

January 10, 2012

Transmitted via electronic mail

Mr. Tony Russell, Chief Assessment Remediation Branch Mississippi Department of Environmental Quality 515 East Amite Street Jackson, Mississippi 39201

Re: Kuhlman Electric Corporation Facility Soil Vapor Extraction Pilot Test Plan Crystal Springs, Mississippi

Dear Mr. Russell:

Environmental Management Services, Inc. (EMS) has prepared the following Soil Vapor Extraction (SVE) Pilot Test Plan in order to set forth the methods and criteria that will be evaluated in support of the implementation of the Corrective Action Plan (CAP) submitted for the facility.

The pilot test will be performed in general accordance with the CAP for the site referenced above; however, the objectives have been modified to address the portions of the project deemed necessary at this stage of implementation. EMS has chosen to evaluate two distinct vertical zones, whereas the original plan did not address this physical characteristic. In addition, the original plan included provisions for air sparging capture zone evaluation; this evaluation is not being conducted at this time. Otherwise, this Plan is consistent with the original CAP prepared by others. The attached figure is a modification of Figure 3 of the original plan. Portions of the text below that are directly excerpted from the CAP are denoted by enclosure in quotation marks.

Pilot System Installation

The proposed remedial "approach relies upon aggressive source area in-situ treatment using SVE. In order to adequately design and implement these technologies, a pilot study is proposed for purposes of refining the design criteria that will be used to determine SVE well placement, extraction flow requirements, mechanical and electrical component needs, and other operational considerations." The SVE pilot study would entail installation of an SVE well pair and five (5) pilot observation well pairs as shown on the attached Figure. Short-term step testing, using temporary skid mounted equipment, will be used to determine achievable vacuum radius of influence (ROI) under a range of

applied vacuums and extraction flow rates from the SVE well. The system will employ a 20-horsepower, high-vacuum, oil sealed liquid ring pump capable of removing air at 300 cubic feet per minute (CFM) at 25 inches of mercury. The unit will be provided power using a portable diesel generator. The system will be equipped with magnehelic® vacuum and pressure gauges and flow meters capable of providing accurate data. The unit will also include a knock-out tank for water removal as necessary.

The SVE pilot wells will consist of a shallow and deep well to be constructed of (2) 2inch diameter, stainless steel wire-wrapped well screen intervals. A shallow well will be installed to the top of a thin, intermittent clay layer at approximately 22-feet bgs (with approximately 15-feet of screen). This well will aid in evaluation of the effectiveness of shallow wells targeting the core of the contaminant source plume. A deep well will be installed (adjacent to the shallow well) into the saturated reach of the upper aquifer, up to an approximate total depth of up to 80 feet bgs (with approximately 40-feet of screen). Extending the screen of the deep well "into the saturated zone will ensure the wells are able to directly influence soils in the capillary fringe, as well as any adsorbed phase impacts that are periodically exposed during periods of low water table elevation. Based on a preliminary evaluation of the anticipated range of vacuum and flow requirements and the anticipated open screen area, it does not appear that submerging the lower screen interval would present a significant entrainment concern at this site. If during pilot testing it appears that submerging the lower end of the screen interval could prove problematic, appropriate adjustments to the anticipated construction details would be made." The observation wells will be constructed of 1-inch diameter, PVC well material and will be placed at similar depths and screened intervals as the extraction well pair. See Attachment 1 for boring logs displaying geological details in the area of concern.

All wells will be flush mounted in the slab of the facility for obstruction minimization. Additionally, during the pilot study, a flexible hose will be employed to route the extracted vapors to the skid-mounted SVE unit.

Pilot Study Implementation

The pilot test will be performed by withdrawing soil vapor from the recovery wells (shallow and deep) at various vacuums, measuring the resulting vacuum pressure at surrounding observation wells to determine radial vacuum influence, and calculating an estimated hydrocarbon load rate (based on flow rates and analytical samples collected using a high-vacuum sampling pump at the SVE well head). The samples will be analyzed for volatile organic compounds using EPA Method 8260 SIM by Environmental Analytical Service (EAS).

The test will be used to determine the site specific soil air permeability, concentration of contaminants, and radial influence of the SVE system. Vacuum will be applied to the

SVE test wells in the following increments: 10, 30, 50, 70, and 100 percent of maximum. Vacuum observations will be used to estimate pneumatic conductivity of the vadose zone soils. The pneumatic conductivity will be used, in turn, to model extraction flow requirements, and refine full-scale SVE well placement, in order to achieve optimal pore volume exchange rates throughout the source area treatment extents. The pilot test would also be used to conservatively assess potential VOC emission rates during full-scale operation of the SVE system. These data would be used to assess emission permit requirements in context of allowable thresholds and to determine if and how emission controls need to be factored in to the full-scale design.

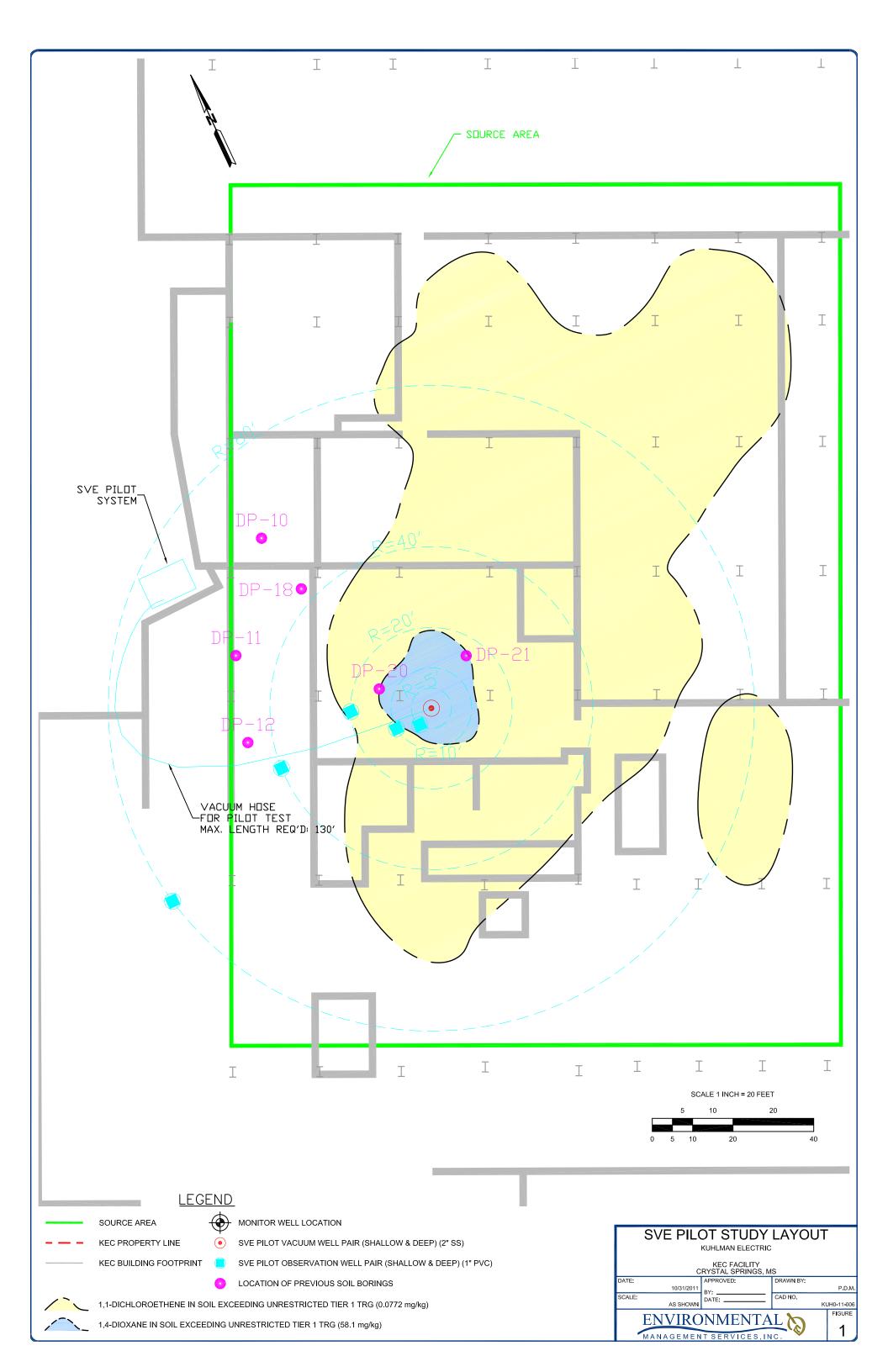
Schedule for Pilot Study

Upon approval of this Plan, installation of the extraction and observation wells will be initiated. Well installation will likely be completed within four to six weeks of Plan approval. The field portion of the study will be dependent on the availability of equipment and should be implemented within four to six weeks of well installation. Actual implementation of the pilot study is expected to require two days (one day for each SVE test well). However, the test will be continued for as long as necessary to ensure collection of the required data and sufficiently to evaluate the effectiveness of SVE as a remedial technique for this site.

System Modeling and Design

The results of the field test will be used to determine effective radius of influence and this data will be used to determine the number and spacing of extraction wells necessary to treat the source area beneath the KEC facility. A report including field observations, data analysis, system modeling, and full scale implementation design will be prepared within six to eight weeks of receipt of analytical results.

Please contact EMS at (601) 544-3674 if you should have any question or comments concerning the preceding Plan. EMS looks forward to conducting the pilot study and subsequent full-scale system design and implementation at your approval.


Sincerely,

Environmental Management Services, Inc.

Chris Johnson, P.E., P.S. Engineering Manager

Attachment Figure 1 – SVE Pilot Study Preliminary Layout

Attachment 1 – Boring Logs for Area of Concern

Attachment 1 Boring Logs for Area of Concern

Project No.: BW05-01

Project: Source Area Sampling

Project Manager: Robert Martin

Client: BorgWarner Inc.

Location: Crystal Springs, MS Geologist: Robert Martin

Martin & Slagle GeoEnvironmental Associates, LLC 118F Cherry Street Black Mountain, NC 28711

					_		
Depth	Lithology	Description	Depth/Elev.	USCS Class	Sample	PID (ppm)	Comments
0		Ground Surface	469.4				
200		Brown silty clay (fill)	0.0	2.20			
=							
2=			2		21 <u>2 1</u>		
=					_		4.4
3					KEP-DP-010-001	20	
4=				CL			
3							
=							
6-					£ T	1 +1	
3					KEP-DP-010-002	1.5	5 21/2
, =			461.4				
0		Brown clayey fine sandy gravel	8.0				
10=						24	
10 =					KEP-DP-010-003	24	
=				GP			
12-							
=							
=							1.2
14=	91		455.0		KEP-DP-010-004	186	
=		Brown clayey fine sandy	14.4	00			
10			453.4	30			r Addie
16	20.		16.0			_	
=		Light brown clayey fine					
18		Summy States		GP		52	- 1
=	2			OF.	KEP-DP-010-005	52	
=							
20=	minin		449.4				T de la
	0 2 4 6 8 10 12 14 16 18 18 18 18 18 18 18 18 18 18 18 18 18	10 12 14 16 18 18 18 18 18 18 18 18 18 18 18 18 18	Brown silty clay (fill) Brown clayey fine sandy gravel Brown clayey fine sandy gravel becomes clayey fine sand Light brown clayey fine sand Light brown clayey fine sandy gravel	Brown silty clay (fill) Brown silty clay (fill) Brown clayey fine sandy gravel Brown clayey fine sandy gravel becomes clayey fine sand Light brown clayey fine sandy gravel Light brown clayey fine sandy gravel becomes clayey fine sand Light brown clayey fine sandy gravel	Brown silty clay (fill) 2 Brown clayey fine sandy gravel Brown clayey fine sandy gravel becomes clayey fine sandy Light brown clayey fine sandy gravel CL 461.4 8.0 GP 455.0 14.4 Light brown clayey fine sandy gravel becomes clayey fine sand Light brown clayey fine sandy gravel GP GP	CL REP-DP-010-001 KEP-DP-010-001 KEP-DP-010-002 KEP-DP-010-002 KEP-DP-010-002 KEP-DP-010-003 KEP-DP-010-003 KEP-DP-010-004 KEP-DP-010-004 KEP-DP-010-004 KEP-DP-010-004 KEP-DP-010-004 KEP-DP-010-004 KEP-DP-010-004 KEP-DP-010-005 KEP-DP-0	Class

Drilled By: Walker-Hill Environmental, Inc.

Drill Method: Direct Push

Drill Date: 4/26/2007

Hole Size: 2.25"

Project No.: BW05-01

Project: Source Area Sampling

Project Manager: Robert Martin

Client: BorgWarner Inc.

Location: Crystal Springs, MS

Geologist: Robert Martin

			SUBSURFACE PROFILE					
GW Depth	Depth	Lithology	Description	Depth/Elev.	USCS Class	Sample	PID (ppm)	Comments
	22		Light brown silty fine sand with gravel	446.9 22.5	SM			
	24-		Red plastic clay Light brown, orange silty fine sand	22.5 444.7 24.7	SM	KEP-DP-010-006	49	
	26		Red, orange plastic clay Orange, yellow fine sandy	442.9	CH GP	KEP-DP-010-007	76	
	28-		Tan slightly silty fine sand	441.4 28.0		7 = 3		
	30-				SM	KEP-DP-010-008	5.9	
	34-						20	
	36		Gray to beige sand with gravel at 39.2"	433.4 36.0		KEP-DP-010-009	38	
	38-		Brater at Olim		SP	KEP-DP-010-010		
	40-	HIHHIH		429.4			11.6	E - 22

Drilled By: Walker-Hill Environmental, Inc.

Drill Method: Direct Push

Martin & Slagle GeoEnvironmental

Associates, LLC 118F Cherry Street

Black Mountain, NC 28711

Drill Date: 4/26/2007

Hole Size: 2.25"

Project No.: BW05-01

Project: Source Area Sampling

Project Manager: Robert Martin

Client: BorgWarner Inc.

Location: Crystal Springs, MS

Geologist: Robert Martin

			STIDSTIDENCE DROE!! F					
-	1		SUBSURFACE PROFILE	Т				5 di
GW Depth	Depth	Lithology	Description	Depth/Elev.	USCS Class	Sample	PID (ppm)	Comments
	42		Gray, orange mottled silty fine sand	427.4 42.0	SM	KEP-DP-010-011	23.7	
	44	-	Gray, orange gravelly fine sand	42.0 425.4 44.0	SP		_	
	46		Gray, pink slightly silty fine sand	44.0			- E	O anno inconstatorio
	48					KEP-DP-010-012	6.3	Some iron staining
	1111111							
	50-				SM	VED DD 440 940	34	Some iron staining
	52	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				KEP-DP-010-013		
	54-		Pink clayey fine sand	414.4 55.0	SC		12.7	
	56		Pink to tan fine sand	413.4 56.0		KEP-DP-010-014	14.1	
	58				SP	KEP-DP-010-015	6.7	
	60=		- Land	409.4 60.0				445

Drilled By: Walker-Hill Environmental, Inc.

Martin & Slagle GeoEnvironmental

Associates, LLC 118F Cherry Street

Black Mountain, NC 28711

Drill Method: Direct Push

Drill Date: 4/26/2007

Hole Size: 2.25"

Project No.: BW05-01

Project: Source Area Sampling

Project Manager: Robert Martin

Client: BorgWarner Inc.

Location: Crystal Springs, MS

Geologist: Robert Martin

			SUBSURFACE PROFILE					
GW Depth	Depth	Lithology	Description	Depth/Elev.	USCS Class	Sample	PID (ppm)	Comments
*			Pink fine to medium sand with gravel			KEP-DP-010-016	3.9	
	62-					8#5		
	64				SP			
	66-							
	60			401.4	- I÷	**		
	68-		Boring terminated	401.4 68.0		= =		
	70-			=				
	72-	_						44
	74-			100	=	2 s = 2		
	76-			-	ja ope			= = 15
	76-							
	78-			3	- [4			
	80				į.			

Drilled By: Walker-Hill Environmental, Inc.

Martin & Slagle GeoEnvironmental

Associates, LLC 118F Cherry Street

Black Mountain, NC 28711

Drill Method: Direct Push

Drill Date: 4/26/2007

Hole Size: 2.25"

Project No.: BW05-01

Project: Source Area Sampling

Project Manager: Robert Martin

Client: BorgWarner Inc.

Location: Crystal Springs, MS

Geologist: Robert Martin

			SUBSURFACE PROFILE					
GW Depth	Depth	Lithology	Description	Depth/Elev.	USCS Class	Sample	PID (ppm)	Comments
	0-		Ground Surface	469.4 0.0				
	=		Red, brown fine sandy clay	0.0				
	=				20 -			
	2=							
			- £1 £ ± f .		4	= =		4 = -
	4-					KEP-DP-011-001	4.6	- 41
	=							
	6		10.00		CL		1 =	- = =
	8-		et neit			KEP-DP-011-002	2.5	
	0						*	
	10		1 # 1-1					= -
	·~ =						-	
-	12-					KEP-DP-011-003	0	**
					10			

CL

Drilled By: Walker-Hill Environmental, Inc.

Drill Method: Direct Push

16-

18

Drill Date: 4/16/2007 & 4/17/2007

Martin & Slagle GeoEnvironmental Associates, LLC

118F Cherry Street

Black Mountain, NC 28711

Hole Size: 2.25"

23

26.3

KEP-DP-011-004

KEP-DP-011-005

Project No.: BW05-01

Project: Source Area Sampling

Project Manager: Robert Martin

Client: BorgWarner Inc.

Location: Crystal Springs, MS

Geologist: Robert Martin

			SUBSURFACE PROFILE					
GW Depth	Depth	Lithology	Description	Depth/Elev.	USCS Class	Sample	PID (ppm)	Comments
	=							
	=			1171		1 5 6		
	22	1/1/1/	Brown, red clayey medium	447.4 22.0		KEP-DP-011-006	316	
	=		sand with gravel					
			- F = -	_		1 6 6		
	24-				SC	<u> </u>		
				440.0				
	26-	27.731	Tan, brown medium sand	443.8 25.6		KEP-DP-011-007	118	
	20-	LE-	ian, brown meurum sand		_			
	=				_			
	28-				SP			
		-	·		Oi			
	=							
	30-			439.4 30.0		KEP-DP-011-008	109	
	=		Tan medium sand with gravel	30.0		KEP-DP-011-006		
	=							
	32-		四十二		SP			F
	=		<u> </u>			447		
	=		= 1					
	34-							
	=			434 1				4
	36-		Gray, tan fine sand with some gravel	434.1 35.3	12:47	KEP-DP-011-009	51.9	
	=		graver		SP			
	=				35			
	38-			431.2 38.2		KEP-DP-011-010	61.5	
] =	1	White, tan fine sand	30.2		VEL-DL-011-010		

429.4

Drilled By: Walker-Hill Environmental, Inc.

Drill Method: Direct Push

Drill Date: 4/16/2007 & 4/17/2007

Martin & Slagle GeoEnvironmental

Associates, LLC 118F Cherry Street

Black Mountain, NC 28711

Hole Size: 2.25"

Project No.: BW05-01

Project: Source Area Sampling

Project Manager: Robert Martin

Client: BorgWarner Inc.

Location: Crystal Springs, MS

Geologist: Robert Martin

Г			SUBSURFACE PROFILE		I			
-	T		JUDJUNFACE PROFILE	T	(0			
GW Depth	Depth	Lithology	Description	Depth/Elev.	USCS Class	Sample	PID (ppm)	Comments
			Gray, tan to white silty fine sand with gravel					
	42				SM	KEP-DP-011-011	52.6	
	44-	Table of the state	White, tan, pink fine sand with gravel	425.4				1.7
	46-	Will.				KEP-DP-011-012	34.8	
	48-				SP			
	50-		erer. 				38	
	52					KEP-DP-011-013	30	
	54-	- =		-		5 4	- 3	
	56-				SP	KEP-DP-011-014	49.7	
	58				40	KED DD 044 045	30	
	60					KEP-DP-011-015		

Drilled By: Walker-Hill Environmental, Inc.

Drill Method: Direct Push

Drill Date: 4/16/2007 & 4/17/2007

Martin & Slagle GeoEnvironmental

Associates, LLC 118F Cherry Street

Black Mountain, NC 28711

Hole Size: 2.25"

Project No.: BW05-01

Project: Source Area Sampling

Project Manager: Robert Martin

Client: BorgWarner Inc.

Location: Crystal Springs, MS Ge

Geologist: Robert Martin

			SUBSURFACE PROFILE					
GW Depth	Depth	Lithology	Description	Depth/Elev.	USCS Class	Sample	PID (ppm)	Comments
<u>*</u>	62				SP	KEP-DP-011-016	10.7	
	66		Tan, white silty fine sand	405.4 64.0	SM			
	68		Boring terminated	401.4 68.0				
	70							
	74			=				
	78-							
	80=							

Drilled By: Walker-Hill Environmental, Inc.

Drill Method: Direct Push

Drill Date: 4/16/2007 & 4/17/2007

Martin & Slagle GeoEnvironmental Associates, LLC

118F Cherry Street Black Mountain, NC 28711

Hole Size: 2.25"

Project No.: BW05-01

Project: Source Area Sampling

Project Manager: Robert Martin

Client: BorgWarner Inc.

Location: Crystal Springs, MS

Geologist: Robert Martin

			SUBSURFACE PROFILE					
GW Depth	Depth	Lithology	Description	Depth/Elev.	USCS Class	Sample	PID (ppm)	Comments
	0-		Ground Surface	469.4 0.0		F_F_		
-	Ĭ		No recovery					2.5
	2		Red, brown clay to fine sandy clay	2.0				
	6						F	
	8				CL	KEP-DP-012-001	9.5	
	10							
	12		Brown fine sand with gravel	457.4 12.0		KEP-DP-012-002	27.5	
	14		ZZZZIM AMAZ SOMA WIEM GENTEL		SP			
	16	НІПНІГ		453.4 16.0		KEP-DP-012-003	89	
= 7	18		Brown to tan silty fine to medium sand with gravel	10.0	SM	KEP-DP-012-004	173	
	20-							

Drilled By: Walker-Hill Environmental, Inc.

Drill Method: Direct Push

Drill Date: 4/17/2007 & 4/18/2007

Martin & Slagle GeoEnvironmental

Associates, LLC 118F Cherry Street

Black Mountain, NC 28711

Hole Size: 2.25"

Project No.: BW05-01

Project: Source Area Sampling

Project Manager: Robert Martin

Client: BorgWarner Inc.

Location: Crystal Springs, MS

Geologist: Robert Martin

i			SUBSURFACE P	ROFILE						
GW Depth	Depth	Lithology	Description	- 1	Depth/Elev.	USCS Class	Sample	PID (ppm)	Comments	
	22-24-24-26-28-28-28-28-28-28-28-28-28-28-28-28-28-					SM	KEP-DP-012-006	151 79		
	32		Tan fine sand, moist		437.4 32.0		KEP-DP-012-007	32		
	36-					SP	KEP-DP-012-008	40.2		-
	38				429.4 40.0		KEP-DP-012-009	28.5		

Drilled By: Walker-Hill Environmental, Inc.

Drill Method: Direct Push

Drill Date: 4/17/2007 & 4/18/2007

Martin & Slagle GeoEnvironmental

Associates, LLC 118F Cherry Street

Black Mountain, NC 28711

Hole Size: 2.25"

Project No.: BW05-01

Project: Source Area Sampling

Project Manager: Robert Martin

Client: BorgWarner Inc.

Location: Crystal Springs, MS

Geologist: Robert Martin

			SUBSURFACE PROFILE					
GW Depth	Depth	Lithology	Description	Depth/Elev.	USCS Class	Sample	PID (ppm)	Comments
			Tan fine to coarse sand			3-1		
	42				SP	KEP-DP-012-010	7.7	
7		L		125.1		- 7		
li di	44		White, pink fine sand	425.4 44.0		2° = =		
	46				1 2			+ ===
	46							
	48-					KEP-DP-012-011	6.5	
			- (* - -					
	50	-	12			į į		-
		187				**************************************		
	52	-	F. 2		SP	KEP-DP-012-012	15.8	
		72					-	
	54		25 - 1			= 1		
		· · ·				Z Z =	44.0	
	56	-				KEP-DP-012-013	11.6	2.2
	=					· **		
	58-							
	60			409.4 60.0		KEP-DP-012-014	7	

Drilled By: Walker-Hill Environmental, Inc.

Drill Method: Direct Push

Drill Date: 4/17/2007 & 4/18/2007

Martin & Slagle GeoEnvironmental

Associates, LLC 118F Cherry Street Black Mountain, NC 28711

Hole Size: 2.25"

Project No.: BW05-01

Project: Source Area Sampling

Project Manager: Robert Martin

Client: BorgWarner Inc.

Location: Crystal Springs, MS

Geologist: Robert Martin

Martin & Slagle GeoEnvironmental
Associates, LLC
118F Cherry Street
Black Mountain, NC 28711

			SUBSURFACE PROFILE					
GW Depth	Depth	Lithology	Description	Depth/Elev.	USCS Class	Sample	PID (ppm)	Comments
	=		No recovery			2 1		
	62			405.4	j E			
	64-		White, pink silty fine sand	405.4 64.0			- 5	
	66			401.4 68.0	SM			
	00 =		Boring terminated	68.0				
	70-						14	
	74							
	78-							

Drilled By: Walker-Hill Environmental, Inc.

Drill Method: Direct Push

Drill Date: 4/17/2007 & 4/18/2007

Hole Size: 2.25"

Project No.: BW05-01

Project: Groundwater Assessment

Project Manager: Robert Martin

Client: BorgWarner Inc

Location: Kuhlman Electric Plant

Geologist: Robert Martin

			SUBSURFACE PROFILE					
GW Depth	Depth	Lithology	Description	Depth/Elev.	USCS Class	Sample	PID (ppm)	Comments
	0-		Ground Surface	469.4 0.0		<u> </u>		
	"		Brown silty clay	0.0				
	2					KEP-DP-018-001	10.7	
	4-	40000			CL			
	6					KEP-DP-018-002	6.4	
	8		Red, brown, tan fine sandy	461.4 8.0			-	
	10		gravel		GP	KEP-DP-018-003	41	
]		1 4 5	457.4				
	12		Red, brown clayey fine sand with gravel	457.4 12.0				
	14-		4.4		SC			
	16		D	452.7 16.7		KEP-DP-018-004	360	
	18-		Brown, tan fine sand with gravel	10.7	SP	KEP-DP-018-005	121	
	20			449.4 20.0				

Drilled By: Walker-Hill Environmental, Inc.

Martin & Slagle GeoEnvironmental

Associates, LLC 118F Cherry Street Black Mountain, NC 28711

Drill Method: Direct Push

Drill Date: 4/20/2007

Hole Size: 2.25"

Project No.: BW05-01

Project: Groundwater Assessment

Project Manager: Robert Martin

Client: BorgWarner Inc

Location: Kuhlman Electric Plant

Geologist: Robert Martin

			SUBSURFACE PROFILE					
GW Depth	Depth	Lithology	Description	Depth/Elev.	USCS Class	Sample	PID (ppm)	Comments
	=		Brown, tan fine sand		0.5			
	22		Red plastic clay	447.9 21.5	SP			
	22-		Brown, tan fine sand with					
			gravel	-	SP		249	
	24-			<u> </u>		KEP-DP-018-006	249	
			D	443.9 25.5				
	26-		Brown, tan fine sand	20.0				
					SP		36	
	28-				0.	KEP-DP-018-007	30	
	30-			438.7				
			Brown gravel	438.7 30.7 437.6	GP			
	32		Beige to tan fine sand, moist	31.8		KEP-DP-018-008	17.9	
			at 35'				- <u>-</u>	
	34=				SP			
							20	
	36		Doign to light hunger fine and	433.4 36.0		KEP-DP-018-009	32	
			Beige to light brown fine sand					
	38				SP		11.0	
						KEP-DP-018-010	11.6	E = 1
	40			429.4 40.0				

Drilled By: Walker-Hill Environmental, Inc.

Martin & Slagle GeoEnvironmental

Associates, LLC 118F Cherry Street

Black Mountain, NC 28711

Drill Method: Direct Push

Drill Date: 4/20/2007

Hole Size: 2.25"

Project No.: BW05-01

Project: Groundwater Assessment

Project Manager: Robert Martin

Client: BorgWarner Inc

Location: Kuhlman Electric Plant

Geologist: Robert Martin

	,		SUBSURFACE PROFILE		····			
GW Depth	Depth	Lithology	Description	Depth/Elev.	USCS Class	Sample	PID (ppm)	Comments
			Light brown to pink fine sand	427.8	SP			
	42=		Fine to medium gravel	427.8 41.6 426.9	GP			
	44	*	Light brown to pink fine sand	426.9 42.5 425.4		KEP-DP-018-011	13.8	- 2 1 2
	44-		Beige, pink fine sand with some gravel	425.4		REF-DF-010-011		
	46				SP			
	48					KEP-DP-018-012	6.7	
	50-					KEP-DP-018-013	15.5	
	52-		Pink, yellow fine sand	417.4 52.0				
	54				SP	KEP-DP-018-014	12.9	
	56		Pink silty fine sand	413.4 56.0				
	58				SM			
	60-		- <u>u</u>			KEP-DP-018-015	11.6	

Drilled By: Walker-Hill Environmental, Inc.

Martin & Slagle GeoEnvironmental

Associates, LLC 118F Cherry Street Black Mountain, NC 28711

Drill Method: Direct Push

Drill Date: 4/20/2007

Hole Size: 2.25"

Project No.: BW05-01

Project: Groundwater Assessment

Project Manager: Robert Martin

Client: BorgWarner Inc

Location: Kuhlman Electric Plant

Geologist: Robert Martin

			SUBSURFACE PROFILE					
GW Depth	Depth	Lithology	Description	Depth/Elev.	USCS Class	Sample	PID (ppm)	Comments
*	62			405.4	SM	KEP-GWP-018-001		
-	64	<u>.</u>	Boring terminated /	405.4 64.0				
	68							
	70							
	72							
	74 = 76 = 76 = 76 = 76	==				7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
	78-	20					-	
	80							

Drilled By: Walker-Hill Environmental, Inc.

Martin & Slagle GeoEnvironmental

Associates, LLC 118F Cherry Street

Black Mountain, NC 28711

Drill Method: Direct Push

Drill Date: 4/20/2007

Hole Size: 2.25"

Project No.: BW05-01

Project: Groundwater Assessment

Project Manager: Robert Martin

Client: BorgWarner Inc

Location: Kuhlman Electric Plant

Geologist: Robert Martin

			SUBSURFACE PROFILE	11				
GW Depth	Depth	Lithology	Description	Depth/Elev.	USCS Class	Sample	PID (ppm)	Comments
	0-		Ground Surface	469.4 0.0		F.E.		
	111111		Brown, red silty fine sand	0.0				135
	2-				SM	71/27		
	111111			405.4		KEP-DP-020-001	101	1 × 3 × 1
	4-	HIHHIII	Brown silty clay	465.4				
	=		Brown snty clay					_ 1.3
	6				CL	KEP-DP-020-002	42	
				461.4				1.1.5
	8-		Red, brown to brown clayey fine sandy gravel	8.0		2		Strong acetic acid odor
	40=							
	10							
	=				GP	KEP-DP-020-003	121	
	12					KEF-DF-020-003		Strong poetic gold adam
				-		× 1 × 1		Strong acetic acid odor
]			455.4		KEP-DP-020-004	191	
	14	-	Brown fine sand	14.0		KEP-DP-020-004		
	=			-				
	16				SP	- = =		Strong acetic acid odor
						KEP-DP-020-005	426	
	18			450.9		2. 2. 020 000		
	חווות	11.	Brown, red fine sand with gravel	18.5 449.9	SP			
	20-			19.5				Strong acetic acid odor

Drilled By: Walker-Hill Environmental, Inc.

Drill Method: Direct Push

Drill Date: 4/23/2007 & 4/24/2007

Martin & Slagle GeoEnvironmental

Associates, LLC 118F Cherry Street Black Mountain, NC 28711

Hole Size: 2.25"

Project No.: BW05-01

Project: Groundwater Assessment

Project Manager: Robert Martin

Client: BorgWarner Inc

Location: Kuhlman Electric Plant

Geologist: Robert Martin

								r
	r		SUBSURFACE PROFILE					
GW Depth	Depth	Lithology	Description	Depth/Elev.	USCS Class	Sample	PID (ppm)	Comments
	=		Brown fine sand					
	22		Yellow, brown silty fine sand with gravel	446.1	SP	KEP-DP-020-006	250	
	24-		Yellow, brown fine sandy gravel	23.3	GP	KEP-DP-020-007	178	Strong acetic acid odor
	26		Yellow, brown slightly silty fine sand	25.8				
	28				SM			Strong acetic acid odor
	32			437.4 32.0		KEP-DP-020-008	63	Chrone postioned advan
	34		Brown and white silty and clayey fine sand	32.0	SM	KEP-DP-020-009	189	Strong acetic acid odor
				433 A	SIVI			
	36		Gray, white to light brown silty fine sand	433.4 36.0	SM			Slight odor
	38			430.1	SIVI			

39.3

Drilled By: Walker-Hill Environmental, Inc.

Drill Method: Direct Push

Drill Date: 4/23/2007 & 4/24/2007

Martin & Slagle GeoEnvironmental

Associates, LLC 118F Cherry Street Black Mountain, NC 28711

Hole Size: 2.25"

Slight odor

61

KEP-DP-020-010

Project No.: BW05-01

Project: Groundwater Assessment

Project Manager: Robert Martin

Client: BorgWarner Inc

Location: Kuhlman Electric Plant

Geologist: Robert Martin

Martin & Slagle GeoEnviror	mental
Associates, LLC	
118F Cherry Street	
Black Mountain, NC 287	'11
SUBSURF	ACF P

			SUBSURFACE PROFILE					
GW Depth	Depth	Lithology	Description	Depth/Elev.	USCS Class	Sample	PID (ppm)	Comments
	111111		Gray, white to light brown silty fine sand with gravel					
	42		Orange to pink gravelly fine sand		SP	KEP-DP-020-011	67	
	44-	J11101111		425.4				Slight odor
			Pink to white silty fine sand	44.0				Slight odol
	46			Ţ=			54	
-	48-		- i		SM	KEP-DP-020-012	54	Slight odor
			1 - 4			KEP-DP-020-013	59	onghi odor
	50=							Iron staining
7.4	52			417.4 52.0				Slight odor
			Gray, white pink clayey fine sand, moist	52.0				Slight odol
	54=			7 (125	SC			
	56			413.4		KEP-DP-020-014	50	
			Pink to tan slightly silty fine sand, moist	56.0				
	58-				SM	KEP-DP-020-015	59	
	60-			409.2				

Drilled By: Walker-Hill Environmental, Inc.

Drill Method: Direct Push

Drill Date: 4/23/2007 & 4/24/2007

Hole Size: 2.25"

Project No.: BW05-01

Project: Groundwater Assessment

Project Manager: Robert Martin

Client: BorgWarner Inc

Location: Kuhlman Electric Plant

Geologist: Robert Martin

			SUBSURFACE PROFILE	,				
GW Depth	Depth	Lithology	Description	Depth/Elev.	USCS Class	Sample	PID (ppm)	Comments
*	62		Pink and tan silty fine sand with some gravel			KEP-DP-020-016	57	
	64-				SM			
	66			401.4 68.0		KEP-GWP-020-001		
	70-		Boring terminated	00.0		= =		
	72				- T	= =		
, ,	74-							
	78-							
	80=							

Drilled By: Walker-Hill Environmental, Inc.

Drill Method: Direct Push

Drill Date: 4/23/2007 & 4/24/2007

Martin & Slagle GeoEnvironmental Associates, LLC

118F Cherry Street Black Mountain, NC 28711

Hole Size: 2.25"

Project No.: BW05-01

Project: Groundwater Assessment

Project Manager: Robert Martin

Client: BorgWarner Inc

Location: Kuhlman Electric Plant

Geologist: Robert Martin

		,,	SUBSURFACE PROFILE					
GW Depth	Depth	Lithology	Description	Depth/Elev.	USCS Class	Sample	PID (ppm)	Comments
	0		Ground Surface	469.4		1		
	0-		Brown, black silty fine sand (fill)	0.0				
	2-				SP	Tr. 117 1-	-	2
				465.4		KEP-DP-021-001	18	
	4-	HIRHIII	Brown silty clay (fill)	4.0				
			brown sney easy (mi)			KEP-DP-021-002	18.7	-
	6-				CL			- 27
	=			464.4				
	8-		Red, brown clayey gravel	461.4 8.0				
	10-				GC			
	12			457.4 12.0		KEP-DP-021-003	389	Odor
			Brown clayey gravel	12.0	GC			Oddi
	14-		i piti	454.4 15.0		KEP-DP-021-004	932	4. F =
			Red fine sandy clay	15.0 453.4	CL			
	16-		Red, brown clayey fine sand with gravel	16.0				
	18-				SC		685	
	20-			449.4		KEP-DP-021-005	000	

Drilled By: Walker-Hill Environmental, Inc.

Martin & Slagle GeoEnvironmental

Associates, LLC 118F Cherry Street

Black Mountain, NC 28711

Drill Method: Direct Push

Drill Date: 4/25/2007

Hole Size: 2.25"

Project No.: BW05-01

Project: Groundwater Assessment

Project Manager: Robert Martin

Client: BorgWarner Inc

Location: Kuhlman Electric Plant

Geologist: Robert Martin

			SUBSURFACE PROFILE					
GW Depth	Depth	Lithology	Description	Depth/Elev.	USCS Class	Sample	PID (ppm)	Comments
			Red, brown to tan sandy silt with some gravel		ML			
	22-			446.4		KEP-DP-021-006	509	- 1
	24		Red, brown plastic clay	23.0 445.2 24.2	СН	3 10 1		
		НІННІН	Brown fine sandy gravel	24.2	GP	KEP-DP-021-007	45	
	26-		Tan silty fine sand			KEP-DP-021-008	198	- 4 - 2
					-		- : .	
	28-			=	SM			
	30		- 2 2		SIVI			
					_	- 11	=	
	32-		Tan to light brown clayey	437.4 32.0				- 7 et 11
			fine sand		SC	KEP-DP-021-009	215	
	34-			434.9 34.5		KEF-DF-021-009		
			Brown fine sand	433.4	SP			7 4 20 20
	36-		Beige to tan silty fine sand with some gravel	36.0				
	38				SM	KEP-DP-021-010	137	
				429.4				
	40-	himm		40.0			L	

Drilled By: Walker-Hill Environmental, Inc.

Martin & Slagle GeoEnvironmental

Associates, LLC 118F Cherry Street

Black Mountain, NC 28711

Drill Method: Direct Push

Drill Date: 4/25/2007

Hole Size: 2.25"

Project No.: BW05-01

Project: Groundwater Assessment

Project Manager: Robert Martin

Client: BorgWarner Inc

Location: Kuhlman Electric Plant Geologist: Robert Martin

Martin & Slagle GeoEnvironmental Associates, LLC 118F Cherry Street Black Mountain, NC 28711

			SUBSURFACE PROFILE		_ = =			
GW Depth	Depth	Lithology	Description	Depth/Elev.	USCS Class	Sample	PID (ppm)	Comments
	=		Tan fine sand with gravel			= 1		
	42			=	SP	KEP-DP-021-011	60	
				105.1		4.4		
	44-		Tan, pink slightly silty fine sand	425.4				
	46					KEP-DP-021-012	68	Iron staining
	48-				SM			
	50					KEP-DP-021-013	65	
	52		Tan, white slightly silty gravelly fine sand	417.4 52.0				
-	54				SM	1 =	25.0	Iron staining
	56		Tan very silty fine sand to	413.4 56.0	* <u>=</u> =	KEP-DP-021-014	25.6	
	58-		60.4" becomes white, pink to tan silty fine sand below water table		SM			
	60				-	KEP-DP-021-015	53	

Drilled By: Walker-Hill Environmental, Inc.

Drill Method: Direct Push

Drill Date: 4/25/2007

Hole Size: 2.25"

Project No.: BW05-01

Project: Groundwater Assessment

Project Manager: Robert Martin

Client: BorgWarner Inc

Location: Kuhlman Electric Plant

Geologist: Robert Martin

			SUBSURFACE PROFILE					
GW Depth	Depth	Lithology	Description	Depth/Elev.	USCS Class	Sample	PID (ppm)	Comments
1	62-				SM	KEP-DP-021-016	2	
	68 70 70 70		Boring terminated	401.4		KEP-GWP-021-001		
	72-			_				
	76							
	80=							

Drilled By: Walker-Hill Environmental, Inc.

Martin & Slagle GeoEnvironmental

Associates, LLC 118F Cherry Street

Black Mountain, NC 28711

Drill Method: Direct Push

Drill Date: 4/25/2007

Hole Size: 2.25"