mathrm{g} / \mathrm{kg}$	613000	< 71000	< 88000	<200000	< 19000	<31000	< 71000	< 4200	<200000	< 170000	< 388000	< 740000	< 100000
2,4-Dimethyliphenol	$\mu \mathrm{g} / \mathrm{kg}$	40800000	< 71000	< 88000	< 200000	<19000	< 31000	< 71000	< 4200	< 20000000	< 860000	< 190000	< 380000	< 530000
2,4-Dinitrophenol	$\mu \mathrm{g} / \mathrm{kg}$	408000	< 380000	< 450000	< 1000000	< 99000	< 160000	< 360000	< 22000	< 200000			< 74000	< 100000
2,4-Dintrotoluene	$\mu \mathrm{g} / \mathrm{kg}$	408000	< 71000	< 88000	<200000	<19000	< 31000	< 710000	< 4200	<2000000	< 170000	< 38000	< 74000	< 100000
2,6-Dichlorophenol	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	<170000	< 38000	<74000	
2,6-Dinitrotoluene	$\mu \mathrm{g} / \mathrm{kg}$	2040000	< 71000	< 88000	<200000	< 19000	< 31000	< 71000	<4200	<200000	<170000	-3800	< 7400	<100000

Chemical Name	Location ID: Sample Date: Unit:	$\begin{gathered} \text { MDEQ } \\ \text { Tier } 1 \text { TRG } \end{gathered}$	$\begin{aligned} & \text { IBS-1-LS } \\ & \text { 4/14/2010 } \end{aligned}$	IBS-1-US 4/15/2010	$\begin{aligned} & \text { IBS-2-LS } \\ & \text { 4/18/2040 } \end{aligned}$	$\begin{aligned} & \text { IBS-2-NS } \\ & \text { 4/16/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-2-US } \\ & \text { 4/16/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-3-LS } \\ & \text { 4/14/2010 } \end{aligned}$	IBS-3-NS 4/14/2010	IBS-3-US 4/15/2010	$\begin{aligned} & \text { IBS-4-LS } \\ & 4 / 14 / 2010 \end{aligned}$	$\begin{aligned} & \text { IBS-4-NS } \\ & 4 / 14 / 2010 \end{aligned}$	$\begin{aligned} & \text { IBS-4-US } \\ & 4 / 15 / 2010 \end{aligned}$	$\begin{aligned} & \text { IBS-5-LS } \\ & 4 / 15 / 2010 \end{aligned}$
SVOCs (Continued)														
2-Chloronaphthalene	$\mu \mathrm{g} / \mathrm{kg}$	164000000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	<4200	< 200000	< 170000	< 38000	< 74000	< 100000
2-Chlorophenol	$\mu \mathrm{g} / \mathrm{kg}$	10200000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	100000
2-Methylnaphthatene	$\mu \mathrm{g} / \mathrm{kg}$	40900000	21000 J	15000J	< 200000	< 19000	< 31000	9800J	680 J	< 200000	< 170000	< 38000	< 74000	< 100000
2-Methylphenol	$\mu \mathrm{g} / \mathrm{kg}$	102000000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	38000	< 74000	< 100000
2-Naphthylamine	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
2-Nitroaniline	$\mu \mathrm{g} / \mathrm{kg}$	492	< 360000	< 450000	< 1000000	< 99000	< 160000	< 360000	< 22000	< 1000000	< 860000	< 190000	< 380000	< 530000
2-Nitrophenol	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
2-Picoline	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 71000	< 88000	<200000	< 19000	< 31000	< 71000	<4200	< 200000	< 170000	38000	74000	< 100000
2-Acetylaminofluorene	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	<100000
2-Toluidine	$\mu \mathrm{g} / \mathrm{kg}$	23800	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	420	20000	1700	38000	74000	00000
3 \& 4 Methylphenol	$\mu \mathrm{g} / \mathrm{kg}$	10200000	12000 J	< 88000	< 200000	< 19000	< 31000	< 71000	1600 J	< 200000	< 170000	< 38000	< 74000	< 100000
3,3-Dichlorobenzidine	$\mu \mathrm{g} / \mathrm{kg}$	12700	< 140000	< 180000	< 400000	< 38000	< 82000	< 14000	< 84	<410000	< 330000	75	< 150000	<210000
3,3'-Dimethylbenzidine	$\mu \mathrm{g} / \mathrm{kg}$	622	< 360000	< 450000	< 1000000	<99000	< 160000	< 360000	<22000	<1000000	< 860000	< 190000	< 380000	< 5300000
3-Methyichloranthrene	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
3-Nitroaniline	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 360000	< 450000	< 1000000	< 99000	< 160000	< 360000	< 22000	<1000000	< 860000	190000	< 380000	< 5300000
4.6-Dinitro-2-Methylphenol	$\mu \mathrm{g} \mathbf{k g}$	204000	< 360000	< 450000	< 1000000	<99000	< 180000	< 360000	< 22000	< 1000000	< 860000	< 190000	< 380000	< 530000
4-Aminobiphenyl	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	<200000	< 170000	< 38000	< 74000	< 100000
4-Bromophenyl Phenyl Ether	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 71000	< 88000	< 200000	<19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 1000000
4-Chloro-3-Methyiphenol	$\mu \mathrm{g} / \mathrm{kg}$	408000000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	<4200	< 200000	< 170000	-38000	<74000	< 1000000
4-Chlorophenyl Phenyl Ether	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
4-Chtoroaniline	$\mu \mathrm{g} / \mathrm{kg}$	238000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	<200000	< 170000	< 38000	< 74000	< 5300000
4-Nitroaniline	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 360000	< 450000	< 1000000	<99000	< 160000	< 360000	< 22000	< 1000000	< 860000	< 190000	< 380000	< 530000
4-Nitrophenol	$\mu \mathrm{g} / \mathrm{kg}$	16400000	< 380000	< 450000	< 1000000	<99000	< 180000	< 360000	< 22000	< 1000000	<860000	< 190000	380000	< 530000
4-Nitroquinoline- N -Oxide	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 710000	< 880000	< 2000000	< 190000	< 310000	< 710000	< 42000	< 2000000	< 1700000	< 380000	< 740000	<1000000
7,12-Dimethylbenz(a)anthracene	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 71000	< 88000	<200000	< 19000	< 31000	< 71000	< 4200	<200000	< 170000	< 38000	< 74000	< 100000
Acenaphthene	$\mu \mathrm{g} / \mathrm{kg}$	123000000	< 71000	< 88000	< 200000	< 19000	< 31000	10000J	770 J	< 2000	< 170000	< 38000	74000	< 10000
Acenaphthylene	$\mu \mathrm{g} / \mathrm{kg}$	123000000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 1000000
Acetophenone	$\mu \mathrm{g} / \mathrm{kg}$	2630000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	<4200	< 2000	<170000	< 38000	< 74000	< 10000
Alpha,Alpha-Dimethyl Phenethylamine	- $\mu \mathrm{g} / \mathrm{kg}$	NS	< 14000000	< 18000000	< 40000000	< 3900000	<6300000	<14000000 <140000	<850000	<41000000	<34000000	<7600000 <75000	< 150000	<210000
Aniline	$\mu \mathrm{g} / \mathrm{kg}$	1000000 613000000	< 140000 <71000	< 180000 <88000	< 2000000	< 38000	< 62000	< 1410000	< 4200	< 200000	< 170000	- 38000	< 74000	< 100000
Anthracene	$\mu \mathrm{g} / \mathrm{kg}$ $\mu \mathrm{g} / \mathrm{kg}$	613000000 NS	< 71000 <71000	<88000	<200000	< 19000	< 31000	<71000 <71000	< 4200	<200000	< 170000	< 38000	< 74000	< 100000
Aramite, Total	$\mu \mathrm{g} / \mathrm{kg}$ $\mu \mathrm{g} / \mathrm{kg}$	NS 7840	<71000	<88000	<200000	<19000	< 31000	< 71000	<4200	< 200000	< 170000	< 38000	< 74000	< 100000
Benzo(a)pyrene	$\mu \mathrm{g} / \mathrm{kg}$	784	< 71000	< 88000	< 200000	< 19000	< 31000	<71000	<4200	< 200000	< 170000	< 38000	< 74000	< 100000
Benzo(b)fluoranthene	$\mu \mathrm{g} / \mathrm{kg}$	7840	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	<4200	< 200000	< 170000	< 38000	<74000	<100000
Benzo(g, h, i) perylene	$\mu \mathrm{g} / \mathrm{kg}$	81300000	32000 J	< 88000	< 200000	< 19000	< 31000	< 71000	910 J	<200000	< 170000	< 38000	< 74000	< 100000
Benzo(k)fluoranthene	$\mu \mathrm{g} / \mathrm{kg}$	78400	<71000	< 88000	< 200000	< 19000	< 31000	< 71000	0	0000	< 170000	< 38000	< 74000	< 100000
Benzyl Alcohol	$\mu \mathrm{g} / \mathrm{kg}$	204000000	< 71000	< 88000	< 200000	5900 J	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	74000	< 100000
Bis(2-Chloroethoxy)Methane	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	< 200000	17000	38000	74000	< 100000
Bis(2-Chloroethyl)Ether	$\mu \mathrm{gkg}$	419	<71000	< 88000	< 200000	< 19000	< 31000	< 71000	<4200	< 200000	<170000	< 38000	< 74000	< 100000
Bis(2-Ethylhexyl) Phthalate	$\mu \mathrm{g} / \mathrm{kg}$	409000	< 71000	< 88000	< 200000	< 19000	< 31000	<71000	< 4200	<200000	< 170000	< 38000	< 74000	< 100000
Bis(Chloroisopropyi) Ether	$\mu \mathrm{g} / \mathrm{kg}$	9080	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	<200000	< 170000	38000	< 74000	< 100000
Butyi benzyl phthalate	$\mu \mathrm{g} / \mathrm{kg}$	928000	< 71000	< 88000	< 200000	< 19000	< 31000	< 71000	< 4200	<200000	< 170000	< 38000	< 74000	<100000
Chrysene	$\mu \mathrm{g} / \mathrm{kg}$	784000	< 71000	< 88000	<200000	< 19000	<31000	< 71000	<4200	<200000	< 170000	<38000	< 7400	< 10000

	cation ID:	MDEQ	18S-1-LS	IBS-1-US	18S-2-LS	18S-2-NS	IES-2-US	IBS-3-LS	S-3-NS	S-3-US	1BS-4.LS	IBS-4-NS	S-4.US	-5-LS
	Sample Date:	Tier 1 TRG	4/14/2010	4/15/2010	4/16/2010	4/16/2010	4/16/2010	4/14/2010	4/14/2010	4/15/2010	4/14/2010	4/14/2010	4/15/2	/15/2010
Chemical Name	Unit:													

<100000
<100000
<100000
<100000
<100000
<100000
<100000
<100000
<100000
2800000
<100000
<100000
<100000
<100000
<100000
<100000
<100000
<100000
<100000
<100000
<53000000
<100000
<100000
<100000
<100000
<21000000
<100000
<100000
<100000
<100000
<100000
<100000
<1000000
<10000
<100000
<100000
<100000
<100000
<100000
<100000
<10000
<100

ARCADIS
Table 2. Summary of Total Analyte Data, Sludge Characterization and Bench Scale Treatability Report,

Chemical Name	Location ID: Sample Date: Unit:	MDEQ Tler 1 TRG	IBS-1-LS 4/14/2010	$\begin{aligned} & \text { IBS-1.US } \\ & \mathbf{4 / 1 5 / 2 0 1 0} \end{aligned}$	$\begin{aligned} & \text { IBS-2-LS } \\ & 4 / 16 / 2010 \end{aligned}$	$\begin{aligned} & \text { IBS-2-NS } \\ & 4 / 16 / 2010 \end{aligned}$	$\begin{aligned} & \text { IBS-2-US } \\ & \text { 4/16/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-3-LS } \\ & \text { 4/44/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-3-NS } \\ & \text { 4/14/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-3-US } \\ & \text { 4/15/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-4-LS } \\ & 4 / 14 / 2010 \end{aligned}$	$\begin{aligned} & \text { IBS-4-NS } \\ & \text { 4/14/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-4-US } \\ & \text { 4/15/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-5-LS } \\ & \text { 4/15/2010 } \end{aligned}$
SVOCs (Continued)					<200000	< 19000	<31000	<71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
Pentachlorobenzene	$\mu \mathrm{g} / \mathrm{kg}$	1630000		<88000	<200000	< 190000	< 31000	<71000	< 4200	< 200000	< 170000	<38000		0
Pentachloronitrobenzene	$\mu \mathrm{g} / \mathrm{kg}$	22000	< 71000		< 1000000	<99000	< 160000	< 380000	< 22000	< 1000000	< 860000	< 190000	< 380000	< 530000
Pentachlorophenol	$\mu \mathrm{g} / \mathrm{kg}$	23800	< 360000	< 450000	< 2000000	< 19000	< 31000	< 71000	< 4200	< 200000	< 170000	< 38000	< 74000	< 100000
Phenacetin	$\mu \mathrm{m} / \mathrm{kg}$	NS 61300000	< 71000	<880000	<200000	< 19000	< 31000	11000J	1100J	< 200000	< 170000	< 38000	<74000 <74000	< 100000
Phenanthrene	$\mu \mathrm{m} / \mathrm{kg}$	61300000 123000000	68000 <71000	<88000	<200000	< 19000	< 31000	< 71000	<4200	<200000	< 170000	$<$ <38000 $<$ 8000	<74000 <74000	< 100000
Phenol	$\mu \mathrm{g} / \mathrm{kg}$ $\mu \mathrm{g} / \mathrm{kg}$	${ }^{123000000}$ NS	< 71000	< 88000	<200000	< 19000	< 31000	< 71000	< 4200	< 2000000	< 170000	< 190000	< 380000	< 530000
Phorate	$\mu \mathrm{g} / \mathrm{kg}$ $\mu \mathrm{g} / \mathrm{kg}$	388000000	< 360000	<450000	< 1000000	< 99000	< 160000	< 360000	< 22000	<1000000 <200000	< 860000	< 38000	< 74000	< 100000
p-Phenylene dlamine Pronamide	Hg/kg	NS	< 71000	< 88000	< 200000	< 19000 <19000	< 31000 5000 J	<71000 <71000	< 4200	22000 J	< 170000	< 38000	< 74000	< 100000
Pyrene	$\mu \mathrm{g} / \mathrm{kg}$	81300000	< 71000	< 88000	<200000	<19000	<31000	< 71000	< 4200	<200000	< 170000	< 38000	< 74000	< 100000
Pyridine	$\mu \mathrm{g} / \mathrm{kg}$	2040000	< 71000	<88000	< 200000	< 19000	< 31000	<71000	<4200	< 200000	< 170000	< 38000	< 74000	< 100000
Safrole, Total	$\mu \mathrm{g} / \mathrm{kg}$	NS	<71000	<88000	<200000	< 19000	< 31000	<71000	< 4200	<200000	< 170000	< 38000	<74000	< 100000
Sulfotep	$\mu \mathrm{gkg}$	NS	<71000	<88000	<200000	<19000	< 31000	< 71000	<4200	<200000	< 170000	< 38000	< 74000	< 100000
ThionazIn	$\mu \mathrm{g} / \mathrm{kg}$	NS	<71000									<2	3.3	2.5
Metais		3.82	1.5	3	3.4	<2.1	2.5	2.5	<2.1	2.8 13	2.1 16	3.5	27	23
Arsenic	$\mathrm{mg} / \mathrm{kg}$ $\mathrm{mg} / \mathrm{kg}$	3.82 14300	37	28	39	4.2 <0.53	23 0.51	22	[${ }^{4}$	0.38	0.4	< 0.51	0.77	0.55
Cadmium	$\mathrm{mg} / \mathrm{kg}$	1020	0.24	0.33	0.46	< 0.53	18 0.51	$\begin{array}{r}16 \\ \hline 16\end{array}$	1.6	11	13	1.5	23	24
Chrornium	$\mathrm{mg} / \mathrm{kg}$	3070000	13	22	23	<1.1	36	41	2.9	40	59	0.95	49	75
Lead	$\mathrm{mg} / \mathrm{kg}$	1700	120	24	41	0.012	1.1	0.66	0.012	0.24	0.26	< 0.02	1.1	0.4
Mercury	$\mathrm{mg} / \mathrm{kg}$	61.3	3.8	0.72	<8.7	< 2.7	<10	< 4.5	< 2.6	<9.6	<5.9	<2.5	<10	<6.6
Selenium	$\mathrm{mg} / \mathrm{kg}$	1020	< 4.9	<5.8 0.24	-8.88	< 1.1	<42	0.62	<1.1	<3.8	0.41	0.1	0.42	0.42
Silver	$\mathrm{mg} / \mathrm{kg}$	1020	0.3	0.24	0.88									

[^7]Because we care
100% recycled paper produced by wind power energy
Asland $/ \mathrm{OH} 3000 \mathrm{MS} 24 / \mathrm{T} / 1 / \mathrm{kp}$

Summary of Total Analyte Data, Sludge Characterization and Bench Scale Treatablifity Report, Hercules Incorporated, Hattiesburg. Mississippi.
 Table 2.

Chemical Name	Location ID: Sample Date: Unit:	$\begin{aligned} & \text { MDEQ } \\ & \text { Tler } 1 \text { TRG } \end{aligned}$	$\begin{aligned} & \text { IBS-5-NS } \\ & \text { 4/15/2010 } \end{aligned}$	IBS-5.US 4/15/2010	\|BS-6-LS 4/15/2010	$\begin{aligned} & \text { IBS-6-NS } \\ & 4 / 15 / 2010 \end{aligned}$	lBS-6-us 4/15/2010	185-7-LS 4/15/2010	1BS-7-NS 4/15/2010	IBS-7-US 4/45/2010	IBS-8-LS 4/15/2010	IBS-8-NS 4/15/2010	$\begin{aligned} & \text { IBS-8-US } \\ & \text { 4/15/2010 } \end{aligned}$
vocs									< 9700	<290000	<660000	<1300	< 57000
1,1,1,2-Telrachloroethane	${ }^{\mu 9} \mathrm{~kg}$	220000	<260	<91000	< 370000 <370000	<2400 <2400	<83000	<500000	< 9700	<290000	<660000	< 1300	< 57000
1,1,1-Trichloroethane	$\mu \mathrm{gkg}$	1190000 1000	<260	<91000	< 370000 < 370000	<2400	<83000	-500000	-9700	<290000	<660000	< 1300	< 57000
1,1,2,2-Tetrachloroethane	$\mu \mathrm{m} / \mathrm{kg}$	1000	<260	<91000	<370000	<2400	< 83000	< 500000	< 9700	< 290000	<660000	<1300	< 57000
1,1,2-Trichloroethane	Hg/kg	${ }_{116000}$	<260	<91000	<370000	<2400	< 83000	< 500000	<9700	<290000	<660000	< 1300	< 57000
1,1-Dichloroethane	${ }_{\text {Hg }}^{\mu \mathrm{g} k \mathrm{~kg}}$	1118	-260	<91000	<370000	<2400	< 83000	< 500000	<9700	<290000	<660000	< 1300	< 57000
1,1-Dichloroethene	${ }_{\text {Hg/kg }}$	818	<260	<91000	< 370000	<2400	<83000	< 500000	< 9700	<290000	<660000	<1300	< 57000
1,2,-Trichloropropane 1,2-Dibromo-3-Chioropropane (Dbcp)	${ }_{\text {Hg/kg }}^{\text {Hega }}$	99.9	-510	<180000	< 750000	<4800	< 170000	< 1000000	<19000	< 580000	< 1300000	<2700	110000
1.2-Dichloroethane	Hg/kg	621	<260	<91000	<370000	<2400	< 83000	< 500000	< 9700	<290000	< 660000	<1300	< 57000
1.2-Dichloropropane	$\mu \mathrm{g} / \mathrm{kg}$	445	<260	< 91000	<370000	<2400	< 83000	< 500000	< 9700	<290000	< 660000	< 1300	< 57000
2-Butanone (Mek)	$\mu \mathrm{g} / \mathrm{kg}^{\text {g }}$	84500	<1300	<450000	<1900000	<12000	<410000	<2500000	<49000	< 1400000	< 3300000	840 J	<290000
2-Chloro-1,3-butadiene	$\mu \mathrm{g}$ /g	8000	<260	< 91000	<370000	<2400	< 83000	< 500000	< 9700	<290000	< 660000	<1300	< 57000
3-Chioro-1-Propene	μ_{g} / kg	NS	<260	<91000	< 370000	<2400	< 83000	< 500000	700	290000	<660000	<1300	< 57000
2 -Hexanone	$\mu \mathrm{g} / \mathrm{kg}$	81800000	<1300	<450000	< 1900000	< 12000	<410000	< 2500000	< 49000	<1400000	< 3300000	< 8600	<290000
4-Methyl-2-Pentanone (MIEK)	$\mu \mathrm{g} / \mathrm{kg}$	163000000	<1300	< 450000	< 1900000	<12000	< 410000	<2500000	< 49000	<1400000	< 33600000	<6600	< 5700000
Acelone	$\mu \mathrm{g}$ kg	10400000	2100 J	< 910000	<3700000	<24000	<830000	< 200000000	< 390000	< 12000000	<26000000	< 53000	< 2300000
Acetonitrile	$\mu \mathrm{g} / \mathrm{kg}$	111000	< 10000	<3600000 <1800000	< 15000000	< 48000	< 1700000	<10000000	< 190000	< 5800000	< 13000000	<27000	<1100000
Acrolein	Hgkg	40900000 10600	< 5100	<1800000 <1800000	< 7500000	-48000	< 1700000	<10000000	<190000	< 5800000	< 13000000	<27000	<1100000
Acrylonitrile	$\mu \mathrm{g} \mathrm{kg}$	10600 1360	< <260	-91000	< 370000	<2400	<83000	< 500000	110000	<290000	<660000	390J	< 57000
Benzene	$\underset{\sim}{\mu \mathrm{g} / \mathrm{kg}}$	90100		<91000	< 370000	<2400	< 83000	<500000	< 9700	<290000	<660000	< 1300	< 57000
Bromoform	${ }_{\text {Hgakg }}^{\mu \mathrm{gag}}$	${ }^{9970}$	<260	<91000	< 370000	<2400	< 83000	< 500000	< 9700	<290000	<660000	<1300	< 57000
Bromomethane Carton Disulfide	$\mu \mathrm{g} / \mathrm{kg}$ $\mu \mathrm{g} \mathrm{kg}$	7970	<260	<91000	<370000	<2400	< 83000	< 500000	<9700	-290000	<660000	<1300	< 57000
Carbon Tetrachloride	\% g / kg	569	<260	<91000	< 370000	<2400	<83000	< 500000	<9700	<290000	<660000	< 1300	< 57000
Dichlorodifluoromethane	нg/kg	409000000	<260	<91000	< 370000	<2400	< 83000	< 500000	<9700	<290000	<660000	< 1300	< 57000
Chlorobenzene	нg/kg	1190	<260	<91000	< 370000	<2400	<83000	< 500000	< 9700	<290000	<660000	< 1300	< 57000
Chlorodibromomethane	нg/kg	68100	<260	<91000	<370000	<2400	< 83000	< 500000	<9700	< 290000	< 660000	< 1300	< 57000
Chloroethane	$\mu \mathrm{g}$ kg	1970000	<260	<91000	<370000	<2400	< 83000	< 500000	< 9700	<290000	<660000	< 1300	-57000
Chlorotom	$\mu \mathrm{g} / \mathrm{kg}$	478	<280	< 91000	<370000	<2400	<83000	< 500000000	<9700	<2900000	<660000	< 1300	< 57000
Chloromethane	$\mu \mathrm{g} / \mathrm{kg}$	440000	<260	<91000	<370000	<2400	<83000	<5000000	<9700	<290000	<660000	< 1300	< 57000
Cis-1,3-Dichloropropene	$\mu \mathrm{m}$ /kg	${ }_{0} 352$	<260		<370000	<2400	<83000	-500000	< 9700	<290000	<660000	<1300	< 57000
Dibromomethane	Hg/kg	20400000	<260 <260	<91000	<370000	<2400	< 83000	< 500000	< 9700	<290000	<660000	< 1300	< 57000
Dichlorobromomethane	$\mu \mathrm{gkg}$	1890 18400000	<260 <260	<9100	<370000	<2400	<83000	< 500000	<9700	<290000	< 680000	< 1300	<57000
Ethyl Methacrylate			<260		-370000	<2400	<83000	< 500000	<9700	<290000	<660000	< 1300	< 57000
Ethylbenzene	${ }^{\mu g} \mathrm{~g} \mathrm{~kg}$	395000			<370000	<2400	<83000	< 500000	<9700	< 290000	< 860000	< 1300	< 57000
Ethylene Dibromide	${ }_{\mu}^{\mu \mathrm{g} / \mathrm{kg}}$	67.3 NS	<260 <260	<91000	<370000	<2400	< 83000	< 500000	< 9700	< 290000	< 660000	< 1300	< 57000
lodomethane Isobuty alcohol	нgkg	613000000	< 10000	< 3600000	<15000000	< 97000	< 3300000	<20000000	< 390000	<12000000	<26000000	< 53000	<2300000

Chemical Name	Location ID: Sample Date: Unit:	MDEQ Tier 1 TRG	$\begin{aligned} & \text { IBS-5-NS } \\ & 4 / 15 / 2010 \end{aligned}$	$\begin{aligned} & \text { IBS-5-US } \\ & 4 / 15 / 2010 \end{aligned}$	$\begin{aligned} & \text { IBS-6-LS } \\ & 4 / 15 / 2010 \end{aligned}$	$\begin{aligned} & \text { IBS-6-NS } \\ & 4 / 15 / 2010 \end{aligned}$	$\begin{aligned} & \text { IBS-6-US } \\ & 4 / 15 / 2010 \end{aligned}$	IBS-7-LS 4/15/2010	$\begin{aligned} & \text { IBS-7-NS } \\ & \text { 4/15/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-7-US } \\ & \text { 4/15/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-8-LS } \\ & 4 / 15 / 2010 \end{aligned}$	$\begin{aligned} & \text { IBS-8-NS } \\ & \mathbf{4 / 1 5 / 2 0 1 0} \end{aligned}$	$\begin{aligned} & \text { IBS-8-US } \\ & 4 / 15 / 2010 \end{aligned}$
VOCs (Continued)													
Methyl Methacrylate	$\mu \mathrm{g} / \mathrm{kg}$	16300000	< 510	<180000	< 750000	<4800	< 170000	< 1000000	<19000	< 580000	< 1300000	<2700	< 110000
Methylacrylonitrile	$\mu \mathrm{g} / \mathrm{kg}$	204000	< 5100	< 1800000	< 7500000	< 48000	< 1700000	< 10000000	<190000	< 5800000	< 13000000	< 27000	< 1100000
Methylene Chloride	$\mu \mathrm{g} / \mathrm{kg}$	21900	< 260	< 91000	420000	< 2400	< 83000	< 500000	< 9700	<290000	610000J	1600	< 57000
Pentachloroethane	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 1300	< 450000	< 1900000	< 12000	< 410000	< 2500000	< 49000	< 1400000	< 3300000	<6600	< 290000
Propionitrile	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 5100	< 1800000	< 7500000	< 48000	< 1700000	< 10000000	< 190000	< 5800000	< 13000000	< 27000	< 1100000
Styrene	$\mu \mathrm{H} / \mathrm{kg}$	384000	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	<9700	<290000	< 660000	< 1300	< 57000
Tetrachloroethene	$\mu \mathrm{g} / \mathrm{kg}$	18200	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	<9700	<290000	<660000	< 1300	< 57000
Toluene	$\mu \mathrm{g} / \mathrm{kg}$	38000	1100	980000	14000000	33000	1800000	5900000	70000	2800000	14000000	17000	810000
Trans-1,2-Dichloroethene	$\mu \mathrm{g} / \mathrm{kg}$	3070000	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	<290000	<660000	< 1300	< 57000
Trans-1.3-Dichloropropene	$\mu \mathrm{g} / \mathrm{kg}$	352	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	<9700	<290000	< 660000	< 1300	< 57000
Trans-1,4-Dlchlorobutene	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 510	< 180000	< 750000	< 4800	< 170000	< 1000000	< 19000	< 580000	< 1300000	< 2700	< 110000
Trichloroethene	$\mu \mathrm{g} / \mathrm{kg}$	7920	< 260	<91000	< 370000	< 2400	< 83000	< 500000	<9700	<290000	< 860000	< 1300	< 57000
Trichlorofluoromethane	$\mu \mathrm{g} / \mathrm{kg}$	143000000	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	<9700	<290000	< 660000	< 1300	< 57000
Vinyl Acetate	$\mu \mathrm{g} / \mathrm{kg}$	9130	< 510	<180000	< 750000	< 4800	< 170000	< 1000000	< 19000	< 580000	< 1300000	< 2700	< 110000
Vinyl Chloride	$\mu \mathrm{g} / \mathrm{kg}$	939	< 260	< 91000	< 370000	< 2400	< 83000	< 500000	< 9700	<290000	<660000	< 1300	< 57000
Xylenes, Total	$\mu \mathrm{g} / \mathrm{kg}$	318000	< 510	<180000	< 750000	< 4800	< 170000	< 1000000	< 19000	< 580000	< 1300000	< 2700	< 110000
SVOCs													
1,1'-Biphenyl	$\mu \mathrm{g} / \mathrm{kg}$	10200000	< 4300	160000」	800000	290000	140000J	620000	18000	230000	760000	< 4600	33000,
1,2,4,5-Tetrachlorobenzene	$\mu \mathrm{g} / \mathrm{kg}$	613000	44300	<190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	<240000
1,2,4-Trichlorobenzene	$\mu \mathrm{g} / \mathrm{kg}$	824000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	<240000
1,2-Dichlorobenzene	$\mu \mathrm{g} / \mathrm{kg}$	279000	< 4300	<180000	< 160000	< 21000	< 190000	< 110000	< 4000	<190000	< 130000	< 4600	<240000
1,3-Dichlorobenzene	$\mu \mathrm{g} / \mathrm{kg}$	1840000	< 4300	< 190000	< 160000	<21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	<240000
1,3-Dinitrobenzene	$\mu \mathrm{g} / \mathrm{kg}$	204000	< 4300	< 190000	< 160000	<21000	< 190000	< 110000	< 4000	<190000	< 130000	< 4600	<240000
1,3,5-Trinitrobenzene	$\mu \mathrm{g} / \mathrm{kg}$	102000	< 4300	< 190000	< 160000	<21000	< 190000	< 110000	< 4000	<190000	< 130000	< 4600	< 240000
1,4-Dichlorobenzene	$\mu \mathrm{g} / \mathrm{kg}$	817000	< 8600	< 380000	< 320000	< 41000	< 380000	< 220000	< 7900	< 380000	< 270000	<9100	< 480000
1,4-Dioxane	$\mu \mathrm{g} / \mathrm{kg}$	520000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	<240000
1,4-Naphthoquinone	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 4300	< 190000	< 160000	<21000	< 190000	< 110000	< 4000	<190000	< 130000	< 4600	<240000
1-Naphthylamine	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 4300	< 190000	< 160000	< 21000	<190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
2,3,4,6-Tetrachlorophenol	$\mu \mathrm{g} / \mathrm{kg}$	61300000	< 4300	< 190000	< 160000	<21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	<240000
2,4,5-Trichlorophenol	$\mu \mathrm{g} / \mathrm{kg}$	204000000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	<190000	< 130000	< 4600	<240000
2,4,6-Trichlorophenol	$\mu \mathrm{g} / \mathrm{kg}$	314000	< 4300	< 190000	< 160000	<21000	< 190000	< 110000	< 4000	< 190000	< 130000	<4600	<240000
2,4-Dichlorophenol	$\mu \mathrm{g} / \mathrm{kg}$	613000	< 4300	< 180000	< 160000	<21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	<240000
2,4-Dimethylphenol	$\mu \mathrm{g} / \mathrm{kg}$	40800000	< 4300	<190000	< 160000	<21000	< 190000	< 110000	< 4000	<190000	< 130000	< 4600	<240000
2,4-Dinitrophenol	$\mu \mathrm{g} / \mathrm{kg}$	408000	< 22000	< 980000	< 840000	< 110000	< 980000	< 580000	< 20000	< 970000	< 690000	< 23000	< 1200000
2,4-Dinitrotoluene	$\mu \mathrm{g} / \mathrm{kg}$	408000	< 4300	< 190000	< 160000	< 21000	<190000	< 110000	< 4000	<190000	< 130000	< 4600	<240000
2,6-Dichlorophenol	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 4300	< 190000	< 160000	<21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	<240000
2,6-Dinitrotoluene	$\mu \mathrm{g} / \mathrm{kg}$	2040000	< 4300	< 190000	< 160000	<21000	< 190000	< 110000	< 4000	<190000	< 130000	< 4600	<240000

Summary of Total Analyte Data, Sludge Characterization and Bench Scale Treatabilily Report,
Hercules Incorporated, Hatiliesburg, Mississippi.

IBS $-8-U S$
$4 / 15 / 2010$

Chemical Name
\qquad 68
88
08
N
v
v

Table 2. Summary of Total Analyte Data, Sludge Characterization and Bench Scale Treatablility Report,

Chemical Name	Location ID: Sample Date: Unit:	MDEQ Tier 1 TRG	$\begin{aligned} & \text { IBS-5-NS } \\ & 4 / 15 / 2010 \end{aligned}$	$\begin{aligned} & \text { IBS-5-US } \\ & \text { 4/15/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-6-LS } \\ & 4 / 15 / 2010 \end{aligned}$	$\begin{aligned} & \text { IBS-6-NS } \\ & 4 / 15 / 2010 \end{aligned}$	$\begin{aligned} & \text { IBS-6-US } \\ & 4 / 15 / 2010 \end{aligned}$	$\begin{aligned} & \text { IBS-7-LS } \\ & \text { 4/15/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-7-NS } \\ & \text { 4/15/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-7.US } \\ & \text { 4/15/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-8-LS } \\ & 4 / 15 / 2010 \end{aligned}$	$\begin{aligned} & \text { IBS-8-NS } \\ & \text { 4/15/2010 } \end{aligned}$	$\begin{aligned} & \text { IBS-8-US } \\ & \text { 4/15/2010 } \end{aligned}$
SVOCs (Continued)													
Pentachlorobenzene	$\mu \mathrm{g} / \mathrm{kg}$	1630000	< 4300	< 190000	< 160000	<21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Pentachloronitrobenzene	$\mu \mathrm{g} / \mathrm{kg}$	22000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	<240000
Pentachiorophenol	$\mu \mathrm{g} / \mathrm{kg}$	23800	<22000	<980000	<840000	< 110000	< 980000	< 580000	< 20000	< 970000	< 690000	<23000	< 1200000
Phenacetin	Hg/kg	NS	< 4300	< 190000	<160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	<240000
Phenanthrene	$\mu \mathrm{g} / \mathrm{kg}$	61300000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	<190000	< 130000	< 4600	<240000
Phenol	$\mu \mathrm{g} / \mathrm{kg}$	123000000	< 4300	< 190000	< 160000	< 21000	< 190000	<110000	< 4000	< 190000	< 130000	< 4600	<240000
Phorate	H/kg	NS	< 4300	< 190000	< 160000	< 21000	<190000	< 110000	< 4000	< 190000	< 130000	<4600	<240000
p-Phenylene diamine	$\mu \mathrm{g} / \mathrm{kg}$	388000000	< 22000	<980000	< 840000	<110000	<980000	< 580000	< 20000	< 970000	< 680000	<23000	< 1200000
Pronamide	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 4300	< 190000	< 160000	< 21000	< 190000	<110000	< 4000	< 190000	< 130000	< 4600	< 240000
Pyrene	$\mu \mathrm{g} / \mathrm{kg}$	61300000	< 4300	< 190000	< 180000	< 21000	< 190000	< 110000	490J	< 190000	15000J	< 4600	<240000
Pyridine	$\mu \mathrm{g} / \mathrm{kg}$	2040000	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	<240000
Safrole, Total	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	<240000
Sulfotep	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 4300	< 190000	< 160000	< 21000	< 190000	< 110000	< 4000	< 190000	< 130000	< 4600	<240000
Thionazin	$\mu \mathrm{g} / \mathrm{kg}$	NS	< 4300	< 190000	< 160000	<21000	<190000	< 110000	< 4000	< 190000	< 130000	< 4600	< 240000
Metals													
Arsenic	mg/kg	3.82	2	3.6	1.3	2	3.4	3.1	<2.1	2.6	3.3	1.1	< 14
Barium	$\mathrm{mg} / \mathrm{kg}$	14300	120	18	15	150	18	18	18	12	37	120	15
Cadmium	mg/kg	1020	0.18	0.52	0.31	< 0.59	0.61	0.47	< 0.52	0.48	0.67	< 0.61	<3.6
Chromium	mg/kg	3070000	18	27	17	13	15	31	7.3	24	54	15	23
Lead	$\mathrm{mg} / \mathrm{kg}$	1700	12	28	51	7.6	43	27	2.6	32	100	13	38
Mercury	mg/kg	61.3	<0.024	0.25	0.43	<0.021	0.33	0.52	<0.023	0.59	0.86	<0.022	0.48
Selenium	mg/kg	1020	<3	<13	<5.3	<3	< 14	< 7.5	< 2.6	<8.9	< 9.8	< 3.1	< 18
Silver	$\mathrm{mg} / \mathrm{kg}$	1020	0.15	<5.2	0.53	<1.2	0.52	0.3	<1	<3.6	0.51	<1.2	<7.2
Bolded	Constitutent has been detected												
J	Estimated concentration.												
MDEQ	Mississippl Department of Environmental Quality. Milligram per kilogram.												
$\mathrm{mg} / \mathrm{kg}$													
NS	No Standard.												
SVOCs	Semivolatile Organic Compounds.												
TRG	Target Remediation Goal for soil under a restricted use scenario.												
$\mu \mathrm{g} / \mathrm{kg}$	Microgram per kilogram.												
VOCs	Volatle Organic Compounds.												

Summary of Quality Assurance/Quality Control Data, Sludge Characterization and Bench Scale Treatability Report, Hercules Incorporated, Hattiesburg, Mississippi.

Chemical Name	Location ID: Sample Date: Unit	Field Blank 4/15/2010	Field Blank $4 / 16 / 2010$	Rinsate Blank 4/16/2010	Trip Blank 4/14/2010	Trip Blank 4/15/2010
Metals			NA	< 20	NA	NA
Arsenic	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	28	NA	NA
Barium	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	2.8	NA	NA
Cadmium	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	< 10	NA	NA
Chromium	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<10	NA	NA
Lead	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<10	NA	NA
Mercury	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<02	NA	NA
Selenium	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	< 20	NA	NA
Silver	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	< 10	NA	NA
VOCs		< 1	< 1	< 1	< 1	<1
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	$\mu \mathrm{g} / \mathrm{L}$ $\mu \mathrm{g} / \mathrm{L}$	<1	< 1	<1	<1	<1
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	$\mu \mathrm{g} / \mathrm{L}$	<1	< 1	<1	< 1	< 1
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	$\mu \mathrm{g} / \mathrm{L}$	<1	< 1	<1	< 1	<1
1,1,2-Trichloroethane 1,1-Dichloroethane	$\mu \mathrm{g} / \mathrm{L}$	<1	<1	<1	<1	<1
1,1-Dichloroethene	$\mu \mathrm{g} / \mathrm{L}$	<1	<1	< 1	<1	<1
1,2,3-Trichloropropane	$\mu \mathrm{g} / \mathrm{L}$	<1	<1	< 1	<1	<1
1,2-Dibromo-3-Chloropropane	$\mu \mathrm{g} / \mathrm{L}$	<1	<1	< 1	<1	< 1
1,2-Dichloroethane	$\mu \mathrm{g} / \mathrm{L}$	<1	<1	< 1	<1	<1
1,2-Dichloropropane	$\mu \mathrm{g} / \mathrm{L}$	<1	<1	1.2J	<10	<10
2-Butanone (MEK)	$\mu \mathrm{g} / \mathrm{L}$ $\mu \mathrm{g} / \mathrm{L}$	1.5 J <1	1.75 <1	<1	<1	<1
2-Chloro-1,3-butadiene 2-Hexanone	$\mu \mathrm{g} / \mathrm{L}$	<10	< 10	<10	<10	<10
2-Hexanone	$\mu \mathrm{\mu} / \mathrm{L}$	<1	<1	<1	<1	< 1
3-Chloro-1-propene 4-Methyl-2-pentanone (MIBK)	$\mu \mathrm{g} / \mathrm{L}$	<10	<10	< 10	<10	<10
4-Methyl-2-pentanone (MIBK) Aceione	$\mu \mathrm{g} / \mathrm{L}$	8.45	7.7 J	9.5 J	5.0J	< 25
Acetone	$\mu \mathrm{g} / \mathrm{L}$	<40	< 40	<40	< 40	< 40
Acrolein	$\mu \mathrm{g} / \mathrm{L}$	<20	< 20	< 20	<20	< 20
Acrylonitrile	$\mu \mathrm{g} / \mathrm{L}$	<20	<20	<20	< 1	<1
Benzene	$\mu \mathrm{g} / \mathrm{L}$	< 1	<1	<1	<1	< 1
Bromoform	$\mu \mathrm{g} / \mathrm{L}$	<1	<1	<1	<1	<1
Bromomethane	$\mu \mathrm{g} / \mathrm{L}$	<2	<2	<2	<2	<2
Carbon disulfide	$\mu \mathrm{g} / \mathrm{L}$ $\mu \mathrm{g} / \mathrm{L}$	<2	<1	<1	<1	<1
Carbon tetrachloride	$\mu \mathrm{g} / \mathrm{L}$	<1	<1	<1	<1	< 1
Chloroberzzene	$\mu \mathrm{H} / \mathrm{L}$	<1	<1	< 1	< 1	<1
Chlorodibromomethane	$\mu \mathrm{g} / \mathrm{L}$	< 1	<1	<1	< 1	<1
Chloroethane Chloroform	$\mu \mathrm{g} / \mathrm{L}$	<1	<1	<1	< 1	<1
Chloromethane	$\mu \mathrm{g} / \mathrm{L}$	<1	<1	<1	< 1	<1
cis-1,3-Dichloropropene	$\mu \mathrm{g} / \mathrm{L}$	<1	<1	<1	< 1	
Dibromomethane	$\mu \mathrm{g} / \mathrm{L}$	< 1	<1	<1	< 1	< 1
Dichlorobromomethane	$\mu \mathrm{g} / \mathrm{L}$	<1	<1	<1	<1	< 1
Dichlorodifluoromethane	$\mu \mathrm{m} / \mathrm{L}$	<1	<1	<1	<1	<1
Ethyl methacrylate	$\mu \mathrm{\mu} / \mathrm{L}$	0.18 J	0.14 J	< 1	<1	<1
Ethylbenzene	$\mu \mathrm{m} / \mathrm{L}$	<1	< 1	< 1	< 1	<1
Ethylene Dibromide lodomethane	$\mu \mathrm{g} / \mathrm{L}$	< 5	< 5	< 5	< 5	<5
lodomethane ${ }^{\text {Isobutyl alcohol }}$	$\mu \mathrm{g} / \mathrm{L}$	<40	<40	< 40	<40	<40
Methacrylonitrile	$\mu \mathrm{g} / \mathrm{L}$	<20	<20	< 20	<20	<20
Methyl methacrylate	$\mu \mathrm{g} / \mathrm{L}$	<1	<1	< 1	< 1	<5
Methylene Chloride	$\mu \mathrm{g} / \mathrm{L}$	<5	< 5	< 5	<5	<5
Pentachoroethane	$\mu g h$	<5 <20	<20	<20	<20	<20
Propionitrile	$\mu \mathrm{gh}$ L	<20	<1	<1	<1	<1
Styrene	$\mu \mathrm{g} / \mathrm{L}$	<1	- 1	<1	<1	<1
Tetrachloroethene	${ }_{\mu \mathrm{L}}^{\mu \mathrm{g} / \mathrm{L}}$	2.7	2.5	1.3	<1	<1
Toluene trans-1,2-Dichloroethene	$\mu \mathrm{L} / \mathrm{L}$	<1	<1	< 1	<1	<1
trans-1,3-Dichloropropene	$\mu \mathrm{g} / \mathrm{L}$	<1	<1	< 1	<1	<2
trans-1,4-Dichloro-2-butene	$\mu \mathrm{g} / \mathrm{L}$	<2	<2	< 2	<1	< 1
Trichloroethene	$\mu \mathrm{g} / \mathrm{L}$	< 1	<	<		

[^8]Summary of Quality Assurance/Quality Control Data, Sludge Characterization and Bench Scale Treatability Report Hercules Incorporated, Hattiesburg, Mississippi.

Summary of Quality Assurance/Quality Control Data, Sludge Characterization and Bench Scale Treatability Report, Hercules Incorporated, Hattiesburg, Mississippi

	Location ID:	Field Blank	Field Blank	Rinsate Blank	Trip Blank	Trip Blank
Sample Date:	$4 / 15 / 2010$	$4 / 16 / 2010$	$4 / 16 / 2010$	$4 / 14 / 2010$	$4 / 15 / 2010$	

Chemical Name
Unit

SVOCs (Continued)		NA	NA	<94	NA	NA
Benzo[b]fluoranthene	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	< 9.4	NA	NA
Benzo[g, h, j]perylene	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	< 9.4	NA	NA
Benzo[k]fluoranthene	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	< 9.4	NA	NA
Benzyl alcohol	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	< 9.4	NA	NA
Bis(2-chloroethoxy)methane	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4 <9.4	NA	NA
Bis(2-chloroethyl)ether	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Bis(2-ethylhexyl) phthalate	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
bis(chloroisopropyl) ether	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	< 9.4	NA	NA
Butyl benzyl phthalate	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<94	NA	NA
Chrysene	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Diallate	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Dibenz(a,h)anthracene	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Dibenzofuran	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Diethyl phthalate	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	< 9.4	NA	NA
Dimethoate	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Dimethyl phthalate	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Di-n-butyl phthalate	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Di-n-octyl phthalate	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Dinoseb	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<94	NA	NA
Disulfoton	$\mu \mathrm{\mu} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Ethyl methanesulfonate	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Ethyl Parathion	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Famphur	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Fluoranthene	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Fluorene	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	< 9.4	NA	NA
Hexachlorobenzene	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Hexachlorobutadiene	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Hexachlorocyclopentadiene	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Hexachloroethane	$\mu \mathrm{\mu g} / \mathrm{L}$	NA	NA	<4700	NA	NA
Hexachlorophene	$\mu \mathrm{\mu g} / \mathrm{L}$	NA	NA	< 9.4	NA	NA
Hexachloropropene	$\mu \mathrm{\mu} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Indeno[1,2,3-cd]pyrene	$\mu \mathrm{H} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Isophorone	$\mu \mathrm{\mu} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Isosafrole	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<1900	NA	NA
Methapyriene	$\mu \mathrm{\mu g} /$	NA	NA	<9.4	NA	NA
Methyl methanesulfonate	$\mu \mathrm{\mu} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Methyl Parathion	$\mu \mathrm{g} / 2$	NA	NA	<9.4	NA	NA
Naphthalene	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<94	NA	NA
Nitrobenzene	$\mu \mathrm{\mu} / \mathrm{L}$	NA	NA	<9.4	NA	NA
N-Nitro-o-toluidine	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
N-Nitrosodiethylamine	$\mu \mathrm{\mu} / \mathrm{L}$	NA	NA	<9.4	NA	NA
N -Nitrosodimethylamine	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
N -Nitrosodi-n-butylamine	$\mu \mathrm{H} / \mathrm{L}$	NA	NA	<9.4	NA	NA
N -Nitrosodi-n-propylamine	${ }_{\mu}^{\mu \mathrm{g} / \mathrm{L}}$	NA	NA	<9.4	NA	NA
N -Nitrosodiphenylamine	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4 <9.4	NA	NA
N-Nitrosomethylethylamine	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4 <9.4	NA	NA
N-Nitrosomorpholine	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	< 9.4	NA	NA
N -Nitrosopyrrolidine	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
0,0',0"-Triethylphosphorothioate	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	< 9.4	NA	NA
p-Dimethylamino azobenzene	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Pentachlorobenzene	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Pentachloronitrobenzene	$\mu \mathrm{g} / 2$	NA	NA	<47	NA	NA
Pentachlorophenol	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Phenacetin	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Phenanthrene	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Phenol	$\mu \mathrm{Hg} / \mathrm{L}$	NA	NA	<94	NA	NA
Phorate	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<1900	NA	NA
p-Phenylene diamine	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	< 9.4	NA	NA

Table 3.
Summary of Quality Assurance/Quality Control Data, Sludge Characterization and Bench Scale Treatability Report Hercules Incorporated, Hattiesburg, Mississippi.

Chemical Name	Location ID: Sample Date: Unit	Field Blank 4/15/2010	Field Blank 4/16/2010	Rinsate Blank 4/16/2010	Trip Blank 4/14/2010	Trip Blank 4/15/2010
SVOCs (Continued)						
Pyrene	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Pyridine	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<47	NA	NA
Safrole, Total	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Sulfotepp	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA
Thionazin	$\mu \mathrm{g} / \mathrm{L}$	NA	NA	<9.4	NA	NA

SVOCs	Semivolatile Organic Compounds
$\mu \mathrm{g} / \mathrm{L}$	Microgram per liter.
VOCs	Volatile Organic Compounds.

ARCADIS
Summary of Treatability Test Effluent Analytical Data,
Hercules Incorporated, Hattiesburg, Mississippi.

POTW Discharge Permit Parameter	Sample Results						
	Units	1BS-4 Centrifuge Centrate (250 ppm Anlon Polymer)	IBS-4 Centrifuge Centrate (250 ppm Cation Polymer)	IBS-4 Centrifuge Centrate (No Polymer)	IBS-4 Filter Press Filtrate	IBS-4 Gravity Dewatering Liquid	IBS-8 Filter Press Flitrate
		6/23/2010	6/23/2010	6/23/2010	6/23/2010	6/23/2010	6/23/2010
Flow Effluent Oll and Grease Effluent*	NA	NA	NA	NA	NA	NA
		IV	IV	IV	IV	IV	IV
5 -day (20 degrees Celsius) Effluent	mg / L	IV	IV	IV	IV	IV	IV
pH Effluent	SU	6	6.5	6	9.5	6	11.5
Solids (Total Suspended) Effluent	mg/L	IV	IV	IV	IV	IV	IV
1,1,1-Trichloroethane Effluent	$\mathrm{mg} / 2$	< 0.001	<0.001	<0.001	<0.500	<0.001	< 0.001
1.1,2-Trichloroethane Effluent	mg / L	<0.001	<0.001	<0.001	<0.500	< 0.001	< 0.001
1.1-Dichloroethane Effluent	mg / L	<0.001	<0.001	< 0.001	<0.500	< 0.001	< 0.001
1,1-Dichloroethylene Effluent	mg / L	< 0.001	<0.001	<0.001	<0.500	< 0.001	< 0.001
1,2,4-Trichlorobenzene Effluent	mg / L	<0.067	<0.067	<0.050	< 0.330	< 0.010	< 0.029
1,2-Dichlorobenzene Effluent	mg / L	< 0.067	<0.067	<0.050	<0.330	<0.010	< 0.029
1,2-Dichloroethane Effluent	mg / L	<0.001	<0.001	<0.001	<0.500	<0.001	<0.001
1,2-Dichioropropane Effluent	mg / L	< 0.001	< 0.001	<0.001	<0.500	< 0.001	< 0.001
1,2-Transdichloroethylene Effluent	mg / L	<0.001	< 0.001	<0.001	<0.500	<0.001	< 0.001
1,3-Dichlorobenzene Effluent	mg / L	< 0.067	<0.067	<0.050	< 0.330	< 0.010	< 0.029
1,3-Dichloropropylene, cls Effluent ${ }^{(1)}$	mg / L	< 0.001	<0.001	<0.001	< 0.500	< 0.001	< 0.001
1,3-Dichioropropylene, trans Effluent ${ }^{(1)}$	mg / L	<0.001	< 0.001	<0.001	<0.500	<0.001	< 0.001
1,4-Dichlorobenzene Effluent	mg / L	<0.067	<0.067	<0.050	< 0.330	< 0.010	< 0.029
2-Nitrophenol Effluent	mg / L	< 0.067	<0.067	< 0.050	<0.330	<0.010	< 0.029
4,6-DInitro-o-cresol Eflluent	mg / L	< 0.330	<0.330	<0.250	<0.170	<0.050	<0.140
4-Nitrophenol Effluent	mg / L	< 0.330	<0.330	<0.250	<0.170	< 0.050	<0.140
Acenaphthene Effluent	mg / L	<0.067	<0.067	<0.050	<0.330	<0.010	< 0.029
Anthracene Effluent	mg / L	< 0.067	<0.067	<0.050	<0.330	<0.010	<0.029
Benzene Effluent	mg / L	<0.001	<0.001	<0.001	<0.500	< 0.001	0.0013
Bis(2-ethyihexyi)phthalate Effluent	mg / L	<0.067	<0.067	<0.050	< 0.330	<0.010	< 0.029
Carbon tetrachloride Effluent	mg / L	<0.001	<0.001	<0.001	<0.500	<0.001	<0.001
Chlorobenzene Effluent	mg / L	< 0.001	<0.001	<0.001	<0.500	< 0.001	<0.001
Chioroethane Effluent	mg / L	<0.001	<0.001	<0.001	<0.500	< 0.001	<0.001
Chloroform Effluent	mg / L	<0.001	<0.001	<0.001	<0.500	<0.001	<0.001
Diethyl phthalate Effluent	mg / L	<0.067	<0.067	< 0.050	<0.330	< 0.010	<0.029
Dimethyl phthalate Effluent	mg / L	<0.067	<0.067	< 0.050	< 0.330	< 0.010	<0.029
Di-N-Butyl Phthalate Effluent Ethyl benzene Effluent	mg / L mg / L	< 0.067	< 0.067	< 0.050	<0.330	<0.010	< 0.029
Fluoranthene Effluent	mg / L mg / L	<0.001 <0.067	<0.001 <0.067	<0.001	<0.500 <0.330	< 0.001	< 0.001
Fluorene Effluent	mg / L	<0.067	<0.067	<0.050	<0.330	< 0.010	< 0.029

ARCADIS
Table 4.
Summary of Treatability Test Effluent Analytical Data,
Hercules Incorporated, Hattiesburg, Mississippi.

POTW Discharge Permit Parameter	Sample Results						
	Units	IBS-4 Centrifuge Centrate (250 ppm Anlon Polymer)	IBS-4 Centrifuge Centrate (250 ppm Cation Polymer)	IBS-4 Centrifuge Centrate (No Polymer)	1BS-4 Filter Press Flitrate	IBS-4 Gravity Dewatering Llquid	IBS-8 Filter Press Flltrate
		6/23/2010	6/23/2010	6/23/2010	6/23/2010	6/23/2010	6/23/2010
Hexachlorobenzene Effluent	mg/	<0.067	< 0.067	<0.050	<0.330	<0.010	< 0.029
Hexachlorobutadiene Effluent	mg/L	<0.067	<0.067	<0.050	< 0.330	<0.010	<0.029
Hexachloroethane Efluent	mg / L	<0.067	<0.067	<0.050	<0.330	<0.010	< 0.029
Methyl Chioride (Chloromethane) Effluent	mg / L	<0.001	< 0.001	<0.001	<0.500	<0.001	<0.001
Methylene Chloride Effluent	mg / L	< 0.005	<0.005	<0.005	<2.500	< 0.005	<0.005
Naphthalene Effluent	mg / L	< 0.067	<0.067	<0.050	<0.330	<0.010	<0.029
Nitro-Benzene Effluent	mg / L	<0.067	< 0.067	<0.050	<0.330	<0.010	<0.029
Phenanthrene Effluent	mg / L	< 0.067	< 0.067	<0.050	<0.330	<0.010	<0.029
Pyrene Effluent	mg / L	<0.067	<0.067	< 0.050	<0.330	<0.010	<0.029
Tetrachloroethylene Effluent	mg / L	< 0.001	<0.001	<0.001	<0.500	<0.001	< 0.001
.Toluene Effluent	mg / L	< 0.001	0.00052J	<0.001	0.280 J	< 0001	0.100
Trichloroethylene Effluent	mg / L	<0.001	<0.001	<0.001	<0.500	<0.001	<0.001
Vinyl chloride Effluent	mg / L	<0.001	<0.001	<0.001	<0.500	< 0.001	<0.001
(1)	The MDEQ POTW Discharge Permit lists a discharge limHt for 1,3-Dichloropropylene. This limit was used for the cis- or trans- isomer listed.						
IV	Insufficient sample volume to run this test.						
J	Estimated concentration.						
mg / L	Milligrams per liter.						
NA	Not applicable.						
POTW	Publicly Owned Treatment Works.						
SU	Standard units.						

Because recycled paper produced by wind power energy

dyelivzsw ooachopurlusv

[^0]: Because we care
 100\% recyled

 Ashland/OH3000 MS24/R/1/kn

[^1]: Because tve care

[^2]: Because we care
 100\% secycled hanet prodised by wind nower eneray

[^3]: Berabs we care

[^4]: Bectuse ve cale
 100\% tecycled pane prod ced iby wn d power eneroy

[^5]: Because we cate
 00\% recyrled pareer produred by wind power enercy

[^6]: Milligram per kllogram
 Milligram per iter．
 Millimeter per second．
 Not applicable．
 No burn．Material did not burn during lgnitability test．
 Resource Conservation and Recovery Act． Resource Conservation and Recovery Act．
 Standard unit．

 Semivolatile Organic Compounds．
 Volatile Organic Compounds．

[^7]: Constitutent has been detected
 Estimated concentration.
 Estimated concentration.
 Milligram per kllogram.
 No Standard.
 Semivolatile Organic Compounds.
 Target Remediation Goal for soil under a restricted use scenario. Microgram per kllogram.
 Volatile Organic Compounds.

[^8]: Because we care

