SOIL SURVEY OF

Forrest County, Mississippi

United States Department of Agriculture Soil Conservation Service and Forest Service

In cooperation with
Mississippi Agricultural and Forestry Experiment Station

Contents

Page
Index to soil map units iv
Summary of tables vii
Foreword
1
1
General nature of the county 1
Climate
2
Settlement
Settlement
2
2
Farming 2
Natural resources
Natural resources
2
2
How this survey was made
How this survey was made
3
3
General soil map for broad land use planning
General soil map for broad land use planning
3
3
Nearly level to steep soils on uplands
Nearly level to steep soils on uplands 3

1. Prentiss-Lucedale
2. Prentiss-Lucedale
3
3
3. Benndale-McLaurin-Heide
4. Benndale-McLaurin-Heide
4
4
5. McLaurin-Heidel-Prentiss
6. McLaurin-Heidel-Prentiss
4
4
7. Prentiss-Benndale-Pheba 4
8. Poarch-Susquehanna-Saucier 4
Nearly level soils on terraces 5
9. Bassfield-Harleston-Stough 5
Nearly level soils on flood plains 5
10. Jena-Nugent 5
11. Trebloc-Latonia 5
Broad land use considerations 6
Soil maps for detailed planning 6
Use and management of the soils 21
Crops and pasture 21
Yields per acre 22
Capability classes and subclasses 22
Woodland management and productivity 23
Woodland understory vegetation 24
Engineering 25
Building site development 25
Sanitary facilities 26
Construction materials 27
Water management 28
Recreation 28
Wildlife habitat 29
Soil properties 30
Engineering properties 31
Physical and chemical properties 31
Soil and water features 32
Chemical analyses 33
Physical analyses 33
Engineering test data
Engineering test data
Soil series and morphology
Alaga series
Alaga series
Bassfield series
Benndale series
Bibb series.
..
..
.......Bigbee series....
Cadeville Variant
Cahaba series
Dorovan series
Escambia series
Falkner series
Harleston series
Heidel series
Jena series
Latonia seriesLucedale seriesLucedal
Malbis series
McLaurin series
Nugent seriesPamlico seriesPhe seriesPheba series
Prentiss seriesSaucier seriesStough series
Susquehianna series
Trebloc seriesTroup series
Classification of the soils
Formation of the soils
Factors of soil formation
Climate
Living organisms
Parent material
ReliefTime
Processes of soil formation.
References.GlossaryGlossary.......

Tables| 2 |
| :--- |
| $\mathbf{2}$ |
| \mathbf{E} |$\stackrel{\text { c }}{\mathbf{c}}$

E
nt

Sest map units include small, scattered areas of soils than those that appear in the name of the map unit. some of these soils have properties that differ substan-
tially from those of the dominant soil or soils and could significantly affect use and management of thus unit. These soils are described in the description of each map unit. Some of the more unusual or strongly contrasting soils that are included are identified by a special symbol on the soil map.

Most mapped areas include places that have little or no soil material and support little or no vegetation. Such places are called miscellaneous areas; they are delineated on the soil map and given descriptive names. Urban land is an example. Some of these areas are too small to be delineated and are identified by a special symbol on the soil map.
The acreage and proportionate extent of each map unit are given in table 5 , and additional information on properties, limitations, capabilities, and potentials for many soil uses is given for each kind of soil in other tables in this survey. (See "Summary of tables.") Many of the terms used in describing soils are defined in the Glossary.
AaA-Alaga loamy sand, 0 to 5 percent slopes. This is a somewhat excessively drained soil in broad, flat areas adjacent to large streams.
Typically the surface layer is very dark grayish brown loamy sand about 8 inches thick. This is underlain by dark yellowish brown loamy sand to a depth of about 24 inches, strong brown loamy sand to a depth of about 52 inches, and yellowish brown sand to a depth of about 90 inches.
This soil is strongly acid or very strongly acid. Permeability is rapid. Available water capacity is low. Runoff is slow. This soil tends to be droughty.
Included with this soil in mapping are small areas of Bassfield and Troup soils.
Most of this soil is used for woodland, and the rest is pasture and row crops. Corn, pasture plants, and pine trees are suited.
This soil has medium potential for row crops and pasture plants and is limited mostly by its tendency to be droughty. Corn and deep-rooted pasture plants such as bahiagrass and improved bermudagrass are suited. This soil has moderately high potential for loblolly pine, slash pine, and longleaf pine.

Potential for most urban uses is high. This soil has medium potential for openland and woodland wildlife habitat because of sandy texture. Potential for recreational uses is medium because of sandy texture. Capability unit IIIs-1; woodland suitability group 3s2.
BaA-Bassfield fine sandy loam, 0 to 2 percent slopes. This is a well drained soil on broad, flat terraces adjacent to large streams.
Typically the surface layer is dark brown fine sandy loam about 10 inches thick. The subsoil is yellowish red sandy loam that extends to a depth of about 41 inches. This is underlain to a depth of about 56 inches by reddish rellow loamy sand that contains common fine to coarse
artz pebbles and to a depth of about 70 inches by very -ale brown sand that contains some medium gravel.

This soil is strongly acid or very strongly acid throughout. Permeability is moderately rapid. Available water capacity is medium. Runoff is slow. This soil tends to be slightly droughty.

Included with this soil in mapping are small areas of Prentiss soils and small areas of soils that have a finer textured subsoil. Also included are small areas of soils in which the sandy substratum is less than 40 inches deep.

Most of this soil is in cropland and pasture, and rest is in woodland. The soil has high potential for cultivated crops such as corn and soybeans. The use of adequate fertilization and conservation practices, such as row arrangement and return of crop residues, helps reduce runoff, control erosion, and improve infiltration.
This soil has high potential for pasture plants such as bahiagrass and improved bermudagrass. It also has high potential for loblolly pine, shortleaf pine, cherrybark oak, and sweetgum. There are no significant concerns in woodland use and management.

Potential is high for most urban uses and for woodland and openland wildlife habitat. Capability unit IIs-l; woodland suitability group 207.
BbA-Bassfield-Urban land complex, 0 to 2 percent slopes. This is a complex of nearly level, well drained soils on terraces within the city limits of Hattiesburg and Petal. Individual areas range from 60 to 2,000 acres.
This unit consists of an intricate pattern of Bassfield soils and Urban land. It is 40 percent Bassfield soils and 35 percent Urban land.
The well drained Bassfield soils have a surface layer of dark brown fine sandy loam about 10 inches thick. The subsoil is yellowish red sandy loam that extends to a depth of about 41 inches. The underlying material is reddish yellow and very pale brown loamy sand and sand that contains some gravel and that extends to a depth of 70 inches or more. .
Bassfield soils are strongly acid or very strongly acid throughout. Permeability is moderately rapid. A vailable water capacity is medium. Runoff is slow. The soil is slightly droughty.
Urban land is mostly altered or reworked soil material that has no identifiable soil profile. These areas are mostly occupied by house sites and by the adjoining streets. A few light industrial and commercial buildings and paved parking lots are in this map unit.
Included with this unit in mapping are small areas of Bigbee, Latonia, Stough, and Cahaba soils. These are poorly drained soils along drainageways and in depressions.
Potential for most urban uses is high. Not assigned to a capability unit; Bassfield soil in woodland suitability group 207, Urban land not assigned to a woodland suitability group.
BcA-Bassfield-Urban land complex, occasionally flooded. This is a complex of nearly level soils on terraces that are occasionally flooded. Slopes are 0 to 2 percent. Most of this complex is within the city limits of Hattiesburg and Petal. Individual areas range from 40 to 1,500 acres.
is mottled in shades of red and brown and that contains plinthite nodules to a depth of about 25 inches; mottled light gray, red, and yellow clay loam to a depth of about 39 inches; and light gray clay mottled in shades of brown and red to a depth of about 62 inches or more.
Saucier soils are strongly acid or very strongly acid.
Available water capacity is high. Permeability is slow. Runoff is slow to medium. This soil is subject to erosion if
vegetative cover is removed. Included with these soils in
McLaurin soils; small areas of moderately well areas of loamy soils underlain by a layer that contains soft lowish red nodules; and small that contains soft, yelganic and mineral soils on flood plains. Most of this association is in piains.
DeSoto National Forest.
This association has medium potential for cultivated crops such as cotton, corn, and soybeans because of slope, the erosion hazard, and the variability of the soils. Such erosion control measures as parallel terraces, stripcropping, grassed waterways, and crop residue management help prevent excessive soil loss. Potential for pasture plants such as bahiagrass is high. Adequate ferhelp control erosion. This association controlled grazing for longleaf pine, loblolly pine, and slash pine. Equipmential limitations on the Saucier soil, however, are moipment because of wetness and low soil, however, are moderate tions for drier periods helps avoid these limitations operaPotential is medium for most urban uses beca. wetness and low strength. Poarch soils have fewer lime of tions than Saucier soils; permeability is slow in limitasoils, and the lower part of the subsoil is in Saucier septic tank filter fields and specially designed foundation help overcome these limitations. Potential is high for woodland and openland wildlife habitat and for most recreational uses. Capability unit IIIe-1; Poarch soil in woodland suitability group 201, Saucier soil in woodland suitability group $2 w 8$.
PtA-Prentiss loam, 0 to 2 percent slopes. This is a moderately well drained soil on broad flats on uplands.
Typically the surface layer is dark brown loam about 7 inches thick. The upper part of the subsoil is yellowish brown loam that extends to a depth of about 26 inches. Below this to a depth of about 30 inches is yellowish brown loam that has strong brown mottles. This layer is and brittle fragipan of yellowish brown more by a compact yellowish red and gray.

This soil is strongly acid or very strongly acid. Permeability is moderate in the upper part and moderately slow in the fragipan. Available water capacity is medium. Runoff is slow. A seasonal high water table is at a depth of about 24 to 36 inches.
Included with this soil in mapping are small areas of Bassfield, Benndale, Malbis, and Stough soils.
About half of this soil is in cropland or pasture. The

This soil has high potential for cultivated crops such cotton, corn, and soybeans and for pasture plants such bahiagrass, tall fescue, and improved bermudagra Adequate fertilization, return of crop residue, row : rangement, and surface field drains are needed in are used for crops and pasture. Potential is also high f loblolly pine, slash pine, and longleaf pine. There are 1 significant limitations to use and management f
Potential is medium for most urban uses because, wetness and low strength. Larger septic tank filter field surface drainage, and specially designed foundations ovel come these limitations. Potential is high for woodland an openland wildlife habitat and for most recreational uses Capability unit IIw-1; woodland suitability group 207 .
PtB-Prentiss loam, 2 to 5 percent slopes. This is : moderately well drained soil of the uplands.
Typically the surface layer is dark grayish brown loam about 6 inches thick. The upper part of the subsoil is yellowish brown loam that extends to a depth of about 18 inches. Below this to a depth of about 27 inches is yelis underlain loam mottled with strong brown. This layer that is mottled in compact and brittle fragipan of loam part and is yellowish brown mottled gray in the upper brownish colors in the lower part. The soil is strongly acid opart. bility is moderate in the upper part angly acid. Permeain the fragipan. Available water noff is medium, and the erosion capacity is medium. Ruvegetative cover has he erosion hazard is moderate if perched above the frapeen removed. A water table is Included with this fripan during wet seasons.
Benndale and Pheba soils.
Most of this soil is in
pasture or cropland. in woodland, and the rest is in
This soil has high potential for cultivated crops such as cotton, corn, and soybeans. When used for crops, it needs adequate fertilization, return of crop residue, contour cultivation, minimum tillage, and terraces. Potential is high for pasture plants such as bahiagrass, tall fescue, and Coastal bermudagrass. Potential is also high for loblolly pine, slash pine, and longleaf pine. There are no significant limitations to use and management for woodland.
This soil has medium potential for most urban uses because of wetness and low strength. Larger septic tank filter fields and specially designed foundations help overwoodland and openland wis soil has high potential for recreational uses. Capability unit IIe-3; wad for most bility group 207 .
Pu-Prentiss-Urban land complex. This complex consists of gently sloping and sloping, moderately well drained soils and Urban land on uplands in metropolitan Hattiesburg and in the Camp Shelby area. Slopes are 2 to 8 percent. Areas range from 40 to 500 acres. This unit consists of an intricate acres. soils and Urban land. It is about 40 percent of Prentiss and about 35 percent Urban land. 40 percent Prentiss loam

thinen.moderately well drained Prentiss soils have a surayer of dark grayish brown loam about 6 inches thire. The upper part of the subsoil extends to a depth of brown mott is yellowish brown loam that has strong the subsoil is a the lower 9 inches. The lower part of 37 incher is a compact and brittle fragipan; to a depth of and gres, it is loam that is mottled in shades of brown loam that is mottled with gray.

Prentiss soils are strongly acid or very strongly acid. Permeability is moderate in the upper part and moderately slow in the fragipan. Available water capacity is medium. Runoff is medium. A water table is perched above the fragipan during wet seasons.

Urban land is mostly altered or reworked soil material that has no identifiable soil profile. These areas are mostly occupied by house sites and the adjoining streets. A few shopping centers and other public service areas that have paved parking lots are also in this map unit.

Included with this unit in mapping are small areas of McLaurin, Susquehanna, and Trebloc soils and small areas of poorly drained soils on narrow flood plains.

This unit has medium potential for most urban uses. Wetness and low strength are the main limitations. These limitations can be overcome through the use of specially designed foundations and by increasing the area of septic tank filter fields. Not assigned to a capability unit; Prentiss soil in woodland suitability group 207, Urban land not assigned to a woodland suitability group.

StA-Stough loam, 0 to 2 percent slopes. This is a somewhat poorly drained soil on broad flats.
Typically the surface layer is dark gray loam about 4 inches thick. The subsurface layer is grayish brown loam about 4 inches thick. The upper part of the subsoil is loam that is mottled in shades of brown and gray and that extends to a depth of about 15 inches. The lower part is loam that is mottled in shades of gray, brown, yellow, and red and that is partially compact and brittle; it extends to a depth of about 63 inches or more.

This soil is strongly acid or very strongly acid. Permeability is moderately slow. Available water capacity is medium. Runoff is slow. A water table is perched at a depth of about 12 to 18 inches during the wet season.

Included with this soil in mapping are small areas of Prentiss and Trebloc soils.

Most of this soil is in woodland, and the rest is in pasture and row crops.

Potential for cultivated crops such as cotton, corn, and soybeans and for pasture plants such as bahiagrass, tall fescue, and improved bermudagrass is high. Ditches are needed to remove excess water from the surface. This soil has high potential for loblolly pine and slash pine. Wetness and plant competition are the main limitations to use and management for woodland. These limitations can be partially avoided by scheduling operations for the dry
n and through the use of management practices that mate plant competition.

This soil has medium potential for most urban uses because of wetness. This limitation can be partially overcome by adequate surface drainage. Septic tank filter fields should be designed larger than normal because of wetness. This soil has high potential for woodland and openland wildlife habitat. Potential is medium for most recreational uses because of wetness. Capability unit IIw2; woodland suitability group 2 w8.
SuB-Susquehanna silt loam, 2 to 5 percent slopes. This is a somewhat poorly drained soil on uplands.
Typically the surface layer is grayish brown silt loam about 4 inches thick. The subsurface layer is brownish yellow silt loam about 5 inches thick. The upper part of the subsoil is clay that is mottled in shades of brown, red, and gray and that extends to a depth of about 16 inches. The middle part is clay that is mottled in shades of red and gray and that extends to a depth of about 38 inches. The lower part is gray and light gray clay that is mottled in shades of brown and gray and that extends to a depth of 68 inches or more.

This soil is strongly acid or very strongly acid except for the surface layer in limed areas. Permeability is very slow. Available water capacity is high. Runoff is medium. The erosion hazard is slight to moderate. This soil has high shrink-swell potential.
Included with this soil in mapping are small areas of nearly level Falkner and Prentiss soils.
Most of this soil is in woodland, and the rest is in pasture.
This soil has low potential for cultivated crops because of the erosion hazard and the clayey texture. Potential for pasture plants such as bahiagrass and tall fescue is medium because of clayey texture. Adequate fertilization, proper stocking rates, and controlled grazing help prevent soil loss. This soil has moderately high potential for loblolly pine and shortleaf pine. Low strength is a moderate limitation to equipment operation, but scheduling operations for drier seasons overcomes this limitation.

This soil has low potential for most urban uses because of low strength, high shrink-swell potential, clayey texture, and wetness. Specially designed foundations, adequate drainage, and larger septic tank filter fields help overcome these limitations. This soil has a high potential for woodland and openland wildlife habitat. Potential is medium for most recreational uses because of wetness. Capability unit IVe-3; woodland suitability group 3c2.
SuD-Susquehanna silt loam, 5 to 12 percent slopes. This is a somewhat poorly drained soil on uplands.

Typically the surface layer is dark gray silt loam about 5 inches thick. The subsurface layer is light yellowish brown silt loam about 3 inches thick. The upper part of the subsoil is yellowish red silty clay that has yellowish mottles. The middle part is silty clay mottled in shades of red, gray, and brown. The lower part of the subsoil is clay mottled in shades of gray and red over gray clay mottled in shades of yellow; it extends to a depth of 65 inches or more.

This complex has low potential for most urban uses puse of wetness and flooding. If the soils are used for n purposes, they must be shaped and graded to remove water from the surface, and larger than normal septic tank filter fields are needed. Trebloc soils have soils have hial for wetland wildlife habitat, and Escambia dlife habitagh potential for woodland and openland wilbecauseitat. Potential is low for most recreational uses because of wetness and flooding. Capability unit Vw-1;

TrB-Troup loamy fine sand, 0 to 8 percent slopes. This is a well drained soil of the uplands.

Typically the surface layer is dark grayish brown loamy fine sand about 3 inches thick. The subsurface layer is yellowish brown loamy fine sand about 23 inches thick. The next layer is yellowish red and red loamy sand that extends to a depth of about 64 inches. The subsoil is red sandy loam that extends to a depth of about 91 inches or more.
This soil is strongly acid or very strongly acid. Permeability is rapid in the thick, sandy surface layer and moderate in the subsoil. Available water capacity is low in the sandy layers and medium in the subsoil. Runoff is slow. The erosion hazard is slight. This soil tends to be droughty.

Included with this soil in mapping are small areas of Alaga, Heidel, and McLaurin soils.

Most of this soil is in woodland.
This soil has medium potential for cultivated crops such as corn and soybeans because of low available water capacity in the sandy layers. Early planting helps to avoid the driest part of the growing season. Potential is medium for pasture plants such as bahiagrass and improved bermudagrass because of sandy texture. Adequate fertilization, proper stocking, and weed control help preserve moisture and maintain a good grass coverage. This soil has moderately high potential for loblolly pine, longleaf pine, and slash pine. Moisture is the limiting factor. Seedling mortality and equipment limitations are concerns because of sandy texture. Equipment operates best on this soil during wetter periods.

This soil has high potential for most urban uses. Potential for woodland and openland wildife habitat is medium because of droughtiness. Potential is medium for most recreational uses. Capability unit IIIs-1; woodland suitability group 3 s2.

Ur-Urban land. Most of this map unit is in Hattiesburg, and a smaller amount is in Camp Shelby (Mississippi National Guard). About 70 to 95 percent of the area is covered with industrial, commercial, military, or residential development, such as railroad yards, buildings, streets, and parking lots. In the Camp Shelby area, warehouses, maintenance shops, parking areas, and vehicle storage areas cover this map unit.

Cuts and fills for the purpose of installing works and structures have altered and obscured soil features to the point that the soil can no longer be identified as a soil se-
ries. Most of the original soils were well drained and moderately well drained.

Use and management of the soils

The soil survey is a detailed inventory and evaluation of the most basic resource of the survey area-the soil. It is useful in adjusting land use, including urbanization, to the limitations and potentials of natural resources and the environment. Also, it can help avoid soil-related failures in uses of the land.

While a soil survey is in progress, soil scientists, conservationists, engineers, and others keep extensive notes about the nature of the soils and about unique aspects of behavior of the soils. These notes include data on erosion, drought damage to specific crops, yield estimates, flooding, the functioning of septic tank disposal systems, and other factors affecting the productivity, potential, and limitations of the soils under various uses and management. In this way, field experience and measured data on soil properties and performance are used as a basis for predicting soil behavior.
Information in this section is useful in planning use and management of soils for crops and pasture, rangeland, and woodland, as sites for buildings, highways and other transportation systems, sanitary facilities, and parks and other recreation facilities, and for wildlife habitat. From the data presented, the potential of each soil for specified land uses can be determined, soil limitations to these land uses can be identified, and costly failures in houses and other structures, caused by unfavorable soil properties, can be avoided. A site where soil properties are favorable can be selected, or practices that will overcome the soil limitations can be planned.

Planners and others using the soil survey can evaluate the impact of specific land uses on the overall productivity of the survey area or other broad planning area and on the environment. Productivity and the environment are closely related to the nature of the soil. Plans should maintain or create a land-use pattern in harmony with the natural soil.

Contractors can find information that is useful in locating sources of sand and gravel, roadfill, and topsoil. Other information indicates the presence of bedrock, wetness, or very firm soil horizons that cause difficulty in excavation.

Health officials, highway officials, engineers, and many other specialists also can find useful information in this soil survey. The safe disposal of wastes, for example, is closely related to properties of the soil. Pavements, sidewalks, campsites, playgrounds, lawns, and trees and shrubs are influenced by the nature of the soil.

Crops and pasture

The major management concerns in the use of the soils for crops and pasture are described in this section. In addition, the crops or pasture plants best suited to the soil,

Factors of soil formation

Soil is the product of the interaction of five major factors of soil formation: climate, living organisms, parent material, relief, and time. The kind of soil that formed in one area differs from the kind that formed in another area if there has been a difference between the two areas in any factor of soil formation.

Climate

Forrest County has the warm, humid, subtropical climate characteristic of much of the southeastern United States. This type of climate affects the physical, chemical, and biological relationships in soils, primarily through high temperature and precipitation.
Water dissolves minerals, supports biological activity, and transports minerals and organic residue in the soil profile. The amount of water that percolates through the soil depends mainly on rainfall, relative humidity, and the physiographic position, topography, and permeability of the soil.

Living organisms

Plants, animals, insects, bacteria, and fungi affect the formation of soils. Gains in organic matter and nitrogen, gains or losses in plant nutrients, and alterations in structure and porosity are some of the changes caused by living organisms.

Vegetation, mainly pine trees, has probably affected soil formation in Forrest County more than other living organisms have. The soils on uplands formed under dense forest dominated by pine trees, and the soils on flood plains formed under mixed hardwood and pine forest. The soils that formed under trees have lower organic-matter content than soils that formed under grasses.
Earthworms and other small invertebrates are most active in the upper part of the soil, and they continuously mix the soil. Rodents and other animals burrow in the soil and contribute to mixing. Little is known about fungi and other micro-organisms in the soils of Forrest County, but it is known that micro-organisms aid in weathering, decomposing organic matter, and fixing nitrogen in the soils.

Parent material

Parent material, the unconsolidated mass from which soil forms, has much to do with the chemical and mineral composition of the soil. The parent material of the soils in Forrest County is mainly marine deposits of sandy, loamy, and clayey material.

The clayey soils formed mostly in the Hattiesburg Clay and Pascagoula Clay Formations of Miocene age. The loamy and sandy soils are derived mostly from the Citronelle Formation of Pliocene age. The soils on flood plains are derived from material eroded from the nearby uplands. Organic soils formed in an accumulation of plant debris under saturated conditions. The soils that formed
in clayey material are generally less weathered and contain more bases than those derived from the loamy material.

Relief

Relief affects soil formation through its influence on drainage, erosion, plant cover, and soil temperature. The relief in Forrest County ranges from nearly level to steep. Most of the nearly level land is on flood plains or stream terraces. Many of the soils are poorly drained or very poorly drained. Soils on ridgetops are mostly gently sloping or moderately sloping and are better drained than soils on flood plains or stream terraces. The steep soils are generally between the ridgetops and the flood plains. Runoff from them is greater, and as a result they generally show less horizon development than soils on ridgetops.

Time

The length of time required for soil development depends largely on the effects of the other four factors of soil formation. Less time is generally required for a soil to develop in warm, humid regions where the vegetation is luxuriant than in cold, dry regions where the vegetation is scant. Also, other factors being equal, less time is required if the parent material is coarse textured rather than fine textured.
Fairly stable, nearly level soils on interstream divides have more strongly developed horizons than sloping soils in which the rate of geologic erosion approaches that of soil development, and a smaller amount of total rainfall percolates through the profile. Soils on flood plains in Forrest County formed in deposits washed from uplands. Many of these soils, however, are old enough and have received such a small amount of sediment in recent times that they have formed thick, well drained horizons.

Processes of soil formation

The main processes involved in the formation of horizons are the accumlation of organic matter, the leaching of calcium carbonates and bases; the formation and translocation of silicate clay; and the reduction, segregation, and transfer of iron.

Accumulation of organic matter in the upper part of the soil profile contributes to the formation of an A1 horizon. Organic-matter content in the soils of Forrest County ranges from low to very high.
Carbonates and bases have been leached from nearly all the soils, and most are moderately to strongly leached. Leaching of bases from the upper horizons of a soil commonly preceded the translocation of silicate clay.
Translocation of silicate clay has occurred in many of the soils. This contributes to the development of an eluviated A2 horizon that contains less clay and that generally is lighter in color than the B horizon. The B horizon commonly has clay accumulations in films, in

TABLE 18.--SOIL AND WATER FEATURES
sence of an entry indicates the feature is not a concern. See text for descriptions of symbols and such terms as "rare," "brief," and "perched." The symbol < means less than; > means greater than]

See rootnote at end of table.

FORREST COUNTY, MISSISSIPPI
TABLE 18.--SOIL AND WATER FEATURES--Continued

See rootnote at end of table.

SOIL SURVEY

- This map unit is made up of two or more dominant kinds of soil. See map unit description for the position and behavior of the whole map unit.

The first lezzer, always a capital, is the initial letter of the soil name. The second lerzer is a capital The first lester, alweys a capital, is the is is otherwise, it is a small letter. The third letter, always if the mapping unit is broady dalols without slope letters are those of nearly level soils, except for a capital, shows the siope. Syplex, and Urban land.

SYMBOL

NAME

Aas	Alaga loamy sand, 0 to 5 percent slopes
BaA	Bassfield fine sandy loam, 0 to 2 percent slopes
BbA	Bassfield-Urban land complex, 0 to 2 percent slopas
BeA	Bassfield-Urban land complex, occasionally flooded
Be8	Benndale fine sandy loam, 2 to 5 percent slopes
BeC	Benndale fine sandy loam, 5 to 8 percent slopes
BeD	Benndale fine sandy loam, 8 to 12 percent slopes
84	Bibb silt loam
BG	Bibb and Jena soils, frequently fiooded
8 h	Bigbee loamy sand
CaF	Cadeville Variant silt loam, 15 to 60 percent slopes
Cha	Cahsba sandy losm, 0 to 2 percent slop
FaB	Falkner silt loam, 2 to 5 percent slopes
FsB	Falkner-Susquehanna-Urban land complex, 2 to 5 percent siopes
HaA	Harieston fine sandy loam, 0 to 2 percent slopes
HeD	Heidel sandy laam, 8 to 12 percent slopes
HeE	Heidel sandy loam, 12 to 30 percent slopes
JN	Jene-Nugent association frequently flooded
LaA	Latonia fine sandy loam, 0 to 2 percent slopes
LT	Latonia-Trebloc association, occasionally flooded
LuA	Lucedale loam, 0 to 2 percent slopes
MaB	Malbis loam, 2 to 5 percents slopes
MbB	MeLaurin loamy sand, 2 to 5 percent slopes
MbO	MeLaurin loamy sand, 5 to 8 percent slopes
MCB	MeLaurin association, undulating
MLD	MeLaurin-Eenndale association, rolling
PD	Pamlico-Dorovan association
PEC	Petal-Susquehanns-8enndale associstion, roiling
Pha	Phebe silt losm, 0 to 2 percent slopes
Pn	Piss
Pob	Poarch fine sandy loam, 2 to 5 percent slopes
PoC	Poarch fine sandy loam, 5 to 8 percent slopes
PSB	Poarch-Saucier association, undulating
PiA	Prentiss loam, 0 to 2 percent slopes
Pr 8	Prentiss loam, 2 to 5 percent slopes
Pu	Prentisf-Urban land complex
Sta	Stough loam. 0 to 2 percent slopes
SuB	Susquehanna silt loam, 2 to 5 percent slopes
SuD	Susquehanna silt loam, 5 to 12 percent siopes
Tb	Trebloc silt loam
TeA	Trabloc-Escambia complex, 0 to 2 pertent siopes
TrB	Troup loamy fine sand, 0 to 8 percent siopes
Ur	Urban land

1/ The composition of these units is more variabie than that of others in the survey area, but has been controlled well enough so be interpreted for the expected use of the soils.

BOUNDARIES

National, state or provine

County or parish

Minor civil division
Reservation (national to state forest or park, and large airport)

Land grant

Limit of soil survey (labe

Field sheet matchline 8 r

AD HOC BOUNDARY (labe!

Small airport, airfield, pa cemetery, or flood pod STATE COORDINATE TICK

LAND DIVISION CORNERS
(sections and land grants)
ROADS

Divided (median shown if scale permits)
Other roads

Trail

ROAD EMBLEMS : DESIG

Interstate

Federal

State
County, farm or ranch
RAILROAD
POWER TRANSMISSION L (normally not shown)
PIPE LINE
(normally not shown)
FENCE
(normally not shown)
LEVEES

Without road

With road

With railroad

DAMS
Large (to scale)

Medium or small

Gravel pit

\section*{
 - Mississippay
 | |
| :---: |
| | |
| | |
| | |
| | |

Reference 2

U.S. DEPARTMENT OF COMMI C. R. Smith, Secretary

ENVIRONMENTAL SCIENCE SERVICES ADMII Robert M. White, Administrator
ENVIRONMENTAL DATA SERVICE Woodrow C. Jacobs, Director

JUNE 1968

REPRINTED BY THE
NATIONAL OCEANIC AND ATMOSPHERIC ADM 1983

aKE EVAPORATION

 I . 4 維

O

TOUR NOTES

US EPA -- Region IV
BVWST Project 52011.040
BVWST File
Hercules, Inc.
General Site Information

To: Charles Jordan, Environmental Supervisor
Company: Hercules, Inc.
Phone No.: (601) 545-3450
Recorded by: Carter Helm
To fill in same data gaps, Mr. Jordan provided the following information:

- The entire 200 -acre facility lies within the 500 -year floodplain -- according to the Engineering Department's reference from the Corps of Engineers Map No. 28035CO045C Panel 45 of 200 dated April 2, 1990.
- Currently, Hercules employs 290 people including the clerical staff.
- Operations began in 1923 , over 250 products are manufactured.
- The Hercules surface water intake on the Bowie River is used for industrial purposes only.
- Zeon Chemicals of Mississippi, located at 1301 West 7th, is located on land which was originally Hercules property, but this parcel of land was first purchased from Hercules by 8. F. Goodrich, who then sold or leased it to Zeon. See Figure 2.

Information about the holding ponds (surface impoundments) located in the back forty, as offered by Mr. Jordan include:

- Three "ponds" are located north of the dirt road and share common dike walls. Their sizes and depths are similar.
- One large "pond" plus two smaller "ponds" exist south of the dirt road. Previously, common dike walls have collapsed and yield a large, but still contained, surface impoundment. Dike walls are four to five feet tall.
- All impoundment material is of the same composition, but deposition times are all different.
- Using four feet as an average depth, maximum volume of the impoundments is one million cubic feet.
- Mr. Jordan will fax me exact dimensions of these surface impoundments tomorrow.

N

(9)

$\sqrt{6}$

,

\rightarrow

(ㄷ)

 v
$\stackrel{y}{4}$
s
$\stackrel{ }{ }$
的 $\underset{\sim}{x}$ 気

es

6

- 10 Ø

	10，80 5	hos	1738	160805		98
	1460S	164	14L	126405		4
priolly	－SSLOS	554	950	ESLi2S		
1	9SLOS	554	954	85105		5
	9LLOS	544	StL	u4605		カ
	68405	bel	68.	b86015		
	cuales	OL	1044	26405		
	salos	54\％	9世	SKUS		1
गwd	08905	089	be9	U2905		1
ज10－ 04 ，st	Oh90S	です	1ガ）	LE90s		0
	8eLos	bCL	86\％	4Y605		1
	9940S	99\％	70	5k0S		5
	15LOS	と－	CS	Oscos		ε
	98905	489	789	$581 / 55$		t
	Es－S0．	55s	eqs	2esos		S
	98 hos	ssth	Ebh	441035		
	ess 05	hss	155：	36505		L
	5060S	LOL	SOL	CuL 23		
	80805	488	808	88805		
	45805	958	458	Csics		01
	es805	C58	258	es80s		al
	09405	294	bSL	okios		6
	85hos	BSh	9st	O9150s		\％
	598 bh	で18	tug	CSSbh		4
	0＜4 ${ }^{\text {a b }}$	tel	$8 / 4$	blcert		9
ร\％	（semueb） 	Suıpey	5u：pey	Suppea		
133		W				
${ }^{-10} \overline{\mathcal{E}}^{\text {abed }}$						
		－				

兂					
	hh9es	sn9	S（1）	Em00	40
	TELas	－ 21	284	Yeles	41
	18005	18.	18 L		4 L
	$\frac{h 0805}{51805}$		$\frac{1208}{19}$		48
	－ 11805	${ }_{\text {y }}^{58}$	788		$4{ }^{4} 4$
	28805	Ess	$\frac{188}{888}$	22805	49
	bhros	bhs	bh，	0582es	¢
	E9805	298	208	E9805	48
	t8885	hos	t88		
	$\stackrel{98809}{88805}$	$\frac{988}{898}$	${ }^{988} 8$	198805．	401
	$\frac{8288}{558}$	¢ 58	$\frac{188}{138}$	${ }_{\text {dig }}^{\text {digas }}$	
sงuwผร	（semues）	Supper	Supper		迷 x

L33HS $\forall 1 \forall 0$ O13IJ W3

133HS $\forall 1 \forall 0$ aา3is W3
10 - abed

LヨヨHS V1甘O Oרヨ』 פVW

FFI $\quad-10$ Tased

犭о0q60 ר ן

