Koppers Inc

General Information

ID	Branch	SIC	County	Basin	Start	End
876	Energy and Transportation	2491	Grenada	Yazoo River	11/09/1981	

Address

Mailing Address
PO Box 160 Tie Plant, MS 38960

Telecommunications

Туре	Address or Phone
Work phone number	(662) 226-4584, Ext. 11

Alternate / Historic AI Identifiers

Alt ID	Alt Name	Alt Type	Start Date	End Date
2804300012	Koppers Industries, Inc.	Air-AIRS AFS	10/12/2000	
096000012	Koppers Industries, Inc.	Air-Title V Fee Customer	03/11/1997	
096000012	Koppers Industries, Inc.	Air-Title V Operating	03/11/1997	03/01/2002
096000012	Koppers Industries, Inc.	Air-Title V Operating	01/13/2004	
MSR220005	Koppers Industries, Inc.	GP-Wood Treating	09/25/1992	
MSD007027543	Koppers Industries, Inc.	Hazardous Waste-EPA ID	08/27/1999	
HW8854301	Koppers Industries, Inc.	Hazardous Waste-TSD	06/28/1988	06/28/1998
HW8854301	Koppers Industries, Inc.	Hazardous Waste-TSD	11/10/1999	
876	Koppers Industries, Inc.	Historic Site Name	11/09/1981	
876	Koppers, Inc.	Official Site Name	12/11/2006	
MSP090300	Koppers Industries, Inc.	Water-Pretreatment	11/14/1995	11/13/2000
	Koppers Industries, Inc.	Water-Pretreatment	09/18/2001	
MSU081080	Koppers Industries, Inc.	Water-SOP	11/09/1981	

Regulatory Programs

Program	SubProgram	Start Date	End Date	
Air	Title V - major	06/01/1900		
Hazardous Waste	Large Quantity Generator	08/27/1999		
Hazardous Waste	TSD - Not Classified	06/28/1988		
Water	Baseline Stormwater	01/01/1900		
Water	PT CIU	11/14/1995		
	PT CIU - Timber Products			

Water	Processing (Subpart 429)	11/14/1995
Water	PT SIU	11/14/1995

Locational Data

Latitude	Longitude	Metadata	S/T/R	Map Links
33 ° 44 ' 3 .00 (033.734167)		Point Desc: PG- Plant Entrance (General). Data collected by Mike Hardy on 11/8/2005. Elevation 223 feet. Just inside entrance gate. Method: GPS Code (Psuedo Range) Standard Position (SA Off) Datum: NAD83 Type: MDEQ	Section: Township: Range:	SWIMS TerraServer Map It

12/20/2006 12:16:40 PM

Koppers Industries Inc

Master AI ID: 876 **Start Date:** 11/9/1981

Agency Interest Type: Energy and Transportation Branch End Date:

SIC 1: 2491

County: Grenada

AI Basin: Yazoo River Basin

File Copy

Alternate/Historic	AI Identifiers			
Alt/Hist ID	Alternate/Historic Name	User Group	Start	End
876	Koppers Industries, Inc.	Official Site Name	11/9/1981	
04300012	Koppers Industries, Inc.	Air-AIRS AFS	10/12/2000	
MSD007027543	Koppers Industries, Inc.	Hazardous Waste-EPA ID	10/12/2000	
096000012	Koppers Industries, Inc.	Air-Titie V Operating	3/11/1997	3/1/2002
HW8854301	Koppers Industries, Inc.	Hazardous Waste-TSD	11/10/1999	9/30/2009
HW8854301	Koppers Industries, Inc.	Hazardous Waste-TSD	6/28/1988	6/28/1998
MSP090300	Koppers Industries, Inc.	Water-Pretreatment	11/14/1995	11/13/2000
MSU081080	Koppers Industries, Inc.	Water-SOP	11/9/1981	11/30/1985
MSP090300	Koppers Industries, Inc.	Water-Pretreatment	9/18/2001	8/31/2006
MSR220005	Koppers Industries, Inc.	GP-Baseline	9/25/1992	3/23/2003
MSR220005	Koppers Industries, Inc.	GP-Baseline	3/24/2003	9/11/2005

Program	Sub-Program
Air	Titie V - major
Hazardous Waste	TSD - Not Classified
Water	Baseline Stormwater
Water	PT CIU
Water	PT CIU - Timber Products Processing (Subpart 429)
Water	PT SIU

AI Location and Mailing Information

Physical Address (Primary)

Regulatory Programs

Mailing Address

1 Koppers Drive

PO Box 160

Tie Plant, MS 38960	Tie Plant, MS 38960		
Location Information			
Section - Township - Range:			
Telecommunications			
Туре	Address or Phone		
Work phone number	(662) 226-4584, Ext. 11		
Staff to AI Assignments			
Person Name	Assignment		
Lee, David	Compliance, Management		<u> </u>
Collier, Melissa	Compliance, Staff		
Collier, Melissa	Enforcement		
Rao, Maya	Permitting, Branch Manager		
Rao, Maya	Permitting, Permit Writer		
Whittington, Darryail	Regional Office, Management		
Related People			
Person	Relationship	Start	End
Henderson, Thomas	Is Contact For	1/1/1980	
Henderson, Thomas	Is Water Permit Contact For	5/28/2001	
Basilone, Timothy	Is Title V Fee Assessment Contact For	7/1/2001	
Henderson, Thomas	Is Air Permit Contact For	10/12/200	1
Basilone, Timothy	Is Contact For	10/12/200	1
Collins, Randall	Is Application Signatory for	3/28/2002	
Biddy, Haley	Is Air Permit Contact For	5/22/2002	
Schaming, M. Claire	Is General Permit Contact For	3/24/2003	
Schaming, M. Claire	Is Application Signatory for	3/24/2003	
Related Organizations			·
Organization	Relationship	Start	End

enSearch

MDEQ OPC

July 1, 2003

CERTIFIED MAIL 7000 0520 0021 7551 8951

Koppers Inc.
Utility Poles and Piling
P.O. Box 160
Tie Plant, MS 38960

Tel 662 226 4584 Fax 662 226 4588 www.koppers.com

Ms. Maya Rao Mississippi Department of Environmental Quality P.O. Box 10385 Jackson, MS 39289-0385

RE: Title V Operating Permit - #0960-00012

Koppers Inc. – Grenada, Mississippi Minor Permit Modification, and Second Revision to Renewal Application

Dear Ms. Rao,

On March 11, 1997, Koppers Industries, Inc. was issued the Title V Operating Permit No. 0960-00012 for its wood treating plant (the Plant) at Tie Plant, MS. An application for renewal of the Title V permit was submitted on September 26, 2001, in conformance with MDSEQ requirements. Since that time a modification to the renewal application was submitted on October 22, 2002, with regard to several changes at the facility that affected air emissions described in the original Title V Renewal Application. This transmittal contains information pertaining to a second modification to the Title V Renewal Application as a result of facility equipment changes that will occur.

The attached sheets provide revised and updated information and summarize changes in plant equipment that will occur during the summer of 2003. The subject changes affect air emissions in that the overall air emissions for the facility will be less than estimates provided in the Title V Renewal Application. Changes that will be made to the facility are discussed below, and forms and supplemental information for replacement of information submitted in the original Title V Renewal Application are attached.

Three tanks located at the Plant will be removed from service and dismantled, including the #4 Work Tank, Creosote Measuring Tank, and the Creosote Dehydrator. Reference Numbers for these tanks in the Renewal Application (Section H, Tank Summary Table) are GRN-09, GRN-11, and GRN-29, respectively. All three of the tanks to be removed are equipment included under Emission Point Number AA-003 in the Renewal Application. Only one of the tanks, the #4 Work Tank, will be replaced at this time. The new tank will be named "#4 Work Tank", and will be referenced as GRN-09 on the Tank Summary Table.

The attached sections contain information that was modified as a result of the changes described above. These sections should be used to replace sections of the renewal application submitted earlier. The following table serves as a guide for making these replacements.

Attached Information	Replacement For: (Sections in the original renewal application and/or the first modification request dated 10/12/02 to be removed and replaced with the attached information)
Renewal Application Narrative - Section 2.1 (2 Pages).	Information provided in original application, and the first modification request on 10/28/02.
Section H (2 Pages), and the referenced Tank Summary Table (3 Pages)	Section H (2 Pages), and the Tank Summary Table (3 Pages).

In addition to information referenced above, a cover page indicating the permitting activity (modification) and a completed Section B, Owners Information (2 Pages), are attached.

Please note that information contained in the Tank Summary Table for Section H was revised to include information on the new Work Tank #4 (GRN-09) that will be installed in July 2003. Information required on the Section H form for the new tank is highlighted in bold print under reference GRN-09 on the Tank Summary Table. Also, information for the Creosote Dehydrator (GRN-29) and the Creosote Measuring Tank (GRN-11) was removed from the Tank Summary Table.

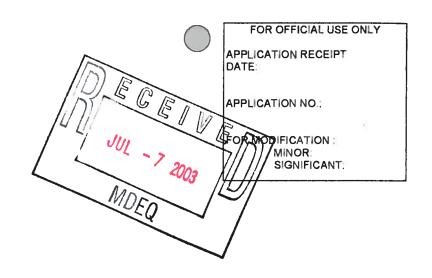
Koppers understands that the new tank will be regulated under 40 CFR 60 Subpart Kb, which requires that a strapping table and a construction drawing of the tank are maintained on file at the facility. The full requirements of Subpart Kb are not applicable because the vapor pressure of the material stored in the tank is below the pressure criteria for Subpart Kb.

If you have any questions or require additional information, please call me at (662) 226-4584 extension 11.

Yours truly,

Plant Manager

Enc.


cc. Steve Spengler – Environmental Permits Division MSDEQ
Tim Basilone – KII, Pittsburgh

2.1 Changes in Equipment Reference Numbers

Several of these Reference Numbers have been changed to incorporate the numbering system used in the SPCC Plan for the Plant. Other Reference Numbers have been changed because the 1997 Title V Permit had duplicate Reference Numbers. For example, in the 1997 Title V Permit, both Emission Points AA-003 and AA-0010 had a Reference No. 32. By revising the Reference Number system used in this renewal application, this and other duplicate reference numbers have been avoided.

Emission Point	Description (1997 Title V References)	Proposed Ref. No	Comments
AA-001	Title V, Ref. No. 1 - the 60.0 MMBTUH Wellons/Nebraska Woodwaste Boiler	40	See also Section 4
AA-002	Title V, Ref. No. 26 - the 28.5 MMBTUH fuel oil fired Murray Boiler	41	
AA-003	SPCC, Ref. No. 5 - the 34,000 gal treatment cylinder containing Penta in oil.	1	
	SPCC, Ref. No. 5 - the 27,000 gal treatment cylinder containing Creosote	2	
	SPCC, Ref. No. 5 - the 27,000 gal treatment cylinder containing Creosote	3	
74)2-12-1-1-1-2 <i>)</i> 1	SPCC, Ref. No. 5 - the 27,000 gal treatment cylinder containing Creosote	4	
	SPCC, Ref. No. 5 - the 27,000 gal treatment cylinder containing Creosote.	5	Changed from Creosote to Penta use
****	SPCC, Ref. No. 6 - the 29,7786 gal #1 Work Tank containing Penta in oil.	6	
	SPCC, Ref. No. 7 - the 29,786 gal #2 Work Tank containing Creosote	7	
	SPCC, Ref. No. 8 - the 29,786 gal #3 Work Tank containing Creosote	8	
***	SPCC, Ref. No. 9 - the 29,786 gal #4 Work Tank containing Creosote	9	Original tank replaced in July 2003
	SPCC, Ref. No. 10 - the 29,786 gal #5 Work Tank containing Creosote/Water.	10	
	SPCC, Ref. No. 11 - the 4,200 gal Measuring Tank containing Creosote		Removed in July 2003, not replaced
	SPCC, Ref. No. 12 - the 100,000 gal #1 Storage Tank containing Creosote	12	Changed from creosote storage to a storm water surge tank
***	SPCC, Ref. No. 13 - the 100,000 gal #2 Surge Tank containing Process water	13	
	SPCC, Ref. No. 14 - the 100,000 gal #5 Storage Tank containing Diesel #2 fuel oil	14	
	SPCC, Ref. No. 15 - the 105,000 gal #6 Storage Tank containing creosote	15	
	SPCC, Ref. No. 16 - the 300,000 gal #10 Surge Tank containing process water	16	
	SPCC, Ref. No. 17 - the 250,000 gal Storm Water surge tank containing Storm Water	17	
	SPCC, Ref. No. 18 - the 1,500 gal Coagulant Tank containing water treatment system polymer additive	18	
	SPCC, Ref. No. 19 - the 2,500 gal Decant Tank containing Creo/Oil/Water	19	
	SPCC, Ref. No. 20 - the 8,000 gal Creosote Blowdown tank containing Creo/Water	20	
	SPCC, Ref. No. 21 - the 6 ft. Dia. X 60 ft. long, Air Receiver containing compressed air		Removed from list. Contains only compressed air

Emission Point	Description (1996 Title V References)	Proposed Ref. No	Comments
	SPCC, Ref. No. 22 - the 7 ft. Dia. X 40 ft. long Air Receiver containing compressed air		Removed from list. Contains only compressed air
	SPCC, Ref. No. 23 - the 8,000 gal Penta Blowdown tank containing water/penta/oil	23	
	SPCC, Ref. No. 26 - the 150,000 gal Aeration Tank containing waste water	26	
	SPCC, Ref. No. 27 - the 25,000 gal Clarifier Tank containing waste water	27	
	SPCC, Ref. No. 28 - the 15,000 gal Discharge Tank containing waste water	28	
	SPCC, Ref. No. 29 - the 8,000 gal Creosote Dehydrator		Removed in July 2003, not replaced
	SPCC, Ref. No. 30 - the 14,000 gal North Penta Equalization Tank containing water/penta/oil	30	
	SPCC, Ref. No. 31 - the 14,000 gal South Penta Equalization Tank containing water/penta/oil	31	
	SPCC, Ref. No. 32 - the 9,400 gal Penta Mix Tank containing Oil/Penta	32	
	SPCC, Ref. No. 33 - the 5,000 gal Penta Mix Tank containing Oil/Penta	33	
	SPCC, Ref. No. 34 - the 10,500 gal Penta Concentrate Tank containing 40% Pentachlorophenol Concentrate	34	
	SPCC, Ref. No. 35 – the 100,000 gal Stormwater Tank	35	This Tank has been added.
AA-004	Title V, Ref. No. 27, the Tie Mill and Lumber Mill with cyclone	42	
AA-005	Title V, Ref. No. 33, the Boiler House natural gas fired space heater rated at 0.2 MMBTUH	43	Insignificant Activity per APC-S-6.IN Three (3) space heaters each rated at 0.2mmbtu/hr.
AA-006	Title V, Ref. No. 35, the natural gas fired steam cleaner rated at 0.44 MMBTUH	44	Insignificant Activity per APC-S-6.IV
AA-007	Title V, Ref. No. 36, the Wood Stove Shop Heater rated at 0.10 MMBTUH		Source no longer exists. Has been removed from site.
AA-008	Title V, Ref. No. 8, the Treated Wood Storage Areas	46	
AA-009	Title V, Ref. No. 31, the Pole Kiln	47	
AA-010	Title V, Ref. No. 32, the Pole Peeler	48	
AA-011	Title V, Ref. No. 34, Wood Fuel Preparation and handling including grinding, conveying, and silo loading	49	
AA-012	Title V, Ref. No. 37, the two (2) Parts cleaners- degreasers	50	
AA-013	SPCC, Ref. No. 24, the 1,250 gal Gasoline Storage tank containing Gasoline used by company vehicles	51	Insignificant Activity per APC-S-6.IV
AA-014	SPCC, Ref. No. 25, the 9,000 gal Diesel Storage tank used by company vehicles/Rolling Stock	52	Insignificant Activity per APC-S-6.IV
AA-015	Title V, Ref. No. 33, the Oil Fired Murray Standby boiler room Natural Gas fired Space Heater rated at 0.1 MMBTUH	54	Insignificant Activity per APC-S-6.IV
AA-016	Title V, Ref. No. 33, the Fire Pump building Natural Gas fired Space Heater rated at 0.02 MMBTUH	*******	Source no longer exists. Has been removed from site.

STATE OF MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY OFFICE OF POLLUTION CONTROL AIR DIVISION P.O. BOX 10385 JACKSON, MS. 39289-0385 PHONE NO.: (601) 961 - 5171

APPLICATION FOR TITLE V AIR POLLUTION CONTROL PERMIT TO OPERATE AIR EMISSIONS EQUIPMENT

PERMITTING	G ACTIVITY:	
X	INITIAL APPLICATION MODIFICATION RENEWAL OF OPERATING PERMIT	
NAME:	KOPPERS INDUSTRIES INC TIE PLANT	
COUNTY:	GRENADA	
		····
FACILITY No. (if	known): 0960-00012	

Section B **Owners Information** 1. Name, Address & Contact for the Owner/Applicant A. Company Name: KOPPERS INC. B. Mailing Address: Street Address or P.O. Box: 1. 436 SEVENTH AVENUE 2. City: **PITTSBURGH** 3. State: 4 Zip Code: 15219-1800 5.. Telephone No.: (412) 227-2114 C. Contact: Name: 1. TIMOTHY R. BASILONE 2. **ENVIRONMENTAL MANAGER** Title: 2. Name, Address, Location and Contact for the Facility: A. Name: KOPPERS INC. B. Mailing Address: 1. Street Address or P.O. Box: P.O. BOX 160 2. City: **TIE PLANT** MS Zip Code: 4 38960 5. Telephone No.: (662) 226-4584 C. Site Location: Street: 1 KOPPERS DRIVE 2. City: TIE PLANT 3. State: MS 4. County: **GRENADA** 5. Zip Code: 38960 Telephone No.: (662) 226-4584 Note: If the facility is located outside of the City limits, please attach a sketch or description to this application showing the approximate location of the site. D. Contact: 1. THOMAS L. HENDERSON 2. PLANT MANAGER Title: 3. SIC Code(s)(including any associated with alternate operating scenarios): 2491 4. Number of Employees: 65 5. Principal Product(s): UTILITY POLES AND RAILROAD CROSSTIES 6. Principal Raw Materials: WOOD POLES, CROSSTIES, LUMBER, CREOSOTE, PENTACHLOROPHENOL, DIESEL FUEL 7. Principal Process(es): WOOD PRESERVING

8.	Maxin	num amount of principal product produce 20,000 CUBIC FEET	d or raw materia	l consumed per d	av:
9.	Facilit	y Operating Schedule (Optional):			
	A.	Specify maximum hours per day the op	eration will occu	ir:	24 HOURS
	B.	Specify maximum days per week the op	peration will occ	ur:	7 DAYS
	C.	Specify maximum weeks per year the o	peration will occ	eur: _	52 WEEKS
	D.	Specify the months the operation will o	ccur:	ALL	
10.	Is this	facility a small business as defined by the	Small Business	Act? (Optional)	NO
11.	EACH	APPLICATION MUST BE SIGNED	BY THE APPL	ICANT.	
		pplication must be signed by a respons 3-6, Section I.A.26.	ible official as d	efined in Regula	ation
	statem respon respon	fy that to the best of my knowledge of ents and information in this application sible official, my signature shall constit sibility for any alteration, additions, or e and maintain compliance with all appl	are true, comp ute an agreeme changes in ope	lete, and accurate nt that the applic eration that may	e, and that, as a cant assumes the
The second of		HENDERSON	PLANT MAN	AGER	
Printed	i Name	of Responsible Official	Title		
	1-03	on Signed	Thomas	L Kenolene	4897
Date A	ppncat	on signed	Signature of A	pplicants Respo	nsible Official

SECTION H TANK SUMMARY (page 1 of 2)

1.		sion Point No./Name: AA-003, ALL RELATED TANK DATA INCLUDED IN TANK MARY DATA SPREADSHEET (FOLLOWING PAGES)
2.		this tank constructed or modified after August 7, 1977?
3.		nct Stored: re than one product is stored, provide the information in 4.A-E for each product.
4.	Tank	Data:
	A. B. C. D. E. F.	True Vapor Pressure at storage temperature: Reid Vapor Pressure at storage temperature: Density of product at storage temperature: Molecular Weight of product vapor at storage temperature: Throughput for most recent calendar year: Tank Capacity: Tank Diameter: gal/yr gal feet
	H. I. J. K. L.	Tank Height / Length: Average Vapor Space Height: Tank Orientation: Type of Roof: Is the Tank Equipped with a Vapor Recovery System? If Yes, describe on separate sheet of paper and attach. Indicate efficiency.
	M.	Check the Type of Tank: Fixed Roof Pressure Variable Vapor Space Other, describe: External Floating Roof Internal Floating Roof
	N.	Check the Closest City: Jackson, MS Memphis, TN New Orleans, LA Birmingham, AL Montgomery, AL Baton Rouge, LA
	0	Check the Tank Paint Color: Aluminum Specular Aluminum Diffuse Red Other, describe: Baton Rouge, LA Gray Light Gray Medium White
	P. Q.	Tank Paint Condition: Good or Poor Check Type of Tank Loading 1. Trucks and Rail Cars
		Submerged Loading of clean cargo tank Submerged Loading: Dedicated Normal Service Submerged Loading: Dedicated Vapor Balance Service Splash Loading of clean cargo tank Splash Loading: Dedicated Normal Service Splash Loading: Dedicated Vapor Balance Service 2. Marine Vessels Submerged Loading: Ships Submerged Loading: Barges

SECTION H TANK SUMMARY (page 2 of 2)

5.

6.

R.	For E	External Floating Roof Tanks		
	1,	Check the Type of Tank Seal:		
		Mechanical Shoe		
		Primary Seal Only		
		With Shoe-Mounted		
		With Rim-Mounted S	Secondary Seal	
		Liquid Mounted Resilient Seal		
		Primary Seal Only		
		With Shoe-Mounted		
		With Rim-Mounted S	Secondary Seal	
		Vapor Mounted Resilient Seal		
		Primary Seal Only		
		With Shoe-Mounted		
	_	With Rim-Mounted S	5,	
	2.	Type of External Floating Roof:	Pontoon	
			Double-Deck	
S.	For I	nternal Floating Roof Tanks		
Ο.	1.	Check the Type of Tank Seal:		
		Liquid Mounted Resilient Seal		
		Primary Seal Only		
		With Rim-Mounted S	Secondary Seal	
		Vapor Mounted Resilient Seal	·	
		Primary Seal Only		
		With Rim-Mounted S	Secondary Seal	
	2.	Number of Roof Columns:		_
	3.	Length of Deck Seam	•	feet:
	4.	Area of Deck:		- feet ²
	5.	Effective Column Diameter:		_ feet
	6.	Check the Type of Tank:		_ 1000
		Bolted with-Column S	Supported Roof	
		Welded with Column		
		Bolted with Self-Supp		
		Welded with Self-Sur		
		 -	. •	
Emis	ssions Sur	mmary		
	1.	Breathing Loss:	lb/hr	TPY
	2.	Working Loss:	lb/hr	TPY
	3.	Total Emissions:	lb/hr	TPY
	I Coordin			
A. Z	one	B. North	C. East	

SECTION H TANK SUMMARY TABLE

Section H Reference		Unite										
	Plant Reference Number		GRN-06	GRN-07	GRADE	GRN-09	GRN-10	GRN-12	GRN-13	GRN-14	GRN-15	GRN-18
	Emission Point Number		AA-003	AA-003	AA-003	AA-003	AA-003	AA-003	AA-003	AA-003	AA-003	AA-003
	Reference No. (Table 2.1)		9	7	80	œ	10	12	13	14	15	16
	eca.		#1 Work Tank	#2 Work Tank	#3 Work Tenk	#4 Work Tank	#5 Work Tank	#1 Creosote	#2 Surge Tank	Mr. Storage Tank	#S Street	- derivation
2	Construction Date		1903	1903	1979	2003	1930	1903	1903	1903	1903	1903
ო	Material Stored		Oil / Pertachlorophenal	Creosote	Crecsole	Craosota	Pertachlorophenol	Creosote	Process Water	#2 CF	approach	Process Water
\$	True Vapor Pressure @ Storage Temperature	e psie								2000	2000	and the second
48	Reid Vapor Pressure @ Storage Temperature	L										
	Storage Temperature	Degrees F		200	200	200	150	200	8	99	150	99
ភិ	Density @ Storage Temperature	lag/q	7.75	9.25	9.25	8.95	7.75	8.95	8.34	7.1	9.25	8.34
	Molecular Weight @ Storage Temperature	lb/fbmole										
Ų	Throughput	gallons/yr	80	8,200,000	8,200,000	8,200,000	8,500,000	740,000	1,600,000	127,600	960,000	1,400,000
#	Tank Capacity	gallons	29,786	29,786	29,786	29,786	29,786	100,000	100,000	100,000	105,000	300,000
5	Tank Diameter	jeet	13	13	13	13	13	23	3 2	27	30	8
£	Tank Height / Length	feet	ଚ	က	30	30	8	24	24	24	8	32
4	Average Vapor Space Height	feet	-	-	-	•		-	_	-	_	_
4	Tank Orientation (Horizontal or Vertical)		Vertical	Vertical	Verticel	Vertical	Vertical	Vertical	Vertical	Vertical	Vertical	Vertical
¥	Type of Roof (Dome or Cone)			Dome	Dome	Ооте	Dome	Cone	Cone	Cone	Cone	Cone
4	Vapor Recovery System?	yes or no	_	2	2	ŝ	2	٥N	Š	S.	S _S	No No
₹	Type of Tank?			Fixed Roof	Fixed Roof	Fixed Roof	Fixed Roof	Fixed Roof	Fixed Roof	Fixed Roof	Fixed Roof	Fixed Roof
Ž.	Closest City	Memphis		Memphis	Memphis	Memphie	Memphis	Memphis	Memphis	Memphis	Memphis	Memphis
ð	Tenk Paint Color		Sax	Slack	Back	Aluminum	Black	Black	Black	Black	Black	Black
4	Paint Condition (Good or Poor)		Poor	Poor	Poor	Good	Poor	Poor	Poor	Good	Good	Poor
	Tank Loading (Splash Loading - Dedicated Normal Service) Splash Loading - Dedicated					Splash Loading - Dadicated Normal						
đ	Vapor Balance Service; Bottom)		Bottom	Вотош	Bottom	Service	Bottom	Bottom	Bottom	Bottom	Bottom	Bottom
₹	Not Applicable To Any Tenks											
ş	Not Applicable To Any Tenks											
5.1	Breathing Loss (See Note)	D/hr										
		ТРҰ										
5.2	Working Loss (See Note)	₽/µ										
		тРү										
5.3	Total Emissions (See Note)	phr										
		τβγ										
	NOTE: All tank emissions are included in Plant Summary Table of Section C of the											
	Application.											
		100	_			_	_		_		_	

Section H Reference		Unita										
			GRN-17	GRN-18	GRN-19	GRN-20	GRN-23	GRN-24	GRN-25	GRN-26	GRN-27	GRN-28
-	Emission Point Number		AA-003	AA-003	AA-003	AA-003	AA-003	AA-013	AA-014	AA-003	AA-003	AA-003
	Reference No. (Table 2.1)		1,1	18	19	62	23	24	25	26	27	28
						Creosote	Pentachlorophenol					
,	Name Court called Date		Storm Surge Water	Coagulant	Decaming	Blowdown	Biowdown	Gasoline	Diesel	Aeration	Carifier	Discharge
7	Constitution Cale		1808	798	1989	086	1983	0/61	1930	1986	1986	1986
ო	Material Stored		Storm Water	Coagulant Polymer	Creosote / Oil / Water	Creosote / Water	Water / Pentachtorophenol / Oil	Gasoline	#2 Diese	Process Waste	Process Waste	Process Waste
\$	True Vapor Pressure (2) Storage Temperature	Bisla	Τ									
48	Reid Vapor Pressure @ Storage Temperature											
	Storage Temperature	Degrees F	89	8	8	150	8	8	88	980	8	90
Ą	Density @ Storage Temperature	lag/di	8.34	8.67	8.34	8.34	8.34	6.5	7	8.34	8.34	8.34
40	Molecular Weight @ Storage Temperature	Diformole	Ц									
4	Throughput	gallons/yr	.,	9,000	230,000	532,000	493,000	10,000	90,000	9,000,000	9,000,000	5,000,000
4	Tenk Capacity	gallons	250,000	1,500	2,500	8,000	8,000	1,250	9,000	150,000	25,000	15,000
ą	Tank Diameter	teet	38	9	8	₽	10	4	9	40	15	15
£	Tenk Height / Length	feet	38	5	12	4	4	12	32	25	18	8
4	Average Vapor Space Height	feet		_	-	-	-	-	-	-	-	-
3	Tank Orientation (Horizontal or Vertical)		Vertical	Vertical	Vertical	Vertical	Vertical	Horizontal	Honzontal	Vertical	Vertical	Vertical
¥	Type of Roof (Dome or Cone)		None	Dome	Dome	Dome	Dome			Norie	None	None
4	Vapor Recovery System?	yes or no		2	S	£	Ş	S	2	2	2	ŝ
Ž.	Type of Tank?			Fixed Roof	Fixed Roof	Fixed Roof	Fixed Roof	Fixed Roof	Fixed Roof	uado.	E C	Open
Ž,	Cosesi Civ	Memorias	2	Memoris	Membris	Membris	Memoris	Memphis	Memoris	Memphis	Memphis	Memphis
3	Park Paint Coor		950	Beige	Ago	Pack	Sack	Atmiran	Atminum	White	Bre	B. B.
+	Paint Condition (Good of Poor)		805	805	805	8	8	505	0005	900	800	9005
!	Park Loading (Spash Loading - Dedicated Normal Service; Spash Loading - Dedicated			Splash Loading Dedicated Normal	Splash Loading Dedicated Normal	Splash Loading Dedicated Normal	Spiesh Loading Dedicated Normal			Splash Loading Dedicated Normal	Splash Loading Dedicated Normal	Splash Loading Dedicated Normal
đ	Vapor Balance Service, Bottom)		Service	Service	Service	Service	Service	Bottom	Bottom	Service	Service	Service
¥ 4	Not Applicable To Any Tanks											
2	NOT Apprende 10 Any 181965	1										
D D	DA GRANING LOSS (See NOW)	AG.										
52	Working Loss (See Note)	- Age										
		λdΙ										
5.3	Total Emissions (See Note)	T-LPG										
		ΤÞÝ										
	NOTE: All tank emissions are included in Plant Summary Table of Section C of the Application											
		_	_		_	_				_		

SECTION H TANK SUMMARY TABLE

Reference		Units						
	Plant Reference Number		GRN-30	GRN-31	GRN-32	GRN-33	GRN-34	GRN-35
	Emission Point Number		AA-003	AA-003	AA-003	AA-003	AA-003	AA-003
	Reference No. (Table 2.1)		33	31	32	33	æ	35
	Name		North Pertachlorophenol Equalization	South Pentachiorophenol Equalization	Pentachlorophenol Mix	Pentachlorophenol Mix	Pentaci lonophenol Concentrata	Stormwater
2	Construction Date		1983	1983	1970	1970	1960	1970
6	Material Stored		Water / Penta / Oll	Water / Penta / Oil Water / Penta / Oil	ON / Pertta	Oil / Penta	Pentachlorophenol Concentrate	Creosote / Penta / Water
44	True Vapor Pressure @ Storage Temperature	Bisq						
48	Reid Vapor Pressure @ Storage Temperature	psia						
	Storage Temperature	Degrees F		99	99	99	90	8
Q Q	Density @ Storage Temperature	fb/gal	80	8	7.75	7.75	9.55	8.34
Q	Molecular Welgirt @ Storage Temperature	D/Dmole						
世	Throughput	gallons/yr	65,000	65,000	850,000	850,000	120,000	400.000
4	Tank Capacity	gallons	14,000	14,000	9,400	5,000	10,500	100,000
ð	Tank Dismeter	feet	10	10	6	5	13	ଛ
Ŧ	Tank Height / Length	feet	24	24	14	5	88	8
4	Average Vapor Space Height	feet	-	1	-	-	-	-
4	Tank Orientation (Horizontal or Vertical)		Vertical	Vertical	Vertical	Horizontal	Vertical	Vertical
Ą	Type of Roof (Dame or Cone)		Corie	Cone	Fiet		Fig	Flat
4	Vapor Recovery System?	yes or no	No	2	2	S	2	2
414	Type of Tank?		Fixed Roof	Fixed Roof	Fixed Roof	Fixed Roof	Fixed Roof	Fixed Roof
4 V	Closest City	Memoris	Memphis	Memphis	Memphis	Memohis	Memphis	Memphis
Q	Tank Paint Color		Black	Black	Black	Black	Aluminum	Concrete
46	Paint Condition (Good or Poor)		Poor	Poor	Poor	Poor	, 2000	
	Tank Loading (Splash Loading - Dedicated		Splash Loading	Splash Loading		Splash Loading		Splash Loading
ç	Normal Service, Splash Loading - Dedicated		Dedicated Normal	Dedicated Normal		Dedicated Normal	;	Dedicated Normal
3	Velyor balance Service, bollom)		Service	Service	Bottom	Service	Bottom	Service
Ž,	Not Applicable To Any Tenks							
ą	NOT Applicable 10 Any Larks							
5.1	Breathing Loss (See Note)	apr.						
		ì						
5.2	Working Loss (See Note)	ఠ						
		ΤPΥ						
5.3	Total Emissions (See Note)	T-L/CI						
		TPY						
	NOTE: All tank emissions are included in Plant Summary Table of Section C of the							
	Applicance .							

2.0 SOURCE DESCRIPTION:.

Koppers Industries, Inc. operates a 30,000 pound per hour Wellons wood waste boiler at their wood preserving facility in Grenada, Mississippi. The boiler provides steam for the timber treating processes and a turbine generator. Fuel is typically wood waste generated from the manufacture of treated wood products.

Heat input as calculated from the test data and an F-Factor was an average 48.53 MM Btu/hr.

The boiler exhausts to the atmosphere by way of a 34.5 inch diameter vertical stack. Two sample ports at 90° are provided at a location that is 432 inches (12.5 diameters) below the stack exit and 356 inches (10.3 diameters) above an upstream stack tapered section.

3.0 TEST PROCEDURES:

Test procedures used are those described in the Code of Federal Regulations, Title 40, Part 60, Appendix A. Specifically, Method 1 was used to determine the number of sample points and Method 5 to determine flow rates, moisture content, and particulate emissions. The sampling train was identical to that described in Method 5 except that the cyclone was omitted. Visible emissions were read in accordance with Method 9 concurrently with the emissions test

Heat input to the boilers was determined by continuously monitoring oxygen content of the flue gas as described in Method 3A and calculating heat input using an F-factor of 9400 scf per million Btu of heat input for the wood waste fuel.

Filters were recovered by rinsing the front half of the filter holder into the probe wash and securing the filters in glass petri dishes. Part of the sample filter often adheres to the filter gasket, and some of the adhering material is recovered into the probe wash. Therefore some of the filter weight is attributed to the probe wash weight.

Filters were heated in an oven for 2 hours at 105° C, desiccated at least 24 hours and weighed to constant weight. Probe wash samples in acetone were evaporated to dryness over low heat in tared beakers, desiccated for at least 24 hours and weighed to constant weight. Weighings are made at 6 hour or greater intervals (samples stored in desiccator). Final weights were considered valid and were recorded if there was no more than 0.5 milligrams difference from the previous weighing.

Grenada Count; AI 876

TV - Linewal

Environmental Mar.

Loppes:

t No. 0960-00012

SECTION 2. EMISSION POINTS ... I JULIUN CONTROL DEVICES

Emission Point	Description
AA-001	Ref. No. 1, the 60.0 MMBTUH Wellons/Nebraska Woodwaste Boiler (firing treated and untreated wood) with multiclone collector
AA-002	Ref. No. 26, the 28.5 MMBTUH fuel oil fired Murray Boiler
AA-003	Ref. No. 5, Wood Treatment Facility consisting of five (5) treating cylinders, pumps, valves, blowers, and the following tanks: Ref. No. 6, the 30,000 gallon #5 Work Tank containing penta in oil Ref. No. 7, the 30,000 gallon #2 Work Tank containing creosote 60/40 Ref. No. 8, the 30,000 gallon #3 Work Tank containing creosote Ref. No. 9, the 22,420 gallon #4 Work Tank containing creosote #1 X Ref. No. 10, the 30,000 gallon 2nd Decant Tank containing creosote/water Ref. No. 11, the 4,200 gallon Measuring Tank containing creosote #1 X Ref. No. 12, the 100,000 gallon Creo Storage Tank containing creosote #1 Ref. No. 13, the 100,000 gallon Water Surge Tank containing process water Ref. No. 14, the 100,000 gallon Oil Storage Tank containing fuel oil Ref. No. 15, the 105,000 gallon Creo Storage Tank containing process water Ref. No. 16, the 300,000 gallon Process Water Surge Tank containing process water Ref. No. 17, the 250,000 gallon Storm Water Surge Tank containing storm water Ref. No. 18, the 2,700 gallon Coagulant Tank containing Dearfloc 4301 Ref. No. 20, the 8,000 gallon Creo Blowdown Tank containing water/creosote Ref. No. 21, the 6 ft. dia. x 60 ft. long Air Receiver containing compressed air
- }	Ref. No. 22, the 7 ft. dia. x 40 ft. long Air Receiver containing compressed air Ref. No. 23, the 8,000 gallon Penta Blowdown Tank containing water/penta/oil Ref. No. 26, the 150,000 gallon Aeration Tank containing waste water Ref. No. 27, the 25,000 gallon Clarifier Tank containing waste water Ref. No. 28, the 15,000 gallon Discharge Tank containing waste water Ref. No. 39, the 4,000 gallon Creosote Dehydrator Ref. No. 30, the 14,000 gallon N. Penta Equalization Tank containing water/oil/penta Ref. No. 31, the 14,000 gallon S. Penta Equalization Tank containing water/oil/penta Ref. No. 32, the 11,500 gallon Penta Mix Tank containing oil/penta Ref. No. 33, the 5,000 gallon Penta Mix Tank containing oil/penta Ref. No. 34, the 10,500 gallon Penta Concentrate Storage Tank containing penta concentrate
AA-004	Ref. No. 27, the Tie Mill and Lumber Mill with cyclone
AA-005	Ref. No. 33, the Boiler House natural gas fired space heater rated at 0.2 MMBTUH
AA-006	Ref. No. 35, the natural gas fired steam cleaner rated at 0.44 MMBTUH
AA-007	Ref. No. 36, the Wood Stove Shop Heater rated at 0.10 MMBTUH
AA-008	Ref. No. 8, Treated Wood Storage
AA-009	Ref. No. 31, the Pole Kiln

Page 15 of 22 Permit No. 0960-00012

Emission Point	Description
AA-010	Ref. No. 32, the Pole Peeler
AA-011	Ref. No. 34, Wood Fuel Preparation and Handling including grinding, conveying, and silo loading
AA-012	Ref. No. 37, the two (2) Parts Cleaners/Degreasers
AA-013	Ref. No. 24, the 1,000 gallon Gasoline Storage Tank
AA-014	Ref. No. 25, the 20,000 gallon Diesel Storage Tank
AA-015	Ref. No. 33, the Standby Boiler Room natural gas fired space heater rated at 0.1 MMBTUH
AA-016	Ref. No. 33, the Fire Pump Building natural gas fired space heater rated at 0.02 MMBTUH

HAGIT > New Tank.

Koppers Industries, Inc. P.O. Box 160 Tie Plant, MS 38960

> Telephone: (601) 226-4584 FAX: (601) 226-4588

October 28, 2002

CERTIFIED MAIL #7000 0520 0021 7551 9217

Ms. Melissa Collier Mississippi Department of Environmental Quality P.O. Box 10385 Jackson, MS 39289-0385

RE: Title V Operating Permit - #0960-00012 Koppers Industries Inc. - Grenada, Mississippi

Revisions to Renewal Application

Dear Ms. Collier,

On 11 March 1997, Koppers Industries, Inc. was issued the Title V Operating Permit No. 0960-00012 for its wood treating plant (the Plant) at Tie Plant MS. An application for renewal of the Title V permit was submitted on September 26, 2001, in conformance with MDSEQ requirements. Since that time decisions were made that require several changes to be made at the facility, some of which will affect air emissions described in the Title V Renewal Application.

The attached sheets provide revised and updated information and summarize changes in plant operations that will affect air emissions. Changes that will be made to the operation are discussed below, and forms and supplemental information for replacement of information submitted in the original Title V Renewal Application are attached.

Koppers began using only untreated wood fuel in the wood fired boiler in November 2001. In the future only untreated wood fuel will be used. In the September 2001 renewal application the boiler operation was subject to an alternative operating scenario. Both a baseline operating scenario and an alternative operating scenario were presented with the September 2001 renewal application. This submission eliminates the baseline operating scenario for the boiler (Source AA-001), including the provision to use untreated and treated wood fuel. The Alternative Operating Scenario presented in the renewal application, which describes emissions at the wood fired boiler based on the use of only untreated wood fuel, now becomes the base (and only) operating scenario presented in the application. Despite this change, the plant remains a major source for purposes of the Title V Operating Permit Program.

Production schedules for creosote products at the plant indicate a need to produce more cross ties and less utility poles in the future. This submission adjusts the production amounts for cross ties and poles. The total volume of creosote treated wood used in calculating PTE figures that were presented in the renewal application (3.5 million cubic feet) remains the same with this submission, however, with this submission the number of cross ties has been changed from 2.0 million cubic feet to 2.4 million cubic feet, and the number of poles has been changed from 1.5 million cubic feet to 1.1 million cubic feet. Changes to emission estimates due to production

V

schedule modifications are included on the attached tables. The emission factors presented in the attached tables are conservatively based on 2001 reporting year production information.

Information from the most recent Stack Emissions Test on the wood fired boiler is included, for replacement of test information provided with the original renewal application from the test conducted in the year 2000.

The attached sections contain information that was modified as a result of the changes described above. These sections should be used to replace sections of the renewal application submitted earlier. The following table serves as a guide for making these replacements.

Attached Information	Replacement For:
	(Sections in the original renewal application to be removed
	and replaced with the attached information)
Renewal Application Narrative	Narrative provided in former application (cover sheet and 12
(cover sheet and 12 pages).	pages).
Section C, Emissions	1. Section C, Emissions Summary for the Entire Facility,
Summary for the Entire	Normal Operating Scenario – Use of Treated and Untreated
Facility, including Emission	Wood Fuel, including Emission Inventory Calculation -
Inventory Calculation – PTE	PTE Basis (6 pages)
Basis (6 pages)	2. Section C, Emissions Summary for the Entire Facility,
	Alternative Operating Scenario – Use of Untreated Wood
	Fuel Only, including Emission Inventory Calculation – PTE
	Basis (6 pages)
Section D, Fuel Burning	1. Section D, Fuel Burning Equipment, Emission Point No.
Equipment, Emission Point	AA-001, Ref. No. 40 - Use of Treated and Untreated Wood
No. AA-001, Ref. No. 40	Fuel (2 pages)
Wood Fired Boiler (2 pages)	2. Section D, Fuel Burning Equipment, Emission Point No.
	AA-001 Ref. No. 40 - Alternative Operating Scenario Use
	of Untreated Wood Fuel (2 pages)
Section E, Manufacturing	Section E, Manufacturing Processes, Emission Point No. AA-
Processes, Emission Point No.	003, Wood Preserving Process (2 pages)
AA-003, Wood Preserving	
Process (2 pages)	
Section E, Manufacturing	Section E, Manufacturing Processes, Emission Point No. AA-
Processes, Emission Point No.	008, Ref. No. 46, Treated Wood Storage (2 Pages)
AA-008, Ref. No. 46, Treated	
Wood Storage (2 Pages)	
Section M5, including Stack	Section M5, including Stack Emissions Test,
Emissions Test,	September 29, 2000 (5 pages)
September 23, 2002 (6 pages)	

If you have any questions or require additional information, please call me at (662) 226-4584 extension 11.

Sincerely,

Thomas L. Henderson

Plant Manager

Enc.

cc. Steve Spengler – Environmental Permits Division MSDEQ
Tim Basilone – KII, Pittsburgh

Renewal Application

Title V Operating Permit

No. 0960-00012

Koppers Industries, Inc.

Tie Plant, MS 38960

TABLE OF CONTENTS

1.0	Introduction
2.0	Changes in Plant Equipment and Operation
3.0	Exempt and Insignificant Activities
4.0	Alternate Operating Scenario
5.0	Monitoring, Recordkeeping & Reporting
5.0	MSDEO Application Forms

1.0 Introduction.

On 11 March 1997, Koppers Industries, Inc. was issued the Title V Operating Permit No. 0960-00012 for its wood treating plant (the Plant) at Tie Plant MS. An application for renewal of the Title V permit was submitted on September 26, 2001, in conformance with MDSEQ requirements.

During the 5 years that the Title V permit has been in effect, the Grenada Plant has operated in compliance with the requirements of the permit. In addition, several changes have taken place. Some sources have been retired from service and some new sources have been added. Some equipment, originally used for one purpose has been switched to a different type of service. For some equipment, the Reference Numbers have been changed to provide consistency with other site permit and programmatic requirements.

The wood fired boiler operation was changed to include only the use of untreated wood fuel, instead of using both treated and untreated wood fuel as was done in the past. Koppers began using only untreated wood fuel in 2001, and has made the decision to only burn untreated wood fuel in the boiler in the future. Despite this change in wood fuel, the Plant remains a Major Source for purposes of the Title V Operating Permit Program.

The basic operations at the Plant are unchanged. The Plant continues to produce treated wood products such as railroad ties, utility poles and other timber products. During the past 5 years some of these operations have become more streamlined. Others have been replaced or eliminated. Several operations have undergone change in response to KII's pollution prevention efforts. For example, the formulation of KII's creosote has changed since the original application. The reformulated creosote is both easier to use in treating operations and results in lower VOC emissions to the atmosphere during the treating operations.

The remaining sections of this permit application document include all of the changes relevant to the Plant. In addition, the various MSDEQ Forms required for this renewal application are included.

2.0 Changes in Plant Equipment and Operations

Since the original Title V Permit has been in effect, there have been several changes in equipment and operations at the Plant. Some of these changes have been discussed previously in detail with the MSDEQ. Others correspond to exempt and/or insignificant changes. All of these changes are summarized below.

2.1 Changes in Equipment Reference Numbers

Several of these Reference Numbers have been changed to incorporate the numbering system used in the SPCC Plan for the Plant. Other Reference Numbers have been changed because the 1997 Title V Permit had duplicate Reference Numbers. For example, in the 1997 Title V Permit, both Emission Points AA-003 and AA-0010 had a Reference No. 32. By revising the Reference Number system used in this renewal application, this and other duplicate reference numbers have been avoided.

Emission Point	Description (1997 Title V References)	Proposed Ref. No	Comments
AA-001	Title V, Ref. No. 1 - the 60.0 MMBTUH Wellons/Nebraska Woodwaste Boiler	40	See also Section 4
AA-002	Title V, Ref. No. 26 - the 28.5 MMBTUH fuel oil fired Murray Boiler	41	
AA-003	SPCC, Ref. No. 5 - the 34,000 gal treatment cylinder containing Penta in oil.	1	
	SPCC, Ref. No. 5 - the 27,000 gal treatment cylinder containing Creosote	2	
	SPCC, Ref. No. 5 - the 27,000 gal treatment cylinder containing Creosote	3	
	SPCC, Ref. No. 5 - the 27,000 gal treatment cylinder containing Creosote	4	
	SPCC, Ref. No. 5 - the 27,000 gal treatment cylinder containing Creosote.	5	Changed from Creosote to Penta us
	SPCC, Ref. No. 6 - the 29,7786 gal #1 Work Tank containing Penta in oil.	6	
	SPCC, Ref. No. 7 - the 29,786 gal #2 Work Tank containing Creosote	7	
	SPCC, Ref. No. 8 - the 29,786 gal #3 Work Tank containing Creosote	8	
	SPCC, Ref. No. 9 - the 22,419 gal #4 Work Tank containing Creosote	9	
	SPCC, Ref. No. 10 - the 29,786 gal #5 Work Tank containing Creosote/Water.	10	
	SPCC, Ref. No. 11 - the 4,200 gal Measuring Tank containing Creosote	11	
	SPCC, Ref. No. 12 - the 100,000 gal #1 Storage Tank containing Creosote	12	Changed from creosote storage to a storm water surge tank
	SPCC, Ref. No. 13 - the 100,000 gal #2 Surge Tank containing Process water	13	
	SPCC, Ref. No. 14 - the 100,000 gal #5 Storage Tank containing Diesel #2 fuel oil	14	
	SPCC, Ref. No. 15 - the 105,000 gal #6 Storage Tank containing creosote	15	
	SPCC, Ref. No. 16 - the 300,000 gal #10 Surge Tank containing process water	16	
	SPCC, Ref. No. 17 - the 250,000 gal Storm Water surge tank containing Storm Water	17	

Emission Point	Description (1996 Title V References)	Proposed Ref. No	Comments	
	SPCC, Ref. No. 18 - the 1,500 gal Coagulant Tank containing water treatment system polymer additive	18		
	SPCC, Ref. No. 19 - the 2,500 gal Decant Tank containing Creo/Oil/Water	19		
	SPCC, Ref. No. 20 - the 8,000 gal Creosote Blowdown tank containing Creo/Water	20		
	SPCC, Ref. No. 21 - the 6 ft. Dia. X 60 ft. long, Air Receiver containing compressed air		Removed from list. Contains only compressed air	
	SPCC, Ref. No. 22 - the 7 ft. Dia. X 40 ft. long Air Receiver containing compressed air		Removed from list. Contains only compressed air	
	SPCC, Ref. No. 23 - the 8,000 gal Penta Blowdown tank containing water/penta/oil	23		
	SPCC, Ref. No. 26 - the 150,000 gal Aeration Tank containing waste water	26		
Tr.	SPCC, Ref. No. 27 - the 25,000 gal Clarifier Tank containing waste water	27		
	SPCC, Ref. No. 28 - the 15,000 gal Discharge Tank containing waste water	28	9	
	SPCC, Ref. No. 29 - the 8,000 gal Creosote Dehydrator	29		
	SPCC, Ref. No. 30 - the 14,000 gal North Penta Equalization Tank containing water/penta/oil	30		
· · · · · · · · · · · · · · · · · · ·	SPCC, Ref. No. 31 - the 14,000 gal South Penta Equalization Tank containing water/penta/oil	31		
	SPCC, Ref. No. 32 - the 9,400 gal Penta Mix Tank containing Oil/Penta	32		
	SPCC, Ref. No. 33 - the 5,000 gal Penta Mix Tank containing Oil/Penta	33		
i	SPCC, Ref. No. 34 - the 10,500 gal Penta Concentrate Tank containing 40% Pentachlorophenol Concentrate	34		
	SPCC, Ref. No. 35 – the 100,000 gal Stormwater Tank	35	This Tank has been added.	
AA-004	Title V, Ref. No. 27, the Tie Mill and Lumber Mill with cyclone	42		
AA-005	Title V, Ref. No. 33, the Boiler House natural gas fired space heater rated at 0.2 MMBTUH	43	Insignificant Activity per APC-S-6.I Three (3) space heaters each rated at 0.2mmbtu/hr.	
AA-006	Title V, Ref. No. 35, the natural gas fired steam cleaner rated at 0.44 MMBTUH	44	Insignificant Activity per APC-S-6.I	
AA-007	Title V, Ref. No. 36, the Wood Stove Shop Heater rated at 0.10 MMBTUH		Source no longer exists. Has been removed from site.	
AA-008	Title V, Ref. No. 8, the Treated Wood Storage Areas	46		
AA-009	Title V, Ref. No. 31, the Pole Kiln	47		
AA-010	Title V, Ref. No. 32, the Pole Peeler	48		
AA-011	Title V, Ref. No. 34, Wood Fuel Preparation and handling including grinding, conveying, and silo loading	49	_{je} la	
AA-012	Title V, Ref. No. 37, the two (2) Parts cleaners- degreasers	50		
AA-013	SPCC, Ref. No. 24, the 1,250 gal Gasoline Storage tank containing Gasoline used by company vehicles	51	Insignificant Activity per APC-S-6.IV	

Emission Point	Description (1996 Title V References)	Proposed Ref. No	Comments
AA-014	SPCC, Ref. No. 25, the 9,000 gal Diesel Storage tank used by company vehicles/Rolling Stock	52	Insignificant Activity per APC-S-6.IV.
AA-015	Title V, Ref. No. 33, the Oil Fired Murray Standby boiler room Natural Gas fired Space Heater rated at 0.1 MMBTUH	54	Insignificant Activity per APC-S-6.IV.
AA-016	Title V, Ref. No. 33, the Fire Pump building Natural Gas fired Space Heater rated at 0.02 MMBTUH		Source no longer exists. Has been removed from site.

2.2 Emission Factors and Emissions.

As noted above, KII has changed the formulation of creosote used for treating ties, poles and timber. This reformulation is a classic pollution prevention program since it made the treating operations easier and it reduced VOC emissions from the treating process as well. The reformulation resulted in an appreciable reduction in the vapor pressure of the creosote. One of the significant advantages to this reformulation was the elimination of certain HAPs from the creosote, which correspondingly reduced the HAP atmospheric emissions.

The PTE emissions for the Plant are included with the various MSDEQ Forms. However, a summary of the changes in the VOC emissions associated with creosote treatment is provided below.

Emissions from Creosote Treated Products

Pollutant	Production Emissions (tpy)	Storage Yard Emission (tp		
	1996 Application/1997 Permit			
Total VOC	26.25	12.88		
Napthalene	4.46	3.88		
Benzene	5.78	0.003		
Toluene	6.83	0.15		
Dibenzofuran	0.16	n.a.		
Quinoline	0.39	n.a.		
Biphenyl	0.04	n.a.		
Total HAPs	19.33	4.03		
	2002 Application			
Total VOC	4.62	5.18		
Napthalene	2.69	3.12		
Dibenzofuran	0.00	0.00		
Quinoline	0.10	0.09		
Biphenyl	0.05	0.05		
Total HAPs	2.85	3.27		

NOTES:

All emissions based on 2,400,000 ft³ ties and 1,100,000 ft³ poles

n.a. = not analyzed or reported. All Emissions on a PTE basis.

The summary indicates that there is a substantial reduction in the emissions of VOC and certain organic HAPs from the production of creosote treated wood products. These emissions are included in the affected Forms required by MSDEQ in this reapplication.

2.3 Equipment Changes at the Plant

The equipment associated Emission Points AA-007, the Wood Stove Shop Heater, and AA-015, the Fire Pump Building natural gas fired space heater, have been removed from the site. A new storm water storage tank has been added. It has been included in AA-003 and has the Reference No. 35.

3.0 Insignificant and Exempt Activities and Equipment

The MSDEQ regulations at APC-S-6.VI include an extensive list of "Insignificant Activities and Emissions". Several of the operations and equipment at the Plant are listed as "Insignificant" in Sections APC-S-6-VI.A and VI.B. These are listed below and are included in Form C, as required by MSDEQ. In addition, the emissions from several, but not all, of these Insignificant Activities are included in the Plant-wide Emissions Summary, as required under APC-S-6.VI.C and VI.D. See the individual equipment and/or process Forms and the Emission Summary in Form C for the details.

Emission Point	Description	Insignificant Activity		
AA-003	Compressed Air Receivers (Ref. Nos. 21 & 22)	APC-S-6.VI.B.27		
AA-005	Boiler House natural gas fired space heater	APC-S-6.VI.B.2.a.		
AA-006	Natural gas fired steam cleaner	APC-S-6.VI.B.2.a.		
AA-013	1,000 gallon Gasoline Storage Tank	APC-S-6.VI.B.7		
AA-014	20,000 gallon Diesel fuel Storage Tank	APC-S-6.VI.B.7		
AA-015	Standby boiler room natural gas fired Space Heater	APC-S-6.VI.B.2.a.		
	Outdoor kerosene heaters (5 units)	APC-S-6.VI.A.17		
	Emergency Power Generators (3 units at 11 hp and 6000 watts; 3 units at 16 hp and 8000 watts)	APC-S-6.VI.B.9		

Permit No. 0960-00012 Revision 1, October 2002

4.0 Change to Untreated Wood Fuel Only (Wood Fired Boiler)

The operation of the Wellons wood-fired boiler, Emission Point AA-001, was originally baselined using a mixture of used, treated wood and untreated wood as fuel. The emissions for the baseline operation were included in the original (1996) permit application. However, this baseline operation was changed in 2001, when Koppers began using only untreated wood fuel. Koppers has decided to continue burning only untreated wood in the wood fired boiler. Therefore the operation of the wood fired boiler represented in this application is based on use of untreated wood fuel only. Note that this operating scenario in no way affects the quantities or mix of treated wood products manufactured at the Plant.

Because, in general, untreated wood fuel has a lower thermal rating (btu/lb of wood) than does used treated wood fuel, the quantity of untreated wood that must be burned as fuel greatly exceeds that of used treated wood fuel. For example, for the Wellons boiler at the Plant, with a nameplate rating of 60,000,000 btu/hr (60mmbtu/hr), the baseline scenario included 37,580 tons of used treated wood fuel on a PTE basis. Correspondingly, the operating scenario using only untreated wood fuel requires 58,400 tons on a PTE basis.

Also, the emissions associated with untreated wood fuel differ somewhat from those associated with used treated wood fuel. The used treated wood fuel mixture contains some pentachlorophenol treated wood. For this reason, emissions of HCl are characteristic of this fuel component and are missing when only untreated wood fuel is used. Also, the untreated wood fuel contains less sulfur, which leads to lower SO₂ emissions than with the used treated wood fuel. The emission factors for the untreated wood fuel operating scenario presented in this application are taken from AP-42 and are summarized below:

Potential To Emit Basis for Title V Application - Alternative Operating Scenario

AA-001-BOILER, WOOD	tn/yr	Sulfur	Chlorine	(lb/hr):
FIRED				
Total Wood Burned:	58,403	0.01%	0.04%	13333
Creo Wood Burned:	0	0.25%	0.04%	
Penta Wood Burned:	0	0.25%	0.25%	
Untreated Wood Burned:	58,403	0.01%	0.04%	
Removal Efficiency (1):		70.00%	45.00%	

Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
Particulate	4.2	lb/tn	AP-42	122.65	28.00
SO2	0.08	lb/tn	AP-42	2.19	0.50
NOX (2)	1.60	lb/tn	1994 Test	46.72	10.67
CO	6.6	lb/tn	AP-42	192.73	44.00
VOC	0.18	lb/tn	AP-42	5.26	1.20
HCl	1.538	lb/tn PCP fuel	2/96 Test	0.00	0.00
Arsenic	8.8E-05	lb/tn	AP-42	0.0026	0.001
Cadmium	1.7E-05	lb/tn	AP-42	0.0005	0.000
Chromium	1.3E-04	lb/tn	AP-42	0.0038	0.001
Lead	3.1E-04	lb/tn	AP-42	0.0091	0.002
Manganese	8.9E-03	lb/tn	AP-42	0.2599	0.059
Nickel	5.6E-04	lb/tn	AP-42	0.0164	0.004
Selenium	1.8E-05	lb/tn	AP-42	0.0005	0.000
Mercury	6.5E-06	lb/tn	AP-42	0.0002	0.000
Total HAP Metals				0.29	0.067

⁽¹⁾ Removal efficiencies based on 2/96 stack test.

The Grenada Plant meets the criteria for a Major Source under the Title V program using untreated wood fuel in the Wellons boiler.

The emissions for the Wellons boiler (AA-001) are summarized in Section D of the MSDEQ Forms. The plant-wide summary is included in Section C of the MSDEQ Forms.

For this revised operating scenario using only intreated wood fuel in the wood fired boiler, some of the emission limitations and monitoring & recordkeeping provisions of the existing Title V permit for the Baseline Scenario are no longer appropriate. It is requested that the following changes be made in the new Title V permit:

- a. In Section 3.B, there is a temperature limitation in effect when treated wood fuel is used. Since treated wood will not be used for the Alternative Operating Scenario, this limitation should be removed.
- b. In Section 3.B, there is a limitation on the hourly feed rate of 9375 lb/hour for the used treated wood fuel. This limitation was established in the Construction Permit. For the

^{(2) 1994} Stack Test

proposed operating scenario using only untreated wood, this limitation must be revised upwards to account for the lower btu/lb heating value of the untreated wood fuel. It is requested that this limitation be set at 15,000 lb/hour for untreated wood fuel. This limitation provides some small margin on the fuel use rate corresponding to the PTE basis in the Emission Summary. This small margin will allow for some variation in the heating value of the untreated wood fuel. The Emission Summary is based on a heating value of 4500 btu/lb. If some fuel contains greater moisture or is lower quality, in general, the actual heating value will be below the value used in the emissions summary.

- c. In Section 5.B, there is a recordkeeping requirement to provide for continuous recording of the boiler temperature and to note the time periods when untreated wood fuel is fed to the boiler. For the proposed operating scenario, used treated wood fuel will not be used at any time and it is requested that this monitoring and record keeping requirement be eliminated.
- d. In Section 5.B, there is a monitoring/record keeping requirement for CO. The CO requirement was originally included in the permit as a means of indirectly measuring the completeness of combustion, a consideration that is only important if treated wood is being burned. For the proposed operating scenario, used treated wood fuel will not be used at any time and it is requested that this monitoring and record keeping requirement be eliminated.
- e. In Section 5.B, there is a monitoring/record keeping requirement for Opacity. The opacity requirement included in the permit requires monitoring and documentation with record keeping of the in stack opacity on a continuous basis. For the proposed operating scenario, it is requested that this monitoring and record keeping requirement be changed to visual methods of opacity monitoring at the stack, with appropriate record keeping.

5.0 Monitoring, Recordkeeping & Reporting Requirements.

Section 5 of the existing Title V Permit contains several monitoring, recordkeeping and reporting (MRKR) requirements. Based on KII's experience operating in compliance with these requirements, some changes are recommended for the new Permit. These are focused on elimination of duplicative reporting requirements and on removing ambiguity from the existing language. The following changes are recommended:

Existing 5.A.4 – "Except as otherwise specified herein, the permittee shall submit reports of any required monitoring by July 31 and January 31 for the preceding six-month period. All instances of deviations from permit requirements must be clearly identified in such reports and all required reports must be certified by a responsible official consistent with APC-S-6, Section II.E."

Suggestions for Modification of Section 5.A.4:

It is recommended that this is where all of the deviations should be reported and not under Condition 5.A.5. It is felt that semi-annual reporting is timely and that the 5-day reporting requirement in Condition 5.A.5 is burdensome. By eliminating the 5-day reporting requirement, duplicative reporting would be avoided. In addition, it is recommended that the language in the new permit be amended to include an explicit list of those deviations that must be reported and what information for each deviation must be reported in the semi-annual reports.

Existing 5.A.5 – "Except as otherwise specified herein, the permittee shall report all deviations from permit requirements, including those attributable to upsets, the probable cause of such deviations, and any corrective actions or preventive measures taken within five (5) days of the time the deviation began."

Suggestions for Modification of Section 5.A.5:

It is recommended that the language in the new permit be amended to include an explicit list of those deviations that must be reported in the semi-annual reports. In addition, we would like the language of the permit to explain in explicit detail what information must be reported. Also we would like the 5-day reporting period to be eliminated and the Semi-Annual Air Report required under Section 5.A.4 be the only reporting schedule.

The existing Permit provides deviation reporting exemptions for the following conditions:

- a. Startups Opacity may exceed 40% for 15 minutes per startup in any one hour and not to exceed three (3) startups per stack in any twenty-four (24) hour period.
- b. Soot Blowing emissions from soot blowing operations shall be permitted provided such emissions do not exceed 60 percent opacity, and provided further that the aggregate duration of such emissions during any twenty-four (24) hour period does not exceed ten (10) minutes per billion BTU gross heating value of fuel in any one hour.

It is recommended that the following items be listed as exemptions for purposes of reporting deviations:

- 1. A longer duration allowance for soot blowing such as 15 minutes or more, since this is preventative maintenance that occurs 3 times a day on a normal operating day.
- 2. An opacity allowance for pulling ash. This is also a routine preventative maintenance measure that occurs at least twice daily. This practice is especially disruptive to the system in terms of opacity due to the behavior of "fly ash" that is removed from the ash box and the ash collector.
- 3. An opacity allowance for fuel cell clean out. This is preventative maintenance that occurs 4 times per day and is also disruptive to the system in terms of opacity.
- 4. An opacity allowance for fuel feed adjustment. The condition of our fuel is constantly changing. A variety of factors in fuel conditions play a significant role in the combustion efficiency rate at which the fuel is burned. One fuel feed rate may work perfectly for the type of fuel that was fed into the boiler on one day, but then that rate may be too high or too low for the fuel fed into the boiler on the next day. Sometimes the difference can be observed between fuels in consecutive hours.

6.0 MSDEQ Forms

The remainder of this Section includes the Forms that are required for this Renewal Application. Forms B and C are signed by the Plant Manager, who is the Responsible Official for this Renewal Application.

SECTION C EMISSIONS SUMMARY for the ENTIRE FACILITY

List below the total emissions for each pollutant from the entire facility in accordance with Operating Permit Application Requirements, pp. 3-5. For stack emissions, use the maximum annual allowable (potential) emissions. For fugitive emissions, use the annual emissions calculated using the maximum operating conditions.

POLLUTANT	ANNUAL	EMISSION RATE
Footnote 1	lb/hr	tons/yr
PARTICULATE (LESS FUGITIVE)		130.79
SO2		65.63
NOX		65.07
со		197.36
VOC (LESS FUGITIVE)		75.71
VOC (INCLUDING FUGITIVE)		100.83
HAPS (ORGANICS/VOC)		6.13
NAPHTHALENE		5.82
HAP METALS		0.29
HCL		0.00
TOTAL HAPS		6.42
SEE PTE TABLES (FOLLOWING 5 PAGES)		
2		

^{1.} All regulated air pollutants, including hazardous air pollutants emitted from the entire facility should be listed. A list of regulated air pollutants has been provided in Section A.

With the exception of the emissions resulting from insignificant activities and emissions as defined in Regulation APC-S-6, Section VII, the pollutants listed above are all regulated air pollutants reasonably expected to be emitted from the facility.

SIGNATURE (must match signature on page 17)

BASIS

EMISSION INVENTORY CALCULATION KOPPERS INDUSTRIES, INC. - GRENADA, MS Potential To Emit Basis for Production Study

AA-001-BOILER, WOOD FIRED	tn/yr	Sulfur	Chlorine
Total Wood Burned:	58,403	0.01%	0.04%
Creo Wood Burned:	0	0.25%	0.04%
Penta Wood Burned:	. 0	0.25%	0.25%
Untreated Wood Burned:	58,403	0.01%	0.04%
Removal Efficiency (1):	1920	70.00%	45.00%

(lb/hr): 13333

Emission Estimated **Emissions** Pollutant Factor Units **Basis** (tn/yr) (lb/hr) Particulate 4.2 lb/tn 122.65 AP-42 28.00 SO2 0.08 lb/tn **AP-42** 2.19 0.50 NOX 1.6|lb/tn 1994 Test 46.72 10.67 CO 6.6 lb/tn AP-42 192.73 44.00 VOC 0.18 lb/tn AP-42 5.26 1.20 HCI 1.538 lb/tn PCP fuel 2/96 Test 0.00 0.00 Arsenic 8.8E-05 |lb/tn AP-42 0.0026 0.001 Cadmium 1.7E-05 |lb/tn AP-42 0.0005 0.000 Chromium 1.3E-04 | lb/tn AP-42 0.0038 0.001 Lead 3.1E-04 | lb/tn AP-42 0.0091 0.002 Manganese 8.9E-03 lb/tn **AP-42** 0.2599 0.059 Nickel 5.6E-04 |lb/tn AP-42 0.0164 0.004 Selenium 1.8E-05 lb/tn AP-42 0.0005 0.000 Mercury 6.5E-06 |lb/tn AP-42 0.0002 0.000 Total HAP Metals 0.29 0.067

⁽¹⁾ Removal efficiencies based on 2/96 stack test.

AA-002-BOILER, FUEL OIL		Fuel Use Rate(MGal/hr):			
Oil Burned(MGal/yr):	1787 Sulfur Content:		0.500	0.204	
Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
Particulate	2	lb/MGal	AP-42	1.79	0.41
SO2	71	lb/MGal	AP-42	63.44	14.48
NOX	20	lb/MGal	AP-42	17.87	4.08
CO	5	lb/MGal	AP-42	4.47	1.02
VOC	0.2	lb/MGal	AP-42	0.18	0.04
Number of days boiler assumed to or	perate is	36	55		

AA-003-WOOD PRESERVING PROCESSES

 Creosote Ties
 2,400,000
 C. F.

 Creosote Poles
 1,100,000
 C. F.

 Total Creosote Wood
 3,500,000
 C. F.

 Oil/Penta Poles
 3,500,000
 C. F.

Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
Creosote (VOC)	2.641E-03	lb/cf	Form R	4.62	1.06
HAPs contained in creosote:					
Naphthalene	1.54E-03	lb/cf	Form R, Calculation	2.69	0.61
Quinoline	5.68E-05	lb/cf	Form R, Calculation	0.10	0.02
Biphenyl	3.09E-05	lb/cf	Form R, Calculation	0.05	0.01
Dibenzofuran	2.59E-06	lb/cf	Form R, Calculation	0.00	0.00
TOTAL CREO. HAP				2.85	0.65
Pentachlorophenol (VOC)	3.73E-06	lb/cf	Form R	0.01	0.00
#6 Oil (VOC)	1.4E-02	lb/cf	Engr. Est.	24.75	5.65
TOTAL VOC				29.37	6.71

AA-008-PRESERVATIVE TREATED WOOD STORAGE FUGITIVES

	Emission			Estimated	Emissions
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr)
Creosote Ties					
Creosote (VOC)	2.69E-03	lb/cf	FR Test & Creo Data	3.23	0.74
Naphthalene	1.62E-03	lb/cf	FR Test & Creo Data	1.95	0.44
Quinoline	4.90E-05	lb/cf	FR Test & Creo Data	0.06	0.01
Biphenyl	1.67E-05	lb/cf	FR Test & Creo Data	0.02	0.00
Dibenzofuran	1.26E-06	lb/cf	FR Test & Creo Data	0.00	0.00
Creosote Poles					
Creosote (VOC)	3.55E-03	lb/cf	FR Test & Creo Data	1.95	0.45
Naphthalene	2.14E-03	lb/cf	FR Test & Creo Data	1.18	0.27
Quinoline	6.46E-05	lb/cf	FR Test & Creo Data	0.04	0.01
Biphenyl	2.20E-05	lb/cf	FR Test & Creo Data	0.03	0.01
Dibenzofuran	1.66E-06	lb/cf	FR Test & Creo Data	0.00	0.00
Penta Poles					
Oil (VOC, est. as creo)	1.15E-02	lb/cf	FR Test	20.13	4.59
Pentachlorophenol	1.9E ₌ 06	lb/cf	Engr. Est.	0.00	0.00
Totals	-				
VOC				25.31	5.77
Naphthalene				3.12	0.71
Quinoline				0.09	0.02
Biphenyl				0.05	0.01
Dibenzofuran				0.00	0.00
Pentachlorophenol				0.00	0.00
HAP Organics (Total)				3.27	0.75

AA-009	DRY KILNS		Batch size (cf):			13000	
Poles Dried		1,600,0	1,600,000 C. F.		Batch time (hrs):		
		Emission	Fr. Te		Estimated	Emissions	
11.00	Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr)	
VOC		0	.05 lb/cf	Alabama	40.00	9.03	

AA-004-CYCLONES FOR WOOD MILLING

Number of Cyclones: Ave. Hours/Day: Ave Days/Yr Each:

300

Total Hours: 2400

	Emission		4	Estimated	Emissions
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr)
Particulate	2	lb/hr	AP-42	2.40	2

AA-010-POLE PEELER

Poles Peeled= 1,000,000 CF/yr 440 CF/hr
Pole Density= 45 lb/CF
Pole Amount Peeled= 22,500 tn/yr 9.9 tn/hr

	Emission			Estimated	Emissions
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr)
Particulate	0.350	lb/ton	AP-42	3.94	3.465

SPACE HEATERS, NATURAL GAS

Hr/Yr MMCF/Yr Location BTU/Hr BTU/CF CF/Hr AA-005-Boiler House 1000 600 8,760 600000 5.256 AA-015-Standby Boiler Room 100000 1000 100 8,760 0.876 AA-016-Fire Pump Building No longer exists. **TOTAL** 700000 700 6.132

	Emission	77.	78 - 7	Estimated	Emissions	
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr)	
Particulate	0.18	lb/MMCF	AP-42	0.00	0.00	
SO2	0.6	lb/MMCF	AP-42	0.00	0.00	
NOX	94	lb/MMCF	AP-42	0.29	0.07	
CO	40	lb/MMCF	AP-42	0.12	0.03	
VOC	11	lb/MMCF	AP-42	0.03	0.01	

AA-011-WOOD FUEL PREPARATION & HANDLING (Fugitive)

Wood Fuel Processed	58,4	03 Tn/Yr		12 tn/hr	
	Emission			Estimated	Emissions
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr)
Particulate	0	.25 lb/tn	Engr. Est.	7.30	3.00

AA-006-STEAM CLEANER	Fuel Use Rat	е			
Annual Usage	8760	hours/yr		440	CF/hr
Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
Particulate	12	lb/MMCF	AP-42	0.02	0.01
SO2	0.6	lb/MMCF	AP-42	0.00	0.00
NOX	100	lb/MMCF	AP-42	0.19	0.04
CO	21	lb/MMCF	AP-42	0.04	0.01
VOC	5.8	lb/MMCF	AP-42	0.01	0.00

AA-007-WOOD STOVE HE	ATER, SHOP	NO LON	GER EXISTS	Fuel Use Rat	e
Annual Usage	0	0 tn/yr		0	tn/hr
	Emission	N TO BE		Estimated	Emissions
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr)
Particulate	30.6	lb/tn	AP-42	0.00	0.00
SO2	0.4	lb/tn	AP-42	0.00	0.00
NOX	2.8	lb/tn	AP-42	0.00	0.00
CO	230.8	lb/tn	AP-42	0.00	0.00
VOC	43.8	lb/tn	AP-42	0.00	0.00

AA-012-PARTS CLEANERS, DEGREASERS

Number of units operating:	2			
	Emission		Estimated	Emissions
Pollutant	Factor Units	Basis	(tn/yr)	(lb/hr)
VOC	0.33 tn/unit/yr	AP-42	0.66	0.00

TOTAL PLANT EMISSIONS

Pollutant	Estimated (tn/yr)	Emissions (1) (lb/hr)
Particulate (less fugitive)	 130.79	29.86
SO2 (2)	 65.63	14.98
NOX	 65.07	14.86
CO	 197.36	45.06
VOC(less fugitive)	 75.51	17.24
VOC(including fugitive)	100.83	23.02
HAPs(Organics/VOC)	 6.13	1.40
Naphthalene	 5.82	1.33
HAP Metals	 0.29	0.07
HCI	 0.00	0.00
Total HAPs	 6.42	1.47

⁽¹⁾ Average hourly emission rate; not instantaneous maximum emission rate.

⁽²⁾ Assumes backup boiler operating at same time as primary for number of days shown.

FU.	EL BURNI	NG EQUIPM	IENT (page	1 of 2)		SECTION D
1.	Emission Poi	int No. / Name:	AA-001, RE	F. NO. 40, W	OOD FIRED BOILER	\
2.	Equipment D	Description: ATION POWER U		CELL COM	BUSTION SYSTEM	, BOILER, AND
	COGENERA	ATION FOWER U	INII			
3.		constructed or mo give date and expla		st 7, 1977?	Ye	es X No
4.	Capacity:	60.0	MMBTU/hr	5. Type	of burner:	FUEL CELL
6.	Usage Type ((i.e. Space Heat, Pr	ocess, etc.):		PROCESS	
7.	Complete the content, hour	e following table, ic ly usage, and yearl	lentifying each ty y usage.	pe of fuel an	d the amount used. Sp	pecify the units for hea
	FUEL TYPE	HEAT CONTENT	% SULFUR	% ASH	MAXIMUM HOURLY USAGE	ACTUAL YEARLY USAGE
l wc	TREATED OOD AND RK RESIDUE	4,000 BTU/LB	0.01	0.5	8,760 HRS/YR	
8.	Please list any	fuel components t	hat are hazardous	s air pollutant	ts and the percentage is	n the fuel.
9.	Operating Sch weeks/year	nedule: (Optional)	24 hou	rs/day	7 days/week	52
10.	Stack Data:		*			
	A. Height B. Insid	ht: e diameter:	80 FT 3 FT		Exit gas velocity: Exit gas temperature:	70 FT/SEC 471° F

C.

East

11.

UTM Coordinates: A. Zone

B.

North

SECTION D

3-5. FUEL BURNING EQUIPMENT (page 2 of 2)

12. POLLUTANT EMISSIONS:

Example emission rate calculations, monitoring data, or stack test data

	The following of the first of t	TO TO TO		חכ מוומכחכת ח	i accordance	with Operatir	ig Permit Appl	Ication Re	quirements, pp
EMISSION POINT NO.	POLLUTANT (note 1)	CONTROL	ROL	ACTUA (in accord Applicati	ACTUAL EMISSION RATE (in accordance with Operating Permit Application Requirements, pp. 3-5)	V RATE ing Permit	PROPOS EMISSIC	PROPOSED ALLOWABLE EMISSION RATE (Optional)	WABLE Optional)
		* yes/no	effic.	note 2	lb/hr	tn/yr	note 2	ТР/БТ	ta/yr
AA-001	PARTICULATE	YES					0.3 GR/DSCF	28.0 32.55	122.65
	SO2	ON						0.50	2.19
	NOX '	ON						10.67	46.72
	. 00	ON						44.0	192.73
	VOC	NO						1.20	5.26
	HCL	ON						0.00	0.00
	TOTAL HAP METALS	NO						0.067	0.29

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed. A list of regulated air pollutants has been provided in Section A.

Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point.

If yes, attach appropriate Air Pollution Control Data Sheet from Section L or manufacturers specifications if other.

MANUFACTURI	NG PROCESSES ((page 1 of 2)	SECTION E
Emission Point No	o./ Name: A	A-003, WOOD PRESERVIN	G PROCESS
Process Description PENTACHLORO		EATMENT OF UTIL AND RAILROAD CROSST	
Was this unit cons		gust 7, 1977? ye:	3 <u>X</u> no
Capacity (tons/hr): 7,000,000	CF WOOD PRODUCTS PEF	R YEAR
Raw Material Inpu	at:		
MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
WOOD	342 CF	800CF	UP TO 7,000,000 CF
Product Output:	333		
PRODUCT or BY-PRODUCT	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
TREATED WOOD	342 CF	800 CF	UP TO 7,000,000 CF
Stack Data: A. Height: B. Inside dia		C. Exit gas veloc D. Exit gas temp	
UTM Coordinates: A. Zone	B. North	C. 1	 East

MANUFACTURING PROCESSES (page 2 of 2)

13. POLLUTANT EMISSIONS:

Example emission rate calculations, monitoring data, or stack test data must be attached in accordance with Operating Permit Application Requirements,

EMISSION POINT NO.	POLLUTANT (note 1)	CONTROL	ROL	ACTUA (in accord	ACTUAL EMISSION RATE (in accordance with Operating Permit Application Requirements, pp. 3-5)	N RATE ting.Permit s, pp. 3-5)	PROPO	PROPOSED ALLOWABLE EMISSION RATE (Optional)	WABLE Optional)
		* yes/no	effic.	note 2	lb/hr	tn/yr	note 2	16/1нг	tn/yr
AA-003	NOC	ON						6.71	29.37
	NAPHTHALENE	ON						0.61	2.69
	QUINOLINE '	ON						0.02	0.10
	BIPHENYL	ON						0.01	0.05
	DIBENZOFURAN	ON						0.00	0.00
	PENTACHLOROPHENOL	ON						00.00	0.01
-									

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed in accordance with Operating Permit Application Requirements, pp. 3-5. A list of regulated air pollutants has been provided in Section A. Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every

pollutant from an emission point.

If yes, attach appropriate Air Pollution Control Data Sheet from Section L or manufacturers specifications if other.

MANUFACTURIN	G PROCESSES (p	age 1 of 2)	SECTION E
. Emission Point No./	Name: AA-008, REI	F. NO. 46, TREATED WO	OD STORAGE
Process Description: FOLLOWING TRE.	STORAGE AND H	ANDLING OF TREATE SHIPMENT	D WOOD PRODUCTS
3. Was this unit constru If yes please give da	ucted or modified after Augu te and explain.	st 7, 1977? yes	
4. Capacity (tons/hr):	NA		
5. Raw Material Input:			
MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
B.			
6. Product Output:			
PRODUCT or BY-PRODUCT	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
TREATED POLES	±6		UP TO 4,600,000 CF
TREATED TIES			2,400,000 CF
TOTAL TREATED WOOD	_ •		UP TO 7,000,000 CF
		8	2 ³ *
7. Stack Data: A. Height: B. Inside diam	NA neter: NA	C. Exit gas velo D. Exit gas temp	
 UTM Coordinates: A. Zone 	B. North	C. 1	 East

MANUFACTURING PROCESSES (page 2 of 2)

13. POLLUTANT EMISSIONS:

3-5. Example emission rate calculations, monitoring data, or stack test data must be attached in accordance with Operating Permit Application Requir

EMISSION POLLUTANT (note 1) CONTROL (in accordance with Operating Permit EQUIPMENT (in accordance with Operating Permit Application Requirements, pp. 3-5) PROPOSITION Requirements, pp. 3-5) PROPOSITION Requirements, pp. 3-5) PROPOSITION Requirements, pp. 3-5) PROPOSITION REQUIREMENTS NO NO PROPOSITION REQUIREMENTS NO PROTACHLOROPHENOL PROTACHLOROPHENOL NO PROTACHLOROPHE	100	TO STATE OF THE PARTY OF THE PA	STANDARD THE PROPERTY OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NAMED IN COLUMN TRANSPORT NAMED		, control of the cont	Common Common	ILL Operaum	g remiii App	ilcation Re	quirements, p
Yes/ho		POLLUTANT (note 1)	CON	ROL MENT	ACTUA (in accords Applicati	L EMISSION ance with Operat on Requirements	V RATE ing Permit i, pp. 3-5)	PROPO	PROPOSED ALLOWABLE EMISSION RATE (Optional)	Optional)
THALENE NO	WHEN ME IN BUTTON		* Yes/no	effic.	note 2	лц/q1	tn/yr	note 2	lb/hr	th/yr
ON ON ON ON	li ·	VOC	NO						5.77	25.31
ON ON ON		NAPHTHALENE	ON						0.71	3.12
ON ON ON		QUINOLINE	NO						0.02	0.09
O _N O _N	X.140.43C-877	BIPHENYL	ON						0.01	0.05
	William States	DIBENZOFURAN	ON						0.00	0.00
		PENTACHLOROPHENOL	ON						00.0	0.00

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed in accordance with Operating Permit Application

Requirements, pp. 3-5. A list of regulated air pollutants has been provided in Section A. Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point.

If yes, attach appropriate Air Pollution Control Data Sheet from Section L or manufacturers specifications if other.

SECTION M5 COMPLIANCE DEMONSTRATION BY STACK TESTING

Compliance demonstration by stack testing will be carried out in accordance with EPA approved reference methods and the stack test report must be attached.

1.	Emission Point No./Name: AA-001, REF. NO. 40, WOOD FIRED BOILER
2.	Pollutant being tested for: PARTICULATE AND VISIBLE EMISSIONS
3.	Test Method: SEE STACK TEST REPORT (FOLLOWING PAGES)
4.	Compliance shall be demonstrated:
	Daily Weekly Monthly Other (specify): BIENNIAL (ONCE EVERY 2 YEARS)
5.	Any measured emission rate that exceeds an emission limit established by the permi must be reported as an excess emission.
6.	Is this an existing method of demonstrating compliance: Yes X No
7.	Backup system (attach other compliance demonstration forms if needed):

REPORT OF PARTICULATE AND VISIBLE EMISSIONS TESTING FOR KOPPERS INDUSTRIES GRENADA PLANT WOOD WASTE BOILER

Grenada, Mississippi September 23, 2002

FACILITY NO. 0960-00012

EMISSION POINT NO. AA-001

Koppers Industries
P.O. Box 160
Tie Plant, MS 38960

Contact: Haley Biddy ph: 662/226-4584

Prepared By:
Environmental Monitoring Laboratories
Ridgeland, Mississippi

601/856-3092 **

ENVIRONMENTAL MONITORING LABORATORIES, INC.

P.O. Box 655 © 624 Ridgewood Road Ridgeland, Mississippi 39158 phone: 601/856-3092

fux : 601/853-2151

September 29, 2000

Subject:

Koppers Industries - Grenada, Mississippi

Wood Waste Boiler - Stack Emissions Test

Facility No. 0960-00012

On September 23, 2002, Environmental Monitoring Laboratories performed air emissions testing for Koppers Industries in the Tie Plant community near Grenada, Mississippi. Testing was done to measure particulate and visible emissions from the wood waste boiler in accordance with requirements of the Mississippi Department of Environmental Quality.

Results of emissions testing are shown below.

PAR	TICULATE EMISS	IONS	VISIBLE EMISSIONS
#/hr	gr/dscf	#/MM Btu	High SMA, % opacity
26.80	0.181	0.551	8.96

Mr. Haley Biddy of Koppers coordinated the testing project. Otis Rayburn of Environmental Monitoring Laboratories was responsible for collection and analysis of particulate samples. Sample custody was limited to Mr. Rayburn.

Following is a report of the test.

REPORT OF PARTICULATE EMISSIONS TESTS FOR KOPPERS INDUSTRIES, INC. GRENADA PLANT WOOD WASTE BOILER

Grenada, Mississippi September 23, 2002

CONTENTS

1.0	TEST RESULTS	page	1
2.0	SOURCE DESCRIPTION		2
3.0	TEST PROCEDURES		2
4.0	DATA REDUCTION		3
5.0	NOMENCLATURE		6
6.0	CALIBRATION		7
7.0	APPENDICES:		8
	A. Field and Laboratory Data		
	B. Calibrations		
	C. Visible Emissions Record		
	D. Boiler Steam Chart (Koppers)		

REPORT CERTIFICATION

I certify that I have examined the information submitted herein, and based upon inquires of those responsible for obtaining the data or upon my direct acquisition of data, I believe the submitted information is true, accurate and complete.

Signed Signed

Daniel G. Russell

1.0 Test Results:

. Wellons Wood Waste Boiler

Wellons wood waste bo		1	2	3	AVG.
Run No		1	2 09/23/02	09/23/02	AVG.
Date		09/23/02		1432	
Time Start		1205	1320		
Time End		1306	1421	1533	
PARTICULATE EMISSIONS	#/hr	34.51	21.24	24.66	26.80
PARTICULATE EMISSIONS	gr/dscf	0.236	0.143	0.163	0.181
PARTICULATE EMISSIONS	#/MM Btu	0.702	0.454	0.497	0.551
VISIBLE EMISSIONS	high SMA, %	8.96	5.83	5.83	8.96
HEAT INPUT	MM Btu/hr	49.20	46.75	49.65	48.53
VOLUMETRIC FLOWRATE	acfm	30977	31452	30796	31075
VOLUMETRIC FLOWRATE	dscfm	16991	17292	17600	17294
VELOCITY	ft./sec.	79.5	80.7	79.1	79.8
STACK TEMPERATURE	°F	365	365	366	366
MOISTURE	%	14.0	13.8	10.3	12.7
SAMPLE RATE	% isokinetic	94	99	95	96

2.0 SOURCE DESCRIPTION:.

Koppers Industries, Inc. operates a 30,000 pound per hour Wellons wood waste boiler at their wood preserving facility in Grenada, Mississippi. The boiler provides steam for the timber treating processes and a turbine generator. Fuel is typically wood waste generated from the manufacture of treated wood products.

Heat input as calculated from the test data and an F-Factor was an average 48.53 MM Btu/hr.

The boiler exhausts to the atmosphere by way of a 34.5 inch diameter vertical stack. Two sample ports at 90° are provided at a location that is 432 inches (12.5 diameters) below the stack exit and 356 inches (10.3 diameters) above an upstream stack tapered section.

3.0 TEST PROCEDURES:

Test procedures used are those described in the Code of Federal Regulations, Title 40, Part 60, Appendix A. Specifically, Method 1 was used to determine the number of sample points and Method 5 to determine flow rates, moisture content, and particulate emissions. The sampling train was identical to that described in Method 5 except that the cyclone was omitted. Visible emissions were read in accordance with Method 9 concurrently with the emissions test

Heat input to the boilers was determined by continuously monitoring oxygen content of the flue gas as described in Method 3A and calculating heat input using an F-factor of 9400 scf per million Btu of heat input for the wood waste fuel.

Filters were recovered by rinsing the front half of the filter holder into the probe wash and securing the filters in glass petri dishes. Part of the sample filter often adheres to the filter gasket, and some of the adhering material is recovered into the probe wash. Therefore some of the filter weight is attributed to the probe wash weight.

Filters were heated in an oven for 2 hours at 105° C, desiccated at least 24 hours and weighed to constant weight. Probe wash samples in acetone were evaporated to dryness over low heat in tared beakers, desiccated for at least 24 hours and weighed to constant weight. Weighings are made at 6 hour or greater intervals (samples stored in desiccator). Final weights were considered valid and were recorded if there was no more than 0.5 milligrams difference from the previous weighing.

Renewal Application

Title V Operating Permit

No. 0960-00012

Koppers Industries, Inc.

Tie Plant, MS 38960

TABLE OF CONTENTS

1.0	Introduction
2.0	Changes in Plant Equipment and Operations
3.0	Exempt and Insignificant Activities
1.0	Alternate Operating Scenario
5.0	Monitoring, Recordkeeping & Reporting
5.0	MSDEQ Application Forms

1.0 Introduction.

On 11 March 1997, Koppers Industries, Inc. was issued the Title V Operating Permit No. 0960-00012 for its wood treating plant (the Plant) at Tie Plant MS. This application for renewal of the Title V permit is submitted 6 months in advance of that expiration date, in conformance with MDSEQ requirements.

During the 5 years that the Title V permit has been in effect, the Grenada Plant has operated in compliance with the requirements of the permit. In addition, several changes have taken place. Some sources have been retired from service and some new sources have been added. Some equipment, originally used for one purpose has been switched to a different type of service. For some equipment, the Reference Numbers have been changed to provide consistency with other site permit and programmatic requirements. Importantly, some operations need to be accomplished in a different way and are the basis for an Alternative Operating Scenario not included in the original permit. For both the baseline operations and the Alternative Operating Scenario, the Plant remains a Major Source for purposes of the Title V Operating Permit Program.

The basic operations at the Plant are unchanged. The Plant continues to produce treated wood products such as railroad ties, utility poles and other timber products. During the past 5 years some of these operations have become more streamlined. Others have been replaced or eliminated. Several operations have undergone change in response to KII's pollution prevention efforts. For example, the formulation of KII's creosote has changed since the original application. The reformulated creosote is both easier to use in treating operations and results in lower VOC emissions to the atmosphere during the treating operations.

The remaining sections of this permit application document include all of the changes relevant to the Plant. In addition, the various MSDEQ Forms required for this renewal application are included.

2.0 Changes in Plant Equipment and Operations

Since the original Title V Permit has been in effect, there have been several changes in equipment and operations at the Plant. Some of these changes have been discussed previously in detail with the MSDEQ. Others correspond to exempt and/or insignificant changes. All of these changes are summarized below.

2.1 Changes in Equipment Reference Numbers

Several of these Reference Numbers have been changed to incorporate the numbering system used in the SPCC Plan for the Plant. Other Reference Numbers have been changed because the 1997 Title V Permit had duplicate Reference Numbers. For example, in the 1997 Title V Permit, both Emission Points AA-003 and AA-0010 had a Reference No. 32. By revising the Reference Number system used in this renewal application, this and other duplicate reference numbers have been avoided.

Emission Point	Description (1997 Title V References)	Proposed Ref. No	Comments
AA-001	Title V, Ref. No. 1 - the 60.0 MMBTUH	40	So-al- S di A Al-
	Wellons/Nebraska Woodwaste Boiler	40	See also Section 4, Alternative
AA-002	Title V, Ref. No. 26 - the 28.5 MMBTUH fuel oil	41	Operating Scenario
	fired Murray Boiler	41	
AA-003	SPCC, Ref. No. 5 - the 34,000 gal treatment cylinder	1	
	containing Penta in oil.	1 .	
	SPCC, Ref. No. 5 - the 27,000 gal treatment cylinder	2	
	containing Creosote	-	
	SPCC, Ref. No. 5 - the 27,000 gal treatment cylinder	3	
	containing Creosote	,	
	SPCC, Ref. No. 5 - the 27,000 gal treatment cylinder	4	
	containing Creosote	7	
	SPCC, Ref. No. 5 - the 27,000 gal treatment cylinder	5	
	containing Creosote	,	
	SPCC, Ref. No. 6 - the 29,7786 gal #1 Work Tank	6	
	containing Penta in oil.		
	SPCC, Ref. No. 7 - the 29,786 gal #2 Work Tank	7	
	containing Creosote	′	
	SPCC, Ref. No. 8 - the 29,786 gal #3 Work Tank	8	
	containing Creosote	١	
	SPCC, Ref. No. 9 - the 22,419 gal #4 Work Tank	9	
	containing Creosote	1	
	SPCC, Ref. No. 10 - the 29,786 gal #5 Work Tank	10	
	containing Creosote/Water.	10	
	SPCC, Ref. No. 11 - the 4,200 gal Measuring Tank		
	containing Creosote	11	
	SPCC, Ref. No. 12 - the 100,000 gal #1 Storage Tank		
	containing Creosote	12	
	SPCC, Ref. No. 13 - the 100,000 gal #2 Surge Tank		
	containing Process water	13	
	SPCC, Ref. No. 14 - the 100,000 gal #5 Storage Tank		
	containing Diesel #2 fuel oil	14	
	SPCC, Ref. No. 15 - the 105,000 gal #6 Storage Tank		
[]	containing creosote	15	
	SPCC, Ref. No. 16 - the 300,000 gal #10 Surge Tank		
	containing process water	16	
	SPCC, Ref. No. 17 - the 250,000 gal Storm Water		
l.	surge tank containing Storm Water	17	

Emission Point	Description (1996 Title V References)	Proposed Ref. No	
	SPCC, Ref. No. 18 - the 1,500 gal Coagulant Tank containing water treatment system polymer additive	18	
	SPCC, Ref. No. 19 - the 2,500 gal Decant Tank containing Creo/Oil/Water	19	
	SPCC, Ref. No. 20 - the 8,000 gal Creosote Blowdown tank containing Creo/Water	20	
	SPCC, Ref. No. 21 - the 6 ft. Dia. X 60 ft. long, Air Receiver containing compressed air		Removed from list. Contains only compressed air
	SPCC, Ref. No. 22 - the 7 ft. Dia. X 40 ft. long Air Receiver containing compressed air		Removed from list. Contains only compressed air
	SPCC, Ref. No. 23 - the 8,000 gal Penta Blowdown tank containing water/penta/oil	23	
	SPCC, Ref. No. 26 - the 150,000 gal Aeration Tank containing waste water	26	
	SPCC, Ref. No. 27 - the 25,000 gal Clarifier Tank containing waste water	27	
-	SPCC, Ref. No. 28 - the 15,000 gal Discharge Tank containing waste water	28	
<u> </u>	SPCC, Ref. No. 29 - the 8,000 gal Creosote Dehydrator	29	
	SPCC, Ref. No. 30 - the 14,000 gal North Penta Equalization Tank containing water/penta/oil SPCC, Ref. No. 31 - the 14,000 gal South Penta	30	
	Equalization Tank containing water/penta/oil SPCC, Ref. No. 32 - the 9,400 gal Penta Mix Tank	31	
·	containing Oil/Penta SPCC, Ref. No. 33 - the 5,000 gal Penta Mix Tank	32	
	containing Oil/Penta SPCC, Ref. No. 34 - the 10,500 gal Penta Concentrate	34	
	Tank containing 40% Pentachlorophenol Concentrate SPCC, Ref. No. 35 – the 100,000 gal Stormwater Tank	35	This Tank has been added.
AA-004	Title V, Ref. No. 27, the Tie Mill and Lumber Mill	42	Talik lias been added.
AA-005	with cyclone Title V, Ref. No. 33, the Boiler House natural gas fired	43	Insignificant Activity per APC-S-6.IV
A A 000	space heater rated at 0.2 MMBTUH		Three (3) space heaters each rated at 0.2mmbtu/hr.
AA-006 AA-007	Title V, Ref. No. 35, the natural gas fired steam cleaner rated at 0.44 MMBTUH		Insignificant Activity per APC-S-6.IV
AA-007	Title V, Ref. No. 36, the Wood Stove Shop Heater rated at 0.10 MMBTUH		Source no longer exists. Has been removed from site.
AA-009	Title V, Ref. No. 8, the Treated Wood Storage Areas Title V, Ref. No. 31, the Pole Kiln	46	
AA-010	Title V, Ref. No. 32, the Pole Peeler	47	
AA-011	Title V, Ref. No. 34, Wood Fuel Preparation and	48	
	handling including grinding, conveying, and silo loading	77	
AA-012	Title V, Ref. No. 37, the two (2) Parts cleaners-degreasers	50	
AA-013	SPCC, Ref. No. 24, the 1,250 gal Gasoline Storage tank containing Gasoline used by company vehicles	51 I	nsignificant Activity per APC-S-6.IV

Emission Point	Description (1996 Title V References)	Proposed Ref. No	Comments
AA-014	SPCC, Ref. No. 25, the 9,000 gal Diesel Storage tank used by company vehicles/Rolling Stock	52	Insignificant Activity per APC-S-6.IV
AA-015	Title V, Ref. No. 33, the Oil Fired Murray Standby boiler room Natural Gas fired Space Heater rated at 0.1 MMBTUH	54	Insignificant Activity per APC-S-6.IV.
AA-016	Title V, Ref. No. 33, the Fire Pump building Natural Gas fired Space Heater rated at 0.02 MMBTUH		Source no longer exists. Has been removed from site.

2.2 Emission Factors and Emissions.

As noted above, KII has changed the formulation of creosote used for treating ties, poles and timber. This reformulation is a classic pollution prevention program since it made the treating operations easier and it reduced VOC emissions from the treating process as well. The reformulation resulted in an appreciable reduction in the vapor pressure of the creosote. One of the significant advantages to this reformulation was the elimination of certain HAPs from the creosote, which correspondingly reduced the HAP atmospheric emissions.

The PTE emissions for the Plant are included with the various MSDEQ Forms. However, a summary of the changes in the VOC emissions associated with creosote treatment is provided below.

Emissions from Creosote Treated Products

Pollutant	Production Emissions (tpy)	Storage Yard Emission (tpy)
		on/1997 Permit
Total VOC	26.25	12.88
Napthalene	4.46	3.88
Benzene	5.78	0.003
Toluene	6.83	0.15
Dibenzofuran	0.16	n.a.
Quinoline	0.39	n.a.
Biphenyl	0.04	n.a.
Total HAPs	19.33	4.03
	2001 Ap	plication
Total VOC	3.43	7.50
Napthalene	1.77	3.88
Dibenzofuran	0.15	0.33
Quinoline	0.08	0.17
Biphenyl	0.06	0.57
Total HAPs	2.06	4.95

NOTES:

All emissions based on 2,000,000 ft³ ties and 1,500,000 ft³ poles

n.a. = not analyzed or reported.

All Emissions on a PTE basis.

The summary indicates that there is a substantial reduction in the emissions of VOC and certain organic HAPs from the production of creosote treated wood products. These emissions are included in the affected Forms required by MSDEQ in this reapplication.

2.3 Equipment Changes at the Plant

The equipment associated Emission Points AA-007, the Wood Stove Shop Heater, and AA-015, the Fire Pump Building natural gas fired space heater, have been removed from the site. A new stormwater storage tank has been added. It has been included in AA-003 and has the Reference No. 35.

3.0 Insignificant and Exempt Activities and Equipment

The MSDEQ regulations at APC-S-6.VI includes an extensive list of "Insignificant Activities and Emissions". Several of the operations and equipment at the Plant are listed as "Insignificant" in Sections APC-S-6-VI.A and VI.B. These are listed below and are included in Form C, as required by MSDEQ. In addition, the emissions from several, but not all, of these Insignificant Activities are included in the Plant-wide Emissions Summary, as required under APC-S-6.VI.C and VI.D. See the individual equipment and/or process Forms and the Emission Summary in Form C for the details.

Emission Point	Description	Insignificant Activity
AA-003	Compressed Air Receivers (Ref. Nos. 21 & 22)	APC-S-6.VI.B.27
AA-005	Boiler House natural gas fired space heater	APC-S-6.VI.B.2.a.
AA-006	Natural gas fired steam cleaner	APC-S-6.VI.B.2.a.
AA-013	1,000 gallon Gasoline Storage Tank	APC-S-6.VI.B.7
AA-014	20,000 gallon Diesel fuel Storage Tank	APC-S-6.VI.B.7
AA-015	Standby boiler room natural gas fired Space Heater	APC-S-6.VI.B.2.a.
	Outdoor kerosene heaters (5 units)	APC-S-6.VI.A.17
	Emergency Power Generators (3 units at 11 hp and 6000 watts; 3 units at 16 hp and 8000 watts)	APC-S-6.VI.B.9

4.0 Alternative Operating Scenario

In the MSDEQ Title V Permit Program, an applicant has the opportunity to define an Alternative Operating Scenario for inclusion in the Permit. The Alternative Operating Scenario described below is provided in accordance with the requirements given in APC-S-6.II.C.7 and II.D.

The operation of the Wellons wood-fired boiler, Emission Point AA-001, is baselined on using a mixture of used, treated wood and untreated wood as the fuel. The emissions for the baseline operation were included in the original (1996) permit application and are included here as well. However, to be able to assure operation of the Wellons wood-fired boiler in the face of increasingly uncertain supplies of used treated wood products, KII is defining an Alternative Operating Scenario as the full power operation of the Wellons boiler using only untreated wood fuel. Inclusion of this Alternative Operating Scenario will provide KII the flexibility to operate the Plant in the face of fuel supply uncertainties. Note that this Alternative Operating Scenario in no way affects the quantities or mix of treated wood products manufactured at the Plant.

Because, in general, untreated wood fuel has a lower thermal rating (btu/lb of wood) than does used treated wood fuel, the quantity of untreated wood that must be burned as fuel greatly exceeds that of used treated wood fuel. For example, for the Wellons boiler at the Plant, with a nameplate rating of 60,000,000 btu/hr (60mmbtu/hr), the baseline scenario includes 37,580 tons of used treated wood fuel on a PTE basis. Correspondingly, the Alternative Operating Scenario requires 58,400 tons of untreated wood fuel on a PTE basis.

Also, the emissions associated with untreated wood fuel differs somewhat from those associated with used treated wood fuel. The used treated wood fuel mixture contains some pentachlorophenol treated wood. For this reason, emissions of HCl are characteristic of this fuel component and are missing when only untreated wood fuel is used. Also, the untreated wood fuel contains less sulfur which leads to lower SO₂ emissions than with the used treated wood fuel. The emission factors for the Alternative Operating Scenario are taken from AP-42 and are summarized below:

Potential To Emit Basis for Title V Application - Alternative Operating Scenario

AA-001-BOILER, WOOD FIRED	tn/yr	Sulfur	Chlorine	(lb/hr):
Total Wood Burned:	58,403	0.01%	0.04%	13333
Creo Wood Burned:	0	0.25%	0.04%	
Penta Wood Burned:	0	0.25%	0.25%	
Untreated Wood Burned:	58,403	0.01%	0.04%	
Removal Efficiency (1):		70.00%	45.00%	

STREET, AND AND DESCRIPTION OF TAXABLE PARTY AND ADDRESS OF TAXABLE PARTY.			15.00	701	
Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
Particulate	4.2	lb/tn	AP-42	122.65	
SO2	0.08	lb/tn	AP-42	2.19	
NOX (2)	1.60	lb/tn	1994 Test	46.72	10.67
CO	6.6	lb/tn	AP-42	192.73	44.00
VOC	0.18	lb/tn	AP-42	5.26	
HCl	1.538	lb/tn PCP fuel		0.00	0.00
Arsenic	8.8E-05		AP-42	0.0026	0.001
Cadmium	1.7E-05	lb/tn	AP-42	0.0025	0.000
Chromium	1.3E-04		AP-42	0.0038	
Lead	3.1E-04		AP-42	0.0038	0.001
Manganese	8.9E-03		AP-42	0.2599	0.002
Nickel	5.6E-04		AP-42		0.059
Selenium	1.8E-05		AP-42	0.0164	0.004
Mercury	6.5E-06		AP-42	0.0005	0.000
Total HAP Metals	0.515-00	10/111	AF-42	0.0002	0.000
(1) Damas-1 - CC : 1				0.29	0.067

⁽¹⁾ Removal efficiencies based on 2/96 stack test.

The Grenada Plant meets the criteria for a Major Source under the Title V program whether untreated wood or used treated wood fuel is used in the Wellons boiler.

The emissions for the Wellons boiler (AA-001) are summarized in Section D of the MSDEQ Forms for each Scenario. The plant-wide summaries for both Scenarios are included in Section C of the MSDEQ Forms.

For this Alternative Operating Scenario, some of the emission limitations and monitoring & recordkeeping provisions of the existing Title V permit for the Baseline Scenario are no longer appropriate. It is requested that the following changes be made in the new Title V permit for the Alternative Operating Scenario:

a. In Section 3.B, for the Baseline Scenario, there is a temperature limitation in effect when treated wood fuel is used. Since treated wood will not be used for the Alternative Operating Scenario, this limitation should be removed.

8

^{(2) 1994} Stack Test

- b. In Section 3.B, for the Baseline Scenario, there is a limitation on the hourly feed rate of 9375 lb/hour for the used treated wood fuel. This limitation was established in the Construction Permit. For the Alternative Operating Scenario, this limitation must be revised upwards to account for the lower btu/lb heating value of the untreated wood fuel. It is requested that this limitation be set at 15,000 lb/hour for untreated wood fuel. This limitation provides some small margin on the fuel use rate corresponding to the PTE basis in the Emission Summary. This small margin will allow for some variation in the heating value of the untreated wood fuel. The Emission Summary is based on a heating value of 4500 btu/lb. If some fuel contains greater moisture or is lower quality, in general, the actual heating value will be below the value used in the emissions summary.
- c. In Section 5.B, for the Baseline Scenario, there is a recordkeeping requirement to provide for continuous recording of the boiler temperature and to note the time periods when untreated wood fuel is fed to the boiler. For the Alternative Operating Scenario, used treated wood fuel will not be used at any time and it is requested that this monitoring & recordkeeping requirement be eliminated.

5.0 Monitoring, Recordkeeping & Reporting Requirements.

Section 5 of the existing Title V Permit contains several monitoring, recordkeeping and reporting (MRKR) requirements. Based on KII's experience operating in compliance with these requirements, some changes are recommended for the new Permit. These are focused on elimination of duplicative reporting requirements and on removing ambiguity from the existing language. The following changes are recommended:

Existing 5.A.4 – "Except as otherwise specified herein, the permittee shall submit reports of any required monitoring by July 31 and January 31 for the preceding six-month period. All instances of deviations from permit requirements must be clearly identified in such reports and all required reports must be certified by a responsible official consistent with APC-S-6, Section II.E."

Suggestions for Modification of Section 5.A.4:

It is recommended that this is where all of the deviations should be reported and not under Condition 5.A.5. It is felt that semi-annual reporting is timely and that the 5-day reporting requirement in Condition 5.A.5 is burdensome. By eliminating the 5-day reporting requirement, duplicative reporting would be avoided. In addition, it is recommended that the language in the new permit be amended to include an explicit list of those deviations must be reported and what information for each deviation must be reported in the semi-annual reports.

Existing 5.A.5 – "Except as otherwise specified herein, the permittee shall report all deviations from permit requirements, including those attributable to upsets, the probable cause of such deviations, and any corrective actions or preventive measures taken within five (5) days of the time the deviation began."

Suggestions for Modification of Section 5.A.5:

It is recommended that the language in the new permit be amended to include an explicit list of those deviations which must be reported in the semi-annual reports. In addition, we would like the language of the permit to explain in explicit detail what information must be reported. Also we would like the 5-day reporting period to be eliminated and the Semi-Annual Air Report required under Section 5.A.4 be the only reporting schedule.

The existing Permit provides deviation reporting exemptions for the following conditions:

- a. Startups Opacity may exceed 40% for 15 minutes per startup in any one hour and not to exceed three (3) startups per stack in any twenty-four (24) hour period.
- b. Soot Blowing emissions from soot blowing operations shall be permitted provided such emissions do not exceed 60 percent opacity, and provided further that the aggregate duration of such emissions during any twenty-four (24) hour period does not exceed ten (10) minutes per billion BTU gross heating value of fuel in any one hour.

It is recommended that the following items be listed as exemptions for purposes of reporting deviations:

- 1. A longer duration allowance for soot blowing such as 15 minutes or more, since this is preventative maintenance that occurs 3 times a day on a normal operating day.
- 2. An opacity allowance for pulling ash. This is also a routine preventative maintenance measure that occurs at least twice daily. This practice is especially disruptive to the system in terms of opacity due to the behavior of "fly ash" that is removed from the ash box and the ash collector.
- 3. An opacity allowance for fuel cell clean-out. This is preventative maintenance that occurs 4 times per day and is also disruptive to the system in terms of opacity.
- 4. An opacity allowance for fuel feed adjustment. The condition of our fuel is constantly changing. A variety of factors in fuel conditions play a significant role in the combustion efficiency rate at which the fuel is burned. One fuel feed rate may work perfectly for the type of fuel that was fed into the boiler on one day, but then that rate may be too high or too low for the fuel fed into the boiler on the next day. Sometimes the difference can be observed between fuels in consecutive hours.
- 5. A time/temperature allowance for monitoring system performance checks during combustion of treated wood fuel. At least once per month it is necessary to perform internal system checks and tests of the CEM and process control systems. At least once a quarter (conservatively), tests will need to be run on the fuel feed system to ensure its accuracy. The fuel feed system may have to be switched manually from untreated to treated fuel to ensure the effectiveness of the switchover setpoints installed in our computer system. The switchover setpoint is put into the monitoring computer that automatically switches from treated wood fuel to untreated wood fuel in the event of a temperature drop that falls below 1200° Fahrenheit.

6.0 MSDEQ Forms

The remainder of this Section includes the Forms that are required for this Renewal Application. The majority of these Forms are applicable both to the Baseline Scenario and the Alternative Operating Scenario. The exceptions are the Forms for the Wellons Boiler (Emission Point AA-001). There are individual Form C submittals for the two Scenarios. Also, for Form C, individual emission summaries are included for the two Scenarios. Forms B and C are signed by the Plant Manager, who is the Responsible Official for this Renewal Application.

APPLICATION RECEIPT DATE:

APPLICATION NO.:

FOR MODIFICATION : MINOR: SIGNIFICANT:

STATE OF MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY OFFICE OF POLLUTION CONTROL AIR DIVISION P.O. BOX 10385 JACKSON, MS. 39289-0385 PHONE NO.: (601) 961 - 5171

APPLICATION FOR TITLE V AIR POLLUTION CONTROL PERMIT TO OPERATE AIR EMISSIONS EQUIPMENT

PERMITTIN	G ACTIVITY	:		
	NITIAL APPLION MODIFICATION RENEWAL OF O		Г	
NAME: CITY:	TIE PLAN			
COUNTY: FACILITY No.	GRENAD (if known):	A 0960-00012		

APPLICATION FOR TITLE V PERMIT TO OPERATE AIR EMISSIONS EQUIPMENT

CONTENTS OF THIS RENEWAL APPLICATION

DESCRIPTION	SECTION
Owners Information	. В
Emissions Summary / Facility Summary	. C
Emission Point Data:	
Fuel Burning Equipment	D
Manufacturing Processes	E
Coating, Solvent Usage and/or Degreasing Operations	F
Tank Summary	Н
Control Equipment	L
Compliance Demonstration	M
Current Emissions Status	N
Compliance Certification	0

Section B Owners Information

1.	Nam	e, Address & Contact for the Owner/Applicant
	A.	Company Name: KOPPERS INDUSTRIES INC.
	B.	Mailing Address:
		1. Street Address or P.O. Box: 436 SEVENTH AVENUE 2. City: PITTSBURGH 3. State: PA 4. Zip Code: 15219-1800 5. Telephone No.: (412) 227-2114
	C.	Contact:
		1. Name: TIMOTHY R. BASILONE 2. Title: ENVIRONMENTAL MANAGER
2.	Name	, Address, Location and Contact for the Facility:
	A.	Name: KOPPERS INDUSTRIES INC.
	В.	Mailing Address: 1. Street Address or P.O. Box: P.O. BOX 160 2. City: TIE PLANT 3. State: MS 4. Zip Code: 38960 5. Telephone No.: (662) 226-4584
	C.	Site Location: 1. Street: 1 KOPPERS DRIVE 2. City: TIE PLANT 3. State: MS 4. County: GRENADA 5. Zip Code: 38960 6. Telephone No.: (662) 226-4584 Note: If the facility is located outside of the City limits, please attach a sketch or description to this application showing the approximate location of the site.
	D.	Contact:
		1. Name: THOMAS L. HENDERSON 2. Title: PLANT MANAGER
3.	SIC Co	ode(s)(including any associated with alternate operating scenarios): 2491
4.	Numbe	er of Employees: 65
5.	Princip	al Product(s): UTILITY POLES AND RAILROAD CROSSTIES

	6.	Principal Raw Materials: WOOL PENTA	POLES, CROSSTIES, LUMBER ACHLOROPHENOL, DIESEL FU	R, CREOSOTE, EL	
7.		Principal Process(es): WOOD	PRESERVING		
8.		Maximum amount of principal product produced or raw material consumed per day: 20,000 CUBIC FEET			
9.		Facility Operating Schedule (Optional	1):		
		A. Specify maximum hours per d	lay the operation will occur:	24 HOURS	
		B. Specify maximum days per w	eek the operation will occur:	7 DAYS	
		C. Specify maximum weeks per	year the operation will occur:	52 WEEKS	
		D. Specify the months the operation	ion will occur: ALL		
10.		Is this facility a small business as defi	ned by the Small Business Act? (O	ptional) NO	
11.		EACH APPLICATION MUST BE	SIGNED BY THE APPLICANT	•	
		The application must be signed by APC-S-6, Section I.A.26.	y a responsible official as define	ed in Regulation	
	I certify that to the best of my knowledge and belief formed after reasonable inquiry, the statements and information in this application are true, complete, and accurate, and that, as a responsible official, my signature shall constitute an agreement that the applicant assumes the responsibility for any alteration, additions, or changes in operation that may				
	Yo	be necessary to achieve and main Regulations.	tain compliance with all applic	able Rules and	
	THOMAS L. HENDERSON Printed Name of Responsible Official PLANT MANAGER Title				
Date	9- Aj	26-0/ oplication Signed	Thomas L. Honderson Signature of Applicants Res	n ponsible Official	

SECTION C EMISSIONS SUMMARY for the ENTIRE FACILITY

List below the total emissions for each pollutant from the entire facility in accordance with Operating Permit Application Requirements, pp. 3-5. For stack emissions, use the maximum annual allowable (potential) emissions. For fugitive emissions, use the annual emissions calculated using the maximum operating conditions.

NORMAL OPERATING SCENARIO – USE OF TREATED AND UNTREATED WOOD FUEL

POLLUTANT Footnote 1	ANNUAL EMISSION RATE	
	lb/hr	tons/yr
PARTICULATE (LESS FUGITIVE)		54.56
SO2		116.10
NOX		80.32
СО		160.57
VOC (LESS FUGITIVE)		72.44
VOC (INCLUDING FUGITIVE)		100.07
HAPS (ORGANICS/VOC)		7.02
NAPHTHALENE		5.64
HAP METALS		0.19
HCL		11.54
TOTAL HAPS		18.74
SEE PTE TABLES (FOLLOWING 5 PAGES)		

^{1.} All regulated air pollutants, including hazardous air pollutants emitted from the entire facility should be listed.

A list of regulated air pollutants has been provided in Section A.

With the exception of the emissions resulting from insignificant activities and emissions as defined in Regulation APC-S-6, Section VII, the pollutants listed above are all regulated air pollutants reasonably expected to be emitted from the facility.

SIGNATURE (must match signature on page 17)

AA-001-BOILER, WOOD FIRED	tn/yr	Sulfur	Chlorine	(lb/hr):
Total Wood Burned:	37,580	0.23%	0.12%	8580
Creo Wood Burned:	20,000	0.25%	0.04%	
Penta Wood Burned:	15,000	0.25%	0.25%	
Untreated Wood Burned:	2,580	0.01%	0.04%	
Removal Efficiency (1):		70.00%	45.00%	

Tromoval Efficiency (1).	70.009	<u>6) 45.009</u>	0		
Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
Particulate	2.47	lb/tn	9/2000 Test	46.41	10.60
SO2	2.80	lb/tn	Mass Calc	52.65	12.02
NOX (3)	3.3	lb/tn	2/96 test	62.01	14.16
CO (2)	8.3	lb/tn	CEM	155.96	35.61
VOC	0.18	lb/tn	AP-42	3.38	0.77
HCI	1.538	ib/tn PCP fuel	2/96 Test	11.54	6.60
Arsenic	8.8E-05	lb/tn	AP-42	0.0017	0.000
Cadmium	1.7E-05	lb/tn	AP-42	0.0003	0.000
Chromium	1.3E-04	lb/tn	AP-42	0.0024	0.001
Lead	3.1E-04	lb/tn	AP-42	0.0058	0.001
Manganese	8.9E-03	ib/tn	AP-42	0.1672	0.038
Nickel	5.6E-04	lb/tn	AP-42	0.0105	0.002
Selenium	1.8E-05	lb/tn	AP-42	0.0003	0.000
Mercury	6.5E-06	lb/tn	AP-42	0.0001	0.000
Total HAP Metals				0.19	0.043

⁽¹⁾ Removal efficiencies based on 2/96 stack test.

⁽³⁾ NOX factor is 3.3 for high fire, treated wood. Use 1.6 for untreated wood.

AA-002 BOILER, FUEL OIL		_	Fuel Use R	Rate(MGal/hr):	0.204
Oil Burned(MGal/yr):	1787	Sulfur Cor	ntent:	0.500	%
Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
Particulate	2	lb/MGal	AP-42	1,79	0.41
SO2	71	lb/MGal	AP-42	63.44	14.48
NOX	20	lb/MGai	AP-42	17.87	4.08
CO	5	lb/MGal	AP-42	4.47	1.02
VOC	0.2	lb/MGal	AP-42	0.18	0.04
Number of days boiler assumed to o	perate is	365	5		

Page 1 9/25/01

⁽²⁾ CO factor is 8.3 for 600 ppm fired on untreated fuel, 2.1 for 150 ppm fired on treated fuel.

AA-003-WOOD PRESERVING PROCESSES

 Creosote Ties
 2,000,000
 C. F.

 Creosote Poles
 1,500,000
 C. F.

 Total Creosote Wood
 3,500,000
 C. F.

 Oil/Penta Poles
 3,500,000
 C. F.

	1,000,000					
Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)	
Creosote (VOC)	1.96E-03	lb/cf	Form R	3,43	0.78	
HAPs contained in creosote:				5.10	0.70	
Biphenyl	1.72	% in vapor	Calculation	0.06	0.01	
Dibenzofurans		% in vapor	Calculation	0.15	0.03	
Naphthalene		% in vapor	Calculation	1.77	0.40	
Quinoline		% in vapor	Calculation	0.08	0.02	
TOTAL CREO. HAP	60.09	% in vapor		2.06	0.47	
Pentachlorophenol (VOC)	3.73E-06		Form R	0.01	0.00	
#6 Oil (VOC)	1.4E-02	lb/cf	Engr. Est.	24.75	5.65	
TOTAL VOC				28.18	6.43	

AA-008-PRESERVATIVE TREATED WOOD STORAGE FUGITIVES

Pollutant	Emission Factor	Units	Basis	Estimated	Emissions
Creosote Ties	1 4010	Office	Dasis	(tn/yr)	(lb/hr)
Creosote (VOC)	2.65E-03	lb/cf	FR Test & Creo Data	2.65	0.61
Naphthalene	1.37E-03	lb/cf	FR Test & Creo Data	1.37	0.31
Quinoline	6.15E-05	lb/cf	FR Test & Creo Data	0.06	
Biphenyl		lb/cf	FR Test & Cree Date	0.46	
Dibenzofuran	1.18E-04	lb/cf	FR Test & Creo Data	0.12	0.03
Creosote Poles				0.12	0.00
Creosote (VOC)	6.47E-03	lb/cf	FR Test & Creo Data	4.85	1.11
Naphthalene	3.34E-03	lb/cf	FR Test & Creo Data	2.51	0.57
Quinoline	1.50E-04	lb/cf	FR Test & Creo Data	0.11	0.03
Biphenyl	1.11E-04	lb/cf	FR Test & Creo Data	0.11	0.03
Dibenzofuran	2.87E-04	lb/cf	FR Test & Creo Data	0.21	0.05
Penta Poles	12 (1) 12 (1)				0.00
Oil (VOC, est. as creo)	1.15E-02	lb/cf	FR Test	20.13	4.59
Pentachlorophenol	1.9E-06	lb/cf	Engr. Est.	0.00	0.00
Totals				3,00	0.00
VOC				27.63	6.30
Naphthalene				3.88	0.88
Quinoline				0.17	0.04
Biphenyl				0.57	0.13
Dibenzofuran				0.33	0.08
Pentachlorophenol				0.00	0.00
HAP Organics (Total)				4.95	1.13

Page 2 9/25/01

A-009-DRY KILNS Batch size (c		Batch size (cf):		13000	
Poles Dried	1,600,00	00 C. F.			72
Pollutant	Emission Factor	Units	Basis	Estimated	Emissions
VOC				(tn/yr)	(lb/hr)
VUC	0.	05 lb/cf	Alabama	40.00	9.03

AA-004-CYCLONES FOR WOOD MILLING

 Number of Cyclones:
 1

 Ave. Hours/Day:
 8

 Ave Days/Yr Each:
 300

 Total Hours:
 2400

	Emission			Estimated	Emissions
Pollutant	Factor	Units	Basis	(tn/vr)	(lb/hr)
Particulate		2 lb/hr	AP-42	2.40	

AA-010-POLE PEELER

	Poles Peeled=	1,000,000	CF/yr		440 CF/hr	
	Pole Density=		lb/CF			
Р	ole Amount Peeled=		tn/yr		9.9 tn/hr	
CEATION SHEET		Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
Particulate		0.350	lb/ton	AP-42	3.94	3.465

SPACE HEATERS, NATURAL GAS

Location
AA-005-Boiler House
AA-015-Standby Boiler Room
AA-016-Fire Pump Building
TOTAL

BTU/Hr	BTU/CF	CF/Hr		Hr/Yr	MMCF/Yr
600000	1000		600	8760	5.256
100000	1000		100	8760	
No longer exis	sts				
700000			700		6.132

EMISSION INVENTORY CALCULATION KOPPERS INDUSTRIES, INC. - GRENADA, MS

0.01

Potential To Emit Basis for Title V Application **Emission Estimated Emissions Pollutant** Factor Units Basis (tn/yr) (lb/hr) Particulate 0.18 lb/MMCF AP-42 0.00 0.00 SO2 0.6 lb/MMCF **AP-42** 0.00 0.00 NOX 94 lb/MMCF AP-42 0.29 0.07 CO 40 lb/MMCF AP-42 0.12 0.03 VOC 11 lb/MMCF AP-42 0.03

AA-011-WOOD FUEL PREPARATION & HANDLING (Fugitive)

Wood Fuel Processed	37,580 Tn/Yr			12 tn/hr		
Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)	
Particulate	0.2	5 lb/tn	Engr. Est.	4.70		

AA-006-STEAM CLEANER, I Annual Usage Pollutant		FIRED hours/yr	Fuel Use Rate 440 CF/hr		
	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
Particulate	12	Ib/MMCF	AP-42	0.02	0.01
SO2		Ib/MMCF	AP-42	0.00	0.00
NOX		lb/MMCF	AP-42	0.19	0.04
CO		lb/MMCF	AP-42	0.19	0.01
VOC		lb/MMCF	AP-42	0.04	0.00

ATER, SHOP				Fuel Use Rate		
Emission Factor	Units	Basis	Estimated	Emissions (lb/hr)		
30.6	lb/tn	AP-42		0.00		
				0.00		
				0.00		
				0.00		
				0.00		
	0 Emission Factor 30.6 0.4 2.8 230.8	0 tn/yr Emission Factor Units 30.6 lb/tn 0.4 lb/tn 2.8 lb/tn 230.8 lb/tn	0 tn/yr Emission Factor Units Basis 30.6 lb/tn AP-42 0.4 lb/tn AP-42 2.8 lb/tn AP-42 230.8 lb/tn AP-42	0 tn/yr		

AA-012-PARTS CLEANERS, DEGREASERS Number of units operating:

rtaribor of dista operating.		4			
Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
VOC	0.3	3 tn/unit/yr	AP-42	0.66	0.00
			1	0.00	

Page 4 9/25/01

FOTAL PLANT EMISSIONS

Pollutant		Estimated (tn/yr)	Emissions(1) (lb/hr)
Particulate (less fugitive)		54.56	12.46
SO2 (2)	***************************************	116.10	26.51
NOX		80.36	18.35
CO		160.59	36.66
VOC(less fugitive)		72.45	16.54
VOC(including fugitive)		100.08	22.85
HAPs(Organics/VOC)		7.02	1.60
Naphthalene		5.64	1.29
HAP Metals		0.19	0.04
HCI		11.54	2.63
Total HAPs		18.74	4.28

⁽¹⁾ Average hourly emission rate; not instantaneous maximum emission rate.

Page 5 9/25/01

SECTION C EMISSIONS SUMMARY for the ENTIRE FACILITY

List below the total emissions for each pollutant from the entire facility in accordance with Operating Permit Application Requirements, pp. 3-5. For stack emissions, use the maximum annual allowable (potential) emissions. For fugitive emissions, use the annual emissions calculated using the maximum operating conditions.

ALTERNATIVE OPERATING SCENARIO – USE OF UNTREATED WOOD FUEL ONLY

POLLUTANT	ANNUAL EMISSION RATE		
Footnote 1	lb/hr	tons/yr	
PARTICULATE (LESS FUGITIVE)		130.79	
SO2		65.63	
NOX		65.04	
СО		197.35	
VOC (LESS FUGITIVE)		74.32	
VOC (INCLUDING FUGITIVE)		101.95	
HAPS (ORGANICS/VOC)		7.02	
NAPHTHALENE		5.64	
HAP METALS		0.29	
HCL		0.00	
TOTAL HAPS		7.31	
SEE PTE TABLES (FOLLOWING 5 PAGES)			

1. All regulated air pollutants, including hazardous air pollutants emitted from the entire facility should be listed.

A list of regulated air pollutants has been provided in Section A.

With the exception of the emissions resulting from insignificant activities and emissions as defined in Regulation APC-S-6, Section VII, the pollutants listed above are all regulated air pollutants reasonably expected to be emitted from the facility.

SIGNATURE (must match signature on page 17)

AA-001-BOILER, WOOD FIRED tn/yr Sulfur Chlorine Total Wood Burned: 58,403 0.01% 0.04% Creo Wood Burned: 0 0.25% 0.04% Penta Wood Burned: 0 0.25% 0.25% **Untreated Wood Burned:** 58,403 0.01% 0.04% Removal Efficiency (1): 70.00% 45.00%

(lb/hr): 13333

0.18

		10.0070		/ /0	
Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
Particulate	4.2	lb/tn	AP-42	122.65	28.00
SO2	0.08	lb/tn	AP-42	2.19	0.50
NOX	1.6	lb/tn	1994 Test	46.72	10.67
CO	6.6	lb/tn	AP-42	192.73	44.00
VOC	0.18	lb/tn	AP-42	5.26	1.20
HCI	1.538	lb/tn PCP fuel	2/96 Test	0.00	0.00
Arsenic	8.8E-05	lb/tn	AP-42	0.0026	0.001
Cadmium	1.7E-05	lb/tn	AP-42	0.0005	0.000
Chromium	1.3E-04	lb/tn	AP-42	0.0038	0.001
Lead	3.1E-04	lb/tn	AP-42	0.0091	0.002
Manganese	8.9E-03	lb/tn	AP-42	0.2599	0.059
Nickel	5.6E-04	lb/tn	AP-42	0.0164	0.004
Selenium	1.8E-05		AP-42	0.0005	0.000
Mercury	6.5E-06		AP-42	0.0002	0.000
Total HAP Metals				0.29	0.067

⁽¹⁾ Removal efficiencies based on 2/96 stack test.

VOC

AA-002-BOILER, FUEL OIL		_	Fuel Use F	Rate(MGal/hr):	0.204
Oil Burned(MGal/yr):	1787 Sulfur Content:			0.500	%
Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
Particulate	2	lb/MGal	AP-42	1.79	0.41
SO2	71	lb/MGal	AP-42	63.44	14.48
NOX	20	lb/MGal	AP-42	17.87	4.08
CO	5	lb/MGal	AP-42	4.47	1.02
1/00				7,71	

0.2 lb/MGal

Number of days boiler assumed to operate is 365

> Page 6 9/25/01

AP-42

AA-003-WOOD PRESERVING PROCESSES

 Creosote Ties
 2,000,000
 C. F.

 Creosote Poles
 1,500,000
 C. F.

 Total Creosote Wood
 3,500,000
 C. F.

 Oil/Penta Poles
 3,500,000
 C. F.

Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
Creosote (VOC)	1.96E-03	lb/cf	Form R	3.43	0.78
HAPs contained in creosote:				0.10	0.70
Biphenyl	1.72	% in vapor	Calculation	0.06	0.01
Dibenzofurans		% in vapor	Calculation	0.15	0.03
Naphthalene		% in vapor	Calculation	1.77	0.40
Quinoline		% in vapor	Calculation	0.08	0.02
TOTAL CREO. HAP	60.09	% in vapor		2.06	0.47
Pentachlorophenol (VOC)	3.73E-06		Form R	0.01	0.00
#6 Oil (VOC)	1.4E-02	lb/cf	Engr. Est.	24.75	5.65
TOTAL VOC				28.18	6.43

AA-008-PRESERVATIVE TREATED WOOD STORAGE FUGITIVES

Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
Creosote Ties	(48)T			(,	(137111)
Creosote (VOC)	2.65E-03	lb/cf	FR Test & Creo Data	2.65	0.61
Naphthalene	1.37E-03	lb/cf	FR Test & Creo Data	1.37	0.31
Quinoline	6.15E-05	lb/cf	FR Test & Creo Data	0.06	
Biphenyl		lb/cf	FR Test & Creo Data	0.46	0.10
Dibenzofuran	1.18E-04	lb/cf	FR Test & Creo Data	0.12	0.10
Creosote Poles	201			0.12	0.00
Creosote (VOC)	6.47E-03	lb/cf	FR Test & Creo Data	4.85	1.11
Naphthalene	3.34E-03	lb/cf	FR Test & Creo Data	2.51	0.57
Quinoline	1.50E-04	lb/cf	FR Test & Creo Data	0.11	0.03
Biphenyl	1.11E-04	lb/cf	FR Test & Creo Data	0.11	0.03
Dibenzofuran	2.87E-04	lb/cf	FR Test & Creo Data	0.21	0.05
Penta Poles					0.00
Oil (VOC, est. as creo)	1.15E-02	lb/cf	FR Test	20.13	4.59
Pentachlorophenol	1.9E-06	lb/cf	Engr. Est.	0.00	0.00
Totals	E			0.00	0.00
VOC				27.63	6.30
Naphthalene		-		3.88	0.88
Quinoline				0.17	0.04
Biphenyl		·		0.57	0.13
Dibenzofuran		·		0.33	0.08
Pentachlorophenol				0.00	0.00
HAP Organics (Total)				4.95	1.13

Page 7 9/25/01

AA-009-DRY KILNS		Batch size (cf):			
Poles Dried	1,600,000 C. F.	Batch time (hrs):		13000	
	Emission		Estimated	Emissions	
Pollutant	Factor Units	Basis	(tn/yr)	(lb/hr)	
VOC	0.05 lb/cf	Alabama	40.00	9.03	

AA-004-CYCLONES FOR WOOD MILLING

 Number of Cyclones:
 1

 Ave. Hours/Day:
 8

 Ave Days/Yr Each:
 300

 Total Hours:
 2400

	Emission			Estimated	Emissions
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr)
Particulate		2 lb/hr	AP-42	2.40	

AA-010-POLE PEELER

Poles Pee	led= 1,000,00	00 CF/yr		440 CF/hr	
Pole Dens	sity=	45 lb/CF			
Pole Amount Pee	led= 22,50	00 tn/yr	9.9 tn/hr		
Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
Particulate	0.35	0 lb/ton	AP-42	3.94	3 465

SPACE HEATERS, NATURAL GAS

Location
AA-005-Boiler House
AA-015-Standby Boiler Room
AA-016-Fire Pump Building
TOTAL

BTU/Hr	BTU/CF	CF/Hr	Hr	/Yr	MMCF/Yr
600000	1000		600	8,760	5.256
100000			100	8,760	0.876
No longer exis	sts.				
700000			700		6.132

Page 8 9/25/01

EMISSION INVENTORY CALCULATION KOPPERS INDUSTRIES, INC. - GRENADA, MS

Potential To Emit Basis for Title V Application **Emission** Estimated **Emissions** Pollutant Factor Units Basis (tn/yr) (lb/hr) Particulate 0.18 lb/MMCF **AP-42** 0.00 0.00 SO2 0.6 lb/MMCF AP-42 0.00 0.00 NOX 94 lb/MMCF **AP-42** 0.29 0.07 CO 40 lb/MMCF AP-42 0.12 0.03 VOC 11 lb/MMCF AP-42 0.03 0.01

AA-011-WOOD FUEL PREPARATION & HANDLING (Fugitive)

Wood Fuel Processed	58,403 Tn/Yr		12 tn/hr		
Pollutant	Emission Factor Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)	
Particulate	0.25 lb/tn	Engr. Est.	7.30		

AA-006-STEAM CLEANER				Fuel Use Rat	e
Annual Usage	8760	hours/yr		440	CF/hr
Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
Particulate	12	lb/MMCF	AP-42	0.02	0.01
SO2	0.6	lb/MMCF	AP-42	0.00	0.00
NOX	100	lb/MMCF	AP-42	0.19	0.04
CO	21	lb/MMCF	AP-42	0.04	0.01
VOC	5.8	lb/MMCF	AP-42	0.01	0.00

AA-007-WOOD STOVE HE			GER EXISTS	Fuel Use Rat	е	
Annual Usage		tn/yr		0	tn/hr	
Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)	
Particulate	30.6	lb/tn	AP-42	0.00	0.00	
SO2	0.4	lb/tn	AP-42	0.00	0.00	
NOX	2.8	lb/tn	AP-42	0.00	0.00	
CO	230.8	lb/tn	AP-42	0.00	0.00	
VOC	43.8		AP-42	0.00	0.00	

AA-012-PARTS CLEANERS, DEGREASERS Number of units operating: 2

riambor of arms operating.		_ 4			
Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
VOC	0.	.33 tn/unit/yr	AP-42	0.66	0.00
				0.00	

Page 9 9/25/01

TOTAL PLANT EMISSIONS

Pollutant		Estimated (tn/yr)	Emissions (1) (lb/hr)
Particulate (less fugitive)		130.79	29.86
SO2 (2)	***************************************	65.63	14.98
NOX		65.07	14.86
CO		197.36	45.06
VOC(less fugitive)		74.32	16.97
VOC(including fugitive)		101.95	23.28
HAPs(Organics/VOC)	***************************************	7.02	1.60
Naphthalene		5.64	1.29
HAP Metals		0.29	0.07
HCI		0.00	0.00
Total HAPs		7.31	1.67

⁽¹⁾ Average hourly emission rate; not instantaneous maximum emission rate.

Page 10 9/25/01

⁽²⁾ Assumes backup boiler operating at same time as primary for number of days shown.

SECTION C

For the sections listed b	elow indicate the number that have	been completed for each section as part of this applica	tion.
Section B 1	Section L1	Section M1 1	
Section C 2	Section L2 2	Section M2	
Section D 6	Section L3	Section M35_	
Section E 6	Section L4	Section M4	
Section F 1	Section L5	Section M51_	
Section G	Section L6	Section M6 4	
Section H 1	Section L7	Section M7	
Section I		Section M8	
Section J		Section N 1	
Section K		Section O 2	
		pleted for the application to be considered complete	e. —
Please list below all insig	gnificant activities required by APC	C-S-6, Section VII.B that apply to your facility.	
(1) EMISSION POI PER APC-S.	NT AA-003, REF. NOS. 21 A VI.B.27	ND 22, COMPRESSED AIR RECEIVERS,	
(2) EMISSION PC	The second secon	GAS SPACE HEATERS (3), RATED AT	r
(3) EMISSION POIN PER APC-S-	NT AA-006, NATURAL GAS	S FIRED STEAM CLEANER,	
		DRAGE TANK, PER APC-S-6.IV.B.7	
(5) EMISSION PON	T AA-014, DIESEL STORA	GE TANK, PER APC-S-6.IV.B.7	_
(6) EMISSION POI MMBTU/HR	NT AA-015, NATURAL Ĉ , PER APC-S-6.IV.B.2.A	GAS SPACE HEATER (1), RATED AT ().1
7) OUTDOOR KER	OSENE HEATERS (5 UNIT	S), PER APC-S-6.IV.A.17	_
8) EMERGENCY P 16 HP AND 8	OWER GENERATORS, (3) 3,000 WATTS, PER APC-S-6	AT 11 HP AND 6,000 WATTS, AND (3) AT 5.IV.B.9	Γ

SECTION C RISK MANAGEMENT PLANS

If the source is required to develop and register a risk management plan pursuant to Section 112(r) of the Title III of the Clean Air Act, the permittee need only specify that it will comply with the requirement to register such a plan. The content of the risk management plan need not itself be incorporated as a permit term.

Please answer the following questions:

I.	Are you required to develop and register a risk management plan pursuant to Section 112(r)?
	Yes <u>X</u> No
Only if "	yes", answer questions II., III., and/or IV.
П	Have you submitted the risk management plan to the appropriate agency (i.e. Mississippi Emergency Management Agency (MEMA), Federal Emergency Management Agency (FEMA), etc.)?
	Yes No
III	If yes, give agency name and date submitted.
IV	If no, provide a schedule for developing and submitting the risk management plan to the appropriate agency and providing our agency with certification that this submittal was made.

FU.	EL BURNI	NG EQUIPM						SECTION I
l .	Emission Poi	int No. / Name:					UNTREATED WOOD FIRED BOILE	
<u>.</u>	Equipment D COGENERA	escription: ATION POWER U	WEL NIT	LONS 2	CELL C	ОМІ	BUSTION SYSTEM	M, BOILER, AND
3.	Was this unit If yes please	constructed or mo	dified afte	er Augus	st 7, 1977'	?	У	ves X No
	Capacity:	60.0	MME	BTU/hr	5. Ty	pe of	burner:	FUEL CELL
	Usage Type (i.e. Space Heat, Pro	ocess, etc) :	PROC	FSS	1	-
I	FUEL TYPE	y usage, and yearly HEAT CONTENT	y usage. % SUI		% AS		MAXIMUM HOURLY	ACTUAL YEARLY
							USAGE	USAGE
	EATED WOOD SIDUE	4,000-6,000 BTU/LB	0.25		5.0		8,760 HRS/YR	8,424 HRS/YR
	Please list any (APPROXIMA	fuel components that I AMOUNTS)	hat are ha 1% PENT	zardous ACHLO	air polluta DROPHEI	ants a	and the percentage in 15% CREOSOTE	in the fuel. : 2% NAPHTHALENE
	Operating Sche	edule: (Optional)	24	hour	s/day	7	days/week	
	Stack Data: A. Heigh		80 FT		C.		it gas velocity:	60 FT/SEC
	B. Inside	diameter:	3 FT		D.	Ex	it gas temperature:	471° F
	UTM Coordina							

12. POLLUTANT EMISSIONS: USE OF TREATED AND UNTREATED WOOD FUEL

Example emission rate calculations, monitoring data, or stack test data must be attached in accordance with Operating Permit Application Requirements.

	Consider the secondaries with Operating Fermin Application Requirements, pp. 3-3.				COLUMNIC WIL	u Opciating r	cimi Applican	on Keduire	ments, pp. 3-5
EMISSION POINT NO.	POLLUTANT (note 1)	CONTROL	ROL MENT	ACTUA (in accorda Applicati	ACTUAL EMISSION RATE (in accordance with Operating Permit Application Requirements, pp. 3-5)	V RATE ing Permit pp. 3-5)	PROPOS	PROPOSED ALLOWABLE EMISSION RATE (Optional)	WABLE Optional)
		* yes/no	effic.	note 2	lb/br	tn/yr	note 2	lb/hr	th/yr
AA-001	PARTICULATE	YES					0.3 GR/DSCF	10.60	46.41
	SO2	ON						12.02	52.65
	NOX	NO						14.16	62.01
	00	ON						35.61	155.96
	voc	ON						0.77	3.38
	нст	ON						09:9	11.54
	TOTAL HAP METALS	ON						0.043	0.19
1 All rous	All warmington air and interest in 1 3: 1								

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed. A list of regulated air pollutants has been provided in Section A.

Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point.

F U			MENT (page			SECTION D
l.		FERNATIVE OP int No. / Name:			OF UNTREATED OOD FIRED BOILER	WOOD FUEL ONLY
	Equipment I	escription: ATION POWER U	WELLONS 2 JNIT	CELL COM	BUSTION SYSTEM,	BOILER, AND
3.		constructed or mo	odified after Augus ain.	st 7, 1977?	Ye	s <u>X</u> No
	Capacity:	60.0	MMBTU/hr	5. Type o	f burner:	FUEL CELL
5.	Usage Type (i.e. Space Heat, Pr	rocess, etc.):	I	PROCESS	
1.	Complete the content, hour	following table, in	dentifying each ty ly usage.	pe of fuel and	the amount used. Sp	ecify the units for hea
I	FUEL TYPE	HEAT CONTENT	% SULFUR	% ASH	MAXIMUM HOURLY USAGE	ACTUAL YEARLY USAGE
WO	IREATED OD AND RK RESIDUE	4,000 BTU/LB	0.01	0.5	8,760 HRS/YR	

•8	Please list any	fuel components	that are hazardous	air pollutants	and the percentage in	the fuel.
	Operating Sch	edule: (Optional)	24 hou	rs/day 7	days/week	52 weeks/year
) .	Stack Data:	·		-	-	
	A. Heig		80 FT		xit gas velocity:	70 FT/SEC
		e diameter:	3 FT	D. E	xit gas temperature:	471° F
l.	UTM Coordin	nton.				

12. POLLUTANT EMISSIONS:

ALTERNATIVE OPERATING SCENARIO – BURNING UNTREATED WOOD ONLY

5. Example emission rate calculations, monitoring data, or stack test data must be attached in

p. 3-5	PERGRAMA	and an experience						_		
quirements, p	WABLE Optional)	tn/yr	122.65	2.19	46.72	192.73	5.26	0.00	0.29	
ication Re	PROPOSED ALLOWABLE EMISSION RATE (Optional)	lb/hr	28.0	0.50	10.67	44.0	1.20	0.00	0.067	
ng Permit Appl	PROPOS	note 2	0.3 GR/DSCF							
with Operation	V RATE ing Permit ipp. 3-5)	tn/yr								
accordance v	ACTUAL EMISSION RATE (in accordance with Operating Permit Application Requirements, pp. 3-5)	lb/hr								
be attached in	ACTUAI (in accordar Applicatio	note 2								
data must	CONTROL	effic.								
OI STACK ICS	CONTROL	* yes/no	YES	ON	ON	ON	ON	ON	ON	
1. Stack less data must be attached in accordance with Operating Permit Application Requirements, pp. 3-5	POLLUTANT (note 1)		PARTICULATE	502	NOX	00	voc	HCL	TOTAL HAP METALS	
生活を応じるがはない。	EMISSION POINT NO.		AA-001							

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed. A list of regulated air pollutants has been provided in Section

Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point.

FU.	EL BURNI	NG EQUIPN	IENT (page	1 of 2)		SECTION D
l .	Emission Po	int No. / Name:	AA-	002, REF. NO	. 41, OIL FIRED BO	DILER
2.	Equipment I	Description:	BACKUP SE	RVICE BOIL	ER	
		t constructed or mo	_		Ye	es X No
•	Capacity:	28.5	MMBTU/hr	5. Type o	f burner:	ATOMIZING OIL
	Usage Type	(i.e. Space Heat, P	rocess, etc.):	I	PROCESS	
· SWEET		e following table, rly usage, and year		ype of fuel an	d the amount used.	Specify the units for he
	FUEL TYPE	HEAT CONTENT	% SULFUR	% ASH	MAXIMUM HOURLY USAGE	ACTUAL YEARLY USAGE
#2 (OIL	140,000 BTU/GAL	0.50	1.6	204 GAL/HR	100,000 GAL
	Please list an	y fuel components NONE	that are hazardous	air pollutants	and the percentage is	n the fuel.
	Operating Sci	hedule: (Optional)	24 hour	rs/day 7	days/week	weeks/year
).	Stack Data: A. Heig B. Insid	ght: le diameter:	36 FT 2.5 FT		xit gas velocity: xit gas temperature:	32 FT/SEC 570° F
ĺ.	UTM Coordin		B. North	ſ	C. East	

12. POLLUTANT EMISSIONS:

Example emission rate calculations, monitoring data, or stack test data must be attached in accordance with Operating Permit Application Requirements, pp. 3-5.

EMISSION POINT NO.	POLLUTANT (note 1)	CON	CONTROL	ACTUA (in accord	ACTUAL EMISSION RATE (in accordance with Operating Permit Application Requirements, pp. 3-5)	V RATE ing Permit pp. 3-5)	PROPO	PROPOSED ALLOWABLE EMISSION RATE (Optional)	CONTROL ACTUAL EMISSION RATE (in accordance with Operating Permit Application Requirements, pp. 3-5)
		* yes/no	effic.	note 2	лц/qI	tn/yr	note 2	lb/hr	tn/yr
AA-002 (SEE NOTE BELOW)	PARTICULATE	ON						0.41	1.79
	802	ON						14.48	63.44
	NOX	ON						4.08	17.87
	00	ON						1.02	4.47
	VOC	ON						0.04	0.18
NOTE: THIS B	NOTE: THIS BOILER WILL NOT OPERATE AT THE SAME TIME AS SOURCE AS AND MOOD EIDED BOTH ED.	T THE SA	MR. TIME	ASSOTIBE	7 A A_001 CW	radia doo		TOT STITE	THE STATE OF STREET

THE SAME TIME AS SOURCE AA-001 (WOOD FIRED BOILER). THIS BOILER IS FOR BACKUP SERVICE ONLY.

- All regulated air pollutants including hazardous air pollutants emitted from this source should be listed. A list of regulated air pollutants has been provided in Section A.
 - Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point.

SECTION D

1.	Emission Po	int No. / Name:	AA	-005, REF. N	IO. 43, NATURA	L GAS SPACE HEATER
2.	Equipment I LOCATED	Description: IN BOILER HOUSE		ATERS US	ED IN PLANT	BUILDINGS. (3) UNITS
3.		t constructed or modi give date and explain	_	st 7, 1977?		Yes X No
4.	Capacity:	0.20	MMBTU/hr	5. Type	of burner:	NATURAL GAS
6.	Usage Type	(i.e. Space Heat, Prod	cess, etc.):		SPACE	HEAT
7.	Complete the	e following table, ide	ntifying each ty usage.	pe of fuel ar	nd the amount used	d. Specify the units for heat
	FUEL TYPE	HEAT CONTENT	% SULFUR	% ASH	MAXIMUI HOURLY USAGE	
NA	TURAL GAS	1,000 BTU/CF			320 CF/HR	645 MCF
8.	Please list an	y fuel components th NE	at are hazardou	s air pollutan	ts and the percent	age in the fuel.
9.	Operating Sci	hedule: (Optional)	24 hou	rs/day	7 days/w	eek 12 weeks/year
10.	Stack Data: A. Heig B. Insid	tht: le diameter:	NA NA	C. D.	Exit gas velocity: Exit gas temperat	
11.	UTM Coordin A. Zone		B. Nort	h	C.	East

12. POLLUTANT EMISSIONS:

Example emission rate calculations, monitoring data, or stack test data must be attached in accordance with Operating Permit Application Requirements, pp. 3-5.

AA-005 PM yes/no * effic. note 2 lb/hr AA-005 PM <	POLLUTANT CONTROL (note 1) EQUIPMENT	ACTUA (in accord Applicat	ACTUAL EMISSION RATE (in accordance with Operating Permit Application Requirements, pp. 3-5)	N RATE ing Permit pp. 3-5)	PROPO	PROPOSED ALLOWABLE EMISSION RATE (Optional)	OL ACTUAL EMISSION RATE (in accordance with Operating Permit Application Requirements, pp. 3-5) EMISSION RATE (Optional)
		note 2	lb/br	tn/yr	note 2	lb/hr	tn/yr
SO2 NOX CO VOC			9			00:00	0.00
CO VOC						0.00	0.00
00 x						90.0	0.25
voc						0.02	0.10
						0.01	0.03

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed. A list of regulated air pollutants has been provided in Section A.

Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point.

7

SECTION D

1.	Emission Po	int No. / Name:	AA-006, REI	F. NO. 44, NA	TURAL GAS FIR	ED STEAM CLEANER
2.	Equipment I CLEANING		ATER HEATER	FOR STEAM	CLEANER US	ED FOR EQUIPMENT
3.			nodified after Augu plain. 1992		х	Yes No
4.	Capacity:	0.4	4 MMBTU/hr	5. Type o	f burner:	NATURAL GAS
6.	Usage Type	(i.e. Space Heat, l	Process, etc.):	PROCES	S	
7.		e following table, ly usage, and yea		pe of fuel and	the amount used.	Specify the units for hear
I	FUEL TYPE	HEAT CONTENT	% SULFUR	% ASH	MAXIMUM HOURLY USAGE	ACTUAL YEARLY USAGE
NAT	TURAL GAS	1,000 BTU/CF	0.0	0.0	8,760 HR/YR	2,000 HR/YR
						ALLE STREET, THE PROPERTY OF T
8.	Please list an		s that are hazardous	s air pollutants	and the percentag	e in the fuel.
9.	Operating Sci	hedule: (Optional) 8 hou	rs/day 5	days/wee	k 50 weeks/year
10.	Stack Data: A. Heig B. Insid	tht: le diameter:	NA NA		xit gas velocity: xit gas temperatur	e: <u>NA</u>
11.	UTM Coordin A. Zone		B. Nort	h	C. E	ast

12. POLLUTANT EMISSIONS:

Example emission rate calculations, monitoring data, or stack test data must be attached in accordance with Operating Permit Application Requirements, pp. 3-5.

EMISSION POINT NO.	POLLUTANT (note 1)	CONTROL	ROL	ACTUA (in accords Applicati	ACTUAL EMISSION RATE (in accordance with Operating Permit Application Requirements, pp. 3-5)	V RATE ing Permit pp. 3-5)	PROPO	PROPOSED ALLOWABLE EMISSION RATE (Optional)	ISSION RATE th Operating Permit EMISSION RATE (Optional)
		* yes/no	effic.	note 2	lb/hr	ту/ш	note 2	Ib/hr	tn/yr
AA-006	PM							0.01	0.02
i e	SO2							0.00	0.00
	NOX							0.04	0.19
	00							0.01	0.04
	voc							00.0	0.01

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed. A list of regulated air pollutants has been provided in Section A.

Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point.

. 01	<u>EL BURNI</u>		<u> </u>			SECTION
	Emission Po	int No. / Name:	AA-	015, REF. NO	. 53, NATURAL GA	AS SPACE HEATE
•	Equipment I	Description:	SPACE HEA	TER USED IN	N PLANT BUILDIN	GS (1) UNIT
		-				
ic		t constructed or mo		st 7, 1977?	Y	es X No
	Capacity:	0.1	MMBTU/hr	5. Type of	f burner:	NATURAL G
•	Usage Type	(i.e. Space Heat, Pr	rocess, etc.):	S	PACE HEAT	
	Complete the content, hour	e following table, ic	dentifying each ty y usage.	pe of fuel and	the amount used. S	pecify the units for h
	FUEL TYPE	HEAT CONTENT	% SULFUR	% ASH	MAXIMUM HOURLY USAGE	ACTUAL YEARLY USAGE
NA'	TURAL GAS	1,000 BTU/CF	0.0	0.0	107 CF/HR	215 MCF
					-	
	Please list any		that are hazardous	air pollutants	and the percentage i	n the fuel.
	NON			air pollutants	and the percentage i	n the fuel.

B.

North

11.

UTM Coordinates:

Zone

A.

C.

East

12. POLLUTANT EMISSIONS:

Example emission rate calculations, monitoring data, or stack test data must be attached in accordance with Operating Permit Application Requir

L			STATE STATE OF THE		TA CONTINUE AL	II Operating r	cum Applica	non Kedune	y control of the cont
PO	POLLUTANT (note 1)	CONTROL	ROL	ACTUA (in accord Applicati	ACTUAL EMISSION RATE (in accordance with Operating Permit Application Requirements, pp. 3-5)	N RATE ing Permit , pp. 3-5)	PROPO	PROPOSED ALLOWABLE EMISSION RATE (Optional)	WABLE Optional)
		* yes/no	effic.	note 2	Ib/hr	tn/yr	note 2	lb/hr	ta/yr
PM								0.00	0.00
S02								0.00	0.00
NOX								0.00	0.01
8								0.00	0.01
voc								0.00	0.00

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed. A list of regulated air pollutants has been provided in Section A.

Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point.

MANUFAC	FURING PROCESSES	(page 1 of 2)	SECTION E
Emission	Point No./ Name:	AA-003, WOOD PRESERVI	NG PROCESS
Process D PENTAC	escription: PRESSURE THLOROPHENOL OR CREOSOT	REATMENT OF UTII E, AND RAILROAD CROSS	LITY POLES WITH TIES WITH CREOSOTE
Was this u	unit constructed or modified after A	August 7, 1977? ye	es <u>X</u> no
Capacity	(tons/hr): 7,000,00	0 CF WOOD PRODUCTS PE	R YEAR
Raw Mate	rial Input:		
MATERIA	L QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
WOOD	342 CF	800CF	UP TO 7,000,000 CF
Product Ou PRODUCT	or QUANTITY/HR	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
REATED WOO!		800 CF	UP TO 7,000,000 CF
Stack Data:			
A. He	eight: NA side diameter: NA	C. Exit gas veloc D. Exit gas temp	erature: <u>NA</u>

13. POLLUTANT EMISSIONS:

EMISSION POLLUTANT CONTROL ACTUAL EMISSION RATE PROPOSED ALLOWABLE (in accordance with Operating Permit Application Requirements, pp. 3-5)	POLLUTANT (note 1)	CON	CONTROL EQUIPMENT	ACTUA (in accord Applicati	ACTUAL EMISSION RATE (in accordance with Operating Permit Application Requirements, pp. 3-5)	N RATE ing Permit i, pp. 3-5)	PROPO	PROPOSED ALLOWABLE EMISSION RATE (Optional)	WABLE Optional)
		* yes/no	effic.	note 2	Ъ/ћг	ту/ш	note 2	lb/hr	tz/xt
AA-003	VOC	ON						6.58	28.18
	NAPHTHALENE	ON						0.40	1.77
	QUINOLINE	ON						0.02	0.08
	BIPHENYL	ON						0.01	0.06
	DIBENZOFURAN	ON						0.03	0.15
	PENTACHLOROPHENOL	ON ON						0.00	0.01

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed in accordance with Operating Permit Application

Requirements, pp. 3-5. A list of regulated air pollutants has been provided in Section A.

Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point.

MANUFACTURIN	G PROCESSES (page 1 of 2)	SECTION E
1. Emission Point No./ MILLING	Name: AA	A-004, REF. NO. 42, C	YCLONES FOR WOOD
Process Description:	DUST COLLECTIO	ON FROM UNTREATED	WOOD MILLING AND
3. Was this unit constru If yes please give dat	cted or modified after Augree and explain.	ust 7, 1977? ye	sXno
Capacity (tons/hr):			
Raw Material Input:			
MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
ROUGH CUT WOOD PRODUCTS			2,000,000 CF
. Product Output:			
PRODUCT or BY-PRODUCT	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
TRIMMED AND SHAPED UNTREATED WOOD PRODUCTS			2,000,000 CF
Stack Data:			
A. Height: B. Inside diamet UTM Coordinates: A. Zone	ter: NA B. North	C. Exit gas veloc D. Exit gas tempo C. F.	erature: <u>NA</u>

13. POLLUTANT EMISSIONS:

3-5. -Example emission rate calculations, monitoring data, or stack test data must be attached in accordance with Operating Per

사		11	-ri-		 	_	
WABLE Optional)	tn/yr	2.40					
PROPOSED ALLOWABLE EMISSION RATE (Optional)	lb/hr	0.55					
PROPO: EMISSIC	note 2						
RATE ng Permit pp. 3-5)	tn/yr						
ACTUAL EMISSION RATE (in accordance with Operating Permit Application Requirements, pp. 3-5)	lb/br						
ACTUA] (in accordar Applicatio	note 2						
ROL	effic.						
CONTROL	* yes/no	YES					
ION POLLUTANT CONTROL ACTUAL EMISSION RATE (PROPOSED ALLOWABLE Application Requirements, pp. 3-5) ROUTHOL Application Requirements, pp. 3-5)		PARTICULATE					
EMISSION POINT NO.		AA-004					

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed in accordance with Operating Permit Application

Requirements, pp. 3-5. A list of regulated air pollutants has been provided in Section A. Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point.

MANUFACTURI	NG PROCESSES (page 1 of 2)	SECTION E
. Emission Point No	o./ Name: <u>AA-008, RI</u>	EF. NO. 46, TREATED W	OOD STORAGE
Process Description FOLLOWING TR	n: STORAGE AND I EA <u>TMENT AND PRIOR TO</u>	HANDLING OF TREAT SHIPMENT	ED WOOD PRODUCTS
. Was this unit const	tructed or modified after Augilate and explain.	ust 7, 1977? ye	
Capacity (tons/hr)	: NA		
. Raw Material Inpu	t:		
MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAI
Product Output:	PER CONTROL PROPERTY AND ADDRESS OF	TWIST RAW THE DAY ONLY POPULA	Mary Management of Burney (1997)
PRODUCT or BY-PRODUCT	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
REATED POLES			UP TO 5,000,000 CF
TREATED TIES			2,000,000 CF
OTAL TREATED			UP TO 7,000,000 CF
Stack Data: A. Height: B. Inside diam	NA eter: NA	C. Exit gas veloc D. Exit gas tempe	
UTM Coordinates: A. Zone	B. North	C. E	East

13. POLLUTANT EMISSIONS:

3-5. è Example emission rate calculations, monitoring data, or stack test data must be attached in accordance with Operating Permit Applie

	standard in the second of the	OI SHACK IUSI	data must i	אב מוומכוובת ווו	accordance v	vim Operating	rermit App	ication Kec	urrements, pp.
EMISSION POINT NO.	POLLUTANT (note 1)	CONTROL	TROL	ACTUA (in accorda Applicati	ACTUAL EMISSION RATE (in accordance with Operating Permit Application Requirements, pp. 3-5)	N RATE ing Permit 5, pp. 3-5)	PROPO	PROPOSED ALLOWABLE EMISSION RATE (Optional)	WABLE (Optional)
		* Yes/no	effic.	note 2	ıh/dı	т/ш	note 2	lb/hr	tn/yr
AA-008	voc	ON						6.30	27.63
	NAPHTHALENE	ON						0.88	3.88
	QUINOLINE	ON						0.04	0.17
	BIPHENYL	ON						0.13	0.57
	DIBENZOFURAN	ON						0.08	0.33
	PENTACHLOROPHENOL	NO						00.00	0.00
1. All regu	All regulated air nollintants including hazare	lone air no	Intente ami	hazardons air nollutants emitted from this some charles La listed	To occur	13 % 15 4 3 5			

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed in accordance with Operating Permit Application Requirements, pp. 3-5. A list of regulated air pollutants has been provided in Section A. Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an

emission point.

7

MANUFACTURING	G PROCESSES (p	page 1 of 2)	SECTION E
Emission Point No./	Name: AA	-009, REF. NO. 47, POLE	KILN
Process Description:	DRY WOOD POLES	S PRIOR TO TREATMENT	<u> </u>
Was this unit constru If yes please give dat	1 1	ust 7, 1977?yes	
Capacity (tons/hr):	13,000 CF P	ER BATCH	
Raw Material Input:			
MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
GREEN WOOD POLES			1,600,000 CF
Product Output:			
PRODUCT or BY-PRODUCT	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
DRY WOOD POLES			1,600,000 CF
Stack Data: A. Height: B. Inside diame	NA ter: NA	C. Exit gas veloc D. Exit gas temp	
UTM Coordinates: A. Zone	B. North	C. 1	East

13. POLLUTANT EMISSIONS:

3-5 Example emission rate calculations, monitoring data, or stack test data must be attached in accordance with Operating Permit Application Requirements.

のの対象を変数の対象の対象の		Section (speciment)			accordante v	ILLI Operaturi	ddw mms r	ication Re	, control of the cont
EMISSION POINT NO.	POLLUTANT (note 1)	CONTROL	ROL	ACTUA (in accord Applicati	ACTUAL EMISSION RATE (in accordance with Operating Permit Application Requirements, pp. 3-5)	N RATE ing Permit 5. pp. 3-5)	PROPO: EMISSIC	PROPOSED ALLOWABLE EMISSION RATE (Optional)	WABLE (Optional)
		* yes/no	effic.	note 2	lb/hr	ту/ш	note 2	lb/hr	tn/yr
AA-009	voc	ON						9.03	40.00

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed in accordance with Operating Permit Application

Requirements, pp. 3-5. A list of regulated air pollutants has been provided in Section A. Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point.

MANUFACTURII	NG PROCESSES	(page 1 of 2)	SECTION E
. Emission Point No	o./ Name: A	A-010, REF. NO. 48, POLE	PEELER
Process Description PRODUCE WHIT		AND CAMBIUM LAYER	FROM PINE LOGS TO
. Was this unit cons If yes please give o	tructed or modified after Audate and explain.	gust 7, 1977? ye	s <u>X</u> no
Capacity (tons/hr)	9.9		
Raw Material Inpu	it:		
MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
BARKED LOGS	22 PIECES	22 PIECES	22,500 PIECES
Product Output:			
PRODUCT or BY-PRODUCT	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
WHITE POLES	22 PIECES	22 PIECES	22,500 PIECES
BARKED AND WOOD CHIPS	5.5 TONS/HR	5.5 TONS/HR	5,000 TONS/YR
Stack Data: A. Height:	NA	C. Exit gas veloc	city: NA

B. North

C. East

UTM Coordinates: A. Zone

8.

13. POLLUTANT EMISSIONS:

3-5. Example emission rate calculations, monitoring data, or stack test data must be attached in accordance with Operating Permit Application Requirem

THE REAL PROPERTY AND INCIDENT AND INCIDENT					, commence of the contract of	THE COLUMN	ST CHILLIAND	ICALIOII INC	ducinents, pp
EMISSION POINT NO.	POLLUTANT (note 1)	CONTROL	ROL	ACTUA (in accord Applicati	ACTUAL EMISSION RATE (in accordance with Operating Permit Application Requirements, pp. 3-5)	V RATE ing Permit , pp. 3-5)	PROPO	PROPOSED ALLOWABLE EMISSION RATE (Optional)	WABLE (Optional)
		* yes/no	effic.	note 2	lb/tur	ta/yr	note 2	Љ/ш	tn/yr
AA-010	PARTICULATE	NO						3.47	3.94
				_			_	_	

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed in accordance with Operating Permit Application

Requirements, pp. 3-5. A list of regulated air pollutants has been provided in Section A. Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an

SECTION E

1.	Emission Point No		A-011, REF. NO. 49, WOO	D FUEL PREPARATION
2.	Process Description GRINDING, HAN	on: PREPARATION (NDL <u>ING, AND LOADING I</u>	OF WOOD FUEL FOR NTO SILO ON CONVEYOR	BOILER, INCLUDING
3.	Was this unit cons		gust 7, 1977? yes	s <u>X</u> no
4.	Capacity (tons/hr): 12		
5.	Raw Material Inpu	ıt:		
	MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
wo	OOD RESIDUE	8 TONS	12 TONS	58,403 TONS
6.	Product Output:			
	PRODUCT or BY-PRODUCT	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
	OD CHIPS AND WDUST	8 TONS	12 TONS	58,403 TONS
7.	Stack Data: A. Height: B. Inside dia	NA meter: NA	C. Exit gas veloc D. Exit gas temp	
8.	UTM Coordinates: A. Zone	B. North	C. 1	East

MANUFACTURING PROCESSES (page 2 of 2)

13. POLLUTANT EMISSIONS:

٠. Example emission rate calculations, monitoring data, or stack test data must be attached in accordar

on J			 		 	
WABLE Optional)	tn/yr	7.30				
PROPOSED ALLOWABLE EMISSION RATE (Optional)	lb/hr	3.00				
PROPO: EMISSIC	note 2					
RATE ing Permit pp. 3-5)	th/yr					
ACTUAL EMISSION RATE (in accordance with Operating Permit Application Requirements, pp. 3-5)	lb/hr					
ACTUA (in accorda Applicatio	note 2					
ROL	effic.					
CONTROL	* yes/no	ON				
EMISSION POLLUTANT CONTROL (in accordance with Operating Permit Application Requirements, pp. 3-5 EQUIPMENT (in accordance with Operating Permit Application Requirements, pp. 3-5)		PARTICULATE		000		
EMISSION POINT NO.		AA-011				

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed in accordance with Operating Permit Application

Requirements, pp. 3-5. A list of regulated air pollutants has been provided in Section A.

Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point.

If yes, attach appropriate Air Pollution Control Data Sheet from Section L or manufacturers specifications if other.

SECTION F COATING, SOLVENT USAGE, and/or DEGREASING (page 1 of 5)

NOTE: For emission sources of volatile organic compounds (VOC's) including spray booths, painting, degreasing, finishing, gluing and solvent usage.

Emis	sion Point No./ Name:	AA-012, REF. N	O. 50, (2) PARTS CL	EANER/DEGREASER'S	
Proce TAN	ess Description (INDIC	CATE NO. OF IDENTI	CAL PROCESSES-B	OOTHS, DIP TANKS, DEGR	EASING
2 EA	CH, SAFETY KLEEN	INC. PARTS CLEAN	ERS		
Were If yes	any of these units con please give date and e	structed or modified af	ter August 7, 1977? _	yesno	
COAT	ΓING: NA				
A.	Describe Articles	Coated:			
B.	Operating Sched	ule (Optional)			
	1. Maxir 2. Avera			Days/Week Days/Week	Weeks/Yea Weeks/Yea
C.	Bake ovens:	Type of oven:		For direct fired	ovens:
	Number of Ovens:	() Steam () direction () Electric () Oth		Heat input MMBTU/hr_Fuel type	
SPRA	Y BOOTHS: NA				
A.	Width Depth	(ft) (ft)	Height No. Open Sides	(ft)	
B.	Operating Schedu	le			
	 Maxim Average 			Days/Week Days/Week	Weeks/Year
C.	Method of Spray: () Airless Overspray	() Air Atomize	() Electrostatic	() Other:	
D.	Exhaust Fan Data	:			
	No. of Fans	Total H	orsepower	Total Volume (cfm)	

SECTION F COATING, SOLVENT USAGE, and/or DEGREASING (page 2 of 5)

	E.	Exhaust	Control:		Control	l Efficiency:	:		Exhaust	Stack Data	ı:		
			erwash orption neration les Filter		articulate lydrocarbo	on	% %	Diameter Height Flow		(FT) (FT) (CFM)			
6.	DEGRE	ASING:	111				***	3 43				- ∜	
	A	square fe	et per year	(ft²/yr).			parts degrea	sed in square	e feet per	hour (ft²/h	r) and	<u>.</u>	
	В.	Type of o	degreasing:						·		<u> </u>	-	
		1.	Cold Solv	vent	x		No. of Ur	nits	2				
		2.	Vap <u>or</u>										
			1. 2. 3. 4.	Conveyo	conveyor rized non- rized vapo	boiling		No. of Uni No. of Uni No. of Uni	ts				
	C.	Tank Dir	nensions (ft):									
		Width		2 (ft)		Height		1 (ft)		Length	_3	(ft)	
	D.	Operating	Schedule ((Optional)									
Weeks/Ye	ar	1.	Maximun	n:	Hours/l	Day	2	7 Days/We	ek		52		
18414		2.	Average:		1 Hours	/Day		4 Days/We	ek	40	Weeks	Year .	
7. UTM (Coordinate	s:			000								
	A.	Zone			В.	North		(C.	East			

COATING, SOLVENT USAGE, and/or DEGREASING (page 3 of 5) SECTION F

List all Volatile Organic Compounds (coatings, thinners, lacquers, solvents, degreasers, etc.) as used in accordance with Operating Permit Application Requirements, pp. 3-5: 12.

PERCENT RETURNED* AVG. MAX (0 100 90-100 24 50 0.2 6 100 6 100 6 100 6 100 6 100 6 100 6 100 6 100 6 100 6 100 6 100 6 100 6 100 6 100 6 100 100		DENSITY		AMOUNT RECT ATMED	PRODUCT USAGE	r USAGE	MAXIN	MAXIMUM VOC
100 90-100 24 50 0.2	PRODUCT			RETURNED*			LIMIDON	ON KAIES
100 90-100 24 50 0.20 GAL/YR GAL/YR		(lbs/gallon	#	(gallons/yr)	AVG.	MAX	(lbs/hr)	(tons/yr)
	SAFETY KLEEN INC SOLVENT	9.9	100	90-100	24 GAL/YR	50 GAL/YR	0.20	99.0

USE SEPARATE SHEET(S) IF NEEDED.

^{*} SEE ITEM 15 ON PAGE 5 OF THIS SECTION FOR RECLAMATION CREDIT AND DOCUMENTATION REQUIRED. ** PRODUCT USAGE SHOULD NOT INCLUDE THOSE AMOUNTS RETURNED TO THE SUPPLIER, RECYCLED, OR REUSED.

SECTION F COATING, SOLVENT USAGE, and/or DEGREASING (page 4 of 5)

13. List all Hazardous Air Pollutants (HAP'S) found in each product:

Villy with kequir	0.00 0.66						
(in a							
MAXIMUM PRODUCT USAGE **	0.20						
CAS	644742-47-8						
HAZARDOUS AIR POLLITTANT	voc						
PRODUCT NAME	SAFETY KLEEN PETROLEUM	DISTILLATE SOLVENT					

USE SEPARATE SHEET(S) IF NEEDED.

^{**} PRODUCT USAGE SHOULD NOT INCLUDE THOSE AMOUNTS RETURNED TO THE SUPPLIER, RECYCLED, OR REUSED.

SECTION F COATING, SOLVENT USAGE, and/or DEGREASING (page 5 of 5)

	SOLVENT RECEIVED IN CLOSED BACK TO MANUFACTURER		
21			
· ·		(100 (110 (110 (110 (110 (110 (110 (110	-
17			
15.	List reclaimed material: MATERIAL 7 DEGREASERS, LACQUERS, ETC.	TYPES INCLUDE COATING	S, THINNERS, SOLVEN
	DEGREASERS, LACQUERS, ETC.	QUANTITY	QUANTITY
מת	ODUCT/MATERIAL TYPE	USED	RECLAIMED
rk	NO ON SITE RECLAMATION	(GAL/YR)	(GAL/YR)
			•
			-
Descr	ibe methods that the products listed above	are reclaimed, including how	they are captured and reus
	ed.		•
return			
return			
return			77 72/2
return			

^{*} PLEASE NOTE THAT MATERIAL RECLAIMED WILL ONLY BE CREDITED IF PROPERLY DOCUMENTED.

SECTION H TANK SUMMARY (page 1 of 2)

1. SUM		nission Point No./Name: AA-003, ALL RELATED TA Y DATA SPREADSHEET (FOLLOWING PAGES)	NK DATA INCLU	DED IN TANK
				_
2.	Was : If yes	as this tank constructed or modified after August 7, 1977?yes please give date and explain.	yes	no
3.	Produ	oduct Stored:		
	If mo	nore than one product is stored, provide the information in 4.A-	E for each product	•
4.	Tank	nk Data:		
	A.	True Vapor Pressure at storage temperature:		psia/°F
	B.	Reid Vapor Pressure at storage temperature:		psia/°F
	C.	Density of product at storage temperature:		lb/gal
	D.	Molecular Weight of product vapor at storage temperature		lb/lbmol
	E.	Throughput for most recent calendar year:		gal/yr
	F.	Tank Capacity:		gal
	G.	Tank Diameter:		feet
	H.	Tank Height / Length:		feet
	I.	Average Vapor Space Height:		feet
	J.	Tank Orientation: Ve	ertical or Horizonta	1
	K.	Type of Roof:	Dome or Co	ne
	L.	Is the Tank Equipped with a Vapor Recovery System?	Yes	No
		If Yes, describe on separate sheet of paper and a	ttach. Indicate eff	ficiency.
	M.	Check the Type of Tank:		
		Fixed Roof External Flo		
		Pressure Internal Floa	ting Roof	
		Variable Vapor Space		
	N.	Other, describe:	·	
	14.	Check the Closest City: Jackson, MS Birmingham	A T	
	0	New Orleans, LA Check the Tank Paint Color: Baton Rouge	, LA	
	•	Aluminum Specular Gray Light		
		Aluminum Diffuse Gray Medium	m	
		Red White	.11	
		Other, describe:		
	P.	Tank Paint Condition: Good or Poo		
	Q.	Check Type of Tank Loading	•	
		1. Trucks and Rail Cars		
		Submerged Loading of clean cargo tank	:	
		Submerged Loading: Dedicated Norma		
		Submerged Loading: Dedicated Vapor		
		Splash Loading of clean cargo tank		
		Splash Loading: Dedicated Normal Se	rvice	
		Splash Loading: Dedicated Vapor Bala	ince Service	
		2. Marine Vessels		
		Submerged Loading: Ships		
		Submerged Loading: Barges		

SECTION H TANK SUMMARY (page 2 of 2)

5.

6.

R.	For	External Floating Roof Tanks		
	1.	Check the Type of Tank Seal:		
		Mechanical Shoe		
		Primary Seal C	only	
		With Shoe-Mo	unted Secondary Seal	
		With Rim-Mou	inted Secondary Seal	
		Liquid Mounted Resilien	t Seal	
		Primary Seal C	nly	
		With Shoe-Mo	unted Secondary Seal	
		With Rim-Mou	inted Secondary Seal	
		Vapor Mounted Resilient	Seal	
		Primary Seal O	nly	
		With Shoe-Mo	unted Secondary Seal	
		With Rim-Mou	nted Secondary Seal	
	2.	Type of External Floating Roof:	Pontoon	
			Double-Deck	
S.	For I	nternal Floating Roof Tanks		
٥.	1.	Check the Type of Tank Seal:		
		Liquid Mounted Resilient	Seal	
		Primary Seal O		
			nted Secondary Seal	
		Vapor Mounted Resilient		
		Primary Seal O		
			nted Secondary Seal	
	2.	Number of Roof Columns:	_	
	3.	Length of Deck Seam		feet:
	4.	Area of Deck:		- feet²
	5.	Effective Column Diameter:		_ feet
	6.	Check the Type of Tank:		_ 1001
			umn Supported Roof	
			olumn Supported Roof	
			f-Supported Roof	
			lf-Supported Roof	
Fmice	ions Sur	nmary		
~11TI22	10.113 .5ui.	Breathing Loss:	lb/hr	TPY
	2.	Working Loss:	lb/hr	TPY
	3.	Total Emissions:	lb/hr	
JTM	Coordin		10/Ш	
A. Zoi		B. North	C. East	
			J. 240t	

AA-003 AA-003 AI 10 10 Crecsote 1830 1850 Pertachlorophenol Creosote Cr 775 8.86 8.500,000 740,000
Work Tank #5 Work Tank Measuring Tank 1850 (1830 1850 1850 Crecisole Crec
Work Tank #\$ Work Tank Measuring Tank 1950 1850 1850 1850 1850 200 150 200 200 150 200 200 200 200 200 200 200 200 200 2
Work Tank #5 Work Tank Measuring Tank 51 1850 1850 1850 1850 1850 Creosote Pertactionophenol Creosote Cr Cr 200 150 200 200 8.550,000 7.75 8.95 8.95
1950 1930 1950
Pertactionophenol Creosole Cr Cr Cr Cr Cr Cr Cr C
Peritachlorophenol Creosote Cr Cr 150 200 7.75 8.65 8.65 8.65 7.75 8.65 740,000
150 200 1.75 8.85 8.50,000 740,000
150 200 7.75 8.65 8.500,000 740,000
7.75 8.85 8.85 8.500,000 740,000
8,500,000 740,000 740,000
8,500,000 740,000
4 200 400 400 000
13 6
30 20 24
Vertical Vertical Vertical
-
No No No
No No No No No Mo No Mo No
No No No No No Fixed Roof Fixed Roof Memphis Memphis Memphis
No No No No No No Exted Roof Fixed Roof Merrphis Merrphis Merrphis Black Black Black Black
No
No N
No N
No N
No N
No N
No N
No N
No N
No N
No N
No N
No N
No Fixed Roof
No Fixed Boof
22,419 6 106 106 † Horizontal
╂┼┼┼
Vertical 33 13
1111
30 13 10 10 10 10 10 10 10 10 10 10 10 10 10
13 30 1
\prod
8,500,000 20,782
+

Sertion II													
Reference	Hem	Units											
_	Mant Reference Number		GRN-17	GRN-18	5000								
	Emission Point Number		AA-003	AA.0m	SI-NAS	GRN-20	GRN-23	GRN-24	GRN-25	GRN.26	CON 92		
	Kererence No. (Table 2.1)		- 4	Ę	STORY OF THE PERSON	AA-OG	AA-003	AA-013	AA-014	AAAM	SA OCT	CKN-ZB	GRN-29
						R	23	24	23	88	27	AA-003	AA-003
	Name					Creosote	Pentachlomohemal					85	8
_	Construction Date		1989	Coagulant 1987	Decanting	Blowdown	Blowdown	٥	Diesel	Aeration	Clarifie	1	Creosote
_						2005	1983	1975	1930	1988	1986	Joseph	Dehydrator
_	Material Stored		Shorn Wester		కీ		Pent	-					200
	Тепрегация	150	E STORE STOR	CONGUNANT PONTIES	Water	Creosote / Water	_	Gasoffne	#2 Diseal	Process waste	Process Waste	Process Waste	
_	Temperature	1 E							DESIGNATION OF THE PERSON OF T	MARIE	Water	Water	Creosote / Water
-	Storage Temperature	Degrees F	98	ş	ļ								
-	Density @ Storage Temperature	lb/gai		N N	3	35	ĝ	98	8	æ	8		
Ť	Molecular Weight @ Storage Temperature	Mbmole			3	8.34	8,34	6.5	-	28	8 2	28	ß
•	Tort	gallons/yr	Ц	9.000	230000	200 000					100	200	ę
-	Tert Direct	gallons	250,000	1.500	2 500	000'786	483,000	10,000	000'08	5.000,000	5 000 000	E 000 000	
+	Took Livery !	feet	38	9		O'O'O	8,000	1,250	000'6	150,000	25.000	2,000,000	200,000
-	Average Veses Sees Usi 1:	feet	36	₽	-	2	2	*	9	\$	35	4	
	Tank Orleanishes (Lo.	feet		-	-	•	4	12	32	ĸ	=	2 0	2
÷	Type of Boot (Demon C. C.		Vertical	Vertical	Vertical	Variant		-	-	-	-	•	\$
_	Vanor Remueo, Sustano		None	Dome	a de	S S	Veraca	Hortzontai	Hortzontal	Vertical	Vertical	Vertical	- Andrewsky
	Type of Tank?	yes or no		ž	2	3				None	None	No.	Monte
	Cheset Chy		O	Fixed Roof	Flxed Roof	Fived Boof	2	2	S	S.	2	2	No.
	Tank Daint Color	Memphis	Memphis	Memohis	Memoris	Marrable	Lixed Koor	Fixed Roof	Fixed Roof	Open	Soc O	2	2
	Paint Condition (Cond. or D		Blue	Beine	EST	Hotel	Membris	Memoris	Memphis	Memphis	Memoris	Memorie	Marriella
	Suit Collegion (GOOD of POOL)		900	S		CORCA	žen Žena	Aluminum	Aluminum	White	S S	MONEY	Membris
	lank Loading (Splash Loading - Dedicated		Splash Loading	Solash Loading	Colorh Lander	io.	Poor	Good	Good	Good	South		Glack
	Normal Service; Splash Loading - Dedicated		Dedicated Normal	Dedicated Normal	Dedicated Normal	Pedicated Nome	Splash Loading			Splash Loading	Splash Loading	Splach Loading	790r
	Not Applicable To Any Table		Service	Service	Service	_	Dedicated Normal	1	:	Dedicated Normal	Dedicated Normal	Dedicated Normal	
	Not Applicable To Any Tanks						200	DOMONI	Bottom	Service	Service	Service	Bottom
	Breathing Loss (See Note)	1											
	Working Loss (See Note)												
	Total Emissions (See Note)	Ž											
		À											
4	NOTE: All tank emissions are included in												
٠ ــــــــــــــــــــــــــــــــــــ	Plant Summary Table of Section C of the												
- 1	Application.					_						-	
												1	
- 1													
		1											

SECTION H TANK SUMMARY TABLE

eference	_	Hull						
	Plant Reference Number		CDN.3n	70 1100				
-	Emission Point Number		200	CKN-3)	GRN-32	GRN-33	GRN-34	JE NOS
	Reference No. (Table 2-1)		300	AA-003	AA-003	AA-003	AA OM	200
			8	<u>ہ</u>	28	5	30.50	37
			¥ar¥	South			5	8
	Name		Pentachlorophenol	2		Pentachlorophenol Pentachlorophenol	Pentachiomoboon	_
~	Construction Date		Equalization	Equalization	A A	*		Daniel
			1963	1983	1970	1970	1960	4070
ا	Material Stored		Water / Penta / Oil	Water / Penta / Oli Water / Penta / Oli	- C	Š	Pentachlorophenol	Creosote / Penta /
\$	Тетрегацие	BSPa				Oil / Penta	Concentrate	Water
48	Тетрегацие	ejso						
,	Storage Temperature	Degrees F	8	æ	8			
إد	Density @ Storage Temperature	bload		3 0	3	8	8	8
Ş	Molecular Weight @ Storage Temperature	[b/lbmole		,	2	7.75	9.55	8.34
Ų	Throughput	oallons/vr	65,000	AE AND				
÷	Tank Capacity	allons	14 000		O CO	850,000	120,000	400,000
ş	Tank Diameter	ğ	40	AN C	9,400	2,000	10,500	100,000
ŧ	Tank Height / Length	j	2 2	2	8	10	13	Ş
41	Average Vapor Space Height	100	**	74	7	15	S	3 8
2	Tank Orientation / Hodgoods or Vestigati	B				-		2,
¥	Type of Roof (Dome or Cons)		Vertical	Vertical	Vertical	Honzontal	Voolleen	
٤	Vanc Ramen Sepana		S	S	Ē		110	Vertical
3	Tune of Tento	Ves ov no	Ş	Se Se	2	2		ia i
Z	Cheerton	:	Fixed Roof	Fixed Roof	Fixed Roof	Fixed Roof	No.	2
	Tank Balas Calas	Memoris	Memoras	Memohis	Memohia	Monthle	LUCEU NOO!	- Doct Roof
واو	Dalat Condition (C. 1		Black	Black	T.	The state of the s	MENTONIS	Memphis
	THE CANADICAL GOOD OF POOT)		Poor	Poor	à	Cleary	Attument	Concrete
	Park Loading (Splash Loading - Dedicated		Splash Loading	Solash Loading		1	000	
9	Normal Service; Splash Loading - Dedicated		Dedicated Normal	Dedicated Normal		Sprash Loading		Splash Loading
10	Value Service, Bottom)		Service	Service	Rotton	Confessor Norman	:	Dedicated Normal
واع	workplande to Any Lanks					SCINICS	Bottom	Service
2	Not Applicable 10 Any Lanks							
	Dreaming Loss (See Note)	역						
		₹d⊥						
7	Working Loss (See Note)	2						
		À						
5.3	Total Emissions (See Note)	판						
Ī		À						
	NOTE: All tank emissions are included in							
	Plant Summary Table of Section C of the					-		
	Application.							
1		İ						
1		T						
		Ī						
		1						

SECTION L2 CYCLONES

2		sion Point No. / Name: AA-0	001, REF. NO. 40, MULTICLON	<u>E</u>
2.	Manı	afacturers Name and Model No.:	WELLONS MULTICLONE	COLLECTOR
3	Date	of construction for existing sources 1972	or date of anticipated start-up for	new sources:
4.	Cyclo a)	one Data: Cyclone type (if more than 1, Simple High Efficiency	put total number) : Potbellied Multiclone X	
	b)	Efficiency:	90 %	
	c)	Pollutant viscosity:	poise	
	d)	Flow Rate:	<u>25,450</u> acfm	
	e)	Pollutant size entering cyclone:	microns	
	f)	Pressure drop:	inches H ₂ O	
	g)	Baffles or Louvers (specify):		
	h)	Body	2.0 ft : 0.5 ft diameter: 6.0 ft height: 15.0 ft neight: 8.0 ft	
	i)	Wet spray: Yes 1. No. of Nozzles	X No	
	5	 Type of liquid Flow rate: Make-up rate: "recycled: 		
	j)	Fan location: 1. Downstream:	Direct emission Auxiliary Stack	
		2. Upstream:	X No cap (vertical em Fixed cap (diffuse er Wind respondent cap emissions)	nissions)
5.	Which BOILE	process(es) does the cyclone(s) con ER SOURCE AA-001, REF. NO. 40	trol emissions from?	WOOD FIRED

SECTION L2 CYCLONES

	UNKNOWN			•	
•	ne Data:				
a)	Cyclone type X Simp		e than 1, put total n	Potbel	
		Efficien	су	Multic	lone
b)	Efficiency:				_ %
c)	Pollutant visco	sity:			_ poise
d)	Flow Rate:				_ acfm
e)	Pollutant size e	ntering c	yclone:		microns
f)	Pressure drop:				_ inches H ₂ O
g)	Baffles or Lor	ivers (sp	ecify):		
h)	Cyclone dimensions: Inlet:			0.83	_ ft
			Outlet: Body diameter:	0.83 4.0	- ft - ft
			Body height:	3.0	ft
			Cone height:	4.5	_ ft
i)	Wet spray:		Yes	_X No	
	1. 2.		f Nozzles: of liquid used:		-
	3.	Flow	-		gpm
	4.	Make-	-up rate:		gpm
	5.	% rec	ycled:		_ %
j)	Fan location:				
	1.	Down	stream:		emission
	2	T In atm			ary Stack
	2.	Upstre	eam:		o (vertical emissions) cap (diffuse emissions)
					respondent cap (horizontal
				emissi	
Which	process(es) does	the cyclo	ne(s) control emiss	ions from	? SAWDUST.
					S AND LUMBER

SECTION M COMPLIANCE DEMONSTRATION (page 1 of 2)

Completion of Section M is not required for a complete application. It is presented to merely reflect what may be required by the Enhanced Monitoring and/or the Periodic Monitoring Regulations. Upon promulgation of those regulations, this section will be revised to reflect the actual requirements. Until then, the information in this section should be utilized for planning purposes.

Choose the type of monitoring that is suggested for your source in the "Enhanced Monitoring Guideline". Fill out the appropriate form and attach to the corresponding emission point description pages.

A. Compliance Demonstration by Continuous Emissions Monitoring (CEM).

 $\begin{array}{lll} Sulfur \ Dioxide(SO_2) & Nitrogen \ Oxides \ (NO_x) & Oxygen \ (O_2) \\ Carbon \ Dioxide \ (CO_2) & Total \ Reduced \ Sulfur \ (TRS) & Opacity \\ Hydrogen \ Chloride \ (Hcl) & Carbon \ Monoxide \ (CO) & Flow \\ Hydrogen \ Sulfide \ (H_2S) & Volatile \ Organic \ Compound \ (VOC) \end{array}$

B. Compliance Demonstration by Periodic Emission Monitoring using Portable Monitors.

SO₂ NO_x O₂ CO₂ CO HCl H₂S VOC Flow Moisture Combustibles Combustion Efficiency

C. Compliance Demonstration by Monitoring Control System Parameters or Operating Parameters of a Process.

Baghouse Pressure drop across baghouse, Broken bag detector,

Opacity.

Mechanical Collectors Pressure drop across collector, Hopper full detector,

Opacity.

Electrostatic Precipitators Primary and secondary voltage, Primary and secondary

currents, Spark Rate, Broken wire detector, Rap cycle frequency, Resistivity measurement, Inlet water flow,

Total solids, Opacity.

Thermal Incinerator Firebox temperature.

Catalytic Incinerator Catalyst bed temperature.

Flare Pilot light detector, Temperature after flame zone.

Particulate Scrubber Pressure drop across scrubber and demister, Scrubber fluid

recirculation rate, Pump discharge pressure, Pump motor

current.

Absorber for Gases pH of fluid, Fluid recirculation rate, Air flow, Pressure

drop across absorber and demister, Fluid temperature.

Carbon Absorber Steam mass flow rate per regeneration cycle, Carbon bed

temperature.

Condenser Condenser exit temperature, Amount of solvent recovered

daily. Charging rate, Production rate, Hours of operation, Secondary chamber temperature, Kiln or dryer exit temperature, Burner combustion efficiency, Power consumption, Static pressure, Fuel usage rate, Water

injection rate.

COMPLIANCE DEMONSTRATION (page 2 of 2) SECTION M

D. Compliance Demonstration by Monitoring Maintenance Procedures.

Water quality testing Sludge solids testing

Electrostatic precipitator cleaning frequency

Blacklight inspection of baghouses

Sludge mercury testing

Periodic inspection of process operating parameters

VOC leak testing Soot blowing frequency Fugitive dust control measures Control equipment inspection frequency

Reid vapor pressure testing

E. Compliance Demonstration by Stack Testing.

EPA Method 1 & 2:

Flow (S-type pilot tubes, Hot-wire anemometer)

EPA Method 3:

CO₂, O₂, CO (Orsat, Fyrite)

EPA Method 3A:

CO₂, O₂, (Analyzers)

EPA Method 4:

Moisture (Wet bulb-Dry bulb, Impingers)

EPA Method 5:

PM

EPA Method 6: EPA Method 6B: SO₂ (Impingers) SO₂ (24 hour average)

EPA Method 6C:

SO₂ (Analyzer)

EPA Method 7E: NO, (Analyzer)

EPA Method 9:

Opacity (Visible emissions reader)

EPA Method 10: CO (Analyzer)

EPA Method 16: TRS (Gas Chromatograph)

EPA Method 16A:

TRS (Impingers)

EPA Method 16B:

TRS (Gas Chromatograph)

EPA Method 18: VOC (Gas Chromatograph)

EPA Method 21: VOC Leaks (Analyzer)

EPA Method 25A:

VOC (Analyzer with FID)

EPA Method 25B:

VOC (NDIR Analyzer)

F. Compliance Demonstration by Fuel Sampling and Analysis (FSA).

Coal Sampling

Coke sampling

Tire derived fuel sampling

Waste oil sampling

Landfill gas sampling

Sewage sludge sampling Paper sludge sampling

G. Compliance Demonstration by Recordkeeping.

Testing and monitoring records Compliance schedule records

Refuse derived fuel sampling

Process hours of operation records

Fuel usage records

As-applied coating & ink composition records

Records of malfunction

As-applied coating & ink records,

Transfer efficiency records

Production records

SECTION M1 COMPLIANCE DEMONSTRATION BY CONTINUOUS EMISSIONS MONITORING (CEM)

An installation plan for each new (i.e. proposed) Continuous Emission Monitoring (CEM) System shall be submitted with the permit application for approval. Fill out one (1) sheet per analyzer.

Emi	ssion Point No./Name: AA-001 WOOD FIRED BOILER
Cont	inuous Emission Monitoring Data:
A.	Name of Manufacturer: HORIBA
В.	Model number: CMA-321
C.	Serial Number: 566220011
D.	Date of installation of CEM: 1992
E.	Which does the CEM monitor: X Pollutant Dilutent
F.	Pollutant / Dilutent / Flow being monitored: X Opacity CO, OPACITY
G.	Type of analyzer: In situ X Extractive Dilution CO ₂ Thermal Differential Pressure
H.	Other (specify): Type of analyzer description: MAGNETOPNEUMATIC
I.	Backup system (attach other compliance demonstration forms if needed):
J	Opacity CEM: How measured: X Monitor Visible Emission Evaluate
K.	If CEM is not previously certified, then it shall be submitted for certification within 60 day startup of the CEM system.
L.	State the operating principles of the analyzer: SEE FOLLOWING PAGE

M. Attach a schematic of the CEM system showing the sample acquisition point and location of the monitor and explain any deviations from the siting criteria in Performance Specifications 1, 2, 3, 4, 5, 6 and 7 in 40 CFR Part 60, Appendix B.

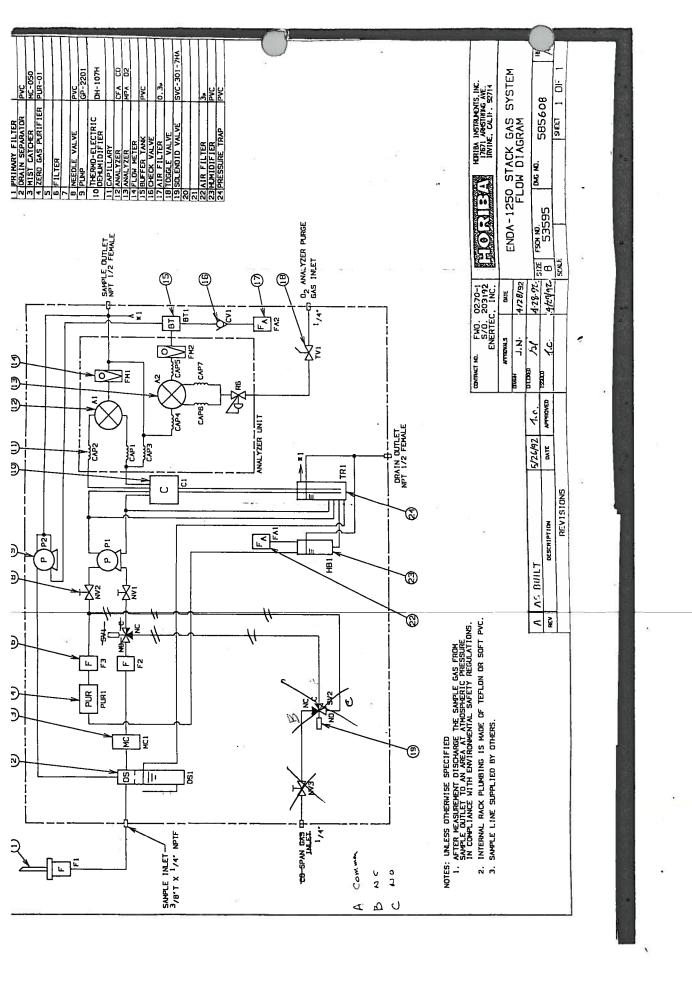
Em Operating Principa

1 OVERVIEW

1.1 THEORY OF OPERATION

The SNIFFER system is designed to measure the concentration of CO, CO₂, and O₂ components in stack gas emitted from a stationary source. The system uses a magnetopneumatic analyzer to measure O₂ and infra-red analyzers (NDIR method) to measure CO and CO₂. During the operation of the magnetopneumatic analyzer, oxygen molecules are drawn into a non-homogenous magnetic field and attracted to a higher magnetic field, resulting in a pressure increase. A pressure increase is produced outside of the magnetic field using nitrogen gas. This differential pressure is measured using a condenser type microphone, which produces an electrical signal. A stable signal is then produced and transmitted by exciting the magnet intermittently and processing the alternating signal. The output signal is directly linear to the oxygen concentration.

The principle of the non-dispersive infra-red analyzer involves a dual beam method with an opto-pneumatic double layer detector. The infra-red source emits infra-red radiation, which is modulated by a rotating chopper wheel. After passing through the sample cell, the radiation is detected by the double layer detector. A window that is permeable to the infra-red radiation divides the detector chamber into two gas chambers or layers, which are linked together by a capillary that contains a microflow sensor. The center part of the absorption curve is absorbed by the first detector level while the edges are absorbed by the second detector level, resulting in a pressure differential between the two detector levels. The gas flow that results from the pressure differential is detected by the microflow sensor. This detected output signal is then processed by the microprocessor into a linear output signal.


The SNIFFER system also incorporates other components that allow the Analyzers to be calibrated, and the data from them to be recorded.

1.2 COMPONENTS

The SNIFFER system incorporates a Sample Conditioner, Analyzer, Calibration Unit, Opacity Monitors, and Strip Chart Recorder. Figure 1-1 shows how the components are configured in the system cabinet.

1.2.1 Sample Conditioner

The Sample Conditioner takes sample gas from the stack port and supplies a steady flow of clean sample gas to the Analyzer.

The monitoring of a control system parameter or a process parameter may be acceptable provided that a correlation between the parameter value and the emission rate of a particular pollutant is established in the form of a curve of emission rate versus parameter values. At least three sets of stack test data, that bracket the emission limit if possible, shall be used to define the emission curve. This data shall constitute the certification of the system and must be attached for approval. If it is not attached, it shall be submitted within 60 days from the date of startup of the system or the date of application, which ever is later.

1.	Emission Point No./Name: AA-002, REF. NO. 41, OIL FIRED BOILER
2.	Method of monitoring description: MONITORING BY MEASUREMENT OF FUEL OIL CONSUMPTION FOR TOTAL TIME IN OPERATION
Attac	th separate sheets if needed.
3.	Backup system (attach other compliance demonstration forms if needed):
4.	The monitoring system shall be subject to appropriate performance specifications, calibration requirements, and quality assurance procedures.

If a quality assurance / quality control plan is not attached with the application for approval, it shall be submitted within 60 days from the date of startup of the monitoring

program or the date of application, which ever is later.

5.

The monitoring of a control system parameter or a process parameter may be acceptable provided that a correlation between the parameter value and the emission rate of a particular pollutant is established in the form of a curve of emission rate versus parameter values. At least three sets of stack test data, that bracket the emission limit if possible, shall be used to define the emission curve. This data shall constitute the certification of the system and must be attached for approval. If it is not attached, it shall be submitted within 60 days from the date of startup of the system or the date of application, which ever is later.

1.	Emission Point No./Name:	AA-003 WOOD PRESERVING PROCESS					
2.	Method of monitoring description: MONITORING BY MEASURI PRODUCED	EMENT	OF	CUBIC	FEET	OF	PRODUCTS
-							
- -							
 Atta	ch separate sheets if needed.						
3.	Backup system (attach other comp	oliance d	emon	stration fo	orms if	neede	;d):
4.	The monitoring system shall be s	subject t	o app	propriate 1	perform	ance	specifications,

If a quality assurance / quality control plan is not attached with the application for

approval, it shall be submitted within 60 days from the date of startup of the monitoring

calibration requirements, and quality assurance procedures.

program or the date of application, which ever is later.

5.

The monitoring of a control system parameter or a process parameter may be acceptable provided that a correlation between the parameter value and the emission rate of a particular pollutant is established in the form of a curve of emission rate versus parameter values. At least three sets of stack test data, that bracket the emission limit if possible, shall be used to define the emission curve. This data shall constitute the certification of the system and must be attached for approval. If it is not attached, it shall be submitted within 60 days from the date of startup of the system or the date of application, which ever is later.

1.	Emission Point No./Name: AA-005, REF. NO. 43, NATURAL GAS SPACE HEATERS, (3) UNITS
2.	Method of monitoring description:
	MONITORING BY MEASUREMENT OF NATURAL GAS CONSUMPTION
Attac	ch separate sheets if needed.
3.	Backup system (attach other compliance demonstration forms if needed):
1.	The monitoring system shall be subject to appropriate performance specifications, calibration requirements, and quality assurance procedures.
5.	If a quality assurance / quality control plan is not attached with the application for

approval, it shall be submitted within 60 days from the date of startup of the monitoring

program or the date of application, which ever is later.

The monitoring of a control system parameter or a process parameter may be acceptable provided that a correlation between the parameter value and the emission rate of a particular pollutant is established in the form of a curve of emission rate versus parameter values. At least three sets of stack test data, that bracket the emission limit if possible, shall be used to define the emission curve. This data shall constitute the certification of the system and must be attached for approval. If it is not attached, it shall be submitted within 60 days from the date of startup of the system or the date of application, which ever is later.

1.	Emission Point No./Name: AA-006, REF. NO. 44, NATURAL GAS FIRED STEAM CLEANER
2.	Method of monitoring description: MONITORING BY MEASUREMENT OF NATURAL GAS CONSUMPTION
a -	
-	
Atta	h separate sheets if needed.
3	Backup system (attach other compliance demonstration forms if needed):
4.	The monitoring system shall be subject to appropriate performance specifications,

5. If a quality assurance / quality control plan is not attached with the application for approval, it shall be submitted within 60 days from the date of startup of the monitoring

calibration requirements, and quality assurance procedures.

program or the date of application, which ever is later.

The monitoring of a control system parameter or a process parameter may be acceptable provided that a correlation between the parameter value and the emission rate of a particular pollutant is established in the form of a curve of emission rate versus parameter values. At least three sets of stack test data, that bracket the emission limit if possible, shall be used to define the emission curve. This data shall constitute the certification of the system and must be attached for approval. If it is not attached, it shall be submitted within 60 days from the date of startup of the system or the date of application, which ever is later.

1.	Emission Point No./Name: AA-015, REF. NO. 53, NATURAL GAS FIRED SPACE HEATER, (1) UNIT
2.	Method of monitoring description: MONITORING BY MEASUREMENT OF NATURAL GAS CONSUMPTION
Attach	separate sheets if needed.
3.	Backup system (attach other compliance demonstration forms if needed):
4.	The monitoring system shall be subject to appropriate performance specifications, calibration requirements, and quality assurance procedures.

If a quality assurance / quality control plan is not attached with the application for approval, it shall be submitted within 60 days from the date of startup of the monitoring

program or the date of application, which ever is later.

5.

SECTION M5 COMPLIANCE DEMONSTRATION BY STACK TESTING

Compliance demonstration by stack testing will be carried out in accordance with EPA approved reference methods and the stack test report must be attached. Emission Point No./Name: AA-001, REF. NO. 40, WOOD FIRED BOILER 1. 2. Pollutant being tested for: PARTICULATE AND VISIBLE EMISSIONS 3. Test Method: SEE STACK TEST REPORT (FOLLOWING PAGES) 4. Compliance shall be demonstrated: Daily Weekly Monthly Other (specify): **BIENNIAL (ONCE EVERY 2 YEARS)** 5. Any measured emission rate that exceeds an emission limit established by the permit must be reported as an excess emission. 6. Is this an existing method of demonstrating compliance: X Yes No 7. Backup system (attach other compliance demonstration forms if needed):

NVIRONMENTAL NONITORING LABORATORIES, INC.

). Box 655 • 624 Ridgewood Road lgeland, Mississippi 39158

phone: 601/856-3092

fax : 601/853-2151

September 29, 2000

Section M5 Stack Test

Subject:

Koppers Industries - Grenada, Mississippi

Wood Waste Boiler - Stack Emissions Test

Facility No. 0960-00012

On September 22, 2000, Environmental Monitoring Laboratories performed air emissions testing for Koppers Industries in the Tie Plant community near Grenada, Mississippi. Testing was done to measure particulate and visible emissions from the wood waste boiler in accordance with requirements of the Mississippi Department of Environmental Quality.

Results of emissions testing are shown below.

PAR	TICULATE EMISS	VISIBLE EMISSIONS	
#/hr	gr/dscf	High SMA, % opacity	
8.75	0.076	0.192	31.88

Mr. Anthony Mahan of Koppers coordinated the testing project. Danny Russell of Environmental Monitoring Laboratories was responsible for sample collection and analysis of particulate samples. Sample custody was limited to Mr. Russell.

Following is a report of the test.

REPORT OF AIR EMISSIONS TESTS FOR KOPPERS INDUSTRIES, INC. GRENADA PLANT WOOD WASTE BOILER

Section M5

Grenada, Mississippi September 22, 2000 Stack Test

CONTENTS

1.0	TES	T RESULTS	page	1
2.0	SOL	JRCE DESCRIPTION		2
3.0	TEST PROCEDURES			2
.4.0	DATA REDUCTION			
5.0	NOMENCLATURE			
6.0	CALIBRATION			7
7.0	APP	ENDICES:		8
	A.	Field and Laboratory Data		
	В.	Calibrations		
	C.	Visible Emissions Record		
	D.	Boiler Steam Chart (Koppers)		

REPORT CERTIFICATION

I certify that I have examined the information submitted herein, and based upon inquires of those responsible for obtaining the data or upon my direct acquisition of data, I believe the submitted information is true, accurate and complete.

Signed

Daniel G. Russell

2.0 SOURCE DESCRIPTION:.

Section M5 Stack Test

Koppers Industries, Inc. operates a 30,000 pound per hour Wellons wood waste boiler at their wood preserving facility in Grenada, Mississippi. The boiler provides steam for the timber treating processes and a turbine generator. Fuel is typically wood waste generated from the manufacture of treated wood products.

Heat input as calculated from the test data and an F-Factor was an average 45.16 MM Btu/hr.

The boiler exhausts to the atmosphere by way of a 34.5 inch diameter vertical stack. Two sample ports at 90° are provided at a location that is 432 inches (12.5 diameters) below the stack exit and 356 inches (10.3 diameters) above an upstream stack tapered section.

3.0 TEST PROCEDURES:

Test procedures used are those described in the Code of Federal Regulations, Title 40, Part 60, Appendix A. Specifically, Method 1 was used to determine the number of sample points and Method 5 to determine flow rates, moisture content, and particulate emissions. The sampling train was identical to that described in Method 5 except that the cyclone was omitted. Visible emissions were read in accordance with Method 9 concurrently with the emissions test

Heat input to the boilers was determined by continuously monitoring oxygen content of the flue gas as described in Method 3A and calculating heat input using an F-factor of 9280 scf per million Btu of heat input for the wood waste fuel.

Filters were recovered by rinsing the front half of the filter holder into the probe wash and securing the filters in glass petri dishes. Part of the sample filter normally adheres to the filter gasket, and some of the adhering material is recovered into the probe wash. Therefore some of the filter weight is attributed to the probe wash weight.

Filters were heated in an oven for 2 hours at 105° C, desiccated at least 24 hours and weighed to constant weight. Probe wash samples in acetone were evaporated to dryness over low heat in tared beakers, desiccated for at least 24 hours and weighed to constant weight. Weighings are made at 6 hour or greater intervals (samples stored in desiccator). Final weights were considered valid and were recorded if there was no more than 0.5 milligrams difference from the previous weighing.

Section M5 Stack Test

1.0 Test Results:

Wellons Wood Waste Boiler

Run No. Date Time Start	1 9/22/00 0955	9/22/00 0116	3 9/22/00 1235	AVG.	
Time End	1059	1220	1339		
PARTICULATE EMISSIONS	#/hr	12.69	5.10	8.46	8.75
PARTICULATE EMISSIONS	gr/dscf	0.109	0.044	0.075	0.076
PARTICULATE EMISSIONS	#/MM Btu	0.265	0.113	0.199	0.192
VISIBLE EMISSIONS	high SMA, %	31.88	15.00	10.42	31.88
HEAT INPUT	MM Btu/hr	47.92	45.12	42.43	45.16
VOLUMETRIC FLOWRATE	acfm	27884	26664	26376	26975
VOLUMETRIC FLOWRATE	dscfm	13593	13454	13149	13399
VELOCITY	ft./sec.	71.6	68.5	67.7	69.3
STACK TEMPERATURE	°F	481	470	462	471
MOISTURE	%	12.9	10.9	12.8	12.2
SAMPLE RATE	% isokinetic	100	101	97	99

1.	Emiss	sion Point No./Name:	AA-	002, REF. NO. 41,	OIL FIRE	D BOILER				
2.	Date o		construction if for existing sources or date of anticipated start-up for new sources: BEFORE AUGUST 7, 1977							
3.	List th	List the ASTM fuel sample collecting and analyzing methods used: EMISSION ESTIMATE BASIS – AP-42								
		EMISSION ESTIMATE	DASIS - AI -4							
	33 <u>4</u>		- Martines							
4.	Fuel t	peing sampled:			5-45 - 60 - 66	* 1				
5.	How	will samples be taken:	Au	tomated	Manu	al				
6.	Fuel S	Sampling Data:								
	A.	Name of Manufacturer:								
	B.	Model number:								
	C.	Serial Number:								
	D.	Is this an existing FSA sy	stem:	YES	No					
	E.	How will samples be take	n:	Automated		Manual				
	F.	Backup system (attach of	ther compliance	e demonstration for	ms if need	ed):				
	G.	State the method of operating of the sampler:								
	Н.	Attach a schematic of the machine.	Attach a schematic of the FSA system showing the sample acquisition point and location of the machine.							
	I.	Compliance shall be demo	onstrated:							
		Daily	Weekly	Mon	thly	Quarterly				
_										

- 7. Any composite sample over the emission rate will be reported as an excess emission.
- 8. If the FSA system certification is not attached for approval, it must be submitted within 60 days from startup of the FSA system or the date of application, which ever is later.

1.		sion Point No./Name : TERS	AA-005	, REF. NO.	43, NAT	URAL GAS	SPACE
-	(3) U	NITS	······				—
2	Date	of construction if for existin BEFORE AUGUST 7, 1	077	anticipated st	-		
3.	List t	he ASTM fuel sample collection EMISSION ESTIMATE	ting and analyzing BASIS – AP-42	methods used			
4.	Fuel	being sampled:					
5.	How	will samples be taken:	Autom	ated	Manua	ı 1	
6.	Fuel !	Sampling Data:					
	A.	Name of Manufacturer:					_
	B.	Model number:			·	<u> </u>	_
	C.	Serial Number:					
	D.	Is this an existing FSA s	ystem:	YES	No		
	E.	How will samples be tak	en:	Automated_		Manual	
	F.	Backup system (attach o	other compliance de	monstration fo	orms if neede	:d):	
	G. —	State the method of oper	ating of the sampler				<u>-</u> _
	Н.	Attach a schematic of the machine.	FSA system showing	ng the sample a	acquisition po	oint and locati	— on of the
	I.	Compliance shall be den	nonstrated:				
		Daily	Weekly	Мо	nthly	Qu	arterly

- 7. Any composite sample over the emission rate will be reported as an excess emission.
- 8. If the FSA system certification is not attached for approval, it must be submitted within 60 days from startup of the FSA system or the date of application, which ever is later.

	ission Point No./Name: EANER	AA-006, REF. NO. 4	4, NATURAL GAS FIRED STEAM					
Date	e of construction if for existing 1992	sources or date of anticipated	start-up for new sources:					
List		BASIS – AP-42						
Fue	l being sampled:							
Hov	w will samples be taken:	Automated	Manual					
Fue	l Sampling Data:							
A.	Name of Manufacturer:							
B.	Model number:							
C.	Serial Number:							
D.	Is this an existing FSA sys	tem: YES	No					
E.	How will samples be taken	: Automated	Manual					
F.	Backup system (attach oth	er compliance demonstration	forms if needed):					
G.	State the method of operating of the sampler:							
Н.	Attach a schematic of the FSA system showing the sample acquisition point and location of machine.							
I.	Compliance shall be demonstrated:							
	Daily	Weekly M	Ionthly Quarterly					

- 7. Any composite sample over the emission rate will be reported as an excess emission.
- 8. If the FSA system certification is not attached for approval, it must be submitted within 60 days from startup of the FSA system or the date of application, which ever is later.

1.	Emission Point No./Name: AA-015, REF. NO. 53, NATURAL GAS FIRE HEATER, (1) UNIT					
2. —	Date o	of construction if for existing BEFORE AUGUST 7, 19	sources or date of	f anticipated start-		
3. 	List th	ne ASTM fuel sample collec EMISSION ESTIMATE	BASIS – AP-42			
- 4.	Fuel b	peing sampled:			-	
5.	How	will samples be taken:	Auton	nated	Manual	
6.	Fuel S	Sampling Data:				
	A.	Name of Manufacturer:				
	В.	Model number:				
	C.	Serial Number:				
	D.	Is this an existing FSA s	ystem:	YES	No	
	E.	How will samples be tak	en:	Automated		Manual
	F.	Backup system (attach o	other compliance d	emonstration form	ns if needed):
	G	State the method of oper	ating of the sample			
	H.	Attach a schematic of the machine.	FSA system show	ing the sample ac	quisition poi	nt and location of the
	I.	Compliance shall be den	nonstrated:			
		Daily	Weekly	Mon	hly	Quarterly
_			ingian mata will b	e renorted as an e	vcess emiss	ion

- Any composite sample over the emission rate will be reported as an excess emission.
- 8. If the FSA system certification is not attached for approval, it must be submitted within 60 days from startup of the FSA system or the date of application, which ever is later.

Current Applicable Requirements and Status (page 1 of 2) SECTION N

List applicable state and federal regulations and applicable test methods for determining compliance with each applicable requirement. Clearly identify federal regulations from state requirements. Provide the compliance status as of the day the application is signed.

Emission Point No.	Applicable Requirement	Pollutant	Test Method	Limits	Compliance Status
AA-001	APC-S-1, SEC. 3.4(B)	PM	METHOD 6	10.3 CM (10.00)	100 11
AA-001	APC-S-1, SEC, 3,1	OPACITY	CEM	4.00 GINDOCF	
A A 001	ABC 0 1 0EC 4 1/C)	See	CEIM	40%	NI
100-W4	Arc-3-1, 3EC. 4.1(C)	202	STACK TEST & FNGINFER	2.4 LB/MMBTU	Z
			CALCS.		
AA-002	APC-S-1, SEC. 3.4(A)	PM	AP-42	E=0.88081-0.1667	Z
				=14.36 LB/HR	
AA-002	APC-S-1, SEC. 3.1	OPACITY		40%	2
AA-002	APC-S-1, SEC. 4.1(C)	SO2	AP-42	2.4 LB/MMBTU	
AA-004	APC-S-1, SEC. 6	PM	AP-42	E=4.1P 0.67	Z
010	1			27 LB/HR	
AA-010	APC-S-1, SEC. 6	PM	AP-42	4.78 LB/HR	2
AA-011	APC-S-1, SEC. 6	PM	AP-42	4 84 L B/HR	
PLANT -	APC-S-1, SEC. 6	PM	VARIOUS	28.4 LB/HR	Z
WIDE					

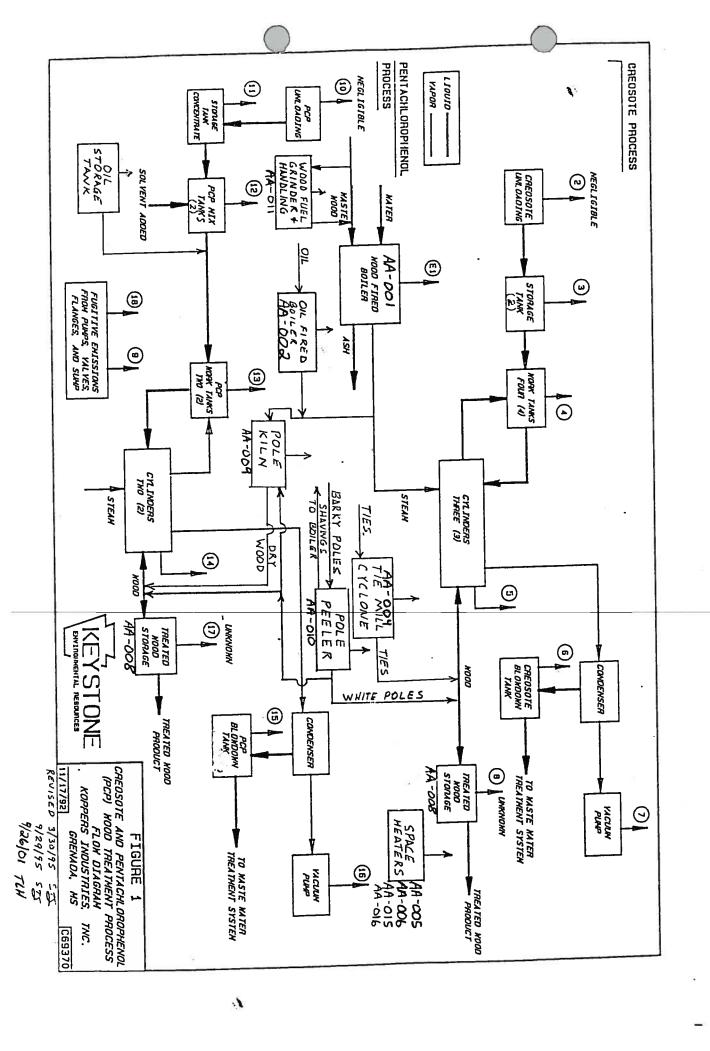
Future Applicable Requirements and Status (page 2 of 2) **SECTION N**

List applicable state and federal regulations and applicable test methods for determining compliance with each applicable requirement. Clearly identify federal regulations from state requirements. Provide the compliance status as of the day the application is signed.

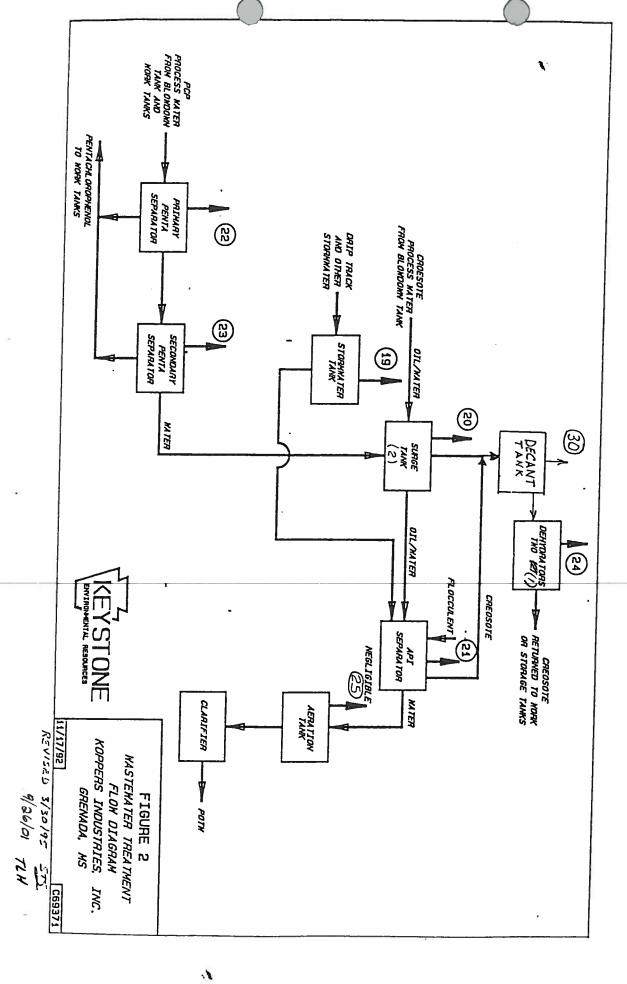
	-		1.19	 	 			
Compliance Status IN / OUT								
Limits								
Test Method								
Pollutant								
Applicable Requirement	NONE							
Emission Point No.								

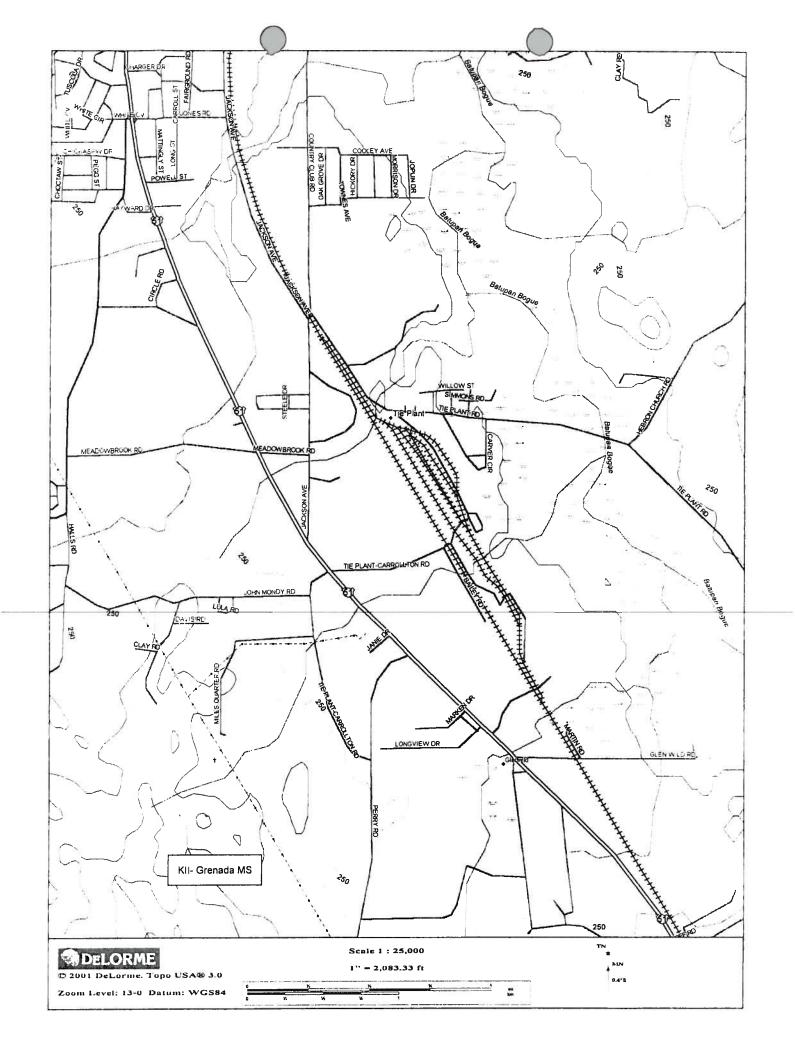
SECTION O COMPLIANCE CERTIFICATION

	CITOIT	COMIT	DIANCE CERTIFICATION	/1\				
1.	Emission l	Point No./Name:	AA-001, REF. NO. 40,	WOOD FIRED BOILER				
2.	Indicate th	e source complianc	ce status:					
	A		source is currently in compliance, we w to assure compliance for the duration o					
	В.	The Current Emissions Requirements and Status form (previous page) includes new requirements that apply or will apply to this source during the term of the permit. We will meet such requirements on a timely basis.						
C. This source is not in compliance. The following statement of corrective ac submitted to describe action which we will take to achieve compliance.								
	1	Attached is a brief description of the problem and the proposed solution.						
	2We will achieve compliance according to the following schedule.							
Prog	gress report Starting	s will be submi date:		o) months thereafter				
	Prob	lem	Action	Deadline				
				* 1000 to 1				


Problem	Action	Deadline
	V 592 1	
		, , ,

COMPLIANCE CERTIFICATION SECTION O ALL POINTS EXCEPT AA-001 Emission Point No./Name: 1. 2. Indicate the source compliance status: Where this source is currently in compliance, we will continue to operate and maintain A. X this source to assure compliance for the duration of the permit. The Current Emissions Requirements and Status form (previous page) includes new B. requirements that apply or will apply to this source during the term of the permit. We will meet such requirements on a timely basis. This source is not in compliance. The following statement of corrective action is C. submitted to describe action which we will take to achieve compliance. Attached is a brief description of the problem and the proposed solution. We will achieve compliance according to the following schedule. Progress reports will be submitted:


Starting date:


Problem	Action	Deadline

and every six (6) months thereafter

:

Fax

Koppers Inc. Environmental Dept. 436 Seventh Avenue

Pittsburgh, PA 15219

Tel 412 227 2337 Fax 412 227 2423

www.koppers.com

Fax Number: 601-961-5703

Company: MDEQ

Attention: CHRISTEN DAVIS

Date:

AA-001 INFORMATION - REQUESTED

8-7-03

PER OUR DISCUSSIONS, PLEASE SEE THE ATTACHED SHEET. PLEASE CALL IF YOU HAVE QUESTIONS, THANKS.

ERICTACTACTA

TIM BASILONE 412-227-2114

AA MA BON ED WOOD FIRED	tafor		Sulfur	Chlorine	94		(16/hr):
Total Minor Burned.	,	67,890		0.01%	0.04%		15500
Constitution British		6	. 0.2	2%	0.04%		
Doofs Wood Rugad		0	0.5	0.25%	0.25%	•	
Mathematical Mood Burned:		67.890	0.0	0.01%	0.04%		
Removal Efficiency (1):				7.0	0.45		
	Emission	5				Estimated	Estimated Emissions
- Collistent	Factor		Units	Basis		(tn/yr)	(Ib/hr)
Dartitulate		4.20	4.20 lb/tn	AP-42		142.57	32.55
202		0.075 lb/tn	lb/tn	AP-42		2.55	0.58
NON		1.8	1.6 lb/tn	1894 Test	Test	54.31	12.40
500		6.8	6.6 lb/tn	AP-42		224.04	51.15
200		0.180 lb/tm	ıb/tn	AP-42	~	6.11	1.40
		1.5E+00	1.5E+00 lb/tn PCP fuel	uel 2/96 Test	fest	0.0000	
Areaic		8.8E-05 lb/fm	ib/tn	AP-42	2	0.0030	
Carlmin	-	1.7E-05 lib/tn	libitn	AP-42	2	0.0006	
Chamitan		1.3E-04 lb/tm	lb/tn	AP-42	2	0.0044	
L part		3.1E-04 lb/tn	Ib/tn	AP-42	2	0.0105	
Representation		8.9E-03 lb/tn	Ibrh	AP-42	2	0.3021	
Nickel		5.6E-04 lb/tn	1b/tn	AP-42	2	0.0190	0.0043
Calenting		1.8E-05 (b/tn	(b/tn	AP-42	2	0.0006	0.0001
March		0.0000065 lb/tm	(b/tn	AP-42	2	0.0002	0
Total LAG Malaka						0.34	0.08
TOTAL MOUSING							

(1) Removal efficiencies based on 2/98 stack test

Facility Numbe	Modification/Page # #	3
Facility Name: Kopp	MESHAP Subpart:	97
Project Engineer Type of Permit Action:	EPD Energy Application Rec'd: 7/ Minor Modification Assigned:	7/2003
Review Complete:	Date Determined Incomplete: Date Determined Complete:	d de accession
Ant. Public Notice:	Draft Permit to Supervisor: Draft Permit to Source: Public Notice Publish:	
int. Proposed to EPA: Ant. Permit Board:	Public Notice Expire: Proposed Permit to EPA:	
	Permit Board: 7-24-03-On 7-7-03, EPD Energy who is now handling this source receive nodification. The minor modification is for the purpose of installing a 29 allon creosote tank. The request as initially not detected as a modificati ecause it was incorporated in a package that initially indicated it was onlevisions to the renewal application on file.	

Facility Numbe		Facility Name: Ko	oppers Industries, Inc.	
	vai Application Due: 9/1/2001 pinal Permit Board: 3/11/1997 Mods,		Class: TV Status: Renewal Application Rec'd: Permit Expires: Permit Renewed:	O 09/28/2001 3/1/2002
MACT	Subparts:			
Major: Area: Notes/Comments from Original TV pplication Review:	Koppers will be una	NESHAP Subparts: NSPS Subparts: ble to become a SM solution of treated woodwa.	urce due to actual emissions of HCI	heing >10
	revised renewal ann	modified 011497. 11-4	ste in the boiler. Published PN 112 its so the company can begin using -02-On 10-30-02 the source submit nange in the source's operations. 7-n to the TV renewal application.	1996 for 1 crossties

July 1, 2003

CERTIFIED MAIL 7000 0520 0021 7551 8951

KOPPE

MECEIVEL

JUL 7 2003

Strice of Political Control

Koppers Inc. **Utility Poles and Piling** P.O. Box 160

Tie Plant, MS 38960 Tel 662 226 4584 Fax 662 226 4588 www.koppers.com

Ms. Maya Rao Mississippi Department of Environmental Quality P.O. Box 10385 Jackson, MS 39289-0385

RE:

Title V Operating Permit - #0960-00012 Koppers Inc. - Grenada, Mississippi Minor Permit Modification, and Second Revision to Renewal Application

Dear Ms. Rao.

On March 11, 1997, Koppers Industries, Inc. was issued the Title V Operating Permit No. 0960-00012 for its wood treating plant (the Plant) at Tie Plant, MS. An application for renewal of the Title V permit was submitted on September 26, 2001, in conformance with MDSEQ requirements. Since that time a modification to the renewal application was submitted on October 22, 2002, with regard to several changes at the facility that affected air emissions described in the original Title V Renewal Application. This transmittal contains information pertaining to a second modification to the Title V Renewal Application as a result of facility equipment changes that will occur.

The attached sheets provide revised and updated information and summarize changes in plant equipment that will occur during the summer of 2003. The subject changes affect air emissions in that the overall air emissions for the facility will be less than estimates provided in the Title V Renewal Application. Changes that will be made to the facility are discussed below, and forms and supplemental information for replacement of information submitted in the original Title V Renewal Application are attached.

Three tanks located at the Plant will be removed from service and dismantled, including the #4 Work Tank, Creosote Measuring Tank, and the Creosote Dehydrator. Reference Numbers for these tanks in the Renewal Application (Section H, Tank Summary Table) are GRN-09, GRN-11, and GRN-29, respectively. All three of the tanks to be removed are equipment included under Emission Point Number AA-003 in the Renewal Application. Only one of the tanks, the #4 Work Tank, will be replaced at this time. The new tank will be named "#4 Work Tank", and will be referenced as GRN-09 on the Tank Summary Table.

The attached sections contain information that was modified as a result of the changes described above. These sections should be used to replace sections of the renewal application submitted earlier. The following table serves as a guide for making these replacements.

Attached Information	Replacement For: (Sections in the original renewal application and/or the first modification request dated 10/12/02 to be removed and replaced with the attached information)
Renewal Application Narrative - Section 2.1 (2 Pages).	Information provided in original application, and the first modification request on 10/28/02.
Section H (2 Pages), and the referenced Tank Summary Table (3 Pages)	Section H (2 Pages), and the Tank Summary Table (3 Pages).

In addition to information referenced above, a cover page indicating the permitting activity (modification) and a completed Section B, Owners Information (2 Pages), are attached.

Please note that information contained in the Tank Summary Table for Section H was revised to include information on the new Work Tank #4 (GRN-09) that will be installed in July 2003. Information required on the Section H form for the new tank is highlighted in bold print under reference GRN-09 on the Tank Summary Table. Also, information for the Creosote Dehydrator (GRN-29) and the Creosote Measuring Tank (GRN-11) was removed from the Tank Summary Table.

Koppers understands that the new tank will be regulated under 40 CFR 60 Subpart Kb, which requires that a strapping table and a construction drawing of the tank are maintained on file at the facility. The full requirements of Subpart Kb are not applicable because the vapor pressure of the material stored in the tank is below the pressure criteria for Subpart Kb.

If you have any questions or require additional information, please call me at (662) 226-4584 extension 11.

Yours truly,

Thomas L. Henderson

Plant Manager

Enc.

cc. Steve Spengler – Environmental Permits Division MSDEQ Tim Basilone – KII, Pittsburgh

2.1 Changes in Equipment Reference Numbers

Several of these Reference Numbers have been changed to incorporate the numbering system used in the SPCC Plan for the Plant. Other Reference Numbers have been changed because the 1997 Title V Permit had duplicate Reference Numbers. For example, in the 1997 Title V Permit, both Emission Points AA-003 and AA-0010 had a Reference No. 32. By revising the Reference Number system used in this renewal application, this and other duplicate reference numbers have been avoided.

Emission Point	Description (1997 Title V References)	Proposed Ref. No	Comments
AA-001	Title V, Ref. No. 1 - the 60.0 MMBTUH	40	See also Section 4
	Wellons/Nebraska Woodwaste Boiler	1	See also seedon 4
AA-002	Title V, Ref. No. 26 - the 28.5 MMBTUH fuel oil	41	
	fired Murray Boiler	1	
AA-003	SPCC, Ref. No. 5 - the 34,000 gal treatment cylinder	1	
	containing Penta in oil.	1 -	1
	SPCC, Ref. No. 5 - the 27,000 gal treatment cylinder	2	
	containing Creosote	_	
	SPCC, Ref. No. 5 - the 27,000 gal treatment cylinder	3	
	containing Creosote		
	SPCC, Ref. No. 5 - the 27,000 gal treatment cylinder	4	
	containing Creosote		
	SPCC, Ref. No. 5 - the 27,000 gal treatment cylinder	5	Changed from Creosote to Penta us
	containing Creosote.		Contract nom Cleosofe to Leura fa
	SPCC, Ref. No. 6 - the 29,7786 gal #1 Work Tank	6	
	containing Penta in oil.		
	SPCC, Ref. No. 7 - the 29,786 gal #2 Work Tank	7	
	containing Creosote	,	
	SPCC, Ref. No. 8 - the 29,786 gal #3 Work Tank	8	
	containing Creosote		
	SPCC, Ref. No. 9 - the 29,786 gal #4 Work Tank	9	Original tank replaced in July 2003
	containing Creosote	,	Original tank replaced in July 2003
	SPCC, Ref. No. 10 - the 29,786 gal #5 Work Tank	10	
	containing Creosote/Water.	10	
	SPCC, Ref. No. 11 - the 4,200 gal Measuring Tank		
	containing Creosote		Removed in July 2003, not replaced
	SPCC, Ref. No. 12 - the 100,000 gal #1 Storage Tank	10	CI 10
. [containing Creosote	12	Changed from creosote storage to a
	SPCC, Ref. No. 13 - the 100,000 gal #2 Surge Tank		storm water surge tank
	containing Process water	13	
	SPCC, Ref. No. 14 - the 100,000 gal #5 Storage Tank	14	
	containing Diesel #2 fuel oil	14	
9	SPCC, Ref. No. 15 - the 105,000 gal #6 Storage Tank	15	
lo	containing creosote	15	
	SPCC, Ref. No. 16 - the 300,000 gal #10 Surge Tank	16	
l c	containing process water	10	
5	SPCC, Ref. No. 17 - the 250,000 gal Storm Water	- 17	
S	surge tank containing Storm Water	17	
5	SPCC, Ref. No. 18 - the 1,500 gal Coagulant Tank		
c	containing water treatment system polymer additive	18	
	POG P C N 10 10 10 10 10 10 10 10 10 10 10 10 10		
3	SPCC, Ref. No. 19 - the 2,500 gal Decant Tank	19	
<u>°</u>	ontaining Creo/Oil/Water		
S	PCC, Ref. No. 20 - the 8,000 gal Creosote Blowdown	20	
ta	ank containing Creo/Water		
S	PCC, Ref. No. 21 - the 6 ft. Dia. X 60 ft. long, Air		Removed from list. Contains only
R	eceiver containing compressed air		compressed air

Emission Point	Description (1996 Title V References)	Proposed Ref. No	Comments
	SPCC, Ref. No. 22 - the 7 ft. Dia. X 40 ft. long Air		Removed from list. Contains only
	Receiver containing compressed air		compressed air
	SPCC, Ref. No. 23 - the 8,000 gal Penta Blowdown	23	
	tank containing water/penta/oil		
	SPCC, Ref. No. 26 - the 150,000 gal Aeration Tank	26	† · · · · · · · · · · · · · · · · · · ·
	containing waste water		
_	SPCC, Ref. No. 27 - the 25,000 gal Clarifier Tank	27	
	containing waste water		
	SPCC, Ref. No. 28 - the 15,000 gal Discharge Tank	28	
	containing waste water		
	SPCC, Ref. No. 29 - the 8,000 gal Creosote	 	Removed in July 2003, not replaced
	Dehydrator		Removed in July 2003, not replaced
	SPCC, Ref. No. 30 - the 14,000 gal North Penta	30	
	Equalization Tank containing water/penta/oil	30	
	SPCC, Ref. No. 31 - the 14,000 gal South Penta	31	
	Equalization Tank containing water/penta/oil	31	
	SPCC, Ref. No. 32 - the 9,400 gal Penta Mix Tank	32	
	containing Oil/Penta	32	
	SPCC, Ref. No. 33 - the 5,000 gal Penta Mix Tank	22	
	containing Oil/Penta	33	
	SPCC, Ref. No. 34 - the 10,500 gal Penta Concentrate	24	
	Tank containing 40% Pentachlorophenol Concentrate	34	
	SPCC, Ref. No. 35 – the 100,000 gal Stormwater Tank		
	of oc, ter. No. 55 – the 100,000 gai Stormwater Tank	35	This Tank has been added.
AA-004	Title V, Ref. No. 27, the Tie Mill and Lumber Mill	42	
	with cyclone	42	
AA-005	Title V, Ref. No. 33, the Boiler House natural gas fired		T
	space heater rated at 0.2 MMBTUH	43	Insignificant Activity per APC-S-6.IV
	Spars name (mod at 0.2 MMMD [OII		Three (3) space heaters each rated at
AA-006	Title V, Ref. No. 35, the natural gas fired steam		0.2mmbtu/hr.
	cleaner rated at 0.44 MMBTUH	44	Insignificant Activity per APC-S-6.IV
AA-007	Title V, Ref. No. 36, the Wood Stove Shop Heater		
	rated at 0.10 MMBTUH		Source no longer exists. Has been
AA-008	Title V, Ref. No. 8, the Treated Wood Storage Areas		removed from site.
141 000	The v, Rel. No. 8, the Treated Wood Storage Areas	46	
AA-009	Title V, Ref. No. 31, the Pole Kiln	42	
	v, real rot 51, the rote Killi	47	
AA-010	Title V, Ref. No. 32, the Pole Peeler	48	
		70	
AA-011	Title V, Ref. No. 34, Wood Fuel Preparation and	49	
	handling including grinding, conveying, and silo	72	
	loading		
AA-012	Title V, Ref. No. 37, the two (2) Parts cleaners-	50	
	degreasers	30	
AA-013	SPCC, Ref. No. 24, the 1,250 gal Gasoline Storage	51	Indical Country of the ADC C CT
	tank containing Gasoline used by company vehicles	31	insignificant Activity per APC-S-6.IV
AA-014	SPCC, Ref. No. 25, the 9,000 gal Diesel Storage tank	52	noionificant Autiti
	used by company vehicles/Rolling Stock	JZ 1	nsignificant Activity per APC-S-6.IV.
AA-015	Title V, Ref. No. 33, the Oil Fired Murray Standby		
	boiler room Natural Gas fired Space Heater rated at 0.1	54 I	nsignificant Activity per APC-S-6.IV.
ŀ	MMBTUH	1	
	Title V, Ref. No. 33, the Fire Pump building Natural	<u>-</u>	
	Gas fired Space Heater rated at 0.02 MMBTUH		Source no longer exists. Has been
L	THE SPACE FICALCE FAILED BY 0.07 WIMBIOH	r	emoved from site.

FOR OFFICIAL USE ONLY	
APPLICATION RECEIPT DATE:	
APPLICATION NO.:	
FOR MODIFICATION : MINOR: SIGNIFICANT:	

STATE OF MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY OFFICE OF POLLUTION CONTROL AIR DIVISION P.O. BOX 10385 JACKSON, MS. 39289-0385 PHONE NO.: (601) 961 - 5171

APPLICATION FOR TITLE V AIR POLLUTION CONTROL PERMIT TO OPERATE AIR EMISSIONS EQUIPMENT

PERMITTIN	G ACTIVITY:	86 E5	
X	INITIAL APPLICATION MODIFICATION RENEWAL OF OPERATING	G PERMIT	
NAME: - CITY: COUNTY: - FACILITY No. (TIE PLANT GRENADA	DUSTRIES INC 0960-00012	

360	HOH D	Owners inform	аноп				
1.	Nam	ne, Address & Contact fo	r the Owner/Applicant				
	A.	Company Name: KOPPERS INC.					
	В.	Mailing Address:					
			ss or P.O. Box: SBURGH 15219-1800 o.: (4)	436 SEVENTH AVENUE 3. State: PA 12) 227-2114			
	C.	Contact:					
		1. Name: 2. Title:	TIMOTHY R. BAS ENVIRONMENTA				
2.	Nam	Name, Address, Location and Contact for the Facility:					
	A.	Name: KOP	PERS INC.				
	В.		ss or P.O. Box: PLANT 38960 D.: (66	P.O. BOX 160 3. State: MS			
	C.	Site Location: 1. Street: 1 KC	PPERS DRIVE				
	ŧ	2. City: TIE 1 4. County: 6. Telephone No Note: If the facility is locate	PLANT GRENADA D.: (66 d outside of the City limits, pl	3. State: MS 5. Zip Code: 38960 2) 226-4584 ease attach a sketch or description			
	D.	to this application showing to Contact:	he approximate location of the	e site.			
		1. Name: 2. Title:	THOMAS L. HEND PLANT MANAGER				
3.	SIC (Code(s)(including any as	sociated with alternate of	operating scenarios): 2491			
4.	Numl	ber of Employees:	65				
5.	Princ	ipal Product(s):	UTILITY POLES A	ND RAILROAD CROSSTIES			
6.	Princ	cipal Raw Materials:		ROSSTIES, LUMBER, CREOSOTE, PHENOL, DIESEL FUEL			
7 .	Princi	ipal Process(es):	WOOD PRESERVI	NG			

8.	Maxii	num amount of principal product product 20,000 CUBIC FEET	ed or raw materi	al consumed per d	ay:	
9.	Facili	ry Operating Schedule (Optional):				
	A.	Specify maximum hours per day the o	peration will occ	ur:	24 HOURS	
	B.	Specify maximum days per week the c	peration will occ	cur:	7 DAYS	
	C.	Specify maximum weeks per year the	operation will oc	cur:	52 WEEKS	
	D.	Specify the months the operation will o	occur:	ALL		
10.	Is this	facility a small business as defined by th	e Small Busines	s Act? (Optional)	NO	
11.	11. EACH APPLICATION MUST BE SIGNED BY THE APPLICANT.					
	The a	pplication must be signed by a respons 5-6, Section I.A.26.	sible official as	defined in Regula	tion	
	respon respon	fy that to the best of my knowledge ents and information in this application sible official, my signature shall consti sibility for any alteration, additions, on e and maintain compliance with all app	n are true, comp tute an agreeme r changes in op	lete, and accurat nt that the applic eration that mav	e, and that, as a	
		HENDERSON	PLANT MAN	AGER		
Printed	i Name	of Responsible Official	Title			
	1-03		Thomas	1 Hombus	L ia	
Date A	pplicati	on Signed	Signature of A	pplicants Respon	nsible Official	

SECTION H TANK SUMMARY (page 1 of 2)

1.		sion Point No./Name: AA-003, ALL RELATED TANK DATA INCLUDED IN TANK MARY DATA SPREADSHEET (FOLLOWING PAGES)
2.	Was i	this tank constructed or modified after August 7, 1977?yesno please give date and explain.
3.		nct Stored: re than one product is stored, provide the information in 4.A-E for each product.
4.	Tank	Data:
	A. B. C. D. E. F. G. H. I. K. L.	True Vapor Pressure at storage temperature: Reid Vapor Pressure at storage temperature: Density of product at storage temperature: Density of product at storage temperature: Molecular Weight of product vapor at storage temperature: Ib/gal Molecular Weight of product vapor at storage temperature: Ib/lbmol Throughput for most recent calendar year: Tank Capacity: Tank Diameter: Tank Diameter: Tank Height / Length: Average Vapor Space Height: Tank Orientation: Vertical or Horizontal Type of Roof: Is the Tank Equipped with a Vapor Recovery System? Yes No If Yes, describe on separate sheet of paper and attach. Indicate efficiency. Check the Type of Tank: Fixed Roof Pressure Variable Vapor Space Other, describe:
	N.	Check the Closest City: Jackson, MS Memphis, TN Birmingham, AL Montgomery, AL
	0	New Orleans, LA Check the Tank Paint Color: Aluminum Specular Aluminum Diffuse Red Other, describe: Baton Rouge, LA Gray Light Gray Medium White
	P. Q.	Tank Paint Condition: Check Type of Tank Loading 1. Trucks and Rail Cars Submerged Loading of clean cargo tank Submerged Loading: Dedicated Normal Service Submerged Loading: Dedicated Vapor Balance Service Splash Loading: Dedicated Normal Service Splash Loading: Dedicated Vapor Balance Service Marine Vessels
		Submerged Loading: Ships Submerged Loading: Barges

SECTION H TANK SUMMARY (page 2 of 2)

	R. For	External Floating Roof Tanks	
	1_{e}	Check the Type of Tank Seal:	
		Mechanical Shoe	
		Primary Seal Only	
		With Shoe-Mounted Secondary Seal	
		With Rim-Mounted Secondary Seal	
		Liquid Mounted Resilient Seal	
		Primary Seal Only	
		With Shoe-Mounted Secondary Seal	
		With Rim-Mounted Secondary Seal	
		Vapor Mounted Resilient Seal	
		Primary Seal Only	
		With Shoe-Mounted Secondary Seal	
		With Rim-Mounted Secondary Seal	
	2.	Type of External Floating Roof: Pontoon	
		Double-Deck	
	S. For I	internal Floating Roof Tanks	
	1.	Check the Type of Tank Seal:	
		Liquid Mounted Resilient Seal	
		Primary Seal Only	
		With Rim-Mounted Secondary Seal	
		Vapor Mounted Resilient Seal	
		Primary Seal Only	
		With Rim-Mounted Secondary Seal	
	2.	Number of Roof Columns:	
	3.	Length of Deck Seam feet:	
	4.	Area of Deck: feet ²	
	5.	Effective Column Diameter: feet	
	6.	Check the Type of Tank:	
		Bolted with Column Supported Roof	
		Welded with Column Supported Roof	
		Bolted with Self-Supported Roof	
		Welded with Self-Supported Roof	
5.	Emissions Sur	nmow.	
٥.	1.		
	2.	***	
	3.		
6.	UTM Coordin		
	A. Zone	B. North C. East	
		D. Politi C. East	

SECTION H
TANK SUMMARY TABLE

Lb

	Kem	Unite				3						
Pant Refe	Plant Reference Number		GRN-06	GRN-07	GRN-08	GRNJO	GPW 40	25N 42	6000	17.100		
mission	Emission Point Number		AA-003	AA-003	AA-003	AA-003	AA-003	AA-003	AA 003	GKN-14	GKN-13	GRN-18
(erener	Meremence No. (Table 2.1)		ဗ	,	80	8	đ	12	13	14	35	46.00
Name			#1 Work Tank	#2 Work Tank	#3 Winds Tank	A Month of	#8 Interd T	#1 Creosote	1		!	2
onstruc	Construction Date		1903	1903	1979	2003	1930	1903	#2 SUIDB I BITIK 1903	#55 STONE GENTRAL 1903	#6 Storage Tarrik	#10 Surge Tank
Meterial Stored	pasoff		/ijo	į	į							
OB/ 957	True Vapor Pressure @ Storage Temperature	e la c		Clabbilla	Credeois	Creosote	Pentachiorophenol	Creosota	Process Water	#2 Diesel Fuel	Creosote	Process Water
Red Vap	Reid Vapor Pressure @ Storage Temperature	L										
eganor	Storage Temperature	ద		200	200	200	450	900	Va	90	64.7	
Serielly (Density @ Storage Temperature	pyda	7.76	9.25	9.25	8.95	7.75	8.95	834	7 2	35.0	934
/olecuta	Molecular Weight @ Storage Temperature	Dibmole									27.5	5.0
London	J	gallonslyr	8,500,000	8,200,000	8,200,000	8,200,000	8,500,000	740,000	1,600,000	127,500	000 099	1 400 000
Capacian Capacian	pacity	gallons	29,786	29,786	29,786	28,786	29,786	100,000	100,000	100,000	105.000	300 000
5 2	mener	Teet	13	5	13	13	13	82	82	12	90	GF CF
A L	ENK Height/Lengu	feet	g	8	30	30	æ	24	24	24	8	22
	Average Vapor Space Height	feet		1	-	-	+	-	-			
S S	entation (Horizontal or Vertical)		Vertical	Vertical	Vertical	Vertical	Vertical	Vertical	Vertical	Vertical	Vertical	Vertical
	I you of Koor (Lome of Cone)		Dome	Dome	Dame	Воте	Dome	Cone	Cone	Cone	Corre	e C
Vapo of course	Valva Accovery Systems	yes or no	2	2	2	No	οN	2	2	2	٤	R
5	ark.		Fixed Roof	Fixed Roof	Fixed Roof	Fixed Roof	Fixed Roof	Fixed Roof	Fixed Roof	Fixed Roof	Fixed Roof	Fixed Roof
Tonk Ballet Color	200	Memoris	Membris	Memphis	Memohis	Memphis	Memphis	Memphis	Memphis	Memphis	Memoriis	Memoris
5 1	Doing County County		X DECK	Xac	Šæč	Aluminum	Back	Black	Back	Back	Sack	Black
3	Iduari (Saco or Poor)		2007	Poor	Poor	Good	Poor	Poor	Poor	God	Good	Poor
BUX LOS	Normal Sendor: Statesh Loading - Dedicated					Splash Loading -						
'abor Ba	Vanor Balance Service: Rottom)		Bottom	Dotter.	400	Dedicated Normal		:				
of Apple	Not Applicable To Ary Tanks			DOLLOSIII	шотор	Service	HOLLOW	Bottom	Bottom	Bottom	Bottom	Bottom
of Appl	Not Applicable To Any Tanks											
reathing	Breathing Loss (See Note)	PA										
		À										
Vorlding	Working Loss (See Note)	J. G										
		Ϋ́ÞΥ										
otal Emi	Total Emissions (See Note)	bhr										
		TPY										
OTE: A	NOTE: All tank emissions are included in Plent Summary Table of Section C of the											
Application.	Ä.											
												Ī
												Ī
												Ī
												T
l												
							-					

	00 NG 3	AA 003	28		Olscharge	1986	ě	Weter			8	8.34	5,000,000	45 000	3000	2 6	2	Mortinal	None	2		Memorie	a ar	900	┰	Š	Service		-			-				-					-
	GPN-27	AA 003	77		Clarifler	1986	Process Weste	Water			8	45.50	6 000 000	25,000	4,000	2	•	Varifical	NON.	2	2	Memoris	S. F.	Good	Spiash Loading	Dedicated Normal	Service														
	GRN-28	AAAM3	26		Aeration	1986	Process Weste	Water			3	45.0	5000000	150 000	QV QV	×	3	Verifical	None	N N	Open	Memohis	White	G000	Spitash Loading	Dedicated Normal	Octavice														
	GRN-25	AA-014	25		Diesel	1930	į	#Z Clesel		2	3	,	000 06	0006	9	32	-	Hortzonta		2	Fixed Roof	Memphis	Atmirem	Good		Rottom															
	GRN-24	AA-013	24		Gesofine	C/AL	1	Cascarae			A.K	20	10,000	250	4	12	-	Horizontal		Š	Fixed Roof	Memphis	Atminum	6000		Bottom															
	GRN-23	AA-003	23	Pentachlorophenol	Blowdown	206	Pertachiorophenol	5		φ,	25.8		493,000	9,000	2	4	-	Vertical	Dome	ş	Fixed Roof	Memphis	Black	Poor	Splash Loading	Service										•					
	GRN-20	AA-003	æ	Craosote	HOWGOWN	200	Crananta (Water	O GOSOIG / VAIG		480	8.34		532,000	8,000	9	4	-	Vertical	Dome	S	Fixed Roof	Memphis	Black	Poor	Splash Loading	Service															
	GRN-19	AA-003	19		Jeganang	ene!	Creosote / Oil /			SO SO	834		230,000	2,500	80	12	-	Vertical	Dome	No	Fixed Roof	Memphis	Back	899 800	Splash Loading	Service															
	GRN-18	AA-003	18	-	1987		Coaculant Polymer			98	8.67		000'6	1,500		0)	1	Vertical	Dome	2	Fixed Roof	Memoris	Belge	800	Spiash Loading	Service												1			
	GRN-17	AA-003	4	Storm Corne Meter	1989		Storm Water			8	8.34		2,272,000	250,000	36	36	÷	Vertical	None		S S	Memohis	936	885	Spiash Loading	Service															
Units								elso	1	පී	la/da	D/bmole	gallons/yr	gellons	feet	feet	feet			Ves or no		Memphis							EMr.	Τργ	Į.	ΤĐ	T T	Lbγ							
Mem Defendence Museum Annah and	Figure Delice Number	Distribution in the control of the c	National No. (1809 2.1)	e Ean	Construction Date		Material Stored	True Vepor Pressure @ Storage Temperature	Reid Vapor Pressure @ Storage Temperature	Storage Temperature	Density @ Stonage Temperature	Molecular Weight @ Stonage Temperature	Throughput	I BITK Capacity	Tank Diameter	I BITK HEIGHT / LENGTH	Average Vapor Space Height	I BITK Chlemation (Horizontal or Vertical)	I ype af Koof (Dome of Cane)	vapor recovery system?	I ype of I Brik?	Consent City	BIT THE COOL	rain Contagn (Social Poor)	i ann Loading (Shash Loading - Dedicated Normal Service; Spiash Loading - Dedicated	Vapor Balance Service; Bottom)	Not Applicable To Any Tanks	Not Applicable To Any Tanks	Breathing Loss (See Note)		WORKING LOSS (See NOTE)		I offel Emissions (See Note)		NOTE: At tank emissions are included in plant Summary Table of Section Coffee	Application.					•
Section H Reference	Ţ				2		m	4	Γ	Г			#	Ť	2	1	Ī	2	T	T	E C	T	2 0	Ť		8	7	3	1	7	70	1	5.3					T		-	

SECTION H TANK SUMMARY TABLE

1								
Reference		Unite						
	Plant Reference Number		GRN-30	GRN-31	GRN-32	GRN-33	GRN-34	GRN-35
-	Emission Point Number		AA-003	AA-003	AA-003	AA-003	AA-003	AA-OO3
	Reference No. (Table 2.1)		30	31	32	33	77	1
			North	_				3
	Same.		Pertachlorophenol	Pentachlorophend	Pentachlorophenol	Peritac	å	Stomwater
-	Construction Data		1083	COURTERIOR	WIX	XW	Concentrate	Process
			2061	2061	0/81	O/BL	1960	1970
c							Pentachiorophenol	ğ
٠	Material Stored	_	Water / Penta / Oil	Water / Penta / Off Weter / Penta / Oil	Oil / Perrits	Oll / Penta	Concentrate	Water
¥	True Vepor Pressure @ Storage Temperature	psia						
4	Reid Vapor Pressure @ Storage Temperature	psla						
	Storage Temperature	1	8	8	8	99	98	99
Ş	Density @ Stonage Temperature	ib/gal	8	80	7.76	7.76	9.65	8.34
Ş	Molecular Weight @ Storage Temperature	D/fbmale						
¥	Throughput	gallonslyr	66,000	65,000	850,000	850,000	120,000	400,000
#	Tank Capacity	gallons	14,000	14,000	9,400	9,000	10,600	100,000
ą	Tank Diameter	feet	9	9	6	9	2	30
¥	Tank Height / Length	feet	24	24	14	16	8	9%
4	Average Vapor Space Height	feet	_	-	-		-	-
3	Tenk Orientation (Horizontal or Vertical)		Vertical	Vertical	Vertical	Horizontal	Vertical	Vertical
¥	Type of Roof (Dome or Cone)		e CO	Cone	Ē		Tiet.	191
44	Vapor Recovery System?	yes or no	2	2	2	2	2	2
₩.	Type of Tank?		Fixed Roof	Fixed Roof	Fixed Roof	Fixed Roof	Fixed Roof	Fixed Roaf
ÅN.	Closest City	Memphis	siddweigi	Memphis	Memoris	Memohis	Memoris	Memohis
\$	Tank Paint Color		Back	Black	Back	Back	Aumoum	Concrete
4	Paint Condition (Good or Poor)		Poor	Poor	Poor	Poor	900g	
	Territ Loading (Splash Loading - Dedicated		Splash Loading	Spiash Loading		Splash Loading		Splash Loading
ç	Normal Service; Splash Loading - Dedicated		Dedicated Normal	Dedicated Normal		Dedicated Normal		Dedicated Normal
2	Vapor Barance Service; Borrom)		Service	Service	Bottom	Service	Bottom	Service
ž,	Not Applicable To Any Tanks							
ĝ,	Not Appacable 10 Any 18nics							
9	Breathing Loss (See Note)	thr.						
		TPY						
25	Worlding Loss (See Note)	J. J						
		TPY						
5.3	Total Emissions (See Note)	J.J.Cog						1
		YPY						
	NOTE: All tank emissions are included in							
	Plant Summary Table of Section C of the							
	Application.							

S

AA-001	1				CDCC D				_
60.0 MM	BTUH woodw	aste boiler	*baseline operationuntre	40	SPCC R	et. No.			
		Loto Bollo	bascime operationunite	40		+			
AA-002	26								
	IBTUH fuel oil	fired boiler							
		III CO DOIICI		41		-	-111		
AA-003	-					+			
34.000 a	al treatment c	vlinder/ Pen	ta in oil			-			
27.000 g	al treatment c	vlinder/ Cre	neoto	1		5)			
27.000 g	al treatment c	/linder/Creo	sote	2		5 (
27.000 g	al treatment cy	dinder/ Cred	soto	3	,	5			
27.000 g	al treatment cy	/linder/ Den	ta	4		5 (
29.786 g	al #1 work tan	k/ Penta in	id	5		5			
29.786 as	al #2 work tan	d Creasata)II	6		6			
29.786 gs	al #3 work tan	d Crossota		7		7			
22 419 as	al #4 work tank	Crosset	Bellevin in the second of the	8		8			
, , 10 gc	20 786 act 4	M work tool		9		9 remo	ved		
9 786 00	29,786 gal #	Cross-to	Verensote	9		9			
200 fal	al #5 work tank measuring tan	v Creesote/	vvater	10	10	- Linear			
00 000 0	ral #1 storage	to play of		11	1	1 remov	/ed		
00,000 g	gal #1 storage	tank/ storm	water	12	12	2			
00,000 g	al #2 surge ta	rik/ process	water	13	13	3			
05,000 g	al #5 storage	tank/ Diese	#2	14	14	1			1
00,000 g	al #6 storage	tank/ Creos	ote	15	15	5			
50,000 g	al #10 surge t	ank/ proces	s water	16	16	3			
50,000 g	al storm water	surge tank	storm water	17	17				
,500 gai	coagulant tani	c/ polymer a	dditive	18	18				
ooo da	decant tank/ c	reo/oil/wate		19	19				
ouu gai d	creosote blow	down/ creo/	water	20	20				
π. dia. X	60 ft. long, air	receiver/ c	ompressed air	r	emoved f	4	(insignif	icant)	
π. dia. X	40 ft. long, air	receiver/ co	Ompressed air	re	emoved fi	om list	(insignifi	icant)	
000 gal F	Penta blowdov	vn tank/ wat	er/penta/oil	23	23		(o.griiii	Carity	
50,000 ga	al aeration tan	k/ waste wa	ter	26	26				
0,000 gal	clarifier tank/	waste water		27	27				
,000 gal	discharge tan	k/ waste wa	ter	28	28		-		
000 gal c	reosote dehyd	irator		29	The second secon	remove	-d	\longrightarrow	
,000 gal	north penta e	qualization t	ank/ water/penta/oil	30	30	10,1101	-		
,000 gai	south penta e	qualization 1	tank/ water/penta/oil	31	31			-	
400 gai p	enta mix tank	oil/penta		32	32		-		
000 gal p	enta mix tank	oil/penta		33	33				
,500 gal	penta concent	rate tank/ 4	0% pentachlorophenol	34	34				
0,000 ga	l stormwater ta	ank		35	-	added			
-004	27			42					
Mill and	Lumber Mill w	vith cyclone							
-005	33	24 - YU = +035	NOTICE OF SECURITION OF SECURITION	43		nsignifi	98		

MMBTUH AA-006 35 44 insignificant activity natural gas fired steam cleaner rated at 0.44 MMBTUH **AA-007** 36 wood stove shop heater rated at 0.10 MMBTUH DNE, removed from site **AA-008** 8 46 treated wood storage areas **AA-009** 31 47 pole kiln **AA-010** 32 48 pole peeler AA-011 34 49 wood fuel preparation and handling * *wood hog grinder-->Precision Husky Chipper **AA-012** 37 50 two parts cleaners-degreasers AA-0013 24 51 insignificant activity 1,250 gal gasoline storage tank/ gasoline **AA-014** 25 52 insignificant activity 9,000 gal diesel storage tank **AA-015** 33 54 insignificant activity oil fired murray standby boiler room natrual gas fired space heater rated at 0.1 MMBTUH **AA-016** 33 DNE, removed from site fire pump building natural gas fired space heater rated at 0.02 MMBTUH also Outdoor kerosene heaters (5) Emergency Power Generators (3 units at 11 hp and 6000 watts; 3 units at 16 hp and 8000 watts)