Koppers Inc

General Information

	Branch	SIC	County	Basin	Start	End
876	Energy and Transportation	2491	Grenada	Yazoo River	11/09/1981	

Address

Physical Address (Primary)	Mailing Address
1 Koppers Drive	PO Box 160
Tie Plant, MS 38960	Tie Plant, MS 38960

Telecommunications

	Address or Phone
Work phone number	(662) 226-4584, Ext. 11

Alternate / Historic AI Identifiers

Alt ID	Alt Name	Alt Type	Start Date	End Date
2804300012	Koppers Industries, Inc.	Air-AIRS AFS	10/12/2000	
096000012	Koppers Industries, Inc.	Air-Title V Fee Customer	03/11/1997	
096000012	Koppers Industries, Inc.	Air-Title V Operating	03/11/1997	03/01/2002
096000012	Koppers Industries, Inc.	Air-Title V Operating	01/13/2004	
MSR220005	Koppers Industries, Inc.	GP-Wood Treating	09/25/1992	
MSD007027543	Koppers Industries, Inc.	Hazardous Waste-EPA	08/27/1999	
HW8854301	Koppers Industries, Inc.	Hazardous Waste-TSD	06/28/1988	06/28/1998
HW8854301	Koppers Industries, Inc.	Hazardous Waste-TSD	11/10/1999	
876	Koppers Industries, Inc.	Historic Site Name	11/09/1981	
876	Koppers, Inc.	Official Site Name	12/11/2006	
MSP090300	Koppers Industries, Inc.	Water-Pretreatment	11/14/1995	11/13/2000
MSP090300	Koppers Industries, Inc.	Water-Pretreatment	09/18/2001	
MSU081080	Koppers Industries, Inc.	Water-SOP	11/09/1981	

Regulatory Programs

Program	SubProgram	Start Date	End Date
Air	Title V - major	06/01/1900	
Hazardous Waste	Large Quantity Generator	08/27/1999	
Hazardous Waste	TSD - Not Classified	06/28/1988	
Water	Baseline Stormwater	01/01/1900	
Water	PT CIU	11/14/1995	
	PT CIU - Timber Products		

Water	Processing (Subpart 429)	11/14/1995
Water	PT SIU	11/14/1995

Locational Data

Latitude	Longitude	Metadata	S/T/R	Map Links
	89 ° 47 ' 8 .06 (089.785572)	Point Desc: PG- Plant Entrance (General). Data collected by Mike Hardy on 11/8/2005. Elevation 223 feet. Just inside entrance gate. Method: GPS Code (Psuedo Range) Standard Position (SA Off) Datum: NAD83 Type: MDEQ	Section: Township: Range:	SWIMS TerraServer Map It

12/20/2006 12:16:40 PM

APPLICATION FOR SYNTHETIC MINOR OPERATING PERMIT

KOPPERS INDUSTRIES, INC. TIE PLANT, MS

via Express Mail

Telephone (412) 227-2001 Fax (412) 227-2423

March 31, 1995

Air Permitting Branch
Office of Pollution Control
Mississippi Dept. of Environmental Quality
P.O. Box 10385
Jackson, MS 39289-0385

RE: APPLICATION FOR SYNTHETIC MINOR OPERATING PERMIT FOR KOPPERS INDUSTRIES, INC., TIE PLANT, MS FACILITY NO. 0960-00012

Dear Sir or Madam:

Enclosed is an Application for a Synthetic Minor Operating Permit for the Koppers Industries, Inc. (Koppers) wood preserving plant located in Tie Plant, MS. There are many identifiable point and fugitive sources at the plant, many of which have been combined for reporting purposes. I would like to explain some parts of this application package.

For clarity in reviewing this application, I first call your attention to the Flow Diagram and to the table following this letter titled Summary of Emission Points. The Source No. for each source on the table corresponds to the source numbers (circled) on the Diagram. The right column of the table indicates where emissions for sources for which emissions are combined and reported with another source are reported.

Next, note pages beginning at the tab for Emission Calculation Tables. The first table is titled Emission Inventory Calculation. Following this table are a series of Emission Inventory Calculation tables. For each scenario, there are three pages of the calculation sheets which calculate and summarize plant wide estimated emissions for the conditions assumed under each scenario. The Estimated Actual Emissions scenario best represents current operating conditions. The Maximum Potential Emissions scenario represents the "potential to emit" level of operations assuming all equipment operates at full power 365 days per year without consideration of other practical considerations. Three scenarios are included presenting maximum operating conditions which maintain the plant within non-major emission levels. The Synthetic Maximum (Mixed) scenario assumes roughly the same business mix as currently exists, but increased to reasonably achievable levels of business. The other two are based on potential changed in business mix. The Synthetic Maximum (High Creo) scenario assumes no pentachlorophenol treatment and that all production is shifted to creosote treatment. The Synthetic Maximum (High Penta) scenario assumes very high demand for pentachlorophenol treated poles causing one of the three creosote treating cylinders to be converted to pentachlorophenol treatment with reasonably high creosote

treatment volumes continuing in the remaining two cylinders. Koppers is seeking a permit which allows operations under either of these "Synthetic Maximum" scenarios to maintain the most possible operational flexibility.

Also note that this plant recently received a new state operating permit. The unit specific Proposed Allowable Emissions stated in Section D are the same as in the existing permit.

I have tried to make this application clear and complete, but expect questions will arise. Koppers will welcome the opportunity to meet with your staff as the permit is being drafted. Please call me at (412)227-2677 if you have questions.

Sincerely,

Stephen T. Smith

Environmental Program Manager

cc: Ron Murphey, Grenada Plant, Tie Plant, MS (UPS Next Day)

cc w/o attachment:

W. R. Donley, K-2050

R. D. Collins, K-1701

KOPPERS INDUSTRIES INC. GRENADA, MS SUMMARY OF EMISSION POINTS

Source No.	Source Name	Reported in Section	Control	Emis. Included With No.
01	Wood Fired Boiler	D	Multiclone	
02	Creosote Tank Car Unloading	Е		05
03	Creosote Storage Tank	Н		05
04	Creosote Work Tanks (4)	Н		05
05	Creosote Treating Cylinders (3)	Е		
06	Creosote Blowdown Tank	Н		05
07	Creosote Vacuum Pumps	Е		05
08	Creosote Treated Wood Storage	Е		
09	Creosote Fugitives from pumps, valves, flanges, and sumps	Е		05
10	PCP Truck Unloading	Negligible		
11	PCP Concentrate Storage	Н		05
12	PCP Mix Tank	Not Used		
13	PCP Work Tanks (2)	Н		05
14	PCP Treating Cylinders (2)	Е		05
15	PCP Blowdown Tanks (2)	Е		05
16	PCP Vacuum Pump	Е		05
17	PCP Treated Wood Storage	Е		
18	PCP Process Fugitives from pumps, valves, flanges, sumps	Е		05
19	Storm Water Tank	Н		05
20	Waste Water Surge Tank	Н		05

KOPPERS INDUSTRIES INC. GRENADA, MS SUMMARY OF EMISSION POINTS

Source No.	Source Name	Reported in Section	Control	Emis. Included With No.
21	API Separator	E		05
22	Primary PCP Oil/Water Separator	Е		05
23	Second PCP Oil/Water Separator	Е		05
24	Reclaim Oil Dehydrators (2)	Н		05
25	Waste Water Biologial Trmt.	Negligible		
26	Oil Fired Boiler (Backup)	D		
27	Tie Mill	Е	Cyclone	
28	Fugitive Road Dust	Е		
29	#2 Oil Storage Tank	Н		05
30	Oil Storage Tank	Н		05
31	Decant Tanks	Н		05
32	Pole Kiln	Е		

March 31, 1995

STATE OF MISSISSIPPI DEPT. OF ENVIRONMENTAL QUALITY OFFICE OF POLLUTION CONTROL P.O. BOX 10385 JACKSON, MS 39289-0385 (601) 961-5171

APPLICATION ADDENDUM FOR A SYNTHETIC MINOR OPERATING PERMIT

NOTE:

This addendum should be affixed to the front of either the Application for Title V Air Pollution Control Permit to Operate Air Emissions Equipment or the Application for Air Pollution Control Permit to Construct and/or Operate Air Emissions Equipment. If the Application for Title V Air Pollution Control Permit to Operate Air Emissions Equipment is used, then Sections M, N, and O of that application do not have to be completed.

A Synthetic Minor Source is defined in Regulation APC-S-2 as: Any facility which would otherwise constitute a major source under Commission Regulation APC-S-6, "Air Emissions Operating Permit Regulations for the Purposes of Title V of the Federal Clean Air Act", except that the owner or operator of the facility elects for federally enforceable emissions limitations which may include permit conditions restricting hours of operation, or type or amount of material stored, combusted or processed, or establishing more stringent air pollution control efficiency requirements to lower allowable emissions for air pollutants in the State Permit to Operate below applicability thresholds for a Title V major source.

Facility Name Koppers	Industries Inc.	
Facility Number (If Known)		
City Tie Plant	County Grenada	

List the limitations/restrictions you are proposing to make your facility a synthetic minor source and the proposed methods of demonstrating compliance with those limitations/restrictions. If necessary, use a separate page for each Emission Point.

Source 26 - Oil Fired Boiler

Oil Fired Boiler will not be operated at the same time as Source 01, Wood Fired Boiler, but will only operate to provide process steam when the other boiler is shut down for maintenance, repair, or modifications. This will limit sulfur dioxide emissions to less than major threshold.

Source 31 - Pole Kiln

Pole Kiln will only be used to dry up to 1,250,000 cubic feet of wood in any year to limit VOC emissions from this source to no more than 50 tons. Plant operating records will be maintained to show the cumulative amount of wood dried each calendar year.

Sources 05 and 08 - Wood Preserving Processes and Preservative Treated Wood Storage Fugitives (Includes multiple individual sources as indicated on Summary of Emission Points table.

The treating volumes indicated on the attached table Emissions Inventory Scenarios on lines 7, 8, and 9 will not exceed any of the "Synthetic Maximum" scenarios listed. The "Synthetic Maximum Mixed" scenario represents highest allowed volumes under current market conditions. The "High Creo" represents conditions if all production was shifted to creosote treatment and no pentachlorophenol treatment continued. The "High Penta" scenario represents conditions if the market demand for pentachlorophenol products was very high with most treating capacity being shifted to those products. Each calendar year, Koppers will commit to one scenario and cumulative records of treatment volume will be maintained to demonstrate compliance. The "Mixed" scenario will be default if no other one is declared. These limitations will assure that naphthalene emissions will not exceed 10 tons, that total hazardous air pollutants will not exceed 25 tons, and that total VOC emissions will not exceed 100 tons.

Randall D. Collins

Date: March 31, 1995

FOR OFFICIAL USE O	DELY
APPLICATION RECEIPT DATE:	
APPLICATION NO.	
FOR MODIFICATION MINOR SIGNIFICANT	

STATE OF MISSISSIPPI
DEPARTMENT OF ENVIRONMENTAL QUALITY
OFFICE OF POLLUTION CONTROL
AIR DIVISION

P.O. BOX 10385 JACKSON, MS. 39289-0385 PHONE NO.: (601) 961 - 5171

APPLICATION FOR TITLE V AIR POLLUTION CONTROL PERMIT TO OPERATE AIR EMISSIONS EQUIPMENT

			DATA CODED
PERMITTING A	CTIVITY:		
X	_ INITIAL APPLICATI _ MODIFICATION _ RENEWAL OF OPER		
NAME:		Industries	Inc
CITY:	Tie Plan	n+	
COUNTY:	Grenada	10:	
FACILITY No. (if k	nown):	0960-00012	

APPLICATION FOR TITLE V PERMIT TO OPERATE AIR EMISSIONS EQUIPMENT

CONTENTS

DESCRIPTION	SECTION
Application Requirements	Α
Owners Information	В
Emissions Summary / Facility Summary	С
Emission Point Data:	
Fuel Burning Equipment	D
Manufacturing Processes	E
Coating, Solvent Usage and/or Degreasing Operations	F
Printing Operations	G
Tank Summary	Н
Solid Waste Incinerators	I
Asphalt Plants	J
Concrete Plants	K
Control Equipment	L
Compliance Demonstration	M
Current Emissions Status	N
Compliance Certification	O

1.	Name,	Address & Contact for the Owner/Applicant
	A.	Company Name: Koppers Industries Inc
	В.	Mailing Address:
		 Street Address or P.O. Box: 436 Seventh Ave City: Pittsburgh 3. State: PA Zip Code: 15219 Telephone No.: (4/2) 227-2677
	C.	Contact:
		1. Name: Stephen Smith 2. Title: Environmental Mgr.
2.	Name,	Address, Location and Contact for the Facility:
	A .	Name: Koppers Industries Inc.
	B.	Mailing Address: 1. Street Address or P.O. Box: PO Box 160 2. City: Tie Plant 3. State: MS 4. Zip Code: 38 960 5. Telephone No.: (601) 226-4584
		Site Location: 1. Street: Tie Plant Road 2. City: Tie Plant 3. State: MS 4. County: Grenada 5. Zip Code: 38960 6. Telephone No.: () Same Note: If the facility is located outside of the City limits, please attach a sketch or description to this application showing the approximate location of the site.
		1. Name: Ron Murphey 2. Title: Plant Mgr.
3.	SIC Co	de(s)(including any associated with alternate operating scenarios):

4.	Number of Employees:
5.	Principal Product(s): Utility Poles & Rail Road Ties
6	Principal Raw Materials: Wood Poles, Lumber, Creosote, Pentachlorophete
7,	Principal Process(es): Wood Preserving
8.	Maximum amount of principal product produced or raw material consumed per day: 16.000 CF
9.	Facility Operating Schedule:
	A. Specify maximum hours per day the operation will occur: 24
	B. Specify maximum days per week the operation will occur:
	C. Specify maximum weeks per year the operation will occur: 52
	D. Specify the months the operation will occur:
10.	Is this facility a small business as defined by the Small Business Act?
11.	EACH APPLICATION MUST BE SIGNED BY THE APPLICANT.
	The application must be signed by a responsible official as defined in Regulation APC-S-6, Section I.A.26.
9	I certify that to the best of my knowledge and belief formed after reasonable inquiry, the statements and information in this application are true, complete, and accurate, and that, as a responsible official, my signature shall constitute an agreement that the applicant assumes the responsibility for any alteration, additions, or changes in operation that may be necessary to achieve and maintain compliance with all applicable Rules and Regulations.
	•
Printe	an dall. D. Collins V. P. 4 Secretary Title 31 95 Application Signed V. P. 4 Secretary Signature of Applicants Responsible Official
	- Summer or viblacento vicobamina o contamina o contam

EMISSIONS SUMMARY for the ENTIRE FACILITY

List below the total emissions for each pollutant from the entire facility. For stack emissions, use the maximum annual allowable (potential) emissions. For fugitive emissions, use the annual emissions calculated using the maximum operating conditions.

POLLUTANT	ANNUAL EMIS	SION RATE
Footnote 1	lb/hr	tons/yr
See attached "Emission		
Inventory Calculation for		
Synthetic Minor Emission		
(High Creo Volume)"		

1. All regulated air pollutants, including hazardous air pollutants emitted from the entire facility should be listed. A list of regulated air pollutants has been provided in Section A.

With the exception of the emissions resulting from insignificant activities and emissions as defined in Regulation APC-S-6, Section VII, the pollutants listed above are all regulated air pollutants reasonably expected to be emitted from the facility...

SIGNATURE (must match signature on page 17)

For the sections listed belo application.	w indicate the number that hav	e been completed for each section as part of this
Section B 1	Section L1	Section M1
Section C 1	Section L2 2	Section M2
Section D 2	Section L3	Section M3
Section E ?	Section L4	Section M4
Section F	Section L5	Section M5
Section G	Section L6	Section M6
Section H 1	Section L7	Section M7
Section I		Section M8
Section J		Section N
Section K		Section O
		S-6, Section VII.B that apply to your facility.
e Natural gas	fired space hea	ters used for
offices and s	shap	
		used to store fuel
for yard e	iquipment. Construc	cted approx. 1980.
	1 #2 - 20,000 gal	,
	cline - 1,000 gal.	
		14 - 1

RISK MANAGEMENT PLANS

Please answer the following questions:

If the source is required to develop and register a risk management plan pursuant to Section 112(r) of the Title III of the Clean Air Act, the permittee need only specify that it will comply with the requirement to register such a plan. The content of the risk management plan need not itself be incorporated as a permit term.

I,	Are you required to develop and register a risk management plan pursuant to Section 112(r)?
	Yes No
Only if "yes"	, answer questions II., III., and/or IV.
П.	Have you submitted the risk management plan to the appropriate agency (i.e. Mississippi Emergency Management Agency (MEMA), Federal Emergency Management Agency (FEMA), etc.)?
	Yes No
. Ш.	If yes, give agency name and date submitted.
IV.	If no, provide a schedule for developing and submitting the risk management plan to the appropriate agency and providing our agency with certification that this submittal was made.

Tide V Application

FUE	EL BURNIN	G EQUIPN	MENT (page	1 of 2)		SECTION D
1			UI-Wood			
2.	Equipment De	escription: W generation	ellons 20 Power Unit	Cell Com	bustion System	m, Boiler
3	Was this unit	constructed or magive date and exp	odified after Aug	ust 7, 1977?	Yes	X No
4.	Rated Capacit	y: <u>37.5</u>	MMBTU/hr	5. Type of	burner: Fuel	Ce//
6. 7.	Complete the		lentifying each typ		he amount used. Spec	cify the units for heat
F	FUEL TYPE	HEAT CONTENT	% SULFUR	% ASH	MAXIMUM HOURLY USAGE	ACTUAL 1 YEARLY 1 USAGE 3
W	ood Waste	4,000 - BTY 6,000 16	0.11	5.0	8760 h-//x	8424 Approx.
	•				_	

8.	Please list any Pentachlore	fuel components	that are hazardo % Cveoso	us air pollutan te ~15%	its and the percentage Naph tha len e	in the fuel.
9.	Operating Sch	edule: 2	4 hours/day	_7_	days/week 5	2 weeks/year
10.	Stack Data: A. Heigh B. Inside	nt: e diameter:	80 FT 3 FT		kit gas velocity: kit gas temperature:	55 F/s 350°F
11.	UTM Coordin A. Zone	ates:	B. N	lorth <u> </u>	C. Ea	ast

May 31, 1994

FUEL BURNING EQUIPMENT (page 2 of 2)

SECTION D

12. POLLUTANT EMISSIONS:

Emission rate calculations, monitoring data, or stack test data must be attached!

			1	7	1		_		_	_			7
WABLE	tafyr	29.57	25.57	90.36	EL 87 LS-9	24.64	18 70						
PROPOSED ALLOWABLE EMISSION RATE	lb/br	6.75	6.75	20.63	157	5.63	4.27						
PROPO	note 2	0.3 95/cf 6.75	03 Fee 6.75 25.57										
RATE	in/yr		•										
ACTUAL EMISSION RATE	lb/hr		·										
V 5 1	note 2												
CONTROL	yeako												
EQUI	yearso	>											
and seed the seed of the seed		Particulate	PIM 10	502	Nox .	<i>CO</i>	VOC						
EMISSION POINT NO.		10											

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed. A list of regulated air pollutants has been provided in Section A.

Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point.

* If yes, attach appropriate Air Pollution Control Data Sheet from Section I. or manufacturers specifications if other

	FUE	L BURNI	NG EQUIP!	MENT (page	1 of 2)		SECTION D
	lan	Emission Pol	nt No. / Name:	26- Oi	1 Fired	Boiler	
	2.	Equipment D	escription: <u>B</u>	ackup s	service	beiler.	
	3.,	Was this unit	constructed or m	odified after Aug blain.	ust 7, 1977?	Ye	s <u>X</u> No
	4.	Rated Capaci	ıy: <u>28.5</u>	MMBTU/hr	5. Type of		eing Oil
	6.		i.e. Space Heat, F				ecify the units for heat
	7.		ly usage, and year		pe of fuer and	me amount used. Sp	cony de amis for dear
	F	UEL TYPE	HEAT CONTENT	% SULFUR	% ASH	MAXIMUM HOURLY USAGE	ACTUAL 14 YEARLY A 4 USAGE
×	#;	2 0:1	18,000 BTY	0.30	0	2000	336
)							
						_	
						-	
	8.	•	y fuel components Jane	s that are hazardo	us air pollutan	its and the percentag	ge in the fuel.
	9.	Operating Sch	nedule: 2	hours/day	_7_ (days/week 2	weeks/year
	10.	Stack Data: A. Heig B. Insid	ht: e diameter:	36 F+ 2.5 F+		kit gas velocity: kit gas temperature:	32 FH/sec 570 °F
	11.	UTM Coordin	nates:	B. N	orth	C. I	East
		271					

?

Tide V Application

FUEL BURNING EQUIPMENT (page 2 of 2)

SECTIOND

12. POLLUTANT EMISSIONS:

Emission rate calculations, monitoring data, or stack test data must be attached!

EMISSION POINT NO	108	CONTROL ACT	AL EMISSION PATE		PROPOSED ALLOWABLE EMISSION RATE	WABLE
三 一	A THE PSECOND	Find pttip note 2	n i puri	tn/yr note 2	lb/hr	tafyr
26	Particulate Matter				.43	1.88
	PM 10		•		,43	1-88
	SOL				15.40 67.45	67.45
	Yok .				4.34 19.01	19.01
	00				1.08 4.73	4.73
>	VOC				0.04 0.18	0.18
No:	te-This boiler will no	4	operate at	at same		
	time as sounce	01. 16.6				
	2	3,75				
		<i>j.</i>				
		THE RESIDENCE OF THE PERSON OF				

- All regulated air pollutants including hazardous air pollutants emitted from this source should be listed. A list of regulated air pollutants has been provided in Section A.
- Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollulant from an emission point. ۲i
- * If yes, attach appropriate Air Pollution Control Data Sheet from Section I. or manufacturers specifications if other.

MANUFACTURIN	NG PROCESSES (page 1 of 2)	SECTION E
l Emission Point No	Name OS-Wood	Presurving Pi	ccess
Process Description Poles will and rai	n: Presure + th pentachlorophe I road ties u	reatment of nol or creosot with creosote.	utility
Was this unit cons		gust 7, 1977? y	es X no
Rated Capacity (to	ons/hr):		
5. Raw Material Inpu	ut:		×
MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
Wood	342 CF	570	Upto 5,000,000
			<u> </u>
. Product Output:			
PRODUCT or BY-PRODUCT	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
Treated Wood	342 CF	570 CF	Upto S,000,000 CA
. Stack Data: A. Height: B. Inside diam	meter: —	C. Exit gas veloci D. Exit gas tempe	
UTM Coordinates: A. Zone _	B. North	C. E	ast

MANUFACTURING PROCESSES (page 2 of 2)

SECTION E

13. POLLUTANT EMISSIONS:

Emission rate calculations, monitoring data, or stack test duta must be attached!

EMISSION POINT NO.	Appropriate (Company)	25	CONTROL		ACTUAL EMISSION RATE	N RATE	PROPOS RM	PROPOSED ALLOWABER EMISSION RATE	WABLE	PRV
製		yesho	9110	0014.2	lb/hr	ta/yr	note 2	lb/br	tudyr	-
20	See Emission	Inve	Inventory	Calculation	ation	Tables				1
	VOC	2						6.0	26.76	-
	Naphthälene	2							4.5	
										16
						,				_

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed. A list of regulated air pollutants has been provided in Section A.

Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point.

If yes, attach appropriate Air Pollution Control Data Sheet from Section L or manufacturers specifications if other.

MANUFACTURIN	NG PROCESSES (page 1 of 2)	SECTION E
l. Emission Point No	/ Name 08 Ty	reated Wood S	Horage
Process Description Wash pro to shipp	n: Storage and duct following ment:	treatment and	treated d prion
	tructed or modified after Au date and explain.		es <u> </u>
. Rated Capacity (to	ns/hr): NA		
. Raw Material Inpu	t:		•
MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
Product Output:	QUANTITY/HR	QUANTITY/HR	· QUANTITY/YEAR
BY-PRODUCT	AVERAGE	MAXIMUM	11/2 42
Treded Poles			3,500,000 CF
Treated Ties			2,000,000 CF
* Total Wood			1055 HARA 5,000,000
Stack Data: A. Height: B. Inside diam	N A	C. Exit gas veloci D. Exit gas tempe	•
UTM Coordinates: A. Zone	B. North	C. E.	ast

Tide V Application

MANUFACTURING PROCESSES (page 2 of 2)

SECTION E

13. POLLUTANT EMISSIONS:

Emission rate calculations, monitoring data, or stack test data must be attached!

EMISSION POINT NO.	Botturkke (ope 1)	CON	CONTROL	V Vol.	ACTUAL EMISSION RATE	N RATE	PROPO	PROPOSED ALLOWABLE BMISSION RATE	WABLE ATE
を発		res/no	»effic.	pote 2	i lb/h	ta/yr	note 2	Ib/br.	tn/yr
08	See Emission Inventory	n vanta.	~	alca latur	in tables	les.			
	VOC (fasitive)*								
	Nophthaline							0.88	2 RR
The state of the s		The second secon							

* VOC not applicable to major category when a fusifive
All regulated air pollutants including hazardous air pollutants emitted from this source should be listed. A list of regulated air pollutants has been provided in Section A.

Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point. ٦i

If yes, attach appropriate Air Pollution Control Data Sheet from Section 1. or manufacturers specifications if other

MANUFACTURIN	NG PROCESSES (page 1 of 2)	SECTION E
Emission Point No	/ Name: 27 - T	ie Mill Cycle	m e
Process Description at tie	mill. Mill	processes unto	trim saws
prior to	Treament.		
	tructed or modified after Au date and explain.	gust 7, 1977? ye	esno
Rated Capacity (to	ns/hr):		
Raw Material Inpu	t:		s
MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
Rough cut			
wood ties			2,000,000 CF
			8
-			
Product Output:		a a	
PRODUCT or BY-PRODUCT	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	· QUANTITY/YEAR
Trimmed wood			
ties			2,000,000
Stack Data: A. Height: B. Inside diar	neter:	C. Exit gas veloci D. Exit gas tempe	5.345
UTM Coordinates: A. Zone	B. North	C. E.	ast

MANUFACTURING PROCESSES (page 2 of 2)

SECTION E

13. POLLUTANT EMISSIONS:

Emission rate calculations, monitoring data, or stack test data must be attached!

EMISSION POINT NO		NOO BOOM	CONTROL EQUIPMENT	ACTUA	ACTUAL EMISSION RATE	I RATE	PROPO	PROPOSED ALLOWABER EMISSION RATE	WABER
		ou/sa/	b Weigh	t piota !	lb/hr	tadyr	note 2	1b/br	tudyr
27	Particulate	>						2.0	8.76
	PM 10	۲						2.0	8.76
	% ∓ 1								
550									
				The second second					

- All regulated air pollutants including hazardous air pollutants emitted from this source should be listed. A list of regulated air pollutants has been provided in Section A.
- Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point.
- If yes, attach appropriate Air Pollution Control Data Sheet from Section I. or manufacturers specifications if other.

	. 0		
Emission Point No./	Name $31 P_0$	le Kiln	
Process Description:	Dry wood tive treatm	poles prior	
Was this unit constr If yes please give da		gust 7, 1977? ye	rs <u> </u>
Rated Capacity (ton-	Thr): ~ 13,000	OCF/charg	<u>e</u>
Raw Material Input:			
MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
Green wood poles			1,250,000 CF
			:
Product Output:	QUANTITY/HR	QUANTITY/HR	· QUANTITY/YEAR
BY-PRODUCT	AVERAGE	MAXIMUM	en e
Dry wood poles			1,250,600 CF
Stack Data: A. Height: B. Inside diame	N A	C. Exit gas velocii D. Exit gas temper	

1

MANUFACTURING PROCESSES (page 2 of 2)

SECTION E

13. POLLUTANT EMISSIONS:

Emission rate calculations, monitoring data, or stack test data must be attached!

		7		 -	_	 	-	-	_	 _	7
WABER	traye	50.									
PROPOSED ALLOWABLE BAMISSION RATE	1b/br										
PROPOS	note 2										
RATE	ın/yr										
EMISSION	lb/h		,								
ACTUAL EMISSION RATE	0,010									:	
CONTROL FEQUIPMENT	1										
CONTR	ез/но	ス									
		70C		-							
EMISSION POINT NO.		31									

- All regulated air pollutants including hazardous air pollutants emitted from this source should be listed. A list of regulated air pollutants has been provided in Section A.
- Provide emission rate in units of applicable emission standard, e.g. lh/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point.
- If yes, attach appropriate Air Pollution Control Data Sheet from Section I. or manufacturers specifications if other.

TANK SUMMARY (page 1 of 2)

SECTION H

B. Reid Vapor Pressure at storage temperature:	PEAG	. 6.
A. True Vapor Pressure at storage temperature: B. Reid Vapor Pressure at storage temperature: D. Density of product at storage temperature: D. Molecular Weight of product vapor at storage temperature: D. Molecular Weight of product vapor at storage temperature: D. Molecular Weight of product vapor at storage temperature: D. Molecular Weight of product vapor at storage temperature: D. Molecular Weight of product vapor at storage temperature: D. Molecular Weight of product vapor at storage temperature: J. Tank Capacity: G. Tank Diameter: H. Tank Diameter: H. Tank Height / Length: L. Average Vapor Space Height: J. Average Vapor Space Height: J. Tank Orientation: Wertical or Horizonta Dome or Cone L. Is the Tank Equipped with a Vapor Recovery System? Yes If Yes, describe on separate sheet of paper and attach. Indicate efficient M. Check the Type of Tank: Fixed Roof Pressure Variable Vapor Space Other, describe: N. Check the Closest City: Jackson, MS Birmingham, AL Memphis, TN Montgomery, AL New Orleans, LA Baton Rouge, LA O Check the Tank Paint Color: Aluminum Diffuse Gray Medium Red White Other, describe: P. Tank Paint Condition: Good or Poor Check Type of Tank Loading 1. Trucks and Rail Cars Submerged Loading of clean cargo tank Submerged Loading: Dedicated Normal Service Submerged Loading: Dedicated Normal Service Submerged Loading: Dedicated Normal Service		
B. Reid Vapor Pressure at storage temperature:	Tank	: Data:
C. Density of product at storage temperature: lb/g D. Molecular Weight of product vapor at storage temperature: lb/g E. Throughput for most recent calendar year: gal Tank Capacity: ggl G. Tank Diameter: feet H. Tank Height / Length: feet I. Average Vapor Space Height: Vertical or Horizonte K. Type of Roof: Dome or Cone Is the Tank Equipped with a Vapor Recovery System? Yes If Yes, describe on separate sheet of paper and attach. Indicate efficien M. Check the Type of Tank: External Floating Roof Pressure Internal Floating Roof Pressure Internal Floating Roof Pressure Dome or Cone N. Check the Closest City: Jackson, MS Birmingham, AL Memphis, TN Montgomery, AL New Orleans, LA Baton Rouge, LA O Check the Tank Paint Color: Aluminum Diffuse Gray Medium Red White Other, describe: P. Tank Paint Condition: Good or Poor Check Type of Tank Loading I. Trucks and Rail Cars Submerged Loading of clean cargo tank Submerged Loading : Dedicated Normal Service Splash Loading : Dedicated Normal Service	A.	True Vapor Pressure at storage temperature:
D. Molecular Weight of product vapor at storage temperature: Ib/I E. Throughput for most recent calendar year: gal F. Tank Capacity: ggl G. Tank Diameter: feet H. Tank Height / Length: feet I. Average Vapor Space Height: feet J. Tank Orientation: Vertical or Horizonta K. Type of Roof: Dome or Cone L. Is the Tank Equipped with a Vapor Recovery System? Yes If Yes, describe on separate sheet of paper and attach. Indicate efficien M. Check the Type of Tank: Fixed Roof External Floating Roof Pressure Internal Floating Roof Pressure Inter	B.	
E. Throughput for most recent calendar year: F. Tank Capacity: G. Tank Diameter: H. Tank Height / Length: I. Average Vapor Space Height: J. Tank Orientation: K. Type of Roof: L. Is the Tank Equipped with a Vapor Recovery System? If Yes, describe on separate sheet of paper and attach. Indicate efficient M. Check the Type of Tank: Fixed Roof Pressure Other, describe: N. Check the Closest City: Jackson, MS Memphis, TN Montgomery, AL New Orleans, LA O Check the Tank Paint Color: Aluminum Diffuse Red Other, describe: P. Tank Paint Condition: Check Type of Tank Loading 1. Trucks and Rail Cars Submerged Loading: Dedicated Normal Service Splash Loading: Dedicated Normal Service Splash Loading: Dedicated Normal Service	C. 🗉	
F. Tank Capacity:	D.	Molecular Weight of product vapor at storage temperature:
G. Tank Diameter: feet H. Tank Height / Length: feet I. Average Vapor Space Height: Vertical or Horizonta J. Tank Orientation: Vertical or Horizonta K. Type of Roof: Dome or Cone L. Is the Tank Equipped with a Vapor Recovery System? Yes If Yes, describe on separate sheet of paper and attach. Indicate efficient M. M. Check the Type of Tank: External Floating Roof — Pressure Internal Floating Roof — Pressure Internal Floating Roof — Variable Vapor Space Other, describe: N. Check the Closest City: — Jackson, MS Birmingham, AL — New Orleans, LA Baton Rouge, LA O Check the Tank Paint Color: — Aluminum Specular Gray Light — Aluminum Diffuse Gray Medium — Red White — Other, describe: Good or Poor Q. Check Type of Tank Loading I. Trucks and Rail Cars — Submerged Loading: Dedicated Normal	E.	
H. Tank Height / Length: I. Average Vapor Space Height: J. Tank Orientation: K. Type of Roof: L. Is the Tank Equipped with a Vapor Recovery System? If Yes, describe on separate sheet of paper and attach. Indicate efficient of the paper a	F _e	
I. Average Vapor Space Height: J. Tank Orientation: K. Type of Roof: L. Is the Tank Equipped with a Vapor Recovery System? If Yes, describe on separate sheet of paper and attach. Indicate efficient of the paper and attach. Indicate effici	G.	
J. Tank Orientation: K. Type of Roof: L. Is the Tank Equipped with a Vapor Recovery System? If Yes, describe on separate sheet of paper and attach. Indicate efficient M. Check the Type of Tank: Fixed Roof Pressure Other, describe: N. Check the Closest City: Jackson, MS Memphis, TN New Orleans, LA Otheck the Tank Paint Color: Aluminum Specular Red White Other, describe: P. Tank Paint Condition: Check Type of Tank Loading I. Trucks and Rail Cars Submerged Loading of clean cargo tank Splash Loading of clean cargo tank		-
K. Type of Roof: L. Is the Tank Equipped with a Vapor Recovery System? If Yes, describe on separate sheet of paper and attach. Indicate efficient M. Check the Type of Tank: Fixed Roof Pressure Other, describe: N. Check the Closest City: Jackson, MS Memphis, TN Montgomery, AL New Orleans, LA Check the Tank Paint Color: Aluminum Specular Red Other, describe: P. Tank Paint Condition: Check Type of Tank Loading 1. Trucks and Rail Cars Submerged Loading of clean cargo tank Submerged Loading of clean cargo tank Splash Loading of clean cargo tank		
L. Is the Tank Equipped with a Vapor Recovery System? If Yes, describe on separate sheet of paper and attach. Indicate efficient M. Check the Type of Tank: Fixed Roof Pressure Internal Floating Roof Variable Vapor Space Other, describe: N. Check the Closest City: Jackson, MS Memphis, TN Montgomery, AL New Orleans, LA Describe: Aluminum Specular Aluminum Specular Red White Other, describe: P. Tank Paint Condition: Check Type of Tank Loading I. Trucks and Rail Cars Submerged Loading of clean cargo tank Submerged Loading of clean cargo tank Submerged Loading i Dedicated Normal Service Splash Loading of clean cargo tank Splash Loading i Dedicated Normal Service		
If Yes, describe on separate sheet of paper and attach. Indicate efficient M. Check the Type of Tank: ———————————————————————————————————		-/
M. Check the Type of Tank: Fixed Roof Pressure Other, describe: N. Check the Closest City: Jackson, MS New Orleans, LA Check the Tank Paint Color: Aluminum Diffuse Red Other, describe: P. Tank Paint Condition: Check Type of Tank Loading 1. Trucks and Rail Cars Submerged Loading of clean cargo tank Splash Loading of clean cargo tank Splash Loading: Dedicated Normal Service Splash Loading: Dedicated Normal Service	L.	
Fixed Roof		· · · · · · · · · · · · · · · · · · ·
Pressure Internal Floating Roof Variable Vapor Space Other, describe: N. Check the Closest City: Jackson, MS Birmingham, AL Memphis, TN Montgomery, AL New Orleans, LA Baton Rouge, LA Check the Tank Paint Color: Aluminum Specular Gray Light Aluminum Diffuse Gray Medium Red White Other, describe: P. Tank Paint Condition: Good or Poor Check Type of Tank Loading	M.	
Other, describe: N. Check the Closest City: Jackson, MS Memphis, TN Montgomery, AL New Orleans, LA Check the Tank Paint Color: Aluminum Specular Aluminum Diffuse Gray Medium Red White Other, describe: P. Tank Paint Condition: Q. Check Type of Tank Loading 1. Trucks and Rail Cars Submerged Loading: Dedicated Normal Service Splash Loading of clean cargo tank Splash Loading: Dedicated Normal Service Splash Loading: Dedicated Normal Service		
Other, describe: N. Check the Closest City: Jackson, MS Memphis, TN New Orleans, LA O Check the Tank Paint Color: Aluminum Specular Aluminum Diffuse Red Other, describe: P. Tank Paint Condition: Check Type of Tank Loading 1. Trucks and Rail Cars Submerged Loading of clean cargo tank Splash Loading of clean cargo tank		
N. Check the Closest City:		
	N	·
Memphis, TN Montgomery, AL New Orleans, LA Baton Rouge, LA Check the Tank Paint Color: Aluminum Specular Gray Light Aluminum Diffuse Gray Medium Red White Other, describe: P. Tank Paint Condition: Good or Poor Q. Check Type of Tank Loading 1. Trucks and Rail Cars Submerged Loading of clean cargo tank Submerged Loading: Dedicated Normal Service Splash Loading of clean cargo tank Splash Loading of clean cargo tank Splash Loading of clean cargo tank Splash Loading: Dedicated Normal Service Splash Loading: Dedicated Normal Service	14.	•
New Orleans, LA Baton Rouge, LA Check the Tank Paint Color: Aluminum Specular Gray Light Aluminum Diffuse Gray Medium Red White Other, describe: P. Tank Paint Condition: Good or Poor Check Type of Tank Loading 1. Trucks and Rail Cars Submerged Loading of clean cargo tank Submerged Loading: Dedicated Normal Service Splash Loading of clean cargo tank Splash Loading of clean cargo tank Splash Loading: Dedicated Vapor Balance Service Splash Loading: Dedicated Normal Service		·
O Check the Tank Paint Color: Aluminum Specular Gray Light Aluminum Diffuse Gray Medium Red White Other, describe: P. Tank Paint Condition: Good or Poor Q. Check Type of Tank Loading 1. Trucks and Rail Cars Submerged Loading of clean cargo tank Submerged Loading: Dedicated Normal Service Submerged Loading: Dedicated Vapor Balance Service Splash Loading of clean cargo tank Splash Loading: Dedicated Normal Service		
Aluminum Specular Gray Light Aluminum Diffuse Gray Medium Red White Other, describe: P. Tank Paint Condition: Good or Poor Q. Check Type of Tank Loading 1. Trucks and Rail Cars Submerged Loading of clean cargo tank Submerged Loading: Dedicated Normal Service Splash Loading of clean cargo tank Splash Loading of clean cargo tank Splash Loading: Dedicated Normal Service Splash Loading: Dedicated Normal Service	O	- The state of the
Aluminum Diffuse Gray Medium Red White Other, describe: P. Tank Paint Condition: Good or Poor Q. Check Type of Tank Loading 1. Trucks and Rail Cars Submerged Loading of clean cargo tank Submerged Loading: Dedicated Normal Service Submerged Loading: Dedicated Vapor Balance Service Splash Loading of clean cargo tank \$\leq \theta \cdot D\$ Splash Loading: Dedicated Normal Service	_	
Red White Other, describe: Good or Poor P. Tank Paint Condition: Good or Poor Q. Check Type of Tank Loading 1. Trucks and Rail Cars Submerged Loading of clean cargo tank Submerged Loading: Dedicated Normal Service Submerged Loading: Dedicated Vapor Balance Service Splash Loading of clean cargo tank Splash Loading: Dedicated Normal Service		· · · · · · · · · · · · · · · · · · ·
P. Tank Paint Condition: Good or Poor Q. Check Type of Tank Loading 1. Trucks and Rail Cars Submerged Loading of clean cargo tank Submerged Loading: Dedicated Normal Service Submerged Loading: Dedicated Vapor Balance Service Splash Loading of clean cargo tank Splash Loading: Dedicated Normal Service		•
P. Tank Paint Condition: Good or Poor Q. Check Type of Tank Loading 1. Trucks and Rail Cars Submerged Loading of clean cargo tank Submerged Loading: Dedicated Normal Service Submerged Loading: Dedicated Vapor Balance Service Splash Loading of clean cargo tank Splash Loading: Dedicated Normal Service		Other, describe:
Q. Check Type of Tank Loading 1. Trucks and Rail Cars Submerged Loading of clean cargo tank Submerged Loading: Dedicated Normal Service Submerged Loading: Dedicated Vapor Balance Service Splash Loading of clean cargo tank Splash Loading: Dedicated Normal Service		
1. Trucks and Rail Cars Submerged Loading of clean cargo tank Submerged Loading: Dedicated Normal Service Submerged Loading: Dedicated Vapor Balance Service Splash Loading of clean cargo tank ≤ P Splash Loading: Dedicated Normal Service	P.	
Submerged Loading: Dedicated Normal Service Submerged Loading: Dedicated Vapor Balance Service Splash Loading of clean cargo tank Splash Loading: Dedicated Normal Service		
Submerged Loading: Dedicated Normal Service Submerged Loading: Dedicated Vapor Balance Service Splash Loading of clean cargo tank Splash Loading: Dedicated Normal Service		Check Type of Tank Loading
Submerged Loading: Dedicated Vapor Balance Service Splash Loading of clean cargo tank Splash Loading: Dedicated Normal Service		Check Type of Tank Loading 1. Trucks and Rail Cars
Splash Loading of clean cargo tank Splash Loading: Dedicated Normal Service		Check Type of Tank Loading 1. Trucks and Rail Cars Submerged Loading of clean cargo tank
Splash Loading: Dedicated Normal Service		Check Type of Tank Loading 1. Trucks and Rail Cars Submerged Loading of clean cargo tank Submerged Loading: Dedicated Normal Service
Splash Loading: Dedicated Vapor Balance Service		Check Type of Tank Loading 1. Trucks and Rail Cars Submerged Loading of clean cargo tank Submerged Loading: Dedicated Normal Service Submerged Loading: Dedicated Vapor Balance Service
		Check Type of Tank Loading 1. Trucks and Rail Cars Submerged Loading of clean cargo tank Submerged Loading: Dedicated Normal Service Submerged Loading: Dedicated Vapor Balance Service Splash Loading of clean cargo tank
		Check Type of Tank Loading 1. Trucks and Rail Cars Submerged Loading of clean cargo tank Submerged Loading: Dedicated Normal Service Submerged Loading: Dedicated Vapor Balance Service Splash Loading of clean cargo tank
Submerged Loading: Ships		Check Type of Tank Loading 1. Trucks and Rail Cars Submerged Loading of clean cargo tank Submerged Loading: Dedicated Normal Service Submerged Loading: Dedicated Vapor Balance Service Splash Loading of clean cargo tank Splash Loading: Dedicated Normal Service Splash Loading: Dedicated Vapor Balance Service Splash Loading: Dedicated Vapor Balance Service Marine Vessels

	R.	For	External Floating Roof	Tanks			
		1.	Check the Type of	Tank Seal:			
			Mechanica	l Shoe			
				Primary Seal Only	<i>I</i>		
					ed Secondary Seal		
				With Rim-Mounte	d Secondary Seal		
				unted Resilient Se			
				Primary Seal Only			
					ed Secondary Seal		
			-	With Rim-Mounte	d Secondary Seal		
				inted Resilient Sea			
				Primary Seal Only			
					ed Secondary Seal		
		2.		With Rim-Mounted			
		2.	Type of External Fl				
					Double-Deci	C	
	S.	For I	nternal Floating Roof T	anks			
		1.	Check the Type of				
				inted Resilient Sea	al		
			-	rimary Seal Only			
				With Rim-Mounted			
				nted Resilient Sea			
				rimary Seal Only			
					i Secondary Seal		
		2.	Number of Roof Co		2 Secondary Bear	•	
		3.	Length of Deck Sea		-	feet:	
		4.	Area of Deck:	-		feet.	
	10.00	5.	Effective Column D	ismeter:	-	feet	
		6.	Check the Type of			1661	
		٠,	• •		n Supported Roof		
					nn Supported Roof		
				olted with Self-Su			
				elded with Self-S			
			 '	cided with Self-2	supported Koot		
5.	Emissi	ons Sun	nmary				
		1.	Breathing Loss:		lb/hr	TP	Y
		2.	Working Loss:	-		TP	
		3.	Total Emissions:			TP	
100		_	*				-
6.	-	Coordin	ates:				
	A. Zon	C		B. North		C. East	

Date	of construction fo	r existing sources or de	ite of anticipated start-up for new sources:
——	1972		
Cycl	one Data:		
a)		(if more than I, put	total number)
	Simp		Potbellied Multiclone
	——— High	Efficiency	Multicione
b)	Efficiency:		90 %
		a.	• %
c)	Pollutant visco	sity:	poise
d)	Flow Rate:		acfm
-,			
=)	Pollutant size o	entering cyclone:	microns
f)	Pressure drop:		inches H ₂ O
.,	riessure drop.		
g)	Baffles or Lo	uvers (specify):	
	G 1 1.	.t Talas	e.
h)	Cyclone dimen	sions: Inlet: Outlet:	ft
			ter: ft
		Body height	:: ft
		Cone height	:: ft
i)	Wet spray:	Yes	X_ No
• •	l.	No. of Nozzles:	
	2.	Type of liquid used:	
	3.	Flow rate:	gpm
	4.	Make-up rate:	gpm
	5.	% recycled:	%
)	Fan location:	•	
,	1.	Downstream:	Direct emission
		300	Auxiliary Stack
	2.		No cap (vertical emissions)
			Fixed cap (diffuse emissions)
			Wind respondent cap (horizontal
		+-1	emissions)
in:-	h neonago(an) daan	the evolune(s) control	emissions from? Word Fired 1
M UIC	u biodess(es) noes	me chetoue(a) countor	emissions nom:
(surce 01.		

D	of construction for existing sources or date of anticipated start-up for new sources:
Date	Unk.
Cuala	Date:
a) Càcto	ne Data: Cyclone type (if more than 1, put total number):
Í	Simple Potbellied
	High Efficiency Multiclone
b)	Efficiency:%
-,	
c)	Pollutant viscosity: poise
d)	Flow Rate: acfm
٠,	
e)	Pollutant size entering cyclone: microns
f)	Pressure drop: inches H ₂ O
.,	Tressure drop.
g)	Baffles or Louvers (specify):
h)	Cyclone dimensions: Inlet: 0.83 ft
ш)	Outlet: 0.83 ft
	Body diameter: 4.0 ft
	Body height: 3.0 ft Cone height: 4.5 ft
	Cone height: 7.3 ft
i)	Wet spray: Yes X No
•	1. No. of Nozzles:
	2. Type of liquid used:
	3. Flow rate: gpm 4. Make-up rate: gpm
	4. Make-up rate: gpm 5. % recycled: %
i)	Fan location:
	1. Downstream: Direct emission
	Auxiliary Stack 2. Upstream: No cap (vertical emissions)
	Fixed cap (diffuse emissions)
	Wind respondent cap (horizontal
	emissions)
Which	process(es) does the cyclone(s) control emissions from? Sawdust and
	tings from adzing and boring of cross ties.

EMISSIONS INVENTORY SCENARIOS KOPPERS INDUSTRIES, INC. - GRENADA, MS

			SCENARIOS			
	VARIABLE	EST. ACTUAL	MAXIMUM POTENTIAL	SYNTHETIC	SYNTHETIC	SYNTHETIC MAXIMUM
				(HIGH CREO)	(HIGH PENTA)	(MIXED)
-	1 Wood Burned (tn/yr)	37580	37580	37580	37580	37580
2	2 Wood Fuel Sulfur (%)	0.11	0.11	0.11	0.11	0.11
က						
4	4 Fuel Oil Burned (MGal/yr)	104.8	2190	200	500	200
2	5 Fuel Oil Sulfur (%)	0.5	0.5	0.5	0.5	0.5
9						
7	7 Creo Treated Ties (cf)	200000	2000000	2000000	1500000	1800000
ω	8 Creo Treated Poles (cf)	200000	1500000	1500000	200000	1000000
တ	9 Penta Treated Wood (cf)	1500000	2000000	0	3000000	2000000
9	10 Kiln Dried Poles(cf)	1000000	1600000	1250000	1250000	1250000
=	11 Cyclone Days/Yr	160	300	300	200	200
72	12 Treating Volume Factor	_	1.5	1.5	1.5	1.5

MISSION INVENTORY CALCULATION KOPPERS INDUSTRIES, INC. - GRENADA ESTIMATED ACTUAL EMISSIONS

01-BOILER, WOOD FIR	RED	Sulfur in	wood fuel=	0.11	%
Wood Burned (tn/yr):	37580			(lb/hr):	8000
	Emission			Estimated	Emissions
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr)
Particulate	1.44	lb/tn	5/88 Test	27.06	5.76
SO2	4.29	lb/tn	AP-42&Cal	. 80.61	17.16
NOX	1.4	lb/tn	FR Test	26.31	5.60
CO	1.2	lb/tn	FR Testx2	22.55	4.80
VOC	0.91	lb/tn	FR Test	17.10	3.64
Arsenic	8.8E-05	lb/tn	AP-42	0.0017	0.000
Cadmium	1.7E-05	lb/tn	AP-42	0.0003	0.000
Chromium	1.3E-04	lb/tn	AP-42	0.0024	0.001
Lead	3.1E-04	lb/tn	AP-42	0.0058	0.001
Manganese	8.9E-03	lb/tn	AP-42	0.1672	0.036
Nickel	5.6E-04	lb/tn	AP-42	0.0105	0.002
Selenium	1.8E-05	lb/tn	AP-42	0.0003	0.000
Mercury	6.5E-06	lb/tn	AP-42	0.0001	0.000
Total HAP Metals				0.19	0.040

26-BOILER, FUEL OIL			Fuel Use	Rate(MGal/hr)	0.25
Oil Burned(MGal/yr):	104.8	Sulfur C		0.500	%
Pollutant	Emission Factor	Units	Basis	Estimated I (tn/yr)	Emissions (lb/hr)
Particulate	2	lb/MGal	AP-42	0.10	0.50
SO2	71	lb/MGal	AP-42	3.72	17.75
NOX	20	lb/MGal	AP-42	1.05	5.00
CO	5	lb/MGal	AP-42	0.26	1.25
MOC	0.0	Ib/MCal	AD-42	0.01	0.05

Number of days boiler assumed to operate is 17

MISSION INVENTORY CALCULATION KOPPERS INDUSTRIES, INC. - GRENADA ESTIMATED ACTUAL EMISSIONS

05-WOOD PRESERVING PROCESSES

 Creosote Ties
 700000 C. F.

 Creosote Poles
 500000 C. F.

 Total Creosote Wood
 1200000 C. F.

 Oil/Penta Poles
 1500000 C. F.

On onta i oloo	100000	<u> </u>			
Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hrlave)
Creosote (VOC)	0.015	lb/cf	Form R	9.00	2.05
HAPs contained in creosof	te:		Ť.		
Benzene	22	% in vapor	Calculation	1.98	0.45
Biphenol	0.16	% in vapor	Calculation	0.01	0.00
Cresols	0.46	% in vapor	Calculation	0.04	0.01
Dibenzofurans	0.61	% in vapor	Calculation	0.05	0.01
Naphthalene	17	% in vapor	Calculation	1.53	0.35
P-Xylenes	4.5	% in vapor	Calculation	0.41	0.09
Phenol	1.4	% in vapor	Calculation	0.13	0.03
Quinoline	1.5	% in vapor	Calculation	0.14	0.03
Toluene	26	% in vapor	Calculation	2.34	0.53
TOTAL CREO. HAP	73.63	% in vapor		6.63	1.51
Pentachlorophenol (VOC)	2.54E-05	lb/cf	Form R	0.02	0.00
#6 Oil (VOC)	1.0E-02	lb/cf	Engr. Est.	7.50	1.71
TOTAL VOC				16.52	3.77

08-PRESERVATIVE TREATED WOOD STORAGE FUGITIVES

	Emission			Estimated	Emissions
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr ave)
Creosote Ties				,	
Creosote (VOC)	4.25E-03	lb/cf	FR Test	1.49	0.34
Naphthalene	1.37E-03	lb/cf	FR Test	0.48	0.11
Benzene	1.74E-06	lb/cf	FR Test	0.00	0.00
Toluene	3.54E-05	lb/cf	FR Test	0.01	0.00
Creosote Poles					
Creosote (VOC)	1.15E-02	lb/cf	FR Test	2.88	0.66
Naphthalene	3.34E-03	lb/cf	FR Test	0.84	0.19
Benzene	4.23E-06	lb/cf	FR Test	0.00	0.00
Toluene	1.52E-04	lb/cf	FR Test	0.04	0.01
Penta Poles					
Oil (VOC, est. as creo)	1.15E-02	lb/cf	FR Test	8.63	1.97
Pentachlorophenol	unk.	lb/cf	FR Test	0.00	0.00
Totals					
VOC				12.99	2.96
Naphthalene		Į.		1.31	0.30
Benzene				0.00	0.00
Toluene				0.05	0.01
Pentachlorophenol				0.00	0.00
HAP Organics (Total)				1.37	0.31

EMIS-INV.WK4 03/31/95

EMISSION INVENTORY CALCULATION KOPPERS INDUSTRIES, INC. - GRENADA ESTIMATED ACTUAL EMISSIONS

31-DRY KILNS

VOC	0.08 lb/cf	Alabama	40.00 unk.
Pollutant	Emission Factor Units	Basis	Estimated Emissions (tn/yr) (lb/hr)
Poles Dried	1000000 C. F.		

27-CYCLONES FOR WOOD MILLING

Number of Cyclones:	1		
Ave. Hours/Day:	8		
Ave Days/Yr Each:	160		
Total Hours:	1280		

Em Pollutant Fai	1 1 41 41		Estimated Emission (tn/yr) (lb/hi	ins ')
Particulate	2 lb/hr	AP-42	1.28	2

28-YARD ROADS FUGITIVE PARTICULATES

 $E=k(5.9)(s/12)(S/30)(W/3)^0.7(w/4)^0.5(365-p)/365$ lb/VMT

- ((C)C)(C) - (C)C - ((C)C) - ((C)C)	() (- /	
k=particle size factor=	1.00	6 =No. vehicles driving
s=silt content (%) of road=	10 %	15 =Typ. miles/hr driving
S=mean vehicle speed=	15 mph	2.5 =Typ. hrs driving/day
W=mean vehicle weight=	15 tons	6 =Typ. d/wk driving
w=mean no. of wheels=	4 wheels	1 =Trtng volume factor
p=no. wet days/year=	110 days	70200 =Ann veh mi. traveled
VMT-Veb Mi. Traveled=	70200 VMT	

	Emission Factor Units	Basis	Estimated Emis	ssions (hr)(1)
Particulate	5.30 lb/VMT	AP-42	186.00	127

⁽¹⁾ Hourly based on 365 days, 8 hours per day

TOTAL PLANT EMISSIONS

· · · · · · · · · · · · · · · · · · ·	
28	.44 8.26
84	.33 34.91
27	.35 10.60
22	.81 6.05
73	.63 7.46
8	.01 1.83
2	.84 0.65
0	.19 0.04

⁽²⁾ Assumes backup boiler operating at same time as primary for number of days shown.

EMISSION INVENTORY CALCULATE KOPPERS INDUSTRIES, INC. - GRENADA MAXIMUM POTENTIAL EMISSIONS

01-BOILER, WOOD FIRED		Sulfur in wood fuel=		0.11	%	
Wood Burned (tn/yr):	37580			(lb/hr):	8000	
	Emission			Estimated	Emissions	
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr)	
Particulate	1.44	lb/tn	5/88 Test	27.06	5.76	
SO2	4.29	lb/tn	AP-42&Cal	80.61	17.16	
NOX	1.4	lb/tn	FR Test	26.31	5.60	
CO	1.2	lb/tn	FR Testx2	22.55	4.80	
VOC	0.91	lb/tn	FR Test	17.10	3.64	
Arsenic	8.8E-05	lb/tn	AP-42	0.0017	0.000	
Cadmium	1.7E-05	lb/tn	AP-42	0.0003	0.000	
Chromium	1.3E-04	lb/tn	AP-42	0.0024	0.001	
Lead	3.1E-04	lb/tn	AP-42	0.0058	0.001	
Manganese	8.9E-03	lb/tn	AP-42	0.1672	0.036	
Nickel	5.6E-04	lb/tn	AP-42	0.0105	0.002	
Selenium	1.8E-05	lb/tn	AP-42	0.0003	0.000	
Mercury	6.5E-06	lb/tn	AP-42	0.0001	0.000	
Total HAP Metals			11000	0.19	0.040	

26-BOILER, FUEL OIL			Fuel Use	Rate(MGal/hr)	0.25
Oil Burned(MGal/yr):	2190	Sulfur C	Content:	0.500 %	6
	Emission				missions
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr)
Particulate	2	lb/MGal	AP-42	2.19	0.50
SO2	71	lb/MGal	AP-42	77.75	17.75
NOX	20	lb/MGal	AP-42	21.90	5.00
CO	5	lb/MGal	AP-42	5.48	1.25
VOC	0.2	lb/MGal	AP-42	0.22	0.05

365 Number of days boiler assumed to operate is

03/31/95 EMIS-INV.WK4

MISSION INVENTORY CALCULAT KOPPERS INDUSTRIES, INC. - GRENADA MAXIMUM POTENTIAL EMISSIONS

05-WOOD PRESERVING PROCESSES

 Creosote Ties
 2000000 C. F.

 Creosote Poles
 1500000 C. F.

 Total Creosote Wood
 3500000 C. F.

 Oil/Penta Poles
 2000000 C. F.

2000000	the state of the s			
Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (ib/hr ave)
0.015	lb/cf	Form R	26.25	5.99
e:		A.		
22	% in vapor	Calculation	5.78	1.32
0.16	% in vapor	Calculation	0.04	0.01
0.46	% in vapor	Calculation	0.12	0.03
0.61	% in vapor	Calculation	0.16	0.04
17	% in vapor	Calculation	4.46	1.02
4.5	% in vapor	Calculation	1.18	0.27
1.4	% in vapor	Calculation	0.37	0.08
1.5	% in vapor	Calculation	0.39	0.09
26	% in vapor	Calculation	6.83	1.56
73.63	% in vapor		19.33	4.41
2.54E-05	lb/cf	Form R	0.03	0.01
1.0E-02	lb/cf	Engr. Est.	10.00	2.28
0 0			36.28	8.27
	Emission Factor 0.015 e: 22 0.16 0.46 0.61 17 4.5 1.4 1.5 26 73.63 2.54E-05	Emission Factor Units 0.015 lb/cf e: 22 % in vapor 0.16 % in vapor 0.46 % in vapor 0.61 % in vapor 17 % in vapor 4.5 % in vapor 1.4 % in vapor 1.5 % in vapor	Emission Factor Units Basis 0.015 lb/cf Form R e: 22 % in vapor Calculation 0.16 % in vapor Calculation 0.46 % in vapor Calculation 0.61 % in vapor Calculation 17 % in vapor Calculation 4.5 % in vapor Calculation 1.4 % in vapor Calculation 1.5 % in vapor Calculation 1.5 % in vapor Calculation 26 % in vapor Calculation 273.63 % in vapor 2.54E-05 lb/cf Form R	Emission Estimated Factor Units Basis (tn/yr) 0.015 lb/cf Form R 26.25 e: 22 % in vapor Calculation 5.78 0.16 % in vapor Calculation 0.04 0.46 % in vapor Calculation 0.12 0.61 % in vapor Calculation 0.16 17 % in vapor Calculation 4.46 4.5 % in vapor Calculation 0.37 1.5 % in vapor Calculation 0.39 26 % in vapor Calculation 6.83 73.63 % in vapor Calculation 6.83 2.54E-05 lb/cf Form R 0.03 1.0E-02 lb/cf Engr. Est. 10.00

08-PRESERVATIVE TREATED WOOD STORAGE FUGITIVES

	Emission			Estimated Emissions	
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr ave)
Creosote Ties					
Creosote (VOC)	4.25E-03	lb/cf	FR Test	4.25	0.97
Naphthalene	1.37E-03	lb/cf	FR Test	1.37	0.31
Benzene	1.74E-06	tb/cf	FR Test	0.00	0.00
Toluene	3.54E-05	lb/cf	FR Test	0.04	0.01
Creosote Pales					
Creosote (VOC)	1.15E-02	lb/cf	FR Test	8.63	1.97
Naphthalene	3.34E-03	lb/cf	FR Test	2.51	0.57
Benzene	4.23E-06	lb/cf	FR Test	0.00	0.00
Toluene	1.52E-04	lb/cf	FR Test	0.11	0.03
Penta Poles					
Oil (VOC, est. as creo)	1.15E-02	lb/cf	FR Test	11.50	2.62
Pentachlorophenol	unk.	lb/cf	FR Test	0.00	0.00
Totals					
VOC				24.38	5.56
Naphthalene				3.88	0.88
Benzene				0.00	0.00
Toluene			111	0.15	0.03
Pentachlorophenol				0.00	0.00
HAP Organics (Total)				4.03	0.92

MISSION INVENTORY CALCULATION KOPPERS INDUSTRIES, INC. - GRENADA MAXIMUM POTENTIAL EMISSIONS

31-DRY KILNS

Poles Dried	1600000 C. F.		
Pollutant	Emission Factor Units	Basis	Estimated Emissions (tn/vr) (lb/hr)
VOC	0.08 lb/cf	Alabama	64.00 unk.

27-CYCLONES FOR WOOD MILLING

Number of Cyclones:	1
Ave. Hours/Day:	8
Ave Days/Yr Each:	300
Total Hours:	2400

	mission actor Units	Basis	Estimated Emissi (tn/yr) (lb/i	0.000
Particulate	2 lb/hr	AP-42	2.40	2

28-YARD ROADS FUGITIVE PARTICULATES

E=k(5.9)(s/12)(S/30)(W/3)^0.7(w/4)^0.5(365-p)/365 lb/VMT

k=particle size factor=	1.00	6 =No. vehicles driving
s=silt content (%) of road=	10 %	15 =Typ. miles/hr driving
S=mean vehicle speed=	15 mph	2.5 =Typ. hrs driving/day
W=mean vehicle weight=	15 tons	6 =Typ. d/wk driving
w=mean no. of wheels=	4 wheels	1.5 =Trtng volume factor
p=no. wet days/year=	110 days	105300 =Ann veh mi. traveled
VMT-Vob Mi Trovolod-	105300 VMT	

A IAI I - A CI I' IAII' I I II A CI	00 100000 11111			THE RESERVE AND ADDRESS OF THE PERSON NAMED AND ADDRESS OF THE
Pollutant	Emission Factor Units		Estimated Em (tn/yr) (lb	200200000000000000000000000000000000000
Particulate	5.30 lb/VMT	AP-42	278.99	191

⁽¹⁾ Hourly based on 365 days, 8 hours per day

TOTAL PLANT EMISSIONS

Pollutant	Estimated (tn/yr)	Emissions (lb/hr)
Particulate (less fugitive)	 31.65	8.26
SO2 (2)	 158.35	34.91
NOX	 48.21	10.60
CO	 28.02	6.05
VOC(less fugitive)	 117.59	11.96
HAPs(Organics/VOC)	 23.38	5.33
Naphthalene	 8.34	1.90
HAP Metals	 0.19	0.04

⁽²⁾ Assumes backup boiler operating at same time as primary for number of days shown.

MISSION INVENTORY CALCULAT KOPPERS INDUSTRIES, INC. - GRENADA SYNTHETIC MINOR EMISSION (HIGH CREO VOL.)

01-BOILER, WOOD FIRED		Sulfur in wood fuel=		0.11	%	
Wood Burned (tn/yr):	37580			(lb/hr):	8000	
	Emission			Estimated	Emissions	
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr)	
Particulate	1.44	lb/tn	5/88 Test	27.06	5.76	
SO2	4.29	lb/tn	AP-42&Cal	. 80.61	17.16	
NOX	1.4	lb/tn	FR Test	26.31	5.60	
CO	1.2	lb/tn	FR Testx2	22.55	4.80	
VOC	0.91	lb/tn	FR Test	17.10	3.64	
Arsenic	8.8E-05	lb/tn	AP-42	0.0017	0.000	
Cadmium	1.7E-05	lb/tn	AP-42	0.0003	0.000	
Chromium	1.3E-04	lb/tn	AP-42	0.0024	0.001	
Lead	3.1E-04	lb/tn	AP-42	0.0058	0.001	
Manganese	8.9E-03	lb/tn	AP-42	0.1672	0.036	
Nickel	5.6E-04	lb/tn	AP-42	0.0105	0.002	
Selenium	1.8E-05	lb/tn	AP-42	0.0003	0.000	
Mercury	6.5E-06	lb/tn	AP-42	0.0001	0.000	
Total HAP Metals				0.19	0.040	

26-BOILER, FUEL OIL	, FUEL OIL Fuel Use Rate(MGal/hr)		0.25		
Oil Burned(MGal/yr):	500	Sulfur C	Content:	0.500	%
	Emission			Estimated	Emissions
Pollutant	Factor I	Units	Basis	(tn/yr)	(lb/hr)
Particulate	2	b/MGal	AP-42	0.50	0.50

	Emission			Estimated	Emissions
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr)
Particulate	2	lb/MGal	AP-42	0.50	0.50
SO2	71	lb/MGal	AP-42	17.75	17.75
NOX	20	lb/MGal	AP-42	5.00	5.00
CO	5	lb/MGal	AP-42	1.25	1.25
VOC	0.2	lb/MGal	AP-42	0.05	0.05

83 Number of days boiler assumed to operate is

EMISSION INVENTORY CALCULATION KOPPERS INDUSTRIES, INC. - GRENADA SYNTHETIC MINOR EMISSION (HIGH CREO VOL.)

05-WOOD PRESERVING PROCESSES

Creosote Ties 2000000 C. F.
Creosote Poles 1500000 C. F.
Total Creosote Wood 3500000 C. F.
Oil/Penta Poles 0 C. F.

	O			
Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (ib/hrlave)
0.015	lb/cf	Form R	26.25	5.99
e:				
22	% in vapor	Calculation	5.78	1.32
0.16	% in vapor	Calculation	0.04	0.01
0.46	% in vapor	Calculation	0.12	0.03
0.61	% in vapor	Calculation	0.16	0.04
17	% in vapor	Calculation	4.46	1.02
4.5	% in vapor	Calculation	1.18	0.27
1.4	% in vapor	Calculation	0.37	0.08
1.5	% in vapor	Calculation	0.39	0.09
			6.83	1.56
			19.33	4.41
2.54E-05	lb/cf	Form R	0.00	0.00
1.0E-02	lb/cf	Engr. Est.	0.00	0.00
			26.25	5.99
	Emission Factor 0.015 e: 22 0.16 0.46 0.61 17 4.5 1.4 1.5 26 73.63 2.54E-05	Factor Units	Emission Factor Units Basis 0.015 lb/cf Form R e: 22 % in vapor Calculation 0.16 % in vapor Calculation 0.46 % in vapor Calculation 0.61 % in vapor Calculation 17 % in vapor Calculation 4.5 % in vapor Calculation 4.5 % in vapor Calculation 1.4 % in vapor Calculation 1.5 % in vapor Calculation 26 % in vapor Calculation 26 % in vapor Calculation 73.63 % in vapor 2.54E-05 lb/cf Form R	Emission Estimated Factor Units Basis (tn/yr) 0.015 lb/cf Form R 26.25 e: 22 % in vapor Calculation 5.78 0.16 % in vapor Calculation 0.04 0.46 % in vapor Calculation 0.12 0.61 % in vapor Calculation 0.16 17 % in vapor Calculation 4.46 4.5 % in vapor Calculation 0.37 1.5 % in vapor Calculation 0.39 26 % in vapor Calculation 6.83 73.63 % in vapor Calculation 6.83 2.54E-05 lb/cf Form R 0.00 1.0E-02 lb/cf Engr. Est. 0.00

08-PRESERVATIVE TREATED WOOD STORAGE FUGITIVES

	Emission	Emission			Emissions
Pollutant	Factor	Units	Basis	(tn/yr)	(ib/hr ave)
Creosote Ties					
Creosote (VOC)	4.25E-03	lb/cf	FR Test	4.25	0.97
Naphthalene	1.37E-03	lb/cf	FR Test	1.37	0.31
Benzene	1.74E-06	lb/cf	FR Test	0.00	0.00
Toluene	3.54E-05	lb/cf	FR Test	0.04	0.01
Creosote Poles					
Creosote (VOC)	1.15E-02	lb/cf	FR Test	8.63	1.97
Naphthalene	3.34E-03	lb/cf	FR Test	2.51	0.57
Benzene	4.23E-06	lb/cf	FR Test	0.00	0.00
Toluene	1.52E-04	lb/cf	FR Test	0.11	0.03
Penta Poles					
Oil (VOC, est. as creo)	1.15E-02	lb/cf	FR Test	0.00	0.00
Pentachlorophenol	unk.	lb/cf	FR Test	0.00	0.00
Totals					
VOC				12.88	2.94
Naphthalene				3.88	0.88
Benzene				0.00	0.00
Toluene				0.15	0.03
Pentachlorophenol				0.00	0.00
HAP Organics (Total)				4.03	0.92

EMISSION INVENTORY CALCULATION KOPPERS INDUSTRIES, INC. - GRENADA SYNTHETIC MINOR EMISSION (HIGH CREO VOL.)

31-DRY KILNS

Poles Dried	1250000 C. F.		
Poliutant	Emission Factor Units	Basis E	stimated Emissions (tn/yr) (lb/hr)
VOC	0.08 lb/cf	Alabama	50.00 unk.

27-CYCLONES FOR WOOD MILLING

Number of Cyclones:	1
Ave. Hours/Day:	8
Ave Days/Yr Each:	300
Total Hours:	2400

Er Poilutant Fa	nission actor Units	Basis	Estimated Emission (tn/yr) (lb/h	ins r)
Particulate	2 lb/hr	AP-42	2.40	2

28-YARD ROADS FUGITIVE PARTICULATES

E=k(5.9)(s/12)(S/30)(W/3)^0.7(w/4)^0.5(365-p)/365 lb/VMT

	1.1 (111 T) 0.0 (000 p)100	30 127 4 147 1
k=particle size factor=	1.00	6 =No. vehicles driving
s=silt content (%) of road=	10 %	15 =Typ. miles/hr driving
S=mean vehicle speed=	15 mph	2.5 =Typ. hrs driving/day
W=mean vehicle weight=	15 tons	6 =Typ. d/wk driving
w=mean no. of wheels=	4 wheels	1.5 =Trtng volume factor
p=no. wet days/year=	110 days	105300 =Ann veh mi. traveled
\/MT-\/eh Mi Traveled-	105300 VMT	

VIVII VOII. IVII. ITUVOICU	100000 1111			
Pollutant	Emission Factor Units	Basis	Estimated Em (tn/yr) (lb	
Particulate	5.30 lb/VMT	AP-42	278.99	191

⁽¹⁾ Hourly based on 365 days, 8 hours per day

TOTAL PLANT EMISSIONS

Pollutant		Estimated (tn/yr)	Emissions (lb/hr)
Particulate (less fugitive)		29.96	8.26
SO2 (2)		98.36	34.91
NOX	1	31.31	10.60
CO	4	23.80	6.05
VOC(less fugitive)	of.	93.40	9.68
HAPs(Organics/VOC)		23.36	5.33
Naphthalene	9	8.34	1.90
HAP Metals	1	0.19	0.04

⁽²⁾ Assumes backup boiler operating at same time as primary for number of days shown.

MISSION INVENTORY CALCULATION KOPPERS INDUSTRIES, INC. - GRENADA SYNTHETIC MINOR EMISSION (HIGH PENTA VOL.)

01-BOILER, WOOD FIRED		Sulfur in wood fuel=		0.11	%	
Wood Burned (tn/yr):	37580]		(lb/hr):	8000	
	Emission			Estimated	Emissions	
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr)	
Particulate	1.44	lb/tn	5/88 Test	27.06	5.76	
SO2	4.29	lb/tn	AP-42&Cal.	80.61	17.16	
NOX	1.4	lb/tn	FR Test	26.31	5.60	
CO	1.2	lb/tn	FR Testx2	22.55	4.80	
VOC	0.91	lb/tn	FR Test	17.10	3.64	
Arsenic	8.8E-05	lb/tn	AP-42	0.0017	0.000	
Cadmium	1.7E-05	lb/tn	AP-42	0.0003	0.000	
Chromium	1.3E-04	lb/tn	AP-42	0.0024	0.001	
Lead	3.1E-04	lb/tn	AP-42	0.0058	0.001	
Manganese	8.9E-03	lb/tn	AP-42	0.1672	0.036	
Nickel	5.6E-04	lb/tn	AP-42	0.0105	0.002	
Selenium	1.8E-05	lb/tn	AP-42	0.0003	0.000	
Mercury	6.5E-06	lb/tn	AP-42	0.0001	0.000	
Total HAP Metals				0.19	0.040	

26-BOILER, FUEL OIL			Fuel Use	Rate(MGal/hr)	0.25
Oil Burned(MGal/yr):	500	Sulfur C	Content:	0.500	%
Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
Particulate	2	lb/MGal	AP-42	0.50	0.50
SO2	71	lb/MGal	AP-42	17.75	17.75
NOX	20	lb/MGal	AP-42	5.00	5.00
CO	5	lb/MGal	AP-42	1.25	1.25
VOC	0.2	lb/MGal	AP-42	0.05	0.05
Number of days boiler assume	d to operate is	8	33		

MISSION INVENTORY CALCULATION KOPPERS INDUSTRIES, INC. - GRENADA SYNTHETIC MINOR EMISSION (HIGH PENTA VOL.)

05-WOOD PRESERVING PROCESSES

 Creosote Ties
 1500000 C. F.

 Creosote Poles
 500000 C. F.

 Total Creosote Wood
 2000000 C. F.

 Oil/Penta Poles
 3000000 C. F.

Olin Crita i Olos	0000000	<u> </u>			
Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr ave)
Creosote (VOC)	0.015	lb/cf	Form R	15.00	3.42
HAPs contained in creosot	e:				
Benzene	22	% in vapor	Calculation	3.30	0.75
Biphenol	0.16	% in vapor	Calculation	0.02	0.01
Cresols	0.46	% in vapor	Calculation	0.07	0.02
Dibenzofurans	0.61	% in vapor	Calculation	0.09	0.02
Naphthalene	17	% in vapor	Calculation	2.55	0.58
P-Xylenes	4.5	% in vapor	Calculation	0.68	0.15
Phenol	1.4	% in vapor	Calculation	0.21	0.05
Quinoline	1.5	% in vapor	Calculation	0.23	0.05
Toluene	26	% in vapor	Calculation	3.90	0.89
TOTAL CREO. HAP	73.63	% in vapor		11.04	2.52
Pentachlorophenol (VOC)	2.54E-05	lb/cf	Form R	0.04	0.01
#6 Oil (VOC)	1.0E-02	lb/cf	Engr. Est.	15.00	3.42
TOTAL VOC				30.04	6.85

08-PRESERVATIVE TREATED WOOD STORAGE FUGITIVES

	Emission			Estimated	Emissions
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hrlave)
Creosote Ties					
Creosote (VOC)	4.25E-03	lb/cf	FR Test	3.19	0.73
Naphthalene	1.37E-03	lb/cf	FR Test	1.03	0.23
Benzene	1.74E-06	lb/cf	FR Test	0.00	0.00
Toluene	3.54E-05	lb/cf	FR Test	0.03	0.01
Creosote Poles					
Creosote (VOC)	1.15E-02	lb/cf	FR Test	2.88	0.66
Naphthalene	3.34E-03	lb/cf	FR Test	0.84	0.19
Benzene	4.23E-06	lb/cf	FR Test	0.00	0.00
Toluene	1.52E-04	lb/cf	FR Test	0.04	0.01
Penta Poles					
Oil (VOC, est. as creo)	1.15E-02	lb/cf	FR Test	17.25	3.93
Pentachlorophenol	unk.	lb/cf	FR Test	0.00	0.00
Totals				1	
VOC				23.31	5.32
Naphthalene		Ī		1.86	0.42
Benzene				0.00	0.00
Toluene				0.06	0.01
Pentachlorophenol				0.00	0.00
HAP Organics (Total)				1.93	0.44

MISSION INVENTORY CALCULATION KOPPERS INDUSTRIES, INC. - GRENADA SYNTHETIC MINOR EMISSION (HIGH PENTA VOL.)

31-DRY KILNS

Poles Dried	1250000	C. F.			weets/8-7
Pollutant	Emission Factor	Units	Basis	Estimated Emission (tn/yr) (lb/hr)	S
VOC	0.08	lb/cf	Alabama	50.00 unk.	

27-CYCLONES FOR WOOD MILLING

Number of Cyclones:	1
Ave. Hours/Day:	8
Ave Days/Yr Each:	200
Total Hours:	1600

Pollutant Fa	ctor Units 2 lb/hr	Basis	(tn/yr) (lb/ 1.60	nr)
	nission		Estimated Emiss	

28-YARD ROADS FUGITIVE PARTICULATES

E=k(5.9)(s/12)(S/30)	(W/3)^0.7(w/4)^0.5(365-p)/365 lb/VMT

	., (,,, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
k=particle size factor=	1.00	6 =No. vehicles driving
s=silt content (%) of road=	10 %	15 =Typ. miles/hr driving
S=mean vehicle speed=	15 mph	2.5 =Typ. hrs driving/day
W=mean vehicle weight=	15 tons	6 =Typ. d/wk driving
w=mean no. of wheels=	4 wheels	1.5 =Trtng volume factor
p=no. wet days/year=	110 days	105300 =Ann veh mi. traveled
\/MT-\/eh Mi Traveled=	105300 VMT	

	Emission Factor Units	Basis	Estimated Emi	*****
Particulate	5.30 lb/VMT	AP-42	278.99	191

⁽¹⁾ Hourly based on 365 days, 8 hours per day

TOTAL PLANT EMISSIONS

Pollutant		Estimated (tn/yr)	Emissions (lb/hr)
Particulate (less fugitive)		29.16	8.26
SO2 (2)		98.36	34.91
NOX	1	31.31	10.60
CO		23.80	6.05
VOC(less fugitive)		97.19	10.54
HAPs(Organics/VOC)		13.01	2.97
Naphthalene		4.41	1.01
HAP Metals		0.19	0.04

⁽²⁾ Assumes backup boiler operating at same time as primary for number of days shown.

EMISSION INVENTORY CALCULATION KOPPERS INDUSTRIES, INC. - GRENADA SYNTHETIC MINOR EMISSIONS (MIXED)

01-BOILER, WOOD FIRED		Sulfur in	wood fuel=	0.11	%
Wood Burned (tn/yr):	37580			(lb/hr):	8000
	Emission			Estimated	Emissions
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr)
Particulate	1.44	lb/tn	5/88 Test	27.06	5.76
SO2	4.29	lb/tn	AP-42&Cal	80.61	17.16
NOX	1.4	lb/tn	FR Test	26.31	5.60
CO	1.2	lb/tn	FR Testx2	22.55	4.80
VOC	0.91	lb/tn	FR Test	17.10	3.64
Arsenic	8.8E-05	lb/tn	AP-42	0.0017	0.000
Cadmium	1.7E-05	lb/tn	AP-42	0.0003	0.000
Chromium	1.3E-04	lb/tn	AP-42	0.0024	0.001
Lead	3.1E-04	lb/tn	AP-42	0.0058	0.001
Manganese	8.9E-03	lb/tn	AP-42	0.1672	0.036
Nickel	5.6E-04	lb/tn	AP-42	0.0105	0.002
Selenium	1.8E-05	lb/tn	AP-42	0.0003	0.000
Mercury	6.5E-06	lb/tn	AP-42	0.0001	0.000
Total HAP Metals				0.19	0.040

26-BOILER, FUEL OIL		Fuel Use Rate(MGal/hr)		0.25
Oil Burned(MGal/yr):	500	Sulfur Content:	0.500 %	
E Pollutant F	mission actor	Units Basis	Estimated Emi	ssions b/hr)

, , , , , ,	Emission		Estimated	missions
Pollutant	Factor Units	Basis	(tn/yr)	(lb/hr)
Particulate	2 lb/MGal	AP-42	0.50	0.50
SO2	71 lb/MGal	AP-42	17.75	17.75
NOX	20 lb/MGal	AP-42	5.00	5.00
CO	5 lb/MGal	AP-42	1.25	1.25
VOC	0.2 lb/MGal	AP-42	0.05	0.05

Number of days boiler assumed to operate is 83

03/31/95

EMISSION INVENTORY CALCULATION KOPPERS INDUSTRIES, INC. - GRENADA SYNTHETIC MINOR EMISSIONS (MIXED)

05-WOOD PRESERVING PROCESSES

 Creosote Ties
 1800000 C. F.

 Creosote Poles
 1000000 C. F.

 Total Creosote Wood
 2800000 C. F.

 Oil/Penta Poles
 2000000 C. F.

Olbi Citta i Oloc	200000	U. I .			
Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (ib/hrlave)
Creosote (VOC)	0.015	lb/cf	Form R	21.00	4.79
HAPs contained in creosot	te:				
Benzene	22	% in vapor	Calculation	4.62	1.05
Biphenol	0.16	% in vapor	Calculation	0.03	0.01
Cresols	0.46	% in vapor	Calculation	0.10	0.02
Dibenzofurans	0.61	% in vapor	Calculation	0.13	0.03
Naphthalene	17	% in vapor	Calculation	3.57	0.81
P-Xylenes	4.5	% in vapor	Calculation	0.95	0.22
Phenol	1.4	% in vapor	Calculation	0.29	0.07
Quinoline	1.5	% in vapor	Calculation	0.32	0.07
Toluene		% in vapor		5.46	1.24
TOTAL CREO. HAP	73.63	% in vapor		15.46	3.53
Pentachlorophenol (VOC)	2.54E-05		Form R	0.03	0.01
#6 Oil (VOC)	1.0E-02	lb/cf	Engr. Est.	10.00	2.28
TOTAL VOC				31.03	7.07

08-PRESERVATIVE TREATED WOOD STORAGE FUGITIVES

	Emission			Estimated	Emissions
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr ave)
Creosote Ties					
Creosote (VOC)	4.25E-03	lb/cf	FR Test	3.83	0.87
Naphthalene	1.37E-03	lb/cf	FR Test	1.23	0.28
Benzene	1.74E-06	lb/cf	FR Test	0.00	0.00
Toluene	3.54E-05	lb/cf	FR Test	0.03	0.01
Creosate Pales				+	
Creosote (VOC)	1.15E-02	lb/cf	FR Test	5.75	1.31
Naphthalene	3.34E-03	lb/cf	FR Test	1.67	0.38
Benzene	4.23E-06	lb/cf	FR Test	0.00	0.00
Toluene	1.52E-04	lb/cf	FR Test	0.08	0.02
Penta Poles					
Oil (VOC, est. as creo)	1.15E-02	lb/cf	FR Test	11.50	2.62
Pentachlorophenol	unk.	lb/cf	FR Test	0.00	0.00
Totals					
VOC				21.08	4.81
Naphthalene				2.90	0.66
Benzene				0.00	0.00
Toluene	1	1		0.11	0.02
Pentachlorophenol	į.			0.00	0.00
HAP Organics (Total)	ļi —			3.01	0.69

EMISSION INVENTORY CALCULATION KOPPERS INDUSTRIES, INC. - GRENADA SYNTHETIC MINOR EMISSIONS (MIXED)

31-DRY KILNS

Poles Dried	1250000 C. F.		
	Emission		Estimated Emissions
Pollutant	Factor Units 0.08 lb/cf	Basis Alabama	(tn/yr) (lb/hr) 50.00 unk.
VOC	0.00 10/01	Alabailla	00.00 un.

27-CYCLONES FOR WOOD MILLING

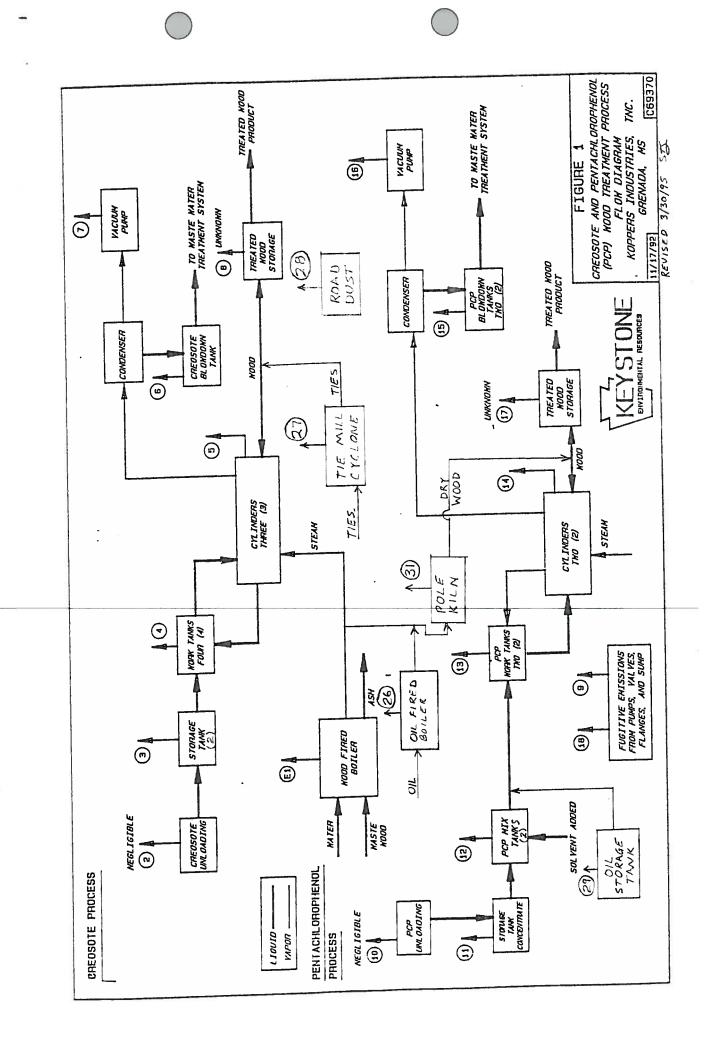
Number of Cyclones:	1
Ave. Hours/Day:	8
Ave Days/Yr Each:	200
Total Hours:	1600

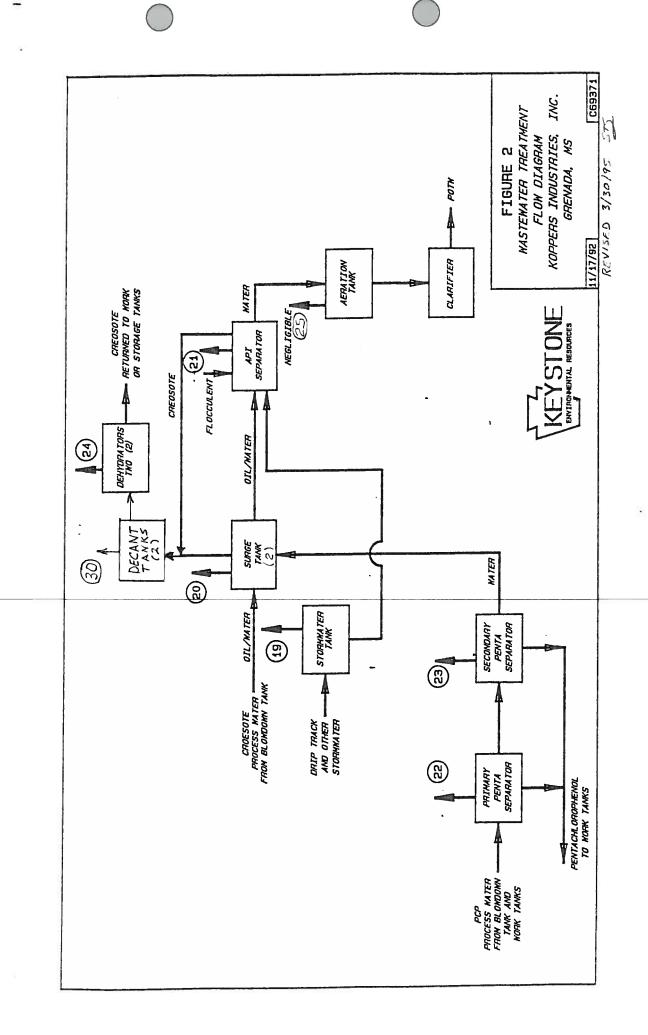
	mission actor Units	Basis	Estimated Emis (tn/yr) (lt	
Particulate	2 lb/hr	AP-42	1.60	2

28-YARD ROADS FUGITIVE PARTICULATES

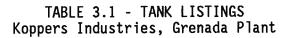
E=k(5.9)(s/12)(S/30)(W/3)^0.7(w/4)^0.5	5(365-p)/365 lb/VMT
--	---------------------

_ ::(0:0/(0: :-/(0:/(::-/				
k=particle size factor=	1.00			=No. vehicles driving
s=silt content (%) of road=	10	%	15	=Typ. miles/hr driving
S=mean vehicle speed=	15	mph	2.5	=Typ. hrs driving/day
W=mean vehicle weight=	15	tons	6	=Typ. d/wk driving
w=mean no. of wheels=	4	wheels	1.5	=Trtng volume factor
p=no. wet days/year=	110	days	105300	=Ann veh mi. traveled
VMT=Veh Mi. Traveled=	105300	VMT		•


TIVIT VOIT. IVII. TIGITO	100	The state of the s		
	Emission		Estimated Em	i anniaai
	LIMBOICAI			00000000000000000000000000000000000000
Dellotest	Factor Units	Basis	(tn/yr) (it	Jhr\/4\
Pollutant	ratio Ulito	8 2/402/5	ering state and entering state	
Destinulate	5 20 lb \(\) \(\)	T AP-42	278.99	191
Particulate	5.30 lb/VM	AF-42	210.00	101


⁽¹⁾ Hourly based on 365 days, 8 hours per day

TOTAL PLANT EMISSIONS


Dall dans		Emissions (lb/hr)
Pollutant	(in/yr)	
Particulate (less fugitive)	 29.16	8.26
SO2 (2)	 98.36	34.91
NOX	 31.31	10.60
CO	 23.80	6.05
VOC(less fugitive)	 98.17	10.76
HAPs(Organics/VOC)	 18.50	4.22
Naphthalene	 6.47	1.48
HAP Metals	 0.19	0.04

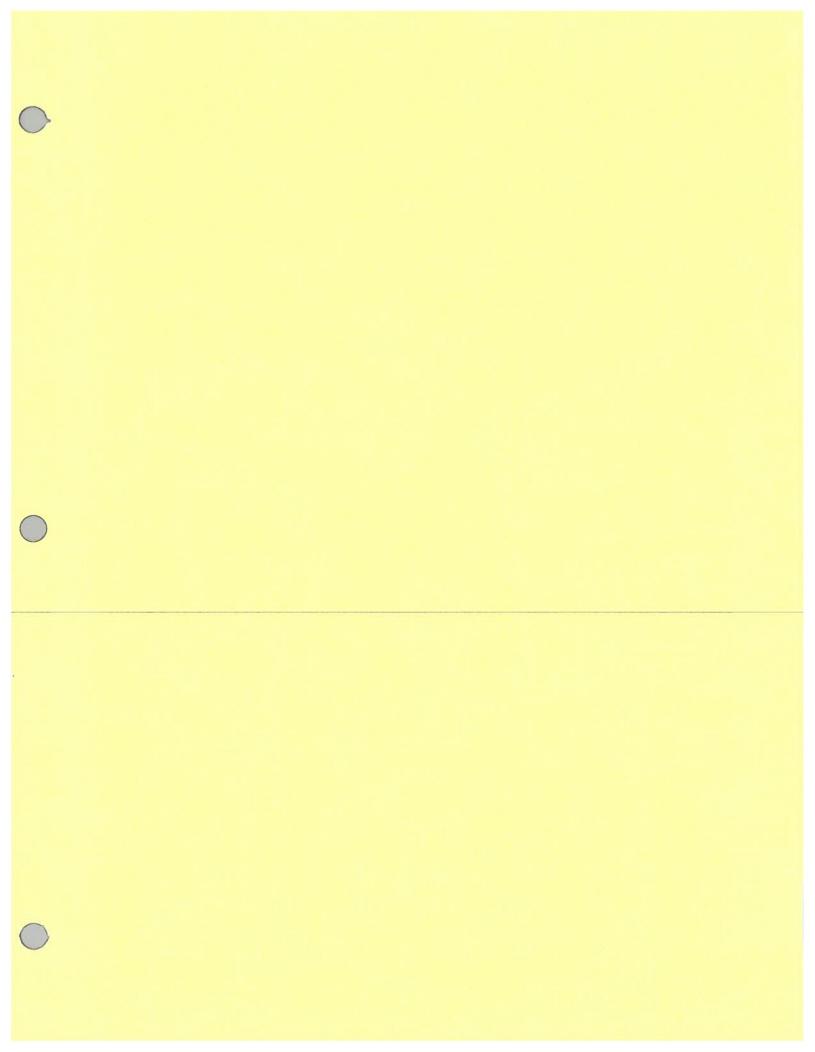
⁽²⁾ Assumes backup boiler operating at same time as primary for number of days shown.

CONTINGENCY, SPCC, AND POLLUTION PREVENTION PLAN, GRENADA PLANT, KOPPERS INDUSTRIES

Reference No.	Name	<u>Contents</u>	<u>Capacity</u>
1.	#1 Cylinder	Creosote	34,000
2.	#2 Cylinder	Creosote 60/40	27,000
3.	#3 Cylinder	Steam Conditioning	27,000
4.	#4 Cylinder	Creosote #1	27,000
5.	#5 Cylinder	Oil Borne Treatment	27,000
6.	#1 Work Tank	Penta in Oil	30,000
7.	#2 Work Tank	Creosote 60/40	30,000
8.	#3 Work Tank	Creosote	30,000
9.	#4 Work Tank	Creosote #1	22,420
10.	#1 2nd Decant Tank	Creosote/Water	30,000
11.	Measuring Tank	Creosote #1	4,200
12.	#1 Storage Tank	Creosote #1	100,000
13.	#2 Surge Tank	Process Water	100,000
14.	#5 Storage Tank	Fuel Oil	100,000
15.	#6 Storage Tank	Creosote 60/40	105,000
16.	#10 Surge Tank	Process Water	300,000
17.	Storm Water Surge	Storm Water	250,000
18.	Coagulant	Dearfloc 4301	2,500
19.	Dehydrator	Creo/Oil/Water	50,000
20.	Creo Blowdown Tank	Water/Creosote	10,000
21.	Air Receivers	Compressed Air	
22.	Air Receivers	Compressed Air	
23. .	Penta Blowdown Tank	Water/Penta/Oil	10,000
24.	Gas Tank	Gasoline	1,000
25.	Fuel Oil #2	Fuel Oil	20,000
26.	Water Treatment Tank	Water	150,000
27.	Water Treatment Tank	Water	25,000
28.	Water Treatment Tank	Water	10,000
29.	Creosote Dehydrator	Not in Use	4,000
30.	N. Penta Equilization	Water/Oil/Penta	14,000
31.	S. Penta Equilization	Water/Oil/Penta	14,000
32.	Penta Mix Tank	Oil/Penta	9,400
33.	Penta Mix Tank	Oil/Penta	6,600
34.	Penta Concentrate St.	Penta Concentrate	8,800

		TANK SUM	ANK SUMMARY TABLE (Section H)	E (Section I	Ŷ			
1. Emission Point Number	The state of the s	13	4	4	4	30	4	က
Reference No.(Table 3.1)		Tank 6		Tank 8	Tank 9	Tank 10	Tank 11	
Name		Wk Tk 5	Wk Tk 2	Wk Tk 3	WT 4 H	M1 1	WT 4 V	Storage
2. Construction Date								and the second s
3. Material Stored		Oil/Penta	P2Creosote	P2Creosote	P2Creosote P2Creosote P1Creosote Water/Creo P1Creosote P1Creosote	Water/Creo	P1Creosote	P1Creosote
4A. True Vapor Pressure a T.	psia	and the second s						
4B. Reid Vapor Pres. at T.	psia					The state of the s		And the second s
Storage Temperature T	Deg. F	200	200	200	200	150	200	200
4C. Density at T	lb/gal	9.25	9.25	9.25		7.51	8.95	8.95
4D. Mol. Wt. at T	lb/lbmole		The state of the s					
4E. Throughput	Gal/yr	10000000	8200000	8200000	6500000	11445000	740000	740000
4F. Tank Capacity	Gal.	29786	29786	29786	27622	29786	5212	119717
4G. Tank Diameter	Feet	13	13	13	6.66		99.9	29
4H. Tank Height/Length	Feet	30	30	30	106		20	24.23
41.Ave. Vapor Space Height	Feet			The state of the s			_	10
4J. Tank Orientation (H or V)		>	>	>	٦	>	>	>
4K. Type of Roof (D or C)		ס	ō	D		ס	ס	ပ
4L. Vapor Recovery Sys.?	Y or N	z	۵	_				
4M. Type of Tank? Fixed=F		L	-		4	4-	4 —	
4N. Closest City?	Memphis							
40. Tank Paint Color?		Black	black	black	Alum	Black	Black	Black
4P. Paint Condition (G or P)		۵	Q	<u>a</u>	۵	۵	Q	0
4Q. Type Tank Loading (SpD or	SpVB)	Bot.	Bot.	Bot.	Bot.	Bot.	Bot.	Bot.
4R. Not Applicable to any tanks								
4S. Not Applicable to any tanks			Part of the control o	White days I will be a series of the series				
5.1. Breathing Loss	lb/hr							
	ТРҮ							
5.2. Working Loss	lb/hr			* A common and a c				
	ТРҮ							
5.3. Total Emissions	lb/hr					the state above against the state of the sta		
	TPY							
			The state of the s					

		TANK SUM	ANK SUMMARY TABLE (Section H)	-E (Section I	Ŷ			
1. Emission Point Number		20	29	e	20	19	24	•
Reference No.(Table 3.1)		Tank 13	Tank 14	Tank 15	Tank 16	Tank 17	Tank 19	Tank 20
Name		WW Stor.	Storage 5	Storage 6	Storage 10	Storm Wat	Decant	Creo BD
2. Construction Date			-	i i		5	1088	_
3. Material Stored		W Water	#2Diesel	P2C.rensofe	P2Creosote Proc Water Storm\\/at	Storm\\\/at	Water/Cros	Water(Crop Weterlorge
4A. True Vapor Pressure a T.	psia				2	Otoline val.	Valencie	אאמומו/כופס
4B. Reid Vapor Pres. at T.	psia							
Storage Temperature T	Deg. F	Amb.	09	120	O9	09	150	150
4C. Density at T	lb/gal	8.34	7.1	9.25	9.25	8 34	8.34	25 8
4D. Mol. Wt. at ⊤	lb/lbmole							
4E. Throughput	Gal/yr	1600000	127500	000099	1400000	2272000	230000	532000
4F. Tank Capacity	Gal.	95316		105750	300518	274104	4512	8557
4G. Tank Diameter	Feet	26	27	30	40.17	36	0	10.2
4H. Tank Height/Length	Feet	24		20	317	36	12	7.5
4l.Ave. Vapor Space Height	Feet	_		12	15	10	10	121
4J. Tank Orientation (H or V)		>	>	>	>	>	>	7
4K. Type of Roof (D or C)		ပ	ပ	O	U	none	7	
4L. Vapor Recovery Sys.?	Y or N	c	c					3 C
4M. Type of Tank? Fixed=F		4	4	4	4	nano	. 4-	
4N. Closest City ?	Memphis							
40. Tank Paint Color?		Black	Black	Black	Black	الع ق	Rlack	Black
4P. Paint Condition (G or P)		Q	Ω	Q			2000	ב מ כ
Type Tank Loading (SpD or	SpVB)	Bot.	Bot.	Bot	Bot	Sol	ר ה ה	۲ ر د
4R. Not Applicable to any tanks								2
4S. Not Applicable to any tanks						9.7		
5.1. Breathing Loss	lb/hr							
	ТРҮ							
5.2. Working Loss	lb/hr							
	ТРҮ							
5.3. Total Emissions	lb/hr				de transfer de distante service en manuel en mande de de deservices de la constante de la cons			
	ТРҮ				and the state of t			manus management of the second
	A COMPANY OF THE PROPERTY OF THE PROPERTY AND THE PROPERTY OF					Various de Auto de Prijagous para mon, desantante a desantante a		


1. Emission Point Number		15	15 22 23	23	12	12	11
Reference No. (Table 3.1)		Tank 23	Tank 30	Tank 31	Tank 32	Tank 33	Tank 34
Name		Penta BD	N.Pen.Ea.	S.Pen.Ea	Penta Mix	Penta Mix	Penta Conc
2. Construction Date							
3. Material Stored		Water/Oil	Oil/Water	Oil/Water	Oil/Penta	Oil/Penta	PentaConc
a T	osia						500
	psia						
	Deg. F	100	100	100	160	160	08
	b/gal	8.34	6	σ. -	7.5	7.5	O
and the first section of the f	b/lbmole					?	
	3al/yr	493000			850000	85000	12000
Tank Capacity	Gal.	8641	14100	14100	PARAMETER STATE		
	eet	10.25		10			
4H. Tank Height/Length	-eet	14	And the second s	24	15	14	2 T
	-eet	12	5	3			
<u>`</u>	development in this is a second control of the second control of t	>	>	>			A STATE OF THE STA
4K. Type of Roof (D or C)		Б	٥	U		: 0	<u> </u>
apor Recovery Sys.?	YorN	_					3
4M. Type of Tank? Fixed=F	and the first description of the first descrip	4-		4			- 4
Slosest City ?	Memphis						_
40. Tank Paint Color?	and the second s	Black	Black	Black	Black	Black	Aliminim
4P. Paint Condition (G or P)		Q	۵	C			
4Q. Type Tank Loading (SpD or Sp	SpVB)	SpD	SpD	SpD	Bot	S. Cas	ב מ
4R. Not Applicable to any tanks			•)	
4S. Not Applicable to any tanks	The profit of th						
	b/hr	The state of the s			and the second section of the section of t		
A STATE OF THE STA	ГРΥ						
5.2. Working Loss	lb/hr						
	ΓP						
5.3. Total Emissions	b/hr						
The state of the s	20			The same and the s	And the second s		

APPLICATION FOR MODIFICATON AND RENEWAL OF AIR POLLUTION CONTROL OPERATING PERMIT TIE PLANT, MISSISSIPPI

APPLICATION FOR MODIFICATION AND RENEWAL OF AIR POLLUTION CONTROL OPERATING PERMIT NO. 0960-00012

TABLE OF CONTENTS

APPI	LICAT	CION	FORMS	5.		•	•	•	•	•	•	•	•	•	•	•	TAB	1
EMIS	SSION	INV	ENTOF	RY CA	ALCUI	LATI	ONS	SP	REA	DSH	EET	s.	•	•	•	₹●	TAB	2
MAP	AND	SITE	PLAN	ıs .	•	•	•	•	•	•	•	•	•	•	•	ě	TAB	3
GENE	Pro Pro Wel Con	cess cess lons tinu	RENCE Desc Flow Wood ous E Lett	ript / Dia l Fir lmiss	ion agram ed E sion	ns Boil Mon	er E	r S	yst	em				ta	•	٠	TAB	4
EMIS	SION	CAL	CULAT	'IONS	AND	SU	PPOI	RT :	FOR	WO	OD I	PRE	SER	VIN	G			
PROC	ESS	• •	•		•	•	•	•	•	•	•	•	•	•	•	£	TAB	5
FUEL	AND	ASH	ANAL	YSES		•	•	•	•	•	•	•	•	•	•	•	TAB	6
STAC	5/8 3/8	8 Te 8 Te	ESULT st of st of	Gre Mon	tgom	ery	, AI	В	oile	er			•	•	•	(:●)	TAB	7
	Cal	ifor	nia W	ood	Fire	d B	oile	er 1	Poo.	led	Tes	st :	Resi	ılts	5			

10/25/93 JB

STATE OF MISSISSIPPI DEPT. OF ENVIRONMENTAL QUALITY OFFICE OF POLLUTION CONTROL P.O. BOX 10385 JACKSON, MS 39289-0385 (601) 961-5171

OCT 2 1 1993

KOPPERS INDUSTRIES GRENADA, MS

APPLICATION FOR
AIR POLLUTION CONTROL PERMIT
TO CONSTRUCT AND/OR OPERATE
AIR EMISSIONS EQUIPMENT

TYPE OF PERMIT

New Source

X Modification

X Renewal of Operating Permit

Existing Source Operating Permit

Name Koppers Industries Inc.

Location: City Tie Plant County Grenada

Facility No. (if known) 0960-00012

APPLICATION FOR PERMIT TO CONSTRUCT AND/OR OPERATE AIR EMISSIONS EQUIPMENT GENERAL FORM

1.	Nam A.	e, Address & Contact for the Owner/Applicant Name <u>Koppers Industries</u> Inc
	A.	Name
	B.	Mailing Address
		1. Street Address or P.O. Box 436 Seventh Ave
		2. City Pittsburgh 3. State PA
		1. Street Address or P.O. Box 436 Seventh Ave 2. City fittsburgh 3. State PA 4. Zip Code 15219 5. Telephone No. (412) 227-2677
	C.	Contact
		1. Name Staphen Smith 2. Title Environmental Mgr.
2.	Nam	e, Address, Location and contact for the Facility
	A.	Name Koppers Industries Inc
	В.	Mailing Address
		1 Street Address on P.O. Box P.O. Box 160
		1. Street Address or P.O. Box 10 5 2. City 7.6 Plant 3. State 145
		1. Street Address or P.O. Box PO Box 160 2. City 718 Plant 3. State M 5 4. Zip Code 35960 5. Telephone No. (601) 226-4587
	C.	Site Location
		1. Street Tre Plant Road 2. City Tre Plant 3. County Grenala 4. State MS 5. Zip Code 38960
		2. City Tre Plant 3. County Grenzea
		4. State MS 5. Zip Code 38960
		6. Telephone No. (661) 226-4584
		Note: If the facility is located outside the City limits, please attach a sketch or description showing the approximate location to this application.
	D.	Contact
		1. Name Ron Murphey 2. Title Plant Mgv.
3.	SIC	Code 2491
4.	Num	ber of Employees 70
5.		cipal Product(s) Pressure Treated Wood - Poles & RR ties
6.	Prin	cipal Raw Materials Wood, Creosofe, Pentachlorophenol
7.		cipal Process(es) 400d preserving pole peeler, boilen
8.	Max	imum amount of principal product produced or raw material consumed per day
		CF/day

9.	Operating Schedule
	A. Specify maximum hours per day the operation will occur: 24
	B. Specify maximum days per week the operation will occur:
	C. Specify maximum weeks per year the operation will occur: 52
	C. Specify the months the operation will occur:
10.	Only if this application is for Operating Permit renewal, has the facility been modified in any way (including production rate, fuel, and/or raw material changes) during period covered by the Operating Permit?YesKNo If yes, give year(s) in which modification(s) occurred and explain
11.	If after August 7, 1977, provide the date construction commenced.
12.	If after August 7, 1977, provide the date operation began.
13.	Please list the dates of any modifications or emissions increases since August 7, 1977.
14.	EACH APPLICATION MUST BE SIGNED BY THE APPLICANT. If the applicant is a corporation, it must be signed by a corporate officer as defined in Regulation APC-S-2. If the applicant is a partnership, it must be signed by a partner with authority to bind
	APC-S-2. If the applicant is a partnership, it meets by the signed by the the partnership. In the case of a governmental agency, the application must be signed by the facility manager or senior staff officer responsible for the installation's or facility's environmental compliance.
·	I certify that I am familiar with the information contained in the application and that to the best of my knowledge and belief such information is true, complete, and accurate, and that, as an appropriate representative of the applicant, my signature shall constitute an agreement that the applicant assumes the responsibility for any alterations, additions or changes in operation that may be necessary to achieve and maintain compliance with all applicable Rules and Regulations.
-	J. R. Batchelder Vice President, Env. & Technical
Printe	ed Name of Person Signing Title
Date	Application Signed Signature of Applicant

PLEASE COMPLETE THE FOLLOWING PAGES WHERE APPLICABLE

1	For Agency Use Only				7	Most Usage	% Process . % Space Heat	0 00/		160 0				
QUIPMENT					9	Usage (Use Code 2*)		1		1				
FUEL BURIA .3 EQUIPMENT	ESS	ه, م.ج.	DATE	2/23/94	5	Type of Burner	(Use Code 1*)	, /		Ø				
	ADDRESS	Tie Plant Rd, Tie Plant, MS	Information for Calendar Year	19 92	4	Rated Capacity		37.5		28.5				
	FACILITY NAME	Industries Inc	PACILITY NUMBER	0960-00012	3	Manufacturer & Model Number		Wellons Mebraska	WTS-2-45-5H	Murray Bailer, M64C,	Size 138		•	
	-1	Koppers		1	7	Reference	Number	10		40		<u> </u>		

Boiler, Steam
 Boiler, Other (Specity)
 Air Heating for Space Heating
 Air Heating for Process Usage
 Others (Specify)

2. USAGE CODES

6. Multiple Port Gas
7. Forced Draft Gas
8. Atomizing Oil (Stove of Air)
9. Atomizing Oil (Mechanical)
10. Retary Cup Oil
11. Others (Specify)

Cyclone Furnace Pulverized Coal Spreader Stoker Hand Fired Other Stoker (Specify)

4 4 M 4 M

1 BURNER CODES

APP-HP.12

Exit Gas				FUEL BU	FUEL BURNING EQUIPMENT					Page 2
Exit Exit Gas	- 1	Stack Parameters	amoters					Fuel Data		
55 350 Wood-Unt. 8,580 1/4, 31,580 71/4, 4,000 307/4, 0 Lulaste Creasite 1 Frinted Color 7,150 1/4, 31,320 70 6,000 804/6, 0.12 32 570 5,000 3490 52,900 118,000 87/6, 0.30	d n	side Exit Nameter Feet	Exit Gas Velocity Foet/Sec.	Exit Gas Temperature Degree F.	Fuel Type	Maximum Amount Per Hour (Specify Units)	Amount Per Year (Specify Units)	Heat Content BTU/Gal, etc. (Specify Units)	Percent Sulfur	Percent Aub
32 570 "2 279" (1,000 BT/L) 0.12 32 570 "2 279" 52,900 BT/L 0.30	''1	3,0	55		Wood-Unt.	8,580 12.	27.580 TV	4,000 Brof.	(0 //
32 570 "201 349pm 52,900gul 18,000 87h. 0.12					Waste Cressote	0		9/	3	5.
32 570 "2 3.4 gpm 52,9wgul 18,000 BT/ 23.0	1				Freated wad	7/150 1/2	31,320.70	6,000 BM/2	0.0	ĺ
32 570 "2 0:1 3.4 9pm 52,9wgul 18,000 BT/2 a30									(2
32 570 52 349pm 52,9wgul 18,000 BT/2 030	- 1									
	1	2.5	32	570	#2 0:1	3.4 9Pm	52,900 pul	18 cm 87%	000	
								10/	3	
	- 1									
	I									
	- 1									

Fuel Type

Grenadu		
0,7		
1,643		
5		

		(1M	FIFT. R	RITRINING E	FINT		W. Carrier		Page 1
								7	
11 Reference	Air	12 Air Pollution Control Equi	Equip	pment		En	13 Emissions (Tons/Year)	car)	Basis of
Number	Manufacturer & Model Number	Type* (Use Table 1)	Design	Efficiency n	ency Actual	Particulate	°os	Other (Specify)	Estimates
10	Wellons Multiclone	31,32		90%	300%	27		 	5-88 Tes+
	Collector					36.8			7-84 test
02	None					500	1.13	*	18-42
								8	
									٠
* See	See Emissions Inv	Inventory a	at Ta	7a6 2		*For Wet	*For Wet Scrubber give		

*For Wet Scrubber give Gallons per minute Water Flow and Water Pressure if known.

CONTROL EQUIPMENT COVERED UNDER THIS APPLICATION - PLEASE CHECK ALL APPLICABLE AND INDICATE NUMBER OF UNITS

PAR	RTICULATE EMISSIONS CONTROL EQ	UIPM	ENT
(1.)	Cyclone(s)	5.	Venturi Scrubber
2.	Water Scrubber	6.	Cyclonic Baghouse
3.	Baghouse	7.	
4. .	Electrostatic Precipitator	_ 8.	Other
GAS	SEOUS EMISSIONS CONTROL EQUIPM	ŒNT	
1.	Water Scrubber	3.	Other
2.	Activated Carbon Bed		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	STE DISPOSAL SYSTEMS Solid Waste Incinerator	4.	Gaseous Waste Flare
1. 2.	Liquid Waste Incinerator		
3.	Wood or Other Waste Fuel Recovery Boiler		Other
Pne	eumatic Conveying System		
Oth	ner (please describe)	···	9
-		Me (u) 192	

		MANUF	MANUFACTURINGJCESS OPERATIONS	ESS OPERATION	S		
	COMPANY NAME	ADDRESS	UESS		For Agency Use Only	ly	
Kopper	Koppers Industries Inc	Tie Plant,	Road MS				
	FACILITY NUMBER	Information for Calendar Year	DATE				
0360	0960 - 00012	19 92	11/ 193	-			
Reference	Process or Unit Operation Name	Rated Process Capacity Tone Hour	Feed Input Quantity Per Hour	Input Quantity Per Year	Number of Emission Points to Air	Product Output* Quantity Quant Per Hour Per Y	Output* Quantity Per Year
Number							
03	Wood Preserving			2,332,000 Cubic Feet	23 *		2,332, are Cubic feet
	* Number of emission	paints 15	per flow c	arasian and	d		
	in cludes fusitive	i		,			
10	Tie Mill			415 CF.			415 CF.
Total Manager							

* Specify Units of Measure Used

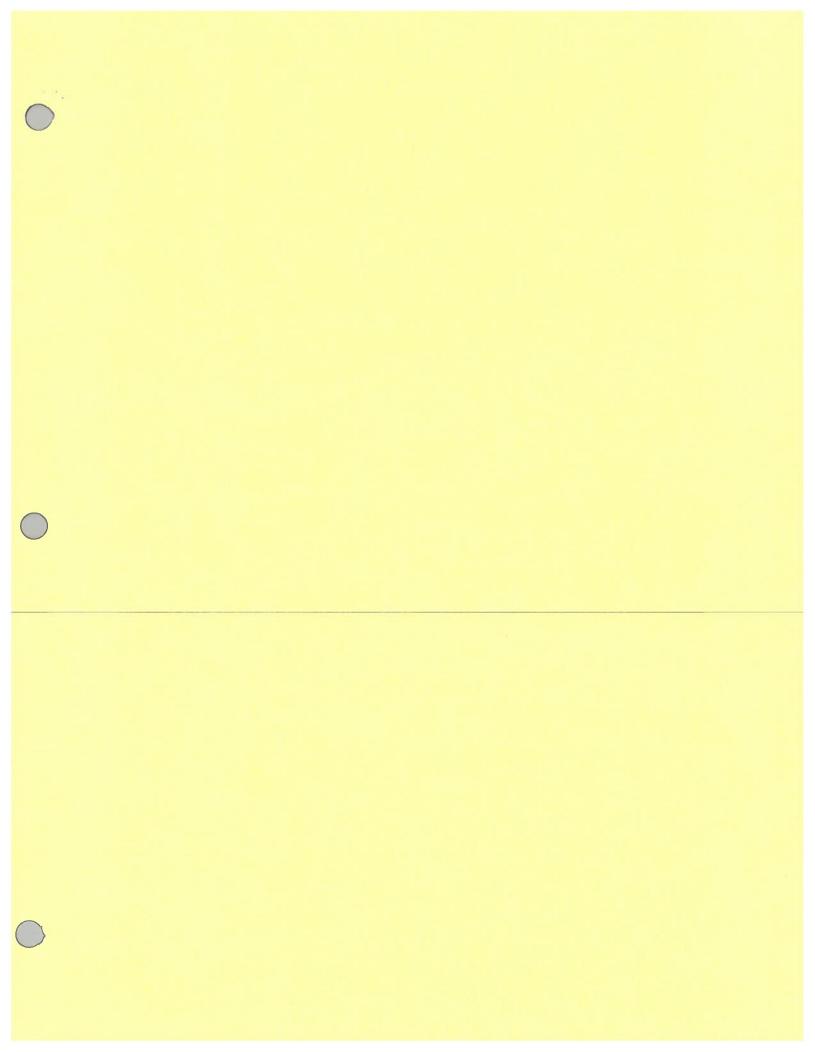
		MAN	UFACTURIN	MANUFACTURING PROCESS OPERATIONS	ATIONS			Page 2
		Stack Data	Data		Air Po	Air Pollution Control Equipment	ol Equipment	
Number	Height Feet	Inside Unit Dia. Feet	Exit Gas Velocity Feet/Sec.	Exit Gas Temperature	Manufacturer and Model Number	Type* (Use Table 1)	Collection Efficiency Design	Miclency Actual
03		NA -			None			
40					Cyclone	30		
		•						
							•	
				*		17		
120								The state of the s

*For Wet Scrubbers Give Gallons Per Minute Water Flow and Water Pressure if Known.

	М	ANUFACTURING	PROCESS OPE	RATIONS	Page 3
11		12 Process Emissions		Basis	(Agency
Reference Number	Particulate	Sulfur Oxides	Others (Specify by chemical composition)	for Estimation	Comments Only)
03	0	0		Sain Sicher	
		Pentachloropeno	1 38 lb/yr	AP-42	
		Cveosote*	6.8 Taus/YR	Emis. Fuctors, AP-42 Emis. Factors, Tests, +AP-42	
	* Emissions	ore valatile	constituen	ts of creo	sote
	and are	considera	to be V	OC.6.	
• //	1227/2			Endission Facto	
04	1.28 Tan/XR 2 16/hr			11 4	
	-				
	 				
7				·	
			ju		

^{*}Please Express Emissions as Tons per Year and Pounds per Hour and Identify Units Being Used

	RE	REFUSE DISPOSAL	m INCINERATION	
A Company Name	ше	Information for Year	r Year	(Agency Use Only)
Koppers Industries I	Inc	1993		
Address		Date		
Tie Plant Road Tie Plant, MS	'//	1/ /93		
NI .	- -		a	A
Description of Waste Materials Type (Describe)	Maximum Amount (Pounds)	ount Per day nds)	Amount Per Year (Tons)	Method of Disposal 1*
Wood Washe - Untreated	205,	5,920 (1)	37,580	5
Used treated wood	171,		31,317	5
Pentachtorophenol				
If Waste Disposal is by Incineration, Specify the Following:	secify the Following:			
1. Type of Incinerator: Sin		Rotary Flue Fed	00	
Modi Other	fied (describe) r (Describe) Equipment	" forms.	(1) This is max	This is maximum under existing
2. Manufacturer's Name	7	Model Number	\widetilde{c}	permit. By His application, Koppers seeks
	Pour Pour	Hour		to use used treated wood conforming
4. Operating Schedule:	Tons Hours/Day	Tons/year Days/Year	eosafe	creosote and/or pentachlorophenal
at Discussing Marked Code	ممامي الم		t	


- *1 Disposal Method Codes
 5. Burned in Boiler or Furnace
 urning) 6. Other (Specify) Open Burning 5. Bu Landfill (No Burning) 6. Ot Incinerator (Complete Rest of Form) Conical Burner (TeePee)

amount shown at (1).

fuel. Total amount will not excord

REFUSE DISPOSAL AND INCINERATION Page 2

	5.	Auxiliary Fuel:	Type				
			Amount/Year (Specify Unit)				
			Heat Content				•
			Percent Sulfur				
			Percent Ash				
\$	·		Supplier's Name				87
	6.	Pollution Control Equipment:	Manufacturer				
			Model Number				
			% Efficiency				
			Туре				
		e e	GPM Water Flow (If Wet Scrubber)				
$\bigcirc j$	7.	Stack Data:	Height		Feet		
			Inside Exit Diameter		Feet		
			Exit Gas Velocity		Feet/Sec		
			Exit Gas Volume		SCFM		31157
			Exit Gas Temperature		. °F		
	8.	Estimated Emissions from Refuse Incineration:		••			
		Name:		Basis of Estimat	tes:		
		Particulates	Tons/Year			•	
		Sulfur Oxides	Tons/Year				
		See "1	Guel burning	equipme	ent" fo	rms.	

09-Mar-94 emis-inv

EMISSION INVENTORY CALCULATION KOPPERS INDUSTRIES, INC. - GRENADA

#01-BOILER, WOOD FIRED

Wood Burned (tn/yr):

37580

Boiler Emissions

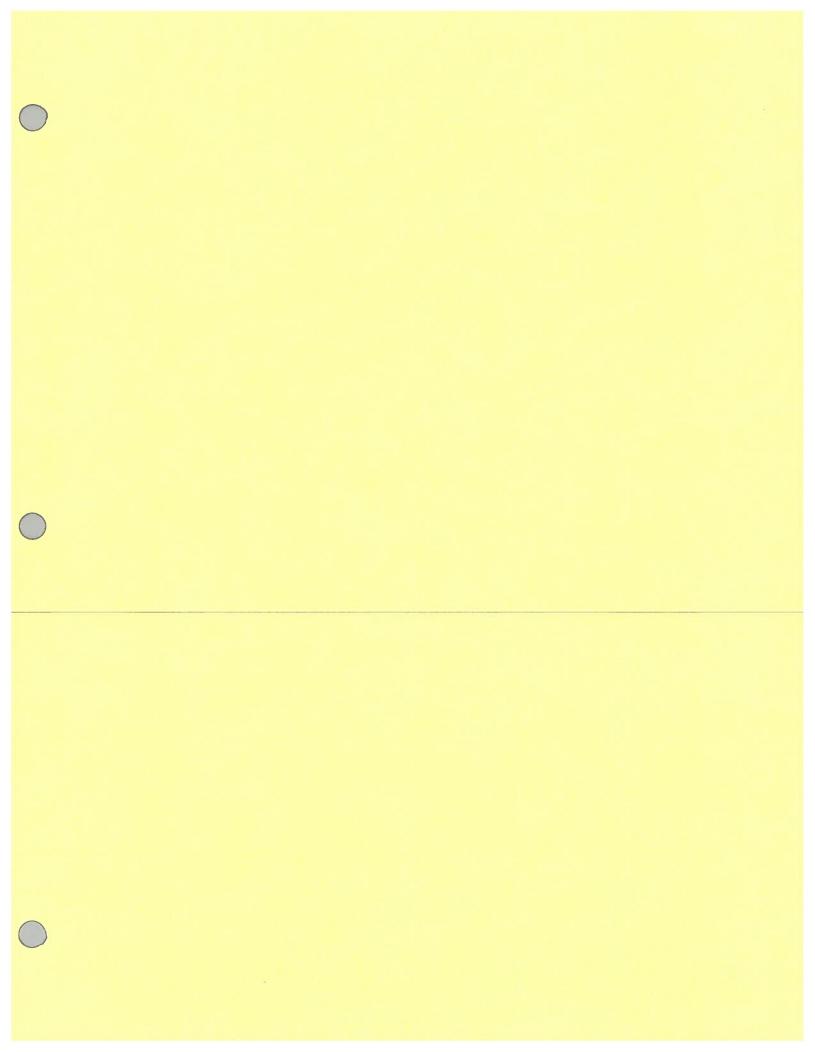
Pollutant	Emission Factor	Units	Basis	Estimated Emission	Units
Particulate SO2 NOX CO VOC Arsenic Cadmium	1.44 0.015 0.68 (TPY) 20	Ib/tn Ib/tn Ib/tn Ib/tn Ib/tn Ib/tn Ib/tn Ib/tn	5/88 Test AP-42 AP-42 AP-42 AP-42 CA-ARB CA-ARB	27.06 0.28 12.78 375.80 26.31 0.0002 0.0009	tn/yr tn/yr tn/yr tn/yr tn/yr tn/yr tn/yr
Chromium Lead 0.6 Manganese Nickel Selenium Mercury 0.1	5.44E-05 3.95E-05 1.99E-02 1.02E-04 0.00E+00 3.43E-06	lb/tn lb/tn lb/tn lb/tn lb/tn	CA-ARB CA-ARB CA-ARB CA-ARB CA-ARB CA-ARB	0.0010 0.0007 0.3738 0.0019 0.0000 0.0001	tn/yr tn/yr tn/yr tn/yr tn/yr

#02(b)-BOILER, FUEL OIL

Oil Burned(MGal/yr):

52.9 Sulfur Content:

0.300 %


Pollutant	Emission Factor	Units	Basis	Estimated Emission Units
		=======	=======	=======================================
Particulate	2	lb/MGal	AP-42	0.05 tn/yr
SO2	42.6	lb/MGal	AP-42	1.13 tn/yr
NOX	20	lb/MGal	AP-42	0.53 tn/yr
CO	5	lb/MGal	AP-42	0.13 tn/yr
VOC	0.2	lb/MGal	AP-42	0.01 tn/vr

HAP into is from

#03-WOOD PRESERVING PROCESSES

Pollutant	Emission Factor	Units	Basis	Estimated Emission	Units
HAPs(Creosote/VOC) Pentachlorophenol	N/A N/A		Form R Form R	6.80 0.019	tn/yr tn/yr
#04-CYCLONES FOR WONUMBER of Cyclones: Ave. Hours/Day: Ave Days/Yr Each: Total Hours:	OOD MILLIN 1 8 160 1280	; ;			
Pollutant	Emission Factor	Units	Basis	Estimated Emission	Units
Particulate	2	lb/hr	AP-42	1.28	tn/yr
TOTAL PLANT EMISSION	IS				
Particulate				. 28.39	tn/vr
SO2					tn/yr
NOX				42.24	•
CO				275.00	•
VOC	*****************			22.42	-
HAPs(Organics/VOC)	•••••			6.82	tn/yr
HAP Metals				. 0.38	•
TAXABLE TOTAL (exc CC),HAP)			. 76.61	tn/yr

07-Mar-94	4 GRENADA	BOILER EMISS	IONS - ESTI	MATE WORK	(SHEET							
	STINU	Creosote Stack Test 400 #hr 40	400 #/hr Creosote Fuel Additive	Test 800 #/hr Creosote Fuel Additive	400 #/hr Penta Fuel Additive	MonigomeryMonigomery MonigomeryAonigomery Untreated Penta/Oil Wood Fuel Treat. Wood 3/88 Test 3/88 Test	Montgomery Penta/Oll Treat.Wood 3/88 Test	Other Relevant Test Data mery Montgomery N a/Oil Creo + PCP Vood Treat.Wood 1 Test 3/88 Test	MontgomeryMontgomery Creosote Averages Treat.Wood 3/88 Test 3/88 Tests	fonigomery Averages 3/88 Tests	CA ARB Pooled Testing Site #2	CA ARB Pooled Testing Site #2
Steam Production Fuel Heat Value Fuel Use Rate Particulate Emission Particulate Em. Factor Gas Flow Rate CONSTITULENT	lbhr BTUMb tonhr lbhr dsc//m	30000 5000 4.29 6.16 1.44	28000 5000 4.00 7.25 1.81	28000 5000 4.00 11.57 2.89	28000 5000 4.00 8.50 2.13	24000 5000 3.43 10.74 3.13	24000 6988 2.45 8.32 3.39	24000 8155 2.10 7.50 3.57	24000 8523 2.01 6.17 3.07	24000 7889 2.19 7.33 3.35 U	Units as	68000 5000 9.71 16.00 30000
NON-CARCINCOENIC FART Nepthelene Acenaphthylene Acenaphthene Fluorene Pyrene TOTAL		5.42E-03 6.83E-04 2.19E-03 1.91E-03 4.95E-03 6.34E-04 1.04E-04 1.75E-02	4.24E-03 9.29E-04 2.34E-03 1.35E-03 3.25E-03 3.69E-04 6.49E-04 1.36E-04	2.54E-03 3.63E-04 1.31E-03 7.61E-04 1.75E-03 1.85E-04 2.66E-04 1.49E-04 7.32E-03	0 <mark>00E+00</mark>	NOT	1.10E-02 3.27E-04 7.63E-04 1.15E-04 5.55E-04 3.73E-05 1.64E-04 1.31E-02	1.78E-02 1.51E-03 8.88E-04 5.70E-04 7.50E-04 5.69E-05 2.07E-04 1.66E-04	4.73E-03 6.41E-05 4.84E-04 1.58E-04 3.68E-04 3.30E-05 8.07E-05 7.75E-05 6.00E-03	1.12E-02 6.34E-04 7.13E-04 2.81E-04 5.58E-04 4.24E-05 1.51E-04 1.23E-04	(ug/dscm) 200 0.28 0.28 0.01 0.03 0.39 0.24	2.24E-02 3.14E-05 3.37E-06 4.71E-05 1.12E-06 4.38E-05 2.69E-05 2.26E-05
CARCINOGENIC PAH'S Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)gruene Benzo(c)gruene Benzo(a)gruene Benzo(a,h,j)peryjene Indeno(1,2,3-cd)pyrene		2.70E-04 2.73E-04 6.42E-05 2.42E-05 2.79E-05 6.79E-05 3.29E-05 8.04E-05	1.68E-04 1.52E-04 2.82E-05 1.05E-05 1.34E-05 2.28E-05 1.98E-05 7.30E-06	3.78E-05 4.63E-05 1.02E-05 4.20E-06 9.40E-06 1.07E-05 8.10E-06 5.40E-06		*	1.48E-05 3.93E-05 6.90E-06 4.70E-06 2.00E-06 1.65E-05 9.32E-05	1.96E-05 4.78E-05 6.10E-06 1.30E-06 1.90E-06 2.10E-05 7.70E-06	1.10E-05 2.53E-05 3.60E-06 1.80E-06 1.80E-06 7.40E-06 3.20E-06 5.68E-05	1.51E-05 3.75E-05 5.43E-06 1.47E-06 1.50E-05 6.30E-06	0.00 80.00 10.00 10.00 10.00	0.00E+00 5.61E-06 6.73E-06 6.73E-06 1.12E-06 0.00E+00 1.12E-06 1.12E-06
OTHER CONSTITUENTS Carbazole (anthracene) Pentachiorophenol FACTORS FACTORS Carcin. PAH Emission Carcin. PAH Emission Pentachlorophenol Emis.	Ib/hr Ib/hr Ib/ton Ib/ton	9.61E-05 4.08E-03 1.87E-04	3.39E-03 1.05E-04	1.83E-03 3.30E-05	05E-04 2.62E-05		6.52E-05 5.34E-04 5.34E-03 3.80E-05 2.18E-04	6.30E-05 4.83E-04 1.05E-02 5.21E-05 2.30E-04	6.41E-05 3.40E-04 2.98E-03 2.82E-05 1.69E-04	6.41E-05 4.52E-04 6.26E-03 3.95E-05 2.06E-04		2.33E-03 2.31E-06
PROJECTED ANNUAL EMISSIONS at 30,000 lp/hr STEAM Particulate ton 27.0 Non-Car. PAH pounds 153.2 Gar. PAH pounds 7.0 Pentachlorophenol pounds	SiONS at 30,0 ton pounds pounds	XO lb/hr STEAM 27.0 153.2 7.0	31.8 118.8 3.7	50.7 64.1 1.2	37.2		45.5 143.5 1.0 5.8	240.8 1.2 1.2 5.3	33.8 65.7 0.6 3.7	40.1 150.1 0.9 4.9		30.92 87.32 0.09
METALS EMISSIONS EVALUATION PER CA-ARB Resenic Cadmium Chromlum Lead Manganese Nickel Selenlum Mercury	ATION PER C	A-ARB POOLED TEST Reported Reported Data Units 5.00 up/gram 28.00 up/gram 33.00 up/gram 12077.00 up/gram 62.00 up/gram 0.00 up/gram	A C A	verted bFHr 006-05 006-05 286-04 846-04 846-04 836-04 336-05	Projected (Lhfon) (poor 8.24E-06 4.81E-05 3.9E-02 7.4 1.02E-04 0.00E+00 0.0	Projected Ann. Emis. (pounds) 1.73 2.04 1.48 746.78 3.83 0.00						

ង

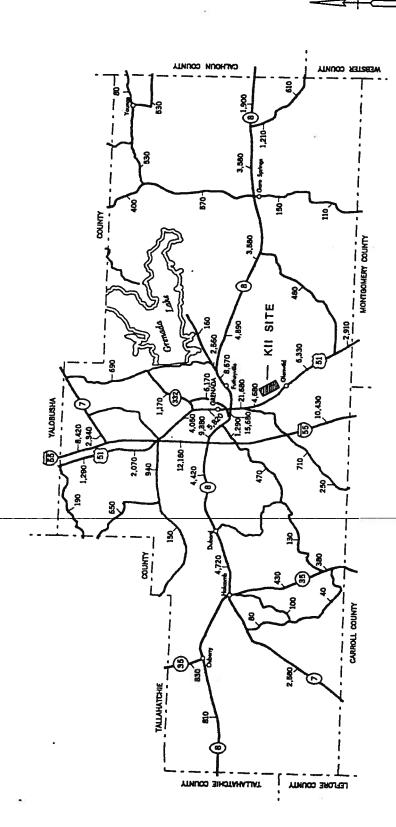
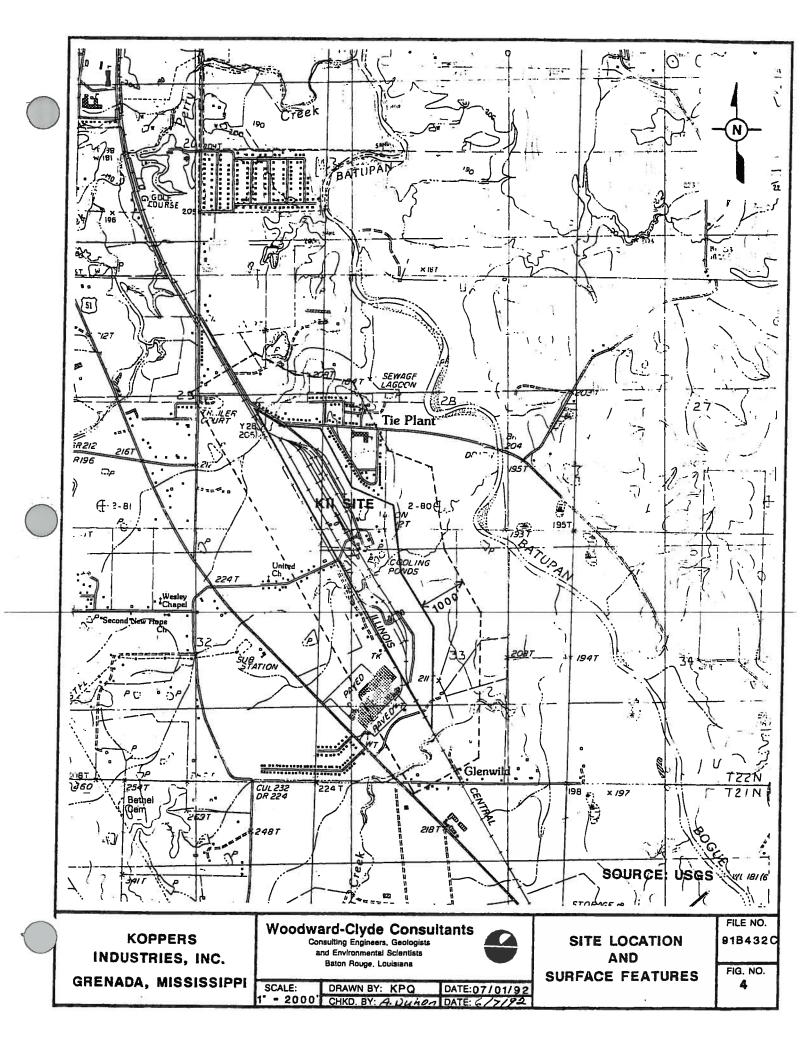
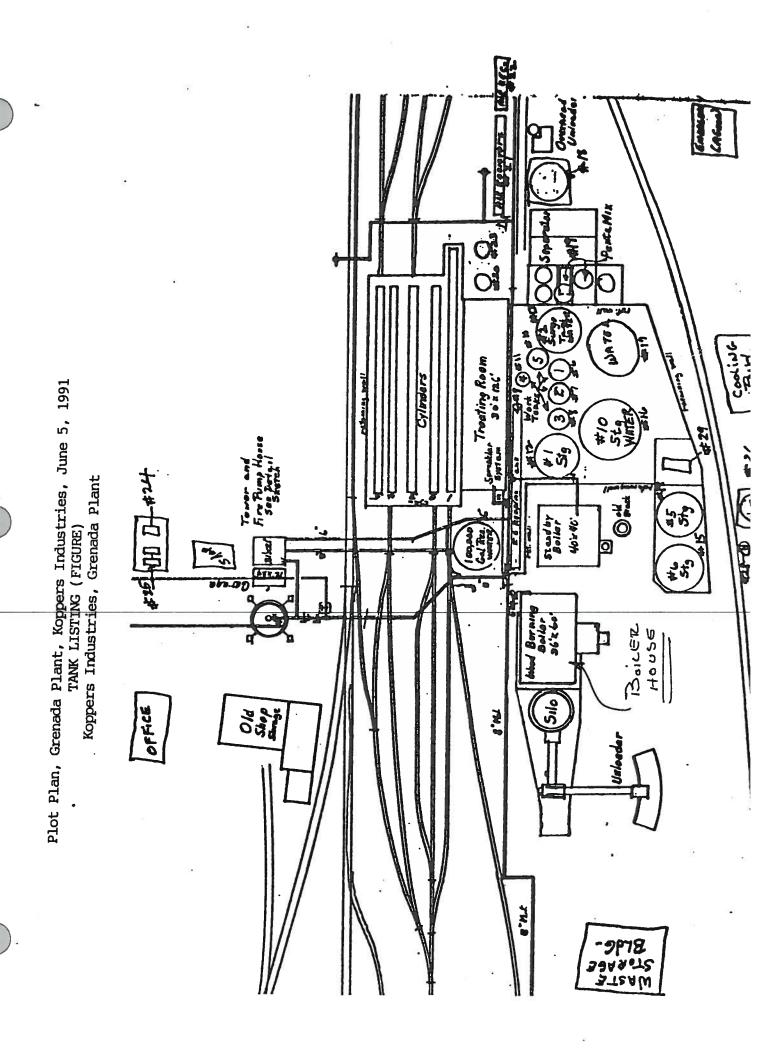
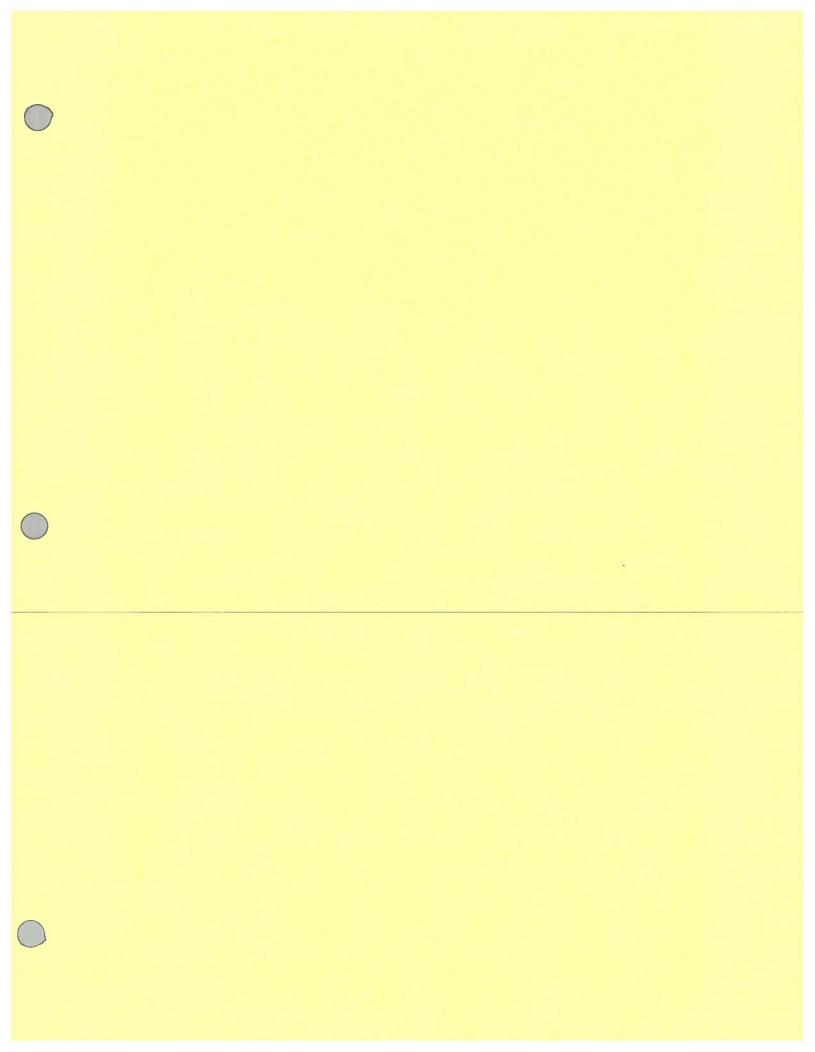




FIGURE 2



Woodward-Clyde Consultants

BUILDING DIMENSIONS

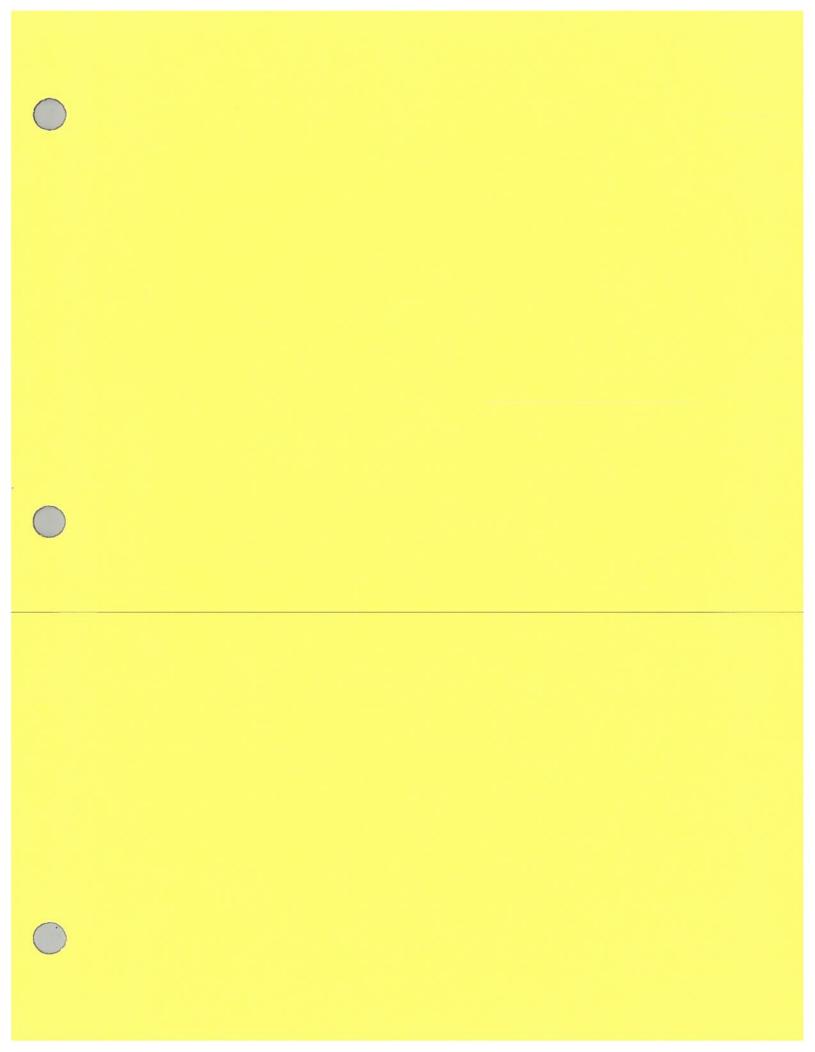
Building	Height (ft)	Length (ft)	Width (ft)	Diameter (ft)
Silo	55			26
Boiler Room	38	60	36	
Standby Boiler	22	40	40	
Water Tower	100			30
Tank No. 6	27			30
Tank No. 5	31			27
Tank No. 1	39			29
Tank No. 10	39			38.5

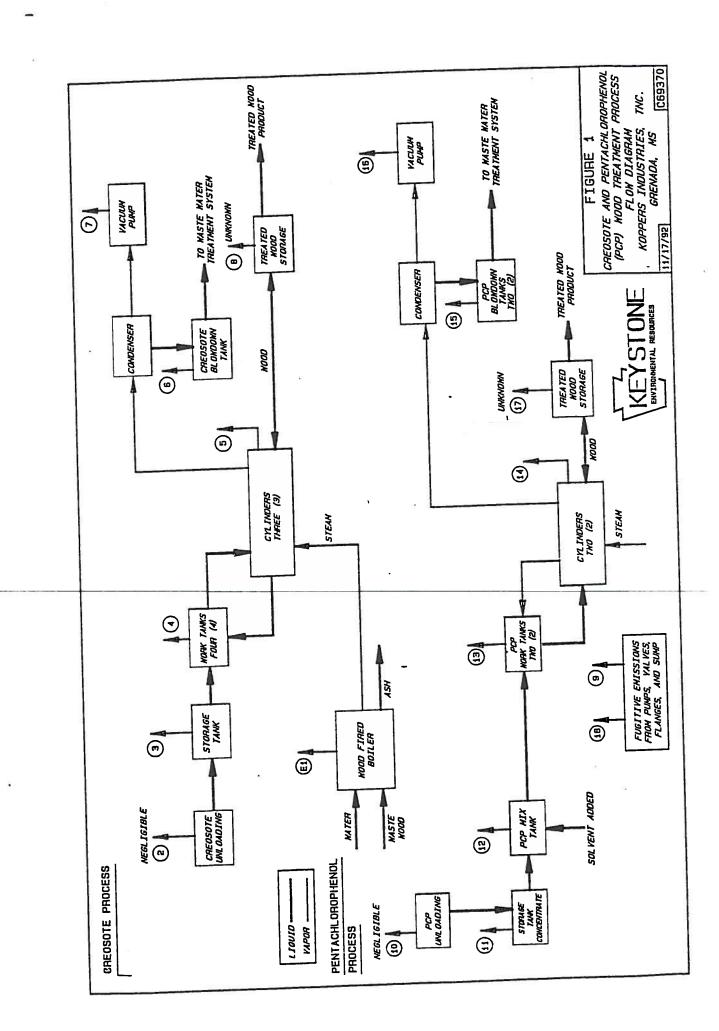
BASIS FOR INFORMATION

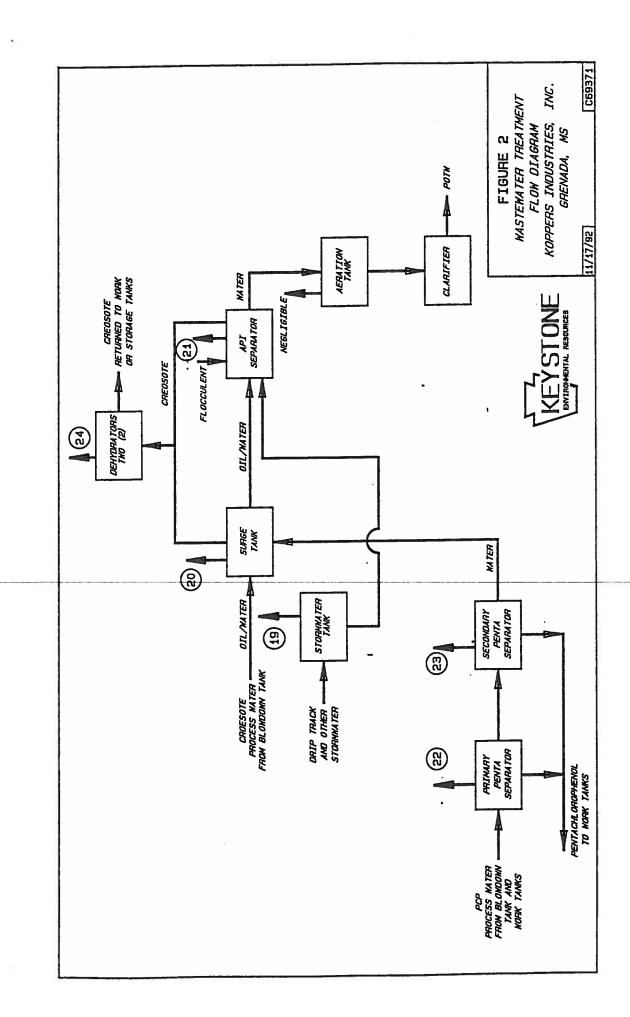
The following provides a description of the wood preserving and wastewater treatment processes at the Koppers Industries, Inc., Grenada, Mississippi plant. The information presented is based on calendar year 1992.

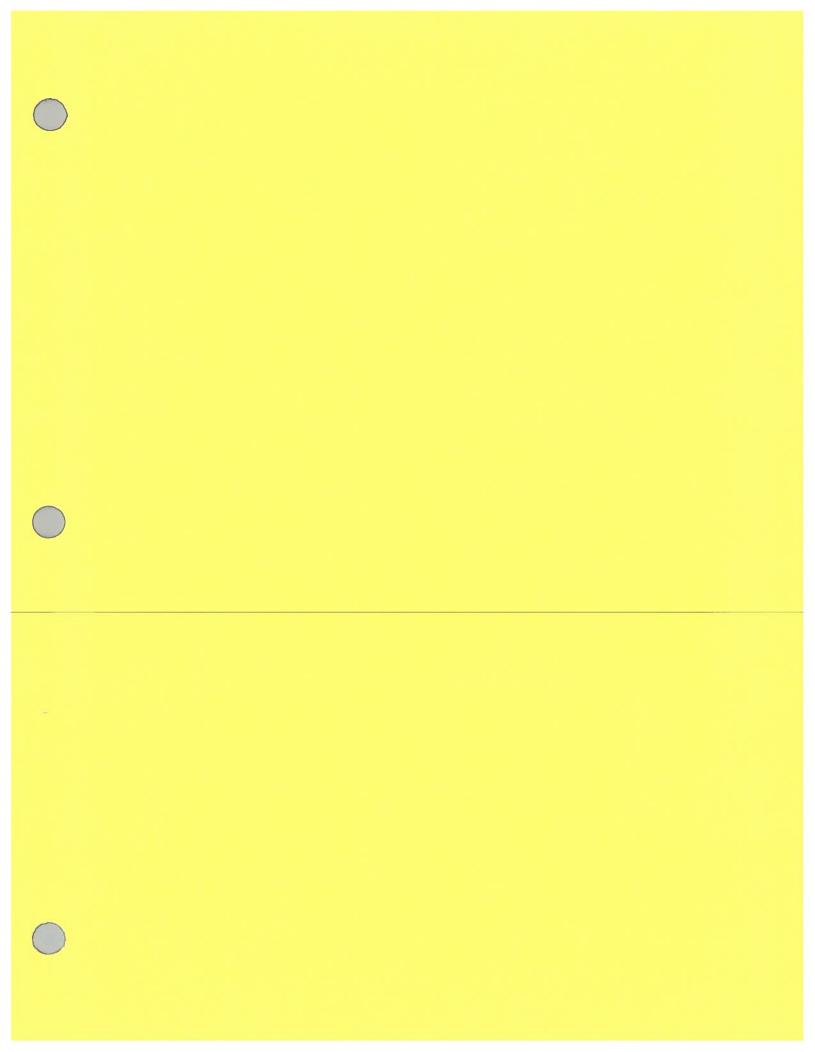
General Operations: This wood treatment facility operates 24 hours per day, 6 days per week, 300 days per year. The facility treats ties, lumber and poles made from dry and green oak, pine and mixed hardwood. A total of 2,331,516 ft³ of wood was treated in 1992.

- 1. A waste wood boiler supplies steam for all of the plant's heating needs. Fuel for the boiler consists of waste wood scraps, chips and peelings.
- 2. The plant has a total of five treating cylinders, two are dedicated to Creosote, two are dedicated to pentachlorophenol (PCP), one is used for steam conditioning of untreated wood. All cylinders measure 6 feet in diameter; four are 130 feet in length and one of the PCP cylinders is 160 feet in length.
- 3. <u>Creosote Treatment Process</u> (See Figure 1 for Flow Diagram)
 - a. A 60/40 Creosote/coal tar mixture and grade 1 Creosote are delivered to the plant in heated rail cars or tank truck. The Creosote is stored in a 111,666 gallon storage tank and the 60/40 mixture is stored in two 29,800 gallon work tanks. There is another 29,800 gallon work tank dedicated to Creosote and two other 4,200 gallon vertical work tanks and two 22,400 gallon horizontal work tanks used for both grade 1 Creosote and the 60/40 mixture. The storage and work tanks are maintained at approximately 200°F. The Creosote is transferred from the work tanks to the treating cylinders for wood treatment and the Creosote is transferred back to the wood tanks after treatment.
 - b. The Boulton process is used to condition or remove moisture from only green oak ties prior to treatment with Creosote. In this process, the cylinder is filled with preservative, and a 25-inch Hg vacuum is pulled on the cylinder. Vapors from the cylinder are condensed in a shell and tube condenser, and the condensate is collected in the Creosote blowdown tank. Boultonizing lasts approximately 12 hours. After Boultonizing, the Creosote is drained from the cylinder and returned to the work tank. During this blow back, the vapors in the work tank are displaced by the Creosote and are vented to the atmosphere.

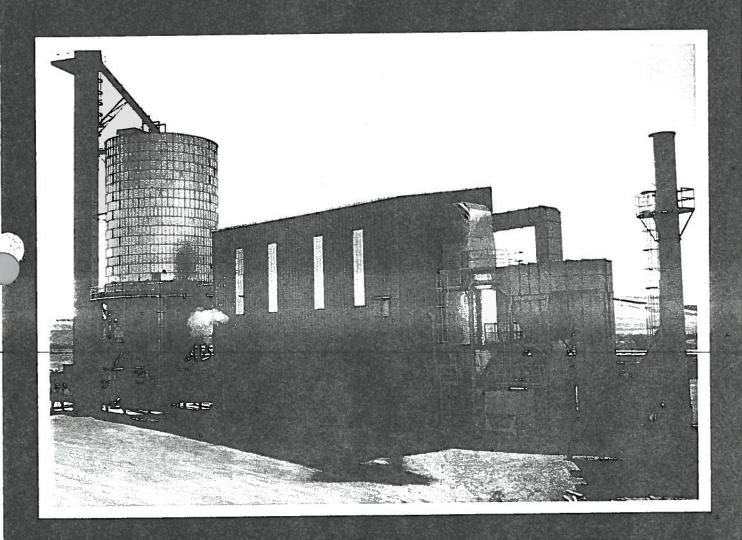

Steaming and vacuum are also used to precondition dry pine poles to remove moisture from green pine lumber and poles prior to treatment with Creosote. The green pine lumber and poles are steamed in the cylinder from 10 to 12 hours. The dry pine poles are steamed in the cylinder for 3 hours. After steaming is complete, a 25-inch Hg vacuum is pulled on the cylinder for 2 to 3 hours. Vapors from the


Grenada 6/93 dk-95


- cylinder are condensed in a shell and tube condenser, and the condensate is collected in the Creosote blowdown tank.
- c. After conditioning, the wood is treated with Creosote using the Rueping process. Except for oak ties, which do not require initial air pressure, the cylinder is initially pressurized with air to between 50 and 60 psi. Then, for all wood, Creosote is added to the cylinder and heated. The cylinder is further pressurized at 150 to 180 psig, and the pressure is maintained for 3 to 4 hours until the desired product retention is reached. After pressurization, the Creosote is drained from the cylinder and returned to the work tank. During this blow back, the vapors in the work tank are displaced by the Creosote and are vented to the atmosphere.
- d. Following treating, a 25-inch Hg vacuum is pulled on the cylinder for a period of 2 to 2-1/2 hours.
- e. The vacuum needed for Boultonizing and the Rueping process is maintained by a water sealed vacuum pump. Vapors removed from the cylinder are sent to a shell and tube condenser. Condensate from the condenser collects in the Creosote blowdown tank and from there is transferred to the wastewater treatment system. Vapors from the vacuum pump are vented directly to the atmosphere.
- 4. Pentachlorophenol Treatment Process (See Figure 1 for Flow Diagram)
 - a. Concentrated 40% PCP and diesel fuel solvent are delivered to the plant separately, stored in separate tanks, mixed in the PCP mix tank, and the 8.5% PCP stored in the two 29,800 gallon work tanks. The 10,800 gallon 40% PCP storage tank and the two 8.5% PCP tanks vent to the atmosphere.
 - b. Green pine poles are conditioned in the PCP cylinder by steaming and vacuuming prior to treatment with PCP. Vapors from the cylinder are condensed in a shell and tube condenser and the condensate is collected in the PCP blowdown tanks. The steam from the cylinder is vented to blowdown tanks. The green pine poles are steamed in the cylinder for approximately 12 hours. After steaming is complete, a 25-inch Hg vacuum is pulled on the cylinder for 2 to 4 hours. Vapors from the cylinder are condensed in a shell and tube condenser, and the condensate is collected in the PCP blowdown tanks. Steaming only 1-1/2 hours is used to precondition dry pine poles prior to PCP treatment.
 - c. The treatment process used in the PCP unit is identical to the one used in the Creosote unit. The pine poles are pressure treated with PCP for 1/2 to 1 hour.
 - d. Following treatment with PCP, the dry and green pine poles are placed under a 25-inch Hg vacuum for 2 hours.


Creosote and PCP Wastewater Treatment System (See Figure 2 for Flow Diagram)

The process condensate from the Creosote blowdown tank is transferred to the surge tank. PCP process water from the PCP blowdown and work tank is sent to the primary and secondary PCP separators, where PCP is separated out and returned to the PCP work tanks and the separated water goes to the surge tank. The oil/water from the surge tank and the stormwater tank is separated in the API Separator and the heavier Creosote is dehydrated in two (2) dehydrators and returned to the Creosote work tanks. The water from the API Separator is processed through an aeration tank and a clarifier and then discharged off site to the POTW.



WELLONS WOOD FIRED

BOILER SYSTEMS

WOOD TO STEAM ENERGY

The Wellons Wood Fired Boiler System is time-proven, with over 20 years of experience and over 125 systems now in operation. Steam generating capacities range from 3000 PPH to 60,000 PPH with factory assembled boiler units. Sizes over 60,000 PPH utilize field erected boilers. (Request bulletin 683 covering these larger units.) (Front cover photo: A 60,000 PPH Wellons wood-fired system in California, with boiler and storage bin.)

Wellons Presents

- THE CYCLO-BLAST FURNACE SYSTEM efficient combustion of wood fuel.
- THE POSI FLO STORAGE BIN a reliable, automatic fuel supply
- LOW EMISSIONS efficient combustion and thorough design.
- RELIABILITY ease of operation, ruggedly built.
- EFFICIENCY low operating horsepower needs.
- QUALITY an ASME code facility.
- COMPLETE SERVICE engineering, installation, training, startup, field service, and replacement parts service.

Cyclo-Blast Furnace

The Wellons Cyclo-Blast furnace burns any combination of hogged wood, sawdust, bark, planer shavings, sanderdust and other woody fuels. Wet or dry - no gas or oil fuel supplement is required for start-up or operation. A 3" maximum particle size is recommended for ease of handling.

A refractory lined chamber provides the necessary conditions for efficient combustion.

The combustion system is designed for varying fuel characteristics - up to 50% moisture content (half fuel and half water).

Wood gasification occurs on Wellons water-cooled grates; particles are intentionally kept out of suspension most non-combustibles (ash-dirt-minerals) are collected on the grates for easy removal - access to the grate is convenient. This results in minimum particulate in the combustion gases, requiring only a multicone collector to achieve low particulate emissions levels.

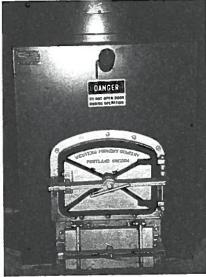
Control is fully automatic. The furnace quickly responds to changing demands and maintains the proper balance for clean, efficient combustion. Heat output can be varied up to 5:1 with a single Cyclo-Blast cell. High rate changes are achieved with multiple cell installations.

Emissions

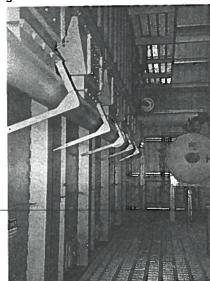
The Wellons cell furnace system's unique firing process not only maximizes combustion efficiency through complete combustion and precise air control, but also provides positive benefits to the reduction of emissions.

Because char carry-over from the furnace system is minimal, reinjection is not required, and the need for high efficiency (and energy consuming) collection devices on the stack are eliminated or reduced.

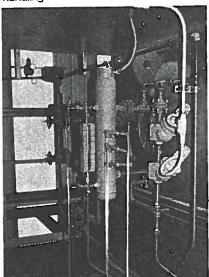
Wellons Storage Bin

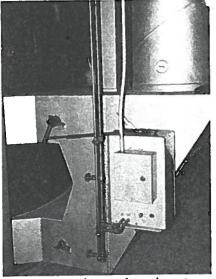

The most important link making Wellons power plants truly automatic is the Wellons Posi-Flo storage bin.

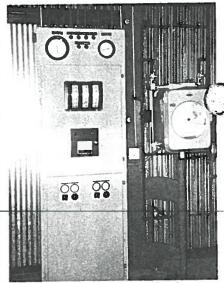
Unique in the industry, the Wellons Posi-Flo agitator undermines the very key of an arch or bridge within the storage bin. Any bin will "bridge" if the necessary conditions are set up — inactivity, particle shape, moisture content, compaction or interlocking of fuel particles that increase the "shear" strength of the mass. The Posi-Flo agitator is designed with the assumption that bridging is a constant probability. It saws its way around the periphery of the cone, feeding the loosened material down to the feedout augers below.

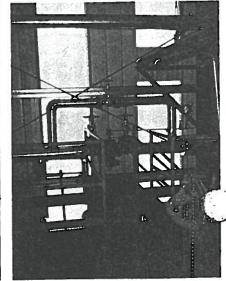

Minimum service or maintenance is required since the mechanical conveying equipment in the bin is simple and effective. Gravity performs the greatest portion of the conveying in a Wellons bin which reduces the power consumption to lowest levels.

The Wellons Posi-Flo storage bin is available in 24 standard sizes with usable storage capacities from 10 to 152 units of wood fuel. (One unit equals 200 cubic feet.)

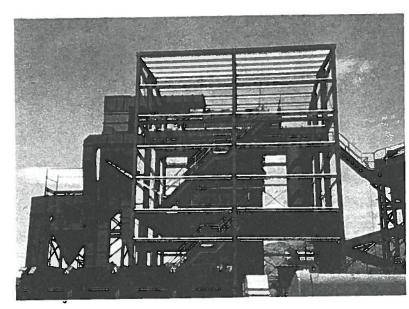

Our bulletin #286 provides additional information on the Wellons storage bin.


Cyclo-Blast Furnace - access doors to grate area

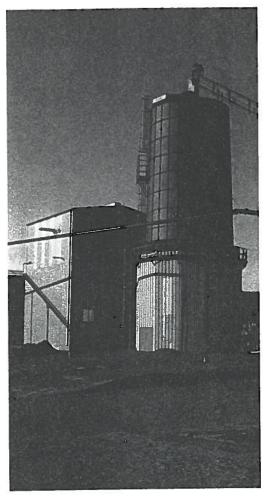

Ash drop out hoppers - pneumatic ash handling


Water level and safety controls

Combustion air dampers for undergrate and overfire air control



Combustion control panel and 24-hour recorder



Pressure reducing station - part of system piping

20,000 PPH system under construction in Washington. Stairways and decks provide convenient access to boiler equipment.

Completed 20.000 PPH system

Reliability and Quality

Wellons wood-fired boiler systems are designed for ease of operation and dependable service. Automatic controls minimize the need for operator attention. Experience gained from over 125 systems in service has resulted in a rugged, efficient, easy to operate design.

Wellons manufacturing plants are ASME code facilities, which provides our customers with the added assurance that a Wellons wood fired boiler is a quality system. We fabricate many of the components of our systems at our own facilities to ensure that they meet our standards.

Engineering/Installation/ Service

Wellons offers complete engineering and installation service for your total project. This includes fuel conveying and storage, furnaces and boilers, auxiliary equipment, boiler enclosures, steam main and condensate systems, combustion instrumentation, start-up services, operator training and field service for maintenance and troubleshooting.

Our replacement parts service is ready to help you obtain the replacement or repaired parts you need.

Modification of existing wood-fired boiler systems is a Wellons service. A Wellons modification to many systems can result in higher efficiencies and conformance with air pollution requirements.

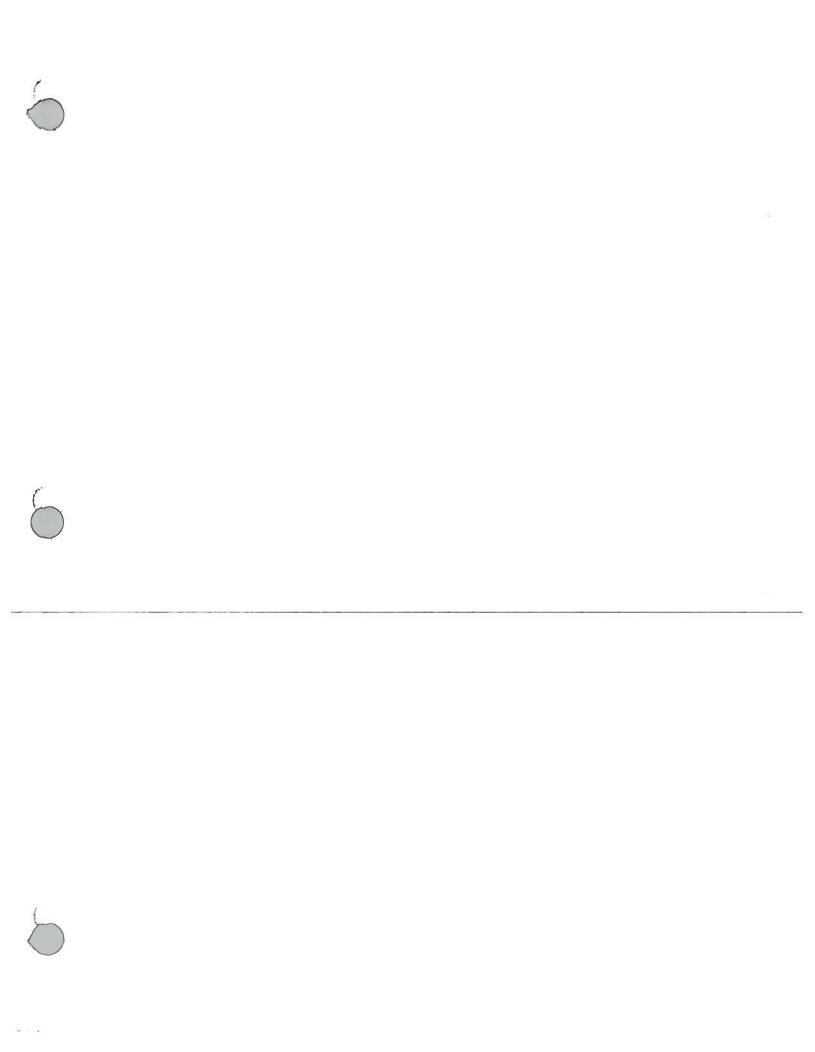
We use our own personnel to install our systems when installation services are our responsibility. We can also provide supervision of your personnel if desired.

Efficiency and Power Savings

Using low air pressures and velocities, the fan electrical horsepower requirements are kept to a minimum.

Wellons storage bins utilize gravity. Our largest bin needs only 10½ horsepower total for fuel feed-out.

Our forced draft fan system draws warm inlet air from the upper level of the boiler building which increases efficiency. The combustion air also passes through a preheater (heat exchanger) in the stack to recover heat that would otherwise be wasted. Combined with minimum excess air requirements, highest possible efficiencies are obtained and maximum heat potential is extracted from the available fuel.

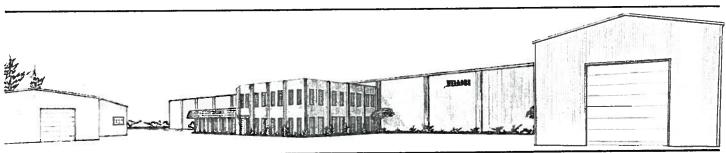

Where applicable, an optional economizer is provided which takes heat from the exhaust gases to preheat the feedwater, and further improve efficiency.

Combustion is completed within the furnace and combustion chamber. Because of clean boiler exhaust gases, high energy-using collection equipment is normally unnecessary, yielding further improved economies.

Auxiliary fuel burners are not required, even during start-up cycles.

Costly fuel preparation equipment such as hammermills, rotary drum dryers and elaborate conveyances are not required. The Wellons system requires only large pieces be hogged to a size that can be stored and fed to the furnace in a controllable manner.

TOTAL INSTALLED SYSTEMS

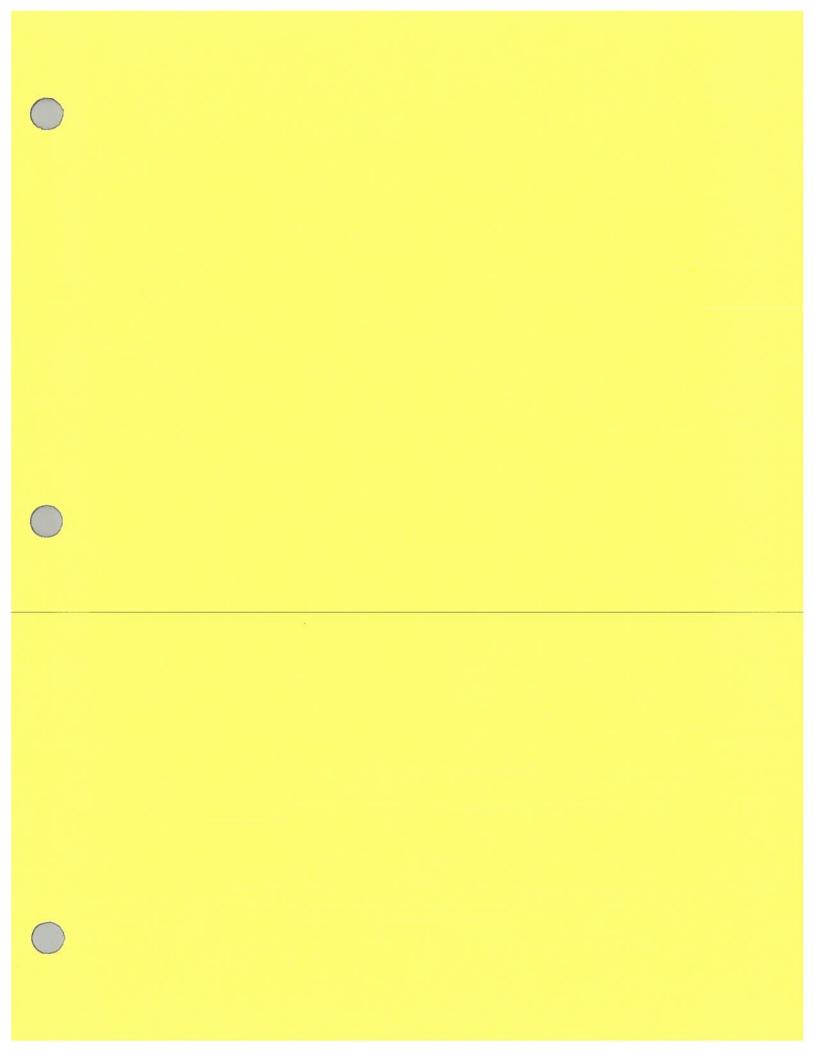

- ENGINEERING
 - MANUFACTURING
 - MANAGEMENT
 - PROCUREMENTCONSTRUCTION
 - EQUIPMENT INSTALLATION
 - TRAINING
 - STARTUP & TESTING
 - FIELD MAINTENANCE SERVICE

A complete Wellons System with 20,000 PPH boiler, Wellons Posi-Flo Storage Bin and Wellons Lumber Dry Kilns.

U.S. Patents: 3027881 3215290 3330259 3339759 4098008 4233914 4266901

Canadian Patents: 1138193 1138426

WELLONS, INC. (503) 625-6131 P.O. BOX 381 ERWOOD, OREGON 97140 ELECTRICAL GENERATION SYSTEMS
DIRECT FIRED SYSTEMS
BOILER PLANTS
STORAGE BINS
DRY KILNS


*** *** ``

Koppers Industries, Inc. RO. Box 160 Tie Plant, MS 38960

> felephone (601) 226-4584 FAX. (601) 226-4588

TELECOPY

DATE: 1-10-93 TOTAL NO. OF PAGES 1
TO: STEVE Smith
K-1800
PAX NO"
FROM: Mark God
Grewada
IF YOU DO NOT RECEIVE ALL PAGES, CALL
FAX NO. 601-226-4588
Boiler W6 from plate:
NEBraska Boiler, and Lincoln NEB.
<u> 4500 - 1978</u>
mes sert 201806
Netional Board & 1764
max Awa 200 Psic
BIR. HTG. S. #140 sq. ft.
BIR. HTG. S. 4140 sq. ft.
50-ies 107525484

CONTINUOUS EMISSIONS MONITORING SYSTEM

The SNIFFER system is a completely integrated continuous emissions monitoring system. It includes probes, sample conditioning, gas analyzers, and a data acquisition and reporting system.

The system monitors the stacks and logs the data to disk in real-time. It also produces the required reports in fulfillment of the requirements of the Mississippi regulatory agency. This system is designed for optimum performance and reliability, minimizing down time and data loss. It is designed to anticipate future requirements for data collection, such as the addition of other monitoring instruments or the transfer of data from the system via telephone modem.

The following sections describe the various hardware elements of the system, as well as descriptions of the data collection and reporting being done for each pollutant or gas by-product which is to be monitored as part of the system.

This system is designed to provide compliance, in an easy-to-administer fashion, with the USEPA performance and siting specifications in USEPA 40 CFR Part 60 Appendix B US EPA BIF regulations. At the time of installation the system will be in full compliance with the applicable Mississippi state regulations and can be kept in compliance through the use of a maintenance contract.

1 DATA ACQUISITION HARDWARE

1.1 Processor

The data acquisition is designed around an IBM PC AT compatible. It consists of an 80486 based IBM PC AT compatible processor, four megabytes of memory, a 100 megabyte hard disk, a VGA color monitor, a keyboard and one dot matrix printer. Data collection is accomplished via a network of industrial input and output modules connected to a high speed local area network. This industry standard communication network provides for high speed data collection over long distances along with easy to install intelligent remote I/O.

1.2 Remote Data Collection Node

The remote data collection node is built around a series of intelligent input and output modules manufactured by General Electric. These modules are packaged for harsh industrial environments and communicate with the IBM PC AT compatible computer using the high speed industry standard RS-422. The use of the General Electric PLC 90/30 not only simplifies the design of the system and its maintenance, but also increases the reliability of the entire system.

Included in a typical system are analog-to-digital convertors which take signals from the monitoring instruments, and convert them into digital values with a high degree of accuracy. This conversion is performed at high speed, allowing the system to perform data collection on a large number of instruments without loss of performance or data. These digitized values are converted into engineering units within the remote data collection node.

Digital input points within the remote data collection node are used to detect the presence of conditions such as "calibration in progress" or "instrument fault detection". The input points can also be used to sense when the boiler is being operated.

Digital output points are used by the remote data collection node to force a particular instrument into calibration. Similarly, relay contacts are provided to indicate conditions such as "high emissions" or "fault conditions".

2 DATA ACQUISITION SOFTWARE

2.1 Operating System

The real-time nature of the operations being performed by the system, and the fact that they may be occurring asynchronously, requires that the system be based upon a real-time, multi-tasking operating system. This allows programs, or "tasks", responsible for the collection and computation of data to operate while other tasks are writing data to the disk, printing, or interacting with the operator. More than one operator terminal may be connected to the system with no changes to the software. The SNIFFER data acquisition system has been designed using the latest software techniques which contribute to the modular design of the software. SNIFFER is designed specifically for continuous emission monitoring system (CEM) applications.

The system can store up to one years data on-line and provides a method of archiving older data.

2.2 Application Programs

The SNIFFER system provides the following functions:

Log emissions data - The data logged for each monitoring instrument includes the raw reading from the instrument converted to engineering units and 16 bits of status information.

Log whether the boiler unit (or process) is up or down.

Log whether each instrument monitor is in or out of service.

Archive previously logged data to floppy disk for archive storage. The floppy disks can be formatted for either the MSDOS or UNIX format.

Edit the data - Though a password protected program the user can edit only the reason codes associated with the data. The raw data can not be edited.

Change calibration values - Each bottle of calibration gas may have a different value. This program allows the operator to change values such as calibration value, calibration time and other constants.

Export any report to a MSDOS floppy disk - So that it can be used with MSDOS word processing programs or spread sheet programs such as LOTUS 123.

Enter episode reason codes - When a high emission occurs the system records this event. The operator must enter a reason code for each episode. The operator does not have to enter the reason code immediately since the SNIFFER software remembers each episode. The reason codes can be entered when it is convenient for the operator.

The SNIFFER system also supports virtual channels - A virtual channel is any combination of one or more data channels combined mathematically. Virtual channels allow computed values such as lbs/million BTU to be displayed and or logged in real time.

Graph the data - The SNIFFER system provides trending graphs for all pollutants being monitored. These can be graphed individually or combined. The time frame is adjustable, i.e., hourly, daily, or weekly graphs can be generated.

3 CARBON MONOXIDE

3.1 CO Analyzer

The gas analyzer which monitors for carbon monoxide is part of a Horiba ENDA-1250 stack gas analyzer system. The CO analyzer has the following characteristics.

- Principle of operation non-dispersive infrared
- Range dual range 0-200 or 0-3000 ppm
- Response time one minute for 90% response at inlet, repeatability +0.5 percent of full scale
- Drift zero +1% of full scale per week, span +2 % of full scale per week
- Materials in contact with sample 304 stainless steel, Teflon, fluororubber and PVC

3.2 Software associated with CO monitoring

The software which monitors the CO analyzer performs the following functions:

- Converts reading to parts per million, volume corrected for 7 percent oxygen
- Averages six readings every minute, noting validity of each average.
- Compares the minute average to a maximum allowable carbon monoxide set point, and requests operator to supply a reason code for any average exceeding that set point.
- Logs each one minute average to disk with appropriate reason or validity codes, as required.
- Provides rolling hourly averages.
- Senses calibration of the instrument, and maintains a log of the readings produced during calibration.
- Displays all "over set-point" averages or episodes awaiting reason codes.
- Prints a daily report of the averages and appropriate reason codes logged during the preceding 24 hour period.
- Provides the capability for environmental officer to archive data for any period desired onto diskette. In addition to providing a backup for regulatory purposes these diskettes can be used to study emissions using LOTUS-123 or other MSDOS programs.
- Allows an operator to retrieve data remotely via a modem telephone or local serial link between the system and another personal computer.

Any special modifications required to comply with your Mississippi permit guidelines are part of this proposal.

4 OXYGEN (DRY BASIS)

4.1 O₂ Analyzer (dry basis)

The gas analyzer which monitors for oxygen is part of a Horiba ENDA-1250 stack gas analyzer system. The $\rm O_2$ analyzer has the following characteristics.

- Principle of operation magnetopneumatic
- Range dual range 0-10 or 0-25 percent
- Response time one minute for 90% response at inlet, repeatability <u>+</u>0.5 percent of full scale
- Drift zero +1% of full scale per week, span +2 % of full scale per week
- Materials in contact with sample 304 stainless steel, Teflon, fluororubber and PVC

4.2 Software associated with O₂ (dry basis)

The software which monitors the O_2 analyzer performs the following functions:

- Converts reading to percentage oxygen (dry basis)
- Averages six readings every minute, noting validity of each average.
- Logs each one minute average to the disk with validity code.
- Retains one minute average for use in computing 7% oxygen adjustments for other monitoring instruments.
- Senses calibration of the instrument, and maintains a log of the readings produced during calibration.
- Prints a daily report of the minute and hourly averages logged during the preceding 24 hour period.
- Provides the capability for environmental officer to archive data for any period desired onto diskette. In addition to providing a backup for regulatory purposes these diskettes can be used to study emissions using LOTUS-123 or other MSDOS programs.
- Allows an operator to retrieve data remotely via a modem telephone or local serial link between the system and another personal computer.

Any special modifications required to comply with your Mississippi permit guidelines are part of this proposal.

5 TEMPERATURE

5.1 Temperature Probes

The temperature probes (primary and secondary) are provided by the boiler manufacturer.

5.2 Software associated with Temperature

The software which monitors the temperature probe performs the following functions:

- Converts reading to degrees F.
- Averages six readings every minute, noting validity of each average.
- Notes the validity of the reading based upon state regulatory agency quality assurance guidelines.
- Computes and displays a rolling hourly average
- Logs each one minute value to disk, including a status code
- Compares the minute average to a minimum allowable set point, and requests the operator to supply a reason code for any average exceeding the set point.
- Displays all "over set-point" averages or episodes awaiting reason codes.
- Prints a daily report of the one minute averages, and the hourly averages logged during each days twenty four hour period.
- Reports if the monitoring instrument is out of calibration
- Provides the capability for the environmental officer to archive the data onto diskette for any desired period. In addition to providing a backup for regulatory purposes these diskettes can be used to study emissions using LOTUS 123 or other MSDOS programs.
- Allows an operator to retrieve data remotely via a modem telephone or over a local serial link between the system and another personal computer.

6 REPORTS AND LOCKOUTS

6.1 Daily Reports

The data acquisition system can print the following daily reports:

Daily Carbon Monoxide (CO) either raw or corrected Daily Oxygen (O2) dry Daily Temperature Daily Summary Report

6.2 Quarterly Report Generation

The data acquisition system can generate the quarterly reports required by the Mississippi regulatory agency. The data acquisition system uses the data recorded on disk for the quarter to generate quarterly reports in the format specified by the Mississippi state regulatory agency. A number of quarterly reports are provided with the system. One of the quarterly reports prints the start and stop times for the boiler unit. The standard emissions report summarizes emissions for carbon monoxide (CO) and oxygen as prescribed in the Mississippi Standard Emissions Report. Another quarterly report prints the instrument up and down times and the calibration for each day. The system also provides for a lockout incident report which details each of the lockouts which occurred during the quarter. The final report is the low temperature report which documents each time the boiler fell below the minimum secondary temperature.

The quarterly reports are as follows:

Quarterly standard emissions - Carbon monoxide (CO)
Quarterly low temperature
Quarterly lockout incident report
Quarterly boiler start stop report
Quarterly instrument failure and calibration report

6.3 Lockouts

There are several conditions which can cause lockout of the boiler. These conditions are handled by the remote data collection node (GE PLC) on a stand alone basis. These can be configured for each system.

7 EQUIPMENT PROVIDED

7.1 Data acquisition equipment

One IBM PC AT 80486 compatible computer system, with four megabytes of memory, one VGA color monitor, one keyboard, one 100 megabyte hard disk, one 1.2 megabyte floppy disk, one 240 char per second printer, one 2400 baud modem and an RS-422 interface. The data acquisition system can be located on any desk top in a clean office type environment.

One General Electric PLC 90/30 with eight analog to digital channels, eight digital output channels and eight digital input channels. The remote data collection node is mounted in the instrument rack.

7.2 Sample Conditioning Unit

The sampling conditioning unit is mounted in the same rack as the analyzers. By mounting all but the primary filter of the sample conditioning system in the analyzer cabinet easier maintenance is ensured. The sample conditioning system consists of three parts; the sample probe/primary filter assembly installed directly in the stack, the analyzer system mounted in the instrument house and the sample line connecting the first two parts.

7.3 Sample Probe/Primary Filter

The primary filter mounted at the sample probe collects most of the dust. In order to prevent condensation of moisture the primary filter is heated by a built in heater.

7.4 Sample Line

After the sample gas passes through the primary filter it travels along the sample line. The sample line is heated. The sample line also has a separate tube to carry the calibration gas up to the probe.

7.5 Analyzer Sample Conditioning

The sample gas next passes thru the sample handling system, which consists of a drain separator, a mist catcher, a particulate filter, a flow selector valve, a pump and a dehumidifier. All of these items are mounted in the same cabinet as the analyzers.

8 PROJECT SCHEDULE

r

9 TECHNICAL TERMS AND CONDITIONS

- A. Probes and instruments installed in the stack are suitable with average gas temperature of 400 degrees F.
- B. Enertec supplies the gas probe for mounting in the boiler stack.
- C. Customer installs the sample probe in the stack.
- D. Customer installs the sample conditioning line from the sample probe to the instrument cabinet.
- E. Enertec supplies 120 feet of sample conditioning line from the boiler sample probe to the instrument cabinet. Any additional sample line would be charged to the customer.
- F. Customer must supply a phone line for use with the data acquisition system; if this option is purchased. This line must be available during system installation.
- G. Service agreement includes four quarterly visits each year and up to three emergency visits.
- H. Enertec prepares for the customer the protocol documents required by Mississippi regulatory agency.
- I. Certification of the system is the customer's responsibility.
- J. An Enertec engineer calibrates all of the instruments and check out the system the day before the stack test certification.
- K. An Enertec engineer is present the day of the stack test.
- L. If the stack test must be performed a second time an Enertec engineer is available both the day before and the day of the second stack test.
- M. Enertec supplies the gas regulators for the calibration gases. Calibration gases are to be supplied by the customer, unless this option is purchased.
- N. The instruments are F.O.B. Lansdale, PA.
- O. Enertec provides three days of training at the customer. One day overview, one day on data acquisition and one day on the instruments.

10 GENERAL ELECTRIC INTERFACE

The General Electric PLC 90/30 is mounted in the same cabinet as the Horiba instruments. Between the data acquisition system and the remote data collection node, Enertec provides a two twisted pair cable over which the units can communicate. The following signals will be connected to the remote data collection node:

SIGNAL	DESCRIPTION	SOURCE	TYPE
CO analyzer	Horiba	ENDA-1250	Analog in 4-20 maDC
CO (in calibration)	Horiba	ENDA-1250	Digital Input
CO (fault)	Horiba	ENDA-1250	Digital Input
CO (cause calibration)	Collection	node	Digital Out
0 ₂ (dry) analyzer	Horiba	ENDA-1250	Analog in 4-20 maDC
0 ₂ in cal (dry)	Horiba	ENDA-1250	Digital Input
0 ₂ fault (dry)	Horiba	ENDA-1250	Digital Input
0 ₂ cause cal (dry)	Collection	node	Digital Out
Primary Temperature	Thermocouple	• .	Analog in 4-20 maDC
Secondary Temperature	Thermocouple		Analog in 4-20 maDC
Boiler lock out	Boiler		Digital Out
Boiler on/off	Boiler		Digital input

11 TERMS and CONDITIONS

11.1 Price:

Total system price - see pricing page First year service - see pricing page

11.2 Payment Schedule:

- 25% with release of purchase order
- 15% with protocol document approval
- 50% with delivery of all equipment at the customer site
- 10% with final acceptance or ninety days after on site delivery which ever comes first.

11.3 Terms: Enertec terms for payment are net thirty days for all invoices. There will be a 1.5% service charge added to invoices after 45 days. An additional 1% per week will be added after 60 days.

11.4 Warranty: Warranty is 15 months from shipment or 12 months from startup. Warranty includes all parts and labor. Travel expenses are billed at cost plus 10%.

11.5 Estimated Delivery Time:

Delivery of the hardware and software to the customer would be 10-12 weeks after project initiation.

11.6 Confidentiality:

Enertec will treat as confidential all customer information entrusted to Enertec and all new information created by Enertec for the customer.

11.7 Equal Opportunity: Enertec is an equal opportunity employer.

11.8 Location and Equipment:

Travel expenses for Enertec personnel and support companies are included in the cost of the system.

11.9 Insurance:

Enertec certifies that their employees are covered by Workman's Compensation and a one million dollar Umbrella Comprehensive insurance policy.

11.10 Small Business:

Enertec qualifies as a small business under federal guidelines.

Prepared by Enertec, Inc. - Proposal #Q1302 Represented by Bob Baker - Scientific Pittsburgh

PRICING

	Quantity	Description	<u>Price</u>
<i>-</i>	1	HORIBA ENDA-1250 NDIR Cross Flow CO O2 analyzers; Includes stainless steel probe, sample conditioning cal gas regulators, 120 feet of Unitherm sample line.	
	1	Remote data collection node (GE PLC 90/30) includes PLC rack, all wiring termination and documentation.	
	1	Data Acquisition System. Includes IBM PC 80486 desk top 14 inch color monitor, 100 megabyte hard disk, one printer, serial interface to remote data collection node, 2400 baud modem.	
_	1	Protocol document for submittal to MS regulatory agend	cy.
	3 days	On-site installation and training	
	2	Sets of operating manuals	
	1	Fifteen month warranty; includes all parts, labor.	
	TOTAL SYST	TEM PRICE	\$ 70,660 —
	OPTIONS		
••	1	Inconel probe assembly	\$ 800
	1	Hastelloy probe assembly	\$ 1,100
		Additional sample line (per foot)	\$ 30 ~=
	1	CEM Shelter with heat pump, 1 door, ~ \$\gamma' \gamma' \gamma' \gamma' 1 window, lighting completely wired	\$ 7,190
	1 .	Strip chart recorder. If this option is purchased instead of the Data Acquisition System, <u>delete</u> \$13,200 from total system price	

This proposal is good for 30 days from above date.

Prepared by Enertec, Inc. - Proposal #Q1302 Represented by Bob Baker - Scientific Pittsburgh

telephone: (215) 362-0966 FAX: (215) 362-2404

SNIFFER

CONTINUOUS EMISSIONS MONITORING SYSTEM

Monitors and records emissions data necessary to meet EPA and state air pollution collection and reporting requirements.

Enertec has installed over 60 SNIFFER systems with a variety of continuous emission monitoring instruments.

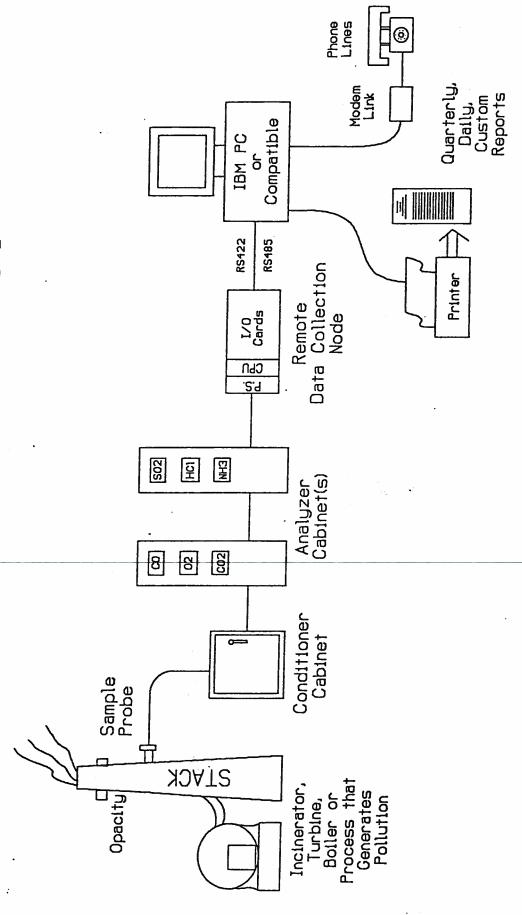
- The data acquisition software utilizes an IBM PC or compatible 386 personal computer.
- The data acquisition system is based on a Unix platform; so it is truly multi-tasking and multi-user.
- SNIFFER software continuously organizes, logs and displays the data by:
 - Typical type of emission; CO, NOx, SO2, HC1, wet O2, dry O2, Opacity, etc.
 - * Typical type of parameter; flow, temperature, process on/off
 - * Date and time
 - * Episode (emission is over the limit)
 - * Reason code for the episode
 - Corrective action for the emission
- All fifty states reporting format available; both printed and on floppy disk.

Includes Telemetry requirement.

Full fifteen month warranty includes parts, labor, & travel. (over)

SNIFFER

MAJOR COMPONENTS INCLUDE:


- IBM PC COMPATIBLE 80386 with 4 MEGABYTES
- EIGHTY MEGABYTE OR LARGER HARD DISK
- VGA COLOR MONITOR
- PRINTER(S)
 - MODEM(S)
 - REMOTE DATA COLLECTION NODE(S); GE or A/B PLC
 - FLOPPY DISK
 - TAPE BACKUP

ALL SNIFFER SYSTEMS ARE SUPPLIED WITH MODEMS TO SUPPORT REMOTE CALIBRATION, DOWNLOADING SOFTWARE ENHANCEMENTS, AND REMOTE TROUBLESHOOTING.

Enertec supplies complete continuous emission monitoring systems for:

- VOC INCINERATORS
- COAL FIRED BOILERS
- MEDICAL WASTE INCINERATORS
- HAZARDOUS WASTE INCINERATORS
- CO-GENERATION PLANTS
- FLUIDIZED BED COAL BOILERS
- ELECTRIC UTILITY GAS TURBINES

Enertec SNIFFER

Continuous Emissions Monitoring System

Koppers Industries, Inc. 436 Seventh Avenue Pittsburgh, PA 15219-1800

Registered Mail

Telephone: (412) 227-2001 FAX: (412) 227-2423

October 4, 1993

Ms. Elizabeth Bartlett
U. S. EPA Region 4
RCRA and Federal Facilities Branch
Second Floor
345 Courtland Street
Atlanta, GA 30365

---AND---

David Peacock
Hazardous Waste Division
Department of Environmental Quality
P.O. Box 10385
Jackson, MS 39289-0385

Re: Withdrawal of Class 3 Permit Modification Application and submittal of revised Part A and Notice of Hazardous Waste Activity forms, Koppers Industries, Inc. Grenada Plant, MSD 007 027 543

Dear Ms. Bartlett and Mr. Peacock:

Since early 1991, Koppers Industries, Inc. (KII) has been attempting to obtain a permit to resume beneficially burning material, which we generate as a manufacturing waste, as fuel in our existing industrial boiler at Tie Plant, MS. KII was previously permitted to use process wastes as fuel in our boiler, but stopped due to the listing of this material as hazardous in June 1990. The requested permit would have allowed KII to recycle as fuel high BTU value process wastes from our various manufacturing operations, internalize most waste disposal, reduce our dependence on commercial waste disposal, save us money, and provide more jobs at our plant. In support of this process, KII has spent several hundred thousand dollars on consultants, boiler and facility improvements, and many manhours of effort. We find it appalling that in over 24 months since KII first proposed this project, it has not been allowed a technical review on its merits.

Instead of a technical evaluation, we have been subjected to bureaucratic inaction and regulatory inflexibility with the conspicuous goal of delaying any progress as long as possible. It has become clear that, contrary to EPA's stated goal of minimizing the volume and toxicity of hazardous waste, the agency is philosophically opposed to any form of recycling for energy recovery. The final and clearest message was delivered in the form of the Browner administration "temporary capacity freeze" announced on May 18, 1993. This guidance made further delay the official EPA policy for the next 18 months.

Ms. Bartlett, U.S. EPA and Mr. Peacock, MS DEQ October 4, 1993

The EPA has also made it clear that any company which does ever successfully obtain a permit to burn hazardous waste will be subject to extreme "oversight" in their operation. Such a company can expect large, punitive fines for any infractions, without regard to how minor the violation or whether any public or environmental harm is caused.

KII has concluded that, given the antagonistic environment related to combustion technolgies now created by the EPA, the benefits of proceeding with this project do not outweigh the liabilities. Therefore, KII hereby withdraws our application for the Class 3 permit modification for operation of the hazardous waste industrial boiler and container storage facility.

No hazardous waste has been burned in the boiler so no closure of that unit will be required. The container storage facility, which also has not been permitted, will continue to be used for accumulation of hazardous waste generated on-site prior to off-site disposal for periods of up to 90 days. Thus, no closure of this unit is believed necessary.

Enclosed is a revised Part A Permit and revised Notice of Hazardous Waste Activity reflecting the application withdrawal.

Mr. Peacock, your agency has been forthright and prompt in your dealings with us. We appreciate that. Unfortunately, Mississippi will not be obtaining authority to implement the Boiler and Industrial Furnace regulations in the foreseeable future. If you had done so, our decision may have been different.

KII continues to believe that recycling materials by burning for energy recovery is environmentally sound, socially responsible, and meets the Congressional intent of reducing the volume and toxicity of hazardous waste. Unfortunately, we have also found it politically impossible.

Sincerely,

Stephen T. Smith

Environmental Program Manager

Ms. Bartlett, U.S. EPA and Mr. Peacock, MS DEQ October 4, 1993

cc with attachments:
 Ron Murphey, Plant Manager, Grenada, MS
 Terry Faye, BEI, K-1000

cc without attachments:

Patrick Tobin, Acting Administrator, EPA, Region 4
Doug McCurry, Chief RCRA Permitting, EPA, Region 4
R. S. Ohlis, Vice President, Wood Operations, K-1750
J. R. Batchelder, Vice President, Environmental and Technical,
K-1701

Ms. Bartlett, U.S. EPA and Mr. Peacock, MS DEQ October 4, 1993

bcc:

Dudley DeVille, Woodward Clyde Consultants, Baton Rouge, LA
 (with attachments)
W. R. Donley, K-1750 (w/o attachments)
Rob Markwell, Beazer East, Inc. K-1101 (with attachments)

こととは、これには、またとうという。それはおけるとはないというできないない。

EP	A L	D. A	lumt	oer i	'ente	er fro	om p	age	1)										Se	con	dary	/ ID	Nun	ber	(ent	er fi	ron	ı pa	ge	1)	
М	3	I								5	4	3																			
V	11. C	Ope	rato	r ini	orm	atio	n (se	e in:	struc	tior	ıs)				2																
	Vam	e o	Opi	erat	or																	_	_		·	_					
		L						s	E	E		A		r	T	A	С	H	E	D			<u>L</u>								
	Stre	et c	r P.1	O. E	σx																				,	<u>,</u>					
																												\perp	\perp		
CH	ty or	To	wn																Stat	e	ZIF	Co	de	200	.				_	2	
	-				$oldsymbol{\perp}$		$oldsymbol{\perp}$																L		<u> </u>	-			\bot		
1	1.7	•																						-						_	
Ph	one	Nu	mbe	r (aı	e3 C	ode .	and r	umb	er)					В	. Op	erat	or T	уре	C. 0		ge o		erato	r	Mo	D: onth	ate	Chai Day		d Ye:	ar
			-				T -				T					Γ			Ye			۰	7				T	T	T		
VIII	. Fac	cilit	y Ow	mer	(se	e ins	truc	tions	s)								£ 0													Ų.	Ę,
	Nam	_																	042		-	are such						<u> المراجعي</u>			
К	0	P	P	E	T			TI	N	D	U	s	T		R	I	E	S		I	N	С					Π	T	T		
	reet						; •	-	1.7										L				<u> </u>		<u> </u>						
4	3	-6		s	E	V	7 E	N	T T		H	A	Tv	, ,	E	N	U	Е										T			
CH	y or		wn				- 		:		-1		<u> </u>						State	e	ZIP	Cod	ie				1				
Р	ı	T'	T	s	В	τ	J R	G	H	T	T	T	T	T	T				Р	Α	1	5	2	1	9	-		$\overline{}$	\top		
	#		7			30 3			12	11	Acento	2000		-						. 0-3					8 8					_	
) Ph	one i	Min	nher	120		nda s	end n	umhi	a e ì	÷						В.	Own	er Ty	уре	c. c			Owr	er			ate	Cha	-		_
	, [1	T				Ť	Τ_	Τ,	7					Г	7	- I,	es [Inc	ilcat No	$\neg \neg$		Mo	nth		Day	Т	Yea	<u></u>
4 Y	SIC	2	dae	1/4-	2	in /	orde	2	0 sign	0	1	1	-		7	. 24	- K.						X			. É					
10.			Jues	(uigi	-	rima		Sign.	IIIC	11142	'	A					3 2				SA	one	251			74		W.		
	,	_	Γ,	(de	scripti	on)		-							\dashv	- 1				(desc	riptio										
2	4	9	1	<u> </u>	WO		PRE		VIN	G					\dashv]		1				S04	ond		· ·						
\neg				(de:	criptic	an)									十					(de sc	riptio										
<u> </u>	Othe	r E	ovdro		onto		N/A		e ins	de,	~tlor	101		£18					S	· ·			N/	A		2		4,			
	0110		1771		CIILO		111111	100	e ms			3)								+ 1			1.5		Ÿ						
A. P	ermi Iter o	it Ty	/pe e)			٠.	₽.	Perr	nit N	umi	ber											C.	Des	scrip	tion						
	Т	_	_			· ·	1	i			Т		T	T	$\overline{}$		-				···					<u> </u>					
	<u> </u>	1			_	_	-		_			,	<u> </u>		+	_	_		COLA C	177			D2/7	<u> </u>	or	· D C :					<u></u>
	E			0	9	6	0	_	0	0	0	1	-	2	+	_	\dashv	-	ST'A1	E-	HTK	PE	KMI	T F	UK	.Oa	LLE	.K			
	F-		1	77	77	_					-	<u> </u>	<u> </u>	_	╪	71	\dashv				1										
	R		1	H	W	_	8	8	-	5	4	3	-	1_	<u>q</u>	4	_		ost	: C.	LOS	ure	Ca	re	and	De	256	et:	TOL	1	
	-													$oldsymbol{\perp}$	4	\bot	\perp	N	loni	to	rin	g P	rog	ram	of	C.	Los	ed			
	-		444								_				<u> </u>	\downarrow	4	5	Surf	acı	e I	npo	und	men	t.						
	<u></u>		1											\perp	_	_	1														_
5	<u> </u>		1										_	1_	1		_		<u></u>												
	1		1									l																			

EPA I.D. Number (enter from page 1)	Secondary ID Number (enter from page 1)
M S D O O 7 O 2 7 5 4 3	

XI. Nature of Business (provide a brief description)

The Plant deals with the preservation of wood products utilizing pressure treatment process. The preservation process utilizes pentachlorophenol and coal tar base products. Beazer East, Inc. does not commercially operate at this facility.

XII. Process - Codes and Design Capacities

- A. PROCESS CODE Enter the code from the list of process codes below that best describes each process to be used at the facility. Twelve lines are provided for entering codes. If more lines are needed, attach a separate sheet of paper with the additional information. If a process will be used that is not included in the list of codes below, then describe the process (including its design capacity) in the space provided in item XIII.
- B. PROCESS DESIGN CAPACITY For each code entered in column A, enter the capacity of the process.
 - 1. AMOUNT -Enter the amount. In a case where design capacity is not applicable (such as in a closure/post-closure or enforcement action) enter the total amount of waste for that process unit.
 - 2. UNIT OF MEASURE For each amount entered in column B(1), enter the code from the list of unit measure codes below that describes the unit of measure used. Only the units of measure that are listed below should be used.
- C. PROCESS TOTAL NUMBER OF UNITS Enter the total number of units used with the corresponding process code.

,					UNIT OF
.			APPROPRIATE UNITS OF		MEASURE
١	PŘOCES	S	MEASURE FOR PROCESS	UNIT OF	CODE
1	CODE	PROCESS	DESIGN CAPACITY	MEASURE	CODE
ı					}
		DISPOSAL:		GALLONS	G
	D79	INJECTION WELL	GALLONS; LITERS; GALLONS PER DAY; OR LITERS PER DAY	GALLONS PER HOUR	?E
	D80 D81	LANDFILL LAND APPLICATION	ACRE-FEET OR HECTARE-METER ACRES OR HECTARES	GALLONS PER DAY	u
ļ	D82	OCEAN DISPOSAL	GALLONS PER DAY OR LITERS PER DAY	LITERS	į.
1	D83	SURFACE IMPOUNDMENT	GALLONS OR LITERS	LITERS PER HOUR	1
	S01	STORAGE: CONTAINER	GALLONS OR LITERS	LITERS PER DAY	v
1		(barrel, drum, etc.)		SHORT TONS PER HO	i
-	S02 S03	TANK WASTE PILE	GALLONS OR LITERS CUBIC YARDS OR CUBIC METERS	METRIC TONS PER H	OUR W
1	S04	SURFACE IMPOUNDMENT	GALLONS OR LITERS	SHORT TONS PER DA	AY N
1		IREATMENT:	OALLONG DED DAY OD LITTING DED DAY	METRIC TONS PER D	ı
1	T01 T02	TANK SURFACE IMPOUNDMENT	GALLONS PER DAY OR LITERS PER DAY GALLONS PER DAY OR LITERS PER DAY	POUNDS PER HOUR	
1	T03	INCINERATOR	SHORT TONS PER HOUR; METRIC TONS PER HOUR; GALLONS PER HOUR;	KILOGRAMS PER HO	i
١			LITERS PER HOUR; OR BTU'S PER HOUR	CUBIC YARDS	1
1	T04	OTHER TREATMENT	GALLONS PER DAY; LITERS PER DAY;	CUBIC METERS	
		(Use for physical, chemical,	POUNDS PER HOUR; SHORT TONS PER	ACRES	B
1		thermal or biological treatment processes not occurring in	HOUR; KILOGRAMS PER HOUR; METRIC TONS PER DAY; METRIC TONS PER	ACRE-FEET	A
		tanks, surface impoundment or incinerators. Describe the	HOUR; OR SHORT TONS PER DAY	HECTARES	a
		processes in the space provided in Item XIII.)		HECTARE-METER	F
				BTU'S PER HOUR	x
•					

	!	E	PA	ו .ם.	Nun	nber	(enti	er fr	om p	oage	1)							Se	con	dary	D	Num	ber	(ente	er fro	m page	1)
	M	s	D	0	0	7	0	2	7	5	4	3												T			T
	XII.	Pro	ces	s - (Cod	es a	nd D	esiç	gn Ca	apac	itle	s (c	ontli	nue	d)		基金										
		b	AMF	LE F 0 ga	OR (COMP s and	the o	NG i	TEM .	XII (s. hold	how 400	n in . gallo	iine i ons.	num The i	bers >	(-1 a. / alsc	nd X-2 be has an in	low): cine:	A fac	ility h that c	as tv an b	vo st	oragi up to	e tani 20 ga	ks, on	e tank ca s per hou	п r.
7	•			ne nber		PRO				В.	PRO	OCE:	SS D	ESIC	N CA	PAC	ΙΤΥ	C.	PRO TOT		S	FC	OR O	FFICI	AL	7	
-					1 (from abov	list			1. AI	MOL	JNT ((spe	cify)		- [/	L UNIT OF MEASURE Inter code	1	NUMI OF UN	3ER			USE	ONL	Y		
Ī			X	1	s	0	2		•		60	00				I	G	0	0	2	Τ			T		1	
E			x	2	7	0	3				20	,					E	0	0	1							
		2		1	D	8	0*	C	75								A.	0	0	1							
J.		1071		2	D	8	0	1	. 5							\perp	A	0	0	1			_	$oldsymbol{\perp}$			
				, 3	S	0	-	-	pro							\perp	Y	0	0	1			<u> </u>				
1	10		_	4	S	0	3	Ap	pro	xim	ate	ely	10	00		\perp	Y	0	0	1				_			
ľ	e e		_	5		-										\bot		_	-					<u> </u>	_		
ľ		-	\dashv	7												1		_	_		_			-	_		
		-		8												1		-	<u> </u>			_	_	-	_		
F		ŀ	\dashv	9											AS		ANDFIL CLOSU			L M				D.	32		
		}	1	0														-						-			
		ł	7	7	_		\dashv									+		-					-				
		ŀ	1	2								<u> </u>				\vdash		\vdash		\dashv							
		L NOT	E: H	уоц	need	d to II	st mo	re ti	han 1.	2 pro	ces	s co	des,	atta	ch an	addi	tional she	et(s)	with 1	he in	10rn	natio	n In t	the sa	me 1	ormat as	
1		aboi XIII.	/e. h	lumb	er ti	he iin	es se	dne	ntiaily	, taki	ing i	nto a	icco	unt a	ny lin	es th	at will be	used	for a	dditic	nai	treat	meni	proc	:0558	s in item	
	CIII. J	Addi	tion	al Tr	eat	men	Pro	ces	ses (follo	w I	nstri	ıctic	ons	from	lten	(ווג ו			134		J.				- 11	
	Line Imbe	, A.	PRO		s				T PRO		ss			CESS	s		411						'				
	ienter noers i	4	CU	DE	卡			T	APAC			N	TOT. UME	BER													
- R	quence th Kem XII)					1. AM (spe	ectty)		2. UN MEA (ente	SUR	E	ľ	r un	VITS		•	D. I	DESC	RIPT	ion (OF P	ROC	ESS				
	,	T			\dagger			\top	•			Ė						-					-				
	T	7	0	4	T									Τ	1											8	
														·	1												
1																											
		7	0	4	T			1		-				Π	1												
					T			1						_	1												
							(*)						.03		H						•					*	\dashv
		T	0	4	Ť			$^{+}$			ᅥ				i												
	•		<u> </u>		\vdash			T						L	1												
															\vdash												\dashv
7		Т	0	4				1			1	T															
7								T																	89		
EP	\ For	m 87	00-2	3 (0	1-90	0)								_	4 of 7	7 -						_					

Diagno print or type with	FILLE IVDE 1720	characiers der inci ii ii	I RIG RIPLIONED SICO OF

F		EPA	I.D.	Nurr	ber	(enti	er fr	om j	page	1)		S	eco	ndar	I DI	Numi	er (E	enter	from	n pa	ge 1)	
M	S	D	0	0	7	0	2	7	5	4	3	ļ										
					_		_	-	-	THE PARTY	-	The state of the s		1.1		2 194	900	38 S. T	A 10		100	

XIV. Description of Hazardous Wastes

- A. EPA HAZARDOUS WASTE NUMBER Enter the four-digit number from 40 CFR, Part 261 Subpart D of each listed hazardous waste you will handle. For hazardous wastes which are not listed in 40 CFR, Part 261 Subpart D, enter the four-digit number(s) from 40 CFR, Part 261 Subpart C that describes the characteristics and/or the toxic contaminants of those hazardous wastes.
- B. ESTIMATED ANNUAL QUANTITY For each listed waste entered in column A estimate the quantity of that waste that will be handled on an annual basis. For each characteristic or toxic contaminant entered in column A estimate the total annual quantity of all the non-listed waste(s) that will be handled which possess that characteristic or contaminant.
- C. UNIT OF MEASURE For each quantity entered in column B enter the unit of measure code. Units of measure which must be used and the appropriate codes are:

ENGLISH UNIT OF MEASURE	CODE	METRIC UNIT OF MEASURE	CODE
POUNDS	P	KILOGRAMS	κ
TONS	T	METRIC TONS	M

If facility records use any other unit of measure for quantity, the units of measure must be converted into one of the required units of measure taking into account the appropriate density or specific gravity of the waste.

D. PROCESSES

1. PROCESS CODES:

For ilsted hazardous waste: For each listed hazardous waste entered in column A select the code(s) from the list of process codes contained in Item XII A on page 3 to indicate how the waste will be stored, treated, and/or disposed of at the facility.

...

For non-listed hazardous waste: For each characteristic or toxic contaminant entered in column A, select the code(s) from the list of process codes contained in Item XII A. on page 3 to Indicate all the processes that will be used to store, treat, and/or dispose of all the non-listed hazardous wastes that processes that characteristic or toxic contaminant.

NOTE: THREE SPACES ARE PROVIDED FOR ENTERING PROCESS CODES. IF MORE ARE NEEDED:

- 1. Enter the first two as described above.
- 2. Enter "000" in the extreme right box of Item XIV-D(I).
- 3. Enter in the space provided on page 7, Item XIV-E, the line number and the additional code(s).
- 2. PROCESS DESCRIPTION: If a code is not listed for a process that will be used, describe the process in the space provided on the form (D.(2)).

NOTE: HAZARDOUS WASTES DESCRIBED BY MORE THAN ONE EPA HAZARDOUS WASTE NUMBER - Hazardous wastes that can be described by more than one EPA Hazardous Waste Number shall be described on the form as follows:

- 1. Select one of the EPA Hazardous Waste Numbers and enter it in column A. On the same line complete columns B, C, and D by estimating the total annual quantity of the waste and describing all the processes to be used to treat, store, and/or dispose of the waste.
- 2. In column A of the next line enter the other EPA Hazardous Waste Number that can be used to describe the waste. In column D(2) on that line enter "included with above" and make no other entries on that line.
- 3. Repeat step 2 for each EPA Hazardous Waste Number that can be used to describe the hazardous waste.

EXAMPLE FOR COMPLETING ITEM XIV (shown in line numbers X-1, X-2, X-3, and X-4 below) - A facility will treat and dispose of an estimated 900 pounds per year of chrome shavings from leather tanning and finishing operation. In addition, the facility will treat and dispose of three non-listed wastes. Two wastes are corrosive only and there will be an estimated 200 pounds per year of each waste. The other waste is corrosive and ignitable and there will be an estimated 100 pounds per year of that waste. Treatment will be in an incinerator and disposal will be in a landfill.

		7									77. 995.40					D. PRC	OCESS
	ine		₩				B. ESTIMATED ANNUAL QUANTITY OF WASTE	C. UNIT OF MEASURE (enter code)		fi.	(1) !	PROC	ESS	COD	ES (e	nter)	(2) PROCESS DESCRIPTION (If a code is not entered in D(1))
x	T	1	ĸ	0	5	4	900	P	T	0	3	D	8	0			
x	T	2	ם	0	0	2	400	P	T	0	3	D	8	0			
x	T	3	D	0	0	1	100	P	T	0	3	D	8	0			
X	T	4	D	0	0	2											Included With Above

L		EPA	1.D.	Nun	nber	(ente	from p	age 1)	_						_5	eco	ndar	y ID Number (enter from page 1)
Į,	ı s	D	0	0	7	0	2 7	5 4	3									
Γ	XIV. C	esc	ripti	on o	f Ha:	zardou	ıs Wast	es (continu	ued)									第127年,大学文章
	Line Imber		IAZA WAS	EPA RDO TE No	US O.	QUAN	TIMATED NUAL TITY OF ASTE	MEASURE		(1)	PRO	CES	s cc	DES	(ent	er)	D. F	(2) PROCESS DESCRIPTION (If a code is not entered in D(1))
	1	K	0	0	1	SEE	COMMI	NTS	D	8	0							Former Surface
Ŀ	3																-	Impoundment closed as landfill.
r	4	K	0	0	1	SEE	COMM	NTS	D	8	0							Boiler ash landfarm
r	5	U	0	5	1													closed as landfill.
Γ	6		,															
Γ	7	F	0	3	2	SEE	COMMI	NT'S	s	0	3							Waste piles containing
	8																	soils excavated and placed
	9																_	in pile prior to June 6,
1	0								<u> </u>									1991. This is submitted
1	1														_		_	as a protective filing
1	2																	and should not be construe
1	3																	as an admission by Beazer or KII that the material
	5																	is the listed hazardous
1	6																	waste FO32, or that it is
1	7																	being managed in a manner
1	8																	that would subject it to
1	9																	regulation under RCRA.
2	0																	
2	1										_							
2	2										_	\dashv			_	-		
2	3																	
2	4								\vdash		_							
2	5			\dashv														
2	6					÷			\vdash			\dashv						
2	8					 -				\dashv	-			-				
2	9				\dashv					\dashv	\dashv			-				•
3	0		\dashv	\dashv	\dashv					\dashv	\dashv			\dashv				
3	1			\dashv		···				\dashv	-	-		\dashv				
)	2		-	-	-				H		-	\dashv		\dashv				
لمر 3	3	-	-		\dashv				\vdash	\dashv	-	\dashv						
-												1						

riease p	11111 0	Тур	- 7715							_																	
EF	A I.I	D. N	umb	er (e	enter	froi	n pa	ge 1	1)	,	1						Se	con	dary	ו מו	Num!	per (ente	er tro	m pa	age 1	
MS	D	0	0_	7	0	2	7	5	4	3								No.	Latin F	100			27-9-2	1. eg 5 f	-		100 mg
XIV. D	escr	iptic	n of	Haz	ardo	ous '	M as	te (c	onti	nuec	1)					-								3			
E. US	SE TH	iis s	PACI	TO	⊔ST	ADD	πο	NAL I	PRO	CESS	col	DES .	FRON	I ITE	M D(1) 0	N PA	GE 6	i								_
Line Number													nal F														
1.011.00.	_		ì		i	ī		1			<u> </u>																7
				-						_						-			-	-							
	-					_													-								
			<u> </u>	_							<u> </u>					-	1		-	_			1				
						-										-			-	-							
	-								-		<u> </u>		-						-		-	-	-				
	٠.				<u> </u>	!				ļ		_			_				-	-	_	-	-				-
		32.5	2,342.0	2016	10.70		7	VE / 100	建						V STA												
XV. Ma															lass	. 00	mile	hai	rond	nror	erty	bour	ndari	es. T	he m	ap	
l 6	show	v the	outli	ne o	i the	facili	ity, th	r disi	20110	n or (I facil	eacn lities.	or it:	eaci	ung wel	ano ; I whe	ere il	inje:	cts fl	uids	unde						of Its rings,	
rivers	and	othe	er sur	lace	wate	L po	dies	in thi	s ma	pare	ea. S	ee ir	struc	tion	s for	prec	ise r	equi	reme	nts.	<u> </u>		333				275
XVI. F	acilit	y Di	awir	g .																					-00	10.00	
All ex	istlng	g fac	ilities	mus	t inc	lude	a sc	ale d	rawir	ng of	the f	acilit	y (se	e ins	truct	ions	for π	ore	deta	iI).					Page 100 HO		
XVII. F	Photo	ogra	phs	4		0.5	jî.					-															. Ye.
			1141	mue	t incl	lude	nhot	odrai	hs (aeria	lord	rout	nd-le	vel) t	hat c	lear	ly dei	linea	te al	l exis	ting :	struc	tures	; exis	sting	storag	e,
treatm	nent a	and	dispo	sai a	reas;	and	sites	of fu	iture	stor	age,	treat	ment	or d	ispos	sal al	reas ((see	instr	uctio	ns fo	r mo	re d	etail).	•		
XVIII. C	`artit	Foot	lon/s	٠١		1																				-2	
I certi											nall		min	od:	nd	am i	ami	liar	with	the	into	rma	tion	sub	mitt	ed in	this
1	. 11		h ~ ~	400		nnte	20	d th	ist r	226	a 01	nm	v ini	חווור	זמ ע	mo	ise i	nar	viuu	aıs	1111111	i e u i	accij	y , c .	300.		. • .
obtain that t	•						مناحد	wai	hot	tha	cub	mitt	ו אם	$\alpha \alpha c$	mai	non.	ISII	ue.	acc	ша	E. 41	100	$\omega u u$	MICH	5. 1 6	2111 41	
impri	soni	nen	it.	gm	,,,,,	۶				-			,								•						
Owner ,	/0pe		tor(Kor	pei	rs/	ind	15.5	rie	S	Inc	-)									Da	te Si	gned	14:	<u> </u>		
Maria		O#:-	in I T	itle /	1.00	010	rint												<u> </u>	•		11	100	<i>/</i> •			
James	R.	Ва	atch	elo 	ler.	, V:	ice	Pr			t,	Env	iro	nme	nta	ıl a	and	Te	cnn	ica		:0 S	gned				
Operato	or # 2	2	H	Be	azie	er I	Eas ~/~	t,	Inc	.)											Da	/:0	/ /	1/4	3		
Name Rich	and	Offic L G:	ial T	itle (type Vic	or p	rint) Pre:	sid	ent	, E:	nvi	ron	men	tal													
				-3.7520														NAC S				eri da			15 C S		
XIX. Co	mm	ents			¥3						2														÷		
5	SEE	AT"	l'ACI	IED	CON	ME	11.2	•																			
										577. S. S. S.				0 8			PC-1-188			_	_						
-					-		-	- 200			_		eenn-	-			,										
ļ				1-04-0		-		_,-																-			
Note: 1	Mail d	comi	piete	d for	m to	the a	ppro	priat	e EP	A Re	gion	al or	State	Otti	ce.	(refe	r to ii	nstrL	ictioi	ns to	r moi	e ini	orma	ation))		

HAZARDOUS WASTE PERMIT PART A APPLICATION COMMENTS

As stated on page 2, block VIII, the facility owner is Koppers Industries, Inc. There are two operators at this facility, as explained below:

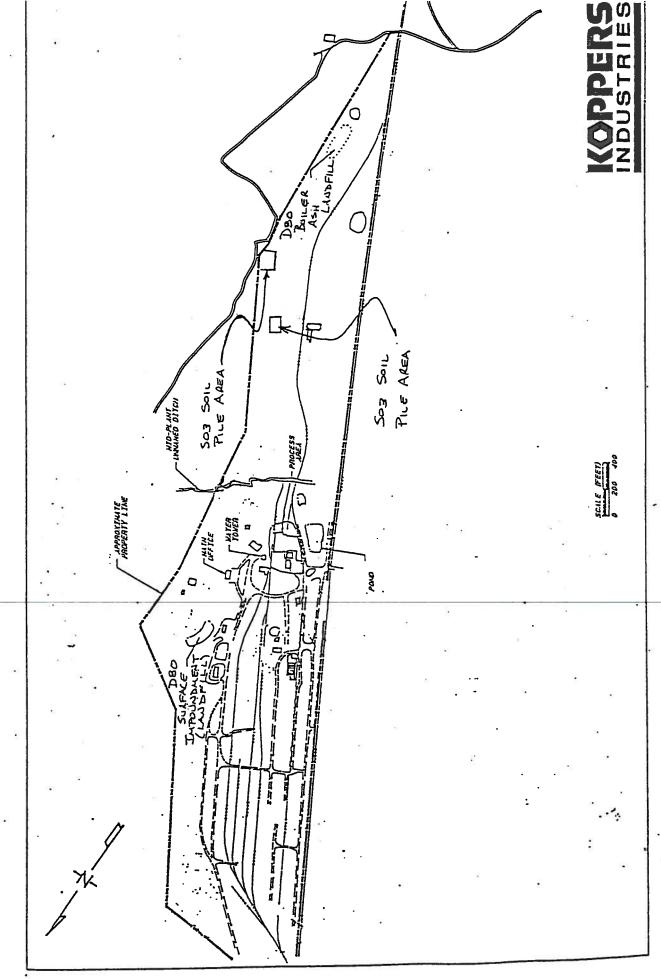
OPERATOR #1

KOPPERS INDUSTRIES, INC. 436 Seventh Avenue, K-1701 Pittsburgh, PA 15219 (412)227-2001

Status of Operator #1: P

Operator #1 (Koppers) is the current owner and operator of the wood preserving business on this site.

Koppers previously submitted and, with this submittal, has withdrawn an application to operate a hazardous waste boiler (T04) and hazardous waste storage unit (S01). During the application time, these units did not operate as permitted units.


OPERATOR #2

BEAZER EAST, INC. 436 Seventh Avenue, K-1401 Pittsburgh, PA 15219 (412)227-2430

Status of Operator #2: P

Operator #2 (Beazer) is the operator of four inactive units on the facility, a former surface impoundment closed as a landfill (D80), a boiler ash landfarm closed as a landfill (D80), and two waste piles (S03) which contain soil resulting from on-site construction activity and which was placed in the piles prior to June 6, 1991.

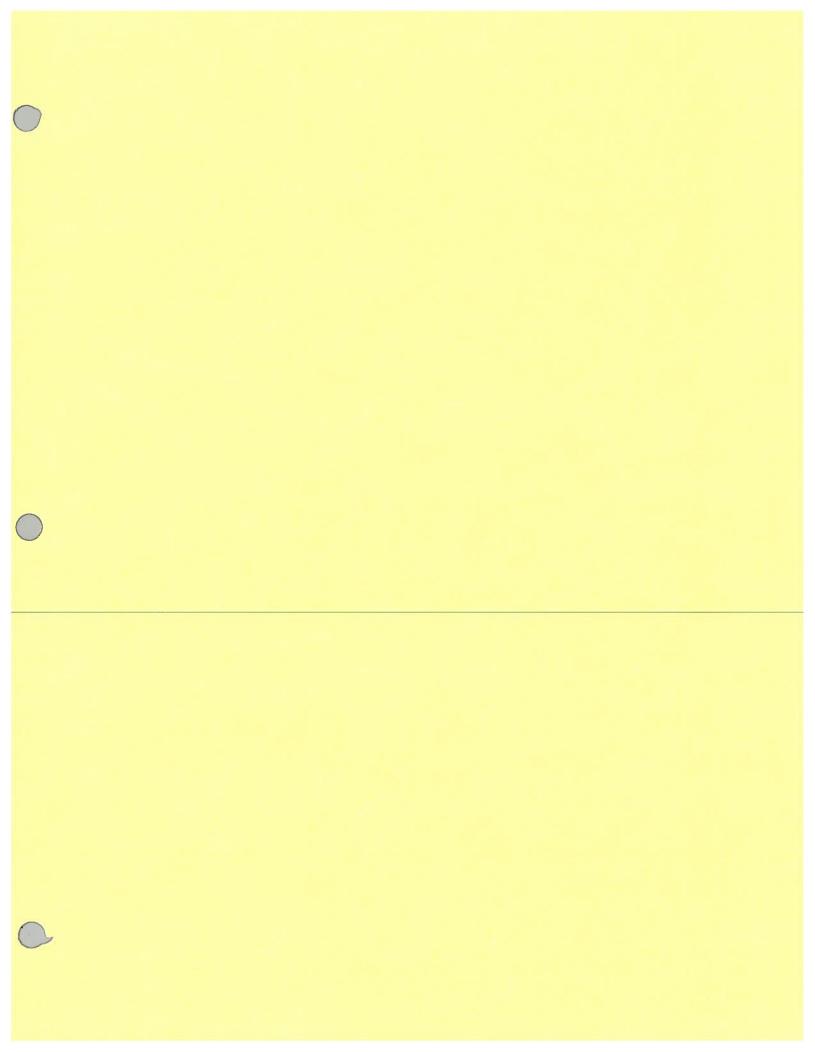
Operator #2 has had no involvement in the application process for the container storage facility (S01) or the industrial boiler (T04) and, therefore, if there are any obligations under the relevant statutes and regulations pertaining to those units, including but not limited to any and all financial assurance requirements, they are solely those of Operator #1.

1-1c

type (12 characters per inch) in the unshaded areas only

Form Approved. OMB No. 2050-0028. Expires 9-30-92 GSA No. 0246-EPA-OT

Plea	se print or type with ELITE
for coi info rec	lase refer to the Instructions Filling Notification before mpleting this form. The ormation requested here is juined by law (Section 3010 the Resource Conservation of Recovery Act).
1. 1	nstaliation's EPA ID Ni
	A. First Notification
110	(


Notification of Regulated Waste

Date Received (For Official Use Only)

of an	the d R	Residence	urce iry Ac	-	erve	tion									-	ental	Ct Prole						900 9000						
41.7	Inst	allat	ion's	EP/	A IC	Nur	nber	· (Ma	rk 'X	' In	the a	appr	opri	ate	box,				48.0		W 2	do por		¢.				9	
į		A. F	irst	Notif	lca	llon.	∇	В	. Sut (con		quen te ite			ation	1.		<u> </u>		\neg	c.	Inst	allatio		EPA		umb		7 3	
Çij,	Na	пе с	f Ins	stalla	tior	ı (İnc	lude	cor	npar	y a	nd sį	ecii	lc si	te n	ame) >		- 0	uo _p o u	警姆	6	9195							
K	0	P	P	E	R	5		I.	N	D	U	ک	T	R	1	E	5		Z	N	C					1			
ું!!!	. Lo	catl	on o	f Ins	talle	itlon	(Phy	sica	l add	ires	s no	P.C). Bo	x o	Ro	ute /	Vumi	er)	1		2	100			8			e de la se	
St	ree	:34	-930 <i>j</i>	isetsia T	4.5	et prins	7-1-			::-	e ophere		- 34	The se		(Z) še	%?? T	1236	eats	with 1	NY 185	15.AM		35149		38 y 38 c	estini.	66,740	
7	1	E		P	1	A	N	1		R	0	A	0	L										L					
St	ree	t (co	ntini 	ned)		-	т	I .	Τ-	,	T T	 I	T	Ι	T	1	1.8	i i	ŕ	· · · ·		1,32	&.4∂ T	Yebood T	1	24	T		J. 100 04
29.4	769	<u> </u>	<u> </u>	. //		<u> </u>	<u>l</u>	<u> </u>	<u> </u>	L	Nobel 1		, v. acatr		L	<u></u>	112-1			H	L		0.000.15	3. ii 10x			- 100 July		
& Ch	ty o	r To	wn:		175.04	1	T	Ι	I	455		yazari T		ř	s:¦⊚} T	T T	an Fide	Sta	_	ZIP	Cod	_		T -	i i i	T	T	T	T
. 7. 900	<u></u>	E	No. 10	1	14	IA	\overline{N}	17		čine:	<u> </u>	1 529	5.00		الرياق ال		S410* 0-	M	5	کا	8	9	6	10	-	<u></u>	1	<u></u>	
Cou	nty	Code	C	ount		ame	Τ-			1000	R(S)	∷@ T			T	Weij T					YY.	\$4.83 7.433		1				_	
in the same of the		L	14	K	E	-	A	D	Α		<u></u>																		
ijV.	Ins	talla	tion	Mali	ing	Add	ress	(Se	e ins	truc	tions	s))		54			En 4					. 4		** *	S.A.	6		· · ·	
Sti	eet	or I	2.0.	Box	100	- 1,57	173	Y	/ 17	77.												* 9		AM C		(ta)			
P	Ö		B	0	X		1	6	0																			T	
CI	y o	ГТо	vn:			i j			-4 800 1. 7		87	844 3 S						Sta	te 🤄	ZIP	Coc	le 🔆	611.90 (30.00)						
7	7	E		P	1	A	N	7								Π		M	5	3	8	9	6	0	_			190000	
ν.	insi	allat	ion (Cont	act	(Per	son	to be	e cor	itac	ted r	епа	rdine	, wa	SIA	activ	itlee	at o	lte i	5	2 10		4	*				10.7	
197: 19	19	(las	Selection.	· of the	· \$1.0	61 (d.) 1.1	47963	. 4.				- 3 0.			1.	1	c3		,	A.	4	1.0%			S. G		u jira	e tal	76.898X
M	υ	R	P	j+	Ë	1									R	st)	N	Λ	<i>i</i>	D	113	1 1 1		1.45	10.756	94.000	135.55	03,2733,2	unggat. A
	5 71	tle		738		1/	تئسورا								-		_	<u>/</u> +	-			a, v	5,05	l er) ***	kija s	256 36] }};;a4	L	
ρ	<i>j</i>	1		_		M	Δ	11		_		P				none	Nur	поеі	(are	. 1		าฮ กเ	mb	(19			1		
71.3	<u>۔</u> س	<u> </u>	10	4		-	Α	<i>/</i> //	A	6	-	-	4		6	0		7900	4	2	6	9,10	7	١٥	8	4	144	(le)	
			tlon Addr		-	Add	-	_	_	-				5,000			70000	•	- 1 · 2	B	9-			0 %		4			
Loca	tior	recharge	Aailir	9	В.	Stree	et or	P.O.	. Box	13.3	63.kz	4.02	100.5	rigia.		92.9	Y12.13		: 3 '	97.35	+20 st	* JK	iş.				(iii		
r		97, I		100		Ц.						2.5				L													
City	or	Tow	n 🦠), <i>a</i> .,				94		(1					Ç.	Stat	е	ZIP	Cod	le		3000		MO			
																		٠							_				
VII.	.Ov	vner	ship	(See	e In:	struc	tion	s) }		4														4			•		9 0
A.	Nar	ne o	f Ins	talla	tlor	ı's Le	gal	Own	er	4		i.y		d)	1).	V.1			88 - 20 		1		044	(ingi					879.27
K	O	P	P	E	R	5		I	N	D	d	5	H	R	1	بح	5		/	M					24 SON S	100	or and to it		31300 10, 34
- 13	eet	, P.C). Bo	_	r Ro	oute	Num	ber				.14					ter .	10.00		, , ,	<u>~1</u>	3.3				ne é é	i i		
	3	1	T		E	П	5		7	4		A	V	=		П	K	-1	П	7	0	o	960 6		8 1	300.00	(*85.8)		
-		. Lo.	vn -		e2:	لـــا	<u>- Ľ</u>		- 1	7]		<u>- 1</u>	- 1		-	لـــا	1		_					0.500	, 1946s	\$0,00.40	30 m²		
ρT	$\overline{}$	7	Т	5	P	U	ام	7	//	1		7	Т					Stat		ZIP		. 1	,	<u> </u>	14,47			(())(2) 	
- 1			/	ع ا	D		R	ای	/4		-	_	Ц,		T	ليا	ليــ	<u> </u>	A			2	/	9			Ļ.,	_	
	one	Nur	nber	- 1		de a	nd nu		1)		\Box	B. L	and `	уре	C.	_	er Ty			hang <u>In</u> d	e of (ica <u>to</u>	Own:	់្	Mor	Date oth	Cha D	inge iv	d) Ye	ar
7	/	2			2	2	-	2	0	0	1		P			F	1		'es		No	X	:[
PA :	Fore	n 870	0-12	(Re	v a.	-921	Ormal		editio						27						-	_			_	-	-	_	-

a B <u></u>		ID - For Official Use Only
VIII. Type of Regulated Waste Activity	y (Mark 'X' in the appropriate boxes.	The state of the s
A. Hazardo	us Waste Activity	B. Used Oil Fuel Activities
1. Generator (See Instructions) a. Greater than 1000kg/mo (2,200 ii b. 100 to 1000 kg/mo (220 - 2,200 ii c. Less than 100 kg/mo (220 lbs.) 2. Transporter (Indicate Mode in boxe) a. For own waste only b. For commercial purposes: Mode of Transportation 1. Air 2. Rail 3. Highway 4. Water 5. Other - specify	lbs.) 4. Hazardous Waste Fuel. a: Generator Marketing to	is required tions. a. Generator Marketing to Burne b. Other Marketer b. Other Marketer c. Burner - Indicate device(s) - Type of Combustion Device Furnace 1. Utility Boiler 2. Industrial Boiler 3. Industrial Furnace ustion 2. Specification Used Oil Fuel Mark (or On-site Burner) Who First Claims the Oil Meets the Specification
IX. Description of Regulated Wastes	///co.nddillonal sheets if nacessary	
	us Wastes. Mark 'X' in the boxes correspon	nding to the characteristics of nonlisted hazardous
1. Ignitable 2. Corrosive (D001) (D002) 3. Reactive (D003) 3. Reactive (D003) 4. Reactive (D003) 5. Reactive	Characteristic (D000) (List specific EPA hazardous wasse) R 261.31 - 33. See instructions if you need F D 3 2 F D 3 9 10 equiring a handler to have an LD number.	5 6 11 12 12 12 12 12 12 12 12 12 12 12 12
C Certification		The same of the sa
accordance with a system designed submitted. Based on my inquiry of the gathering the information, the infor-	d to assure that qualified personnel eperson or persons who manage the s mation submitted is, to the best of r ignificant penaities for submitting false	2017 M
Submitted with	withdrawl of Re	CRA Andrickim las
Burner and Sto		CITA PEPPICATION 40 F

EPA Form 8700-12 (Rev. 9-92) Previous edition is obsolete.

																	+		
<u>z</u> 5	IANK POINT EMISSIONS	•																	TOTAL
								TANK	166	VAPOR				BRTHN	TANK	₹	WRKG.		TANK
			TANK	TANK	TREATING		VAPOR	DIA.	TANK	SPACE		L	_	K LOSSES	TURN	ъ 5	LOSSES		LOSSES
EMISSION	PROCESS	TANK	CAPACITY	TEMP	AGENT	WW	PRESS.	۵	Ħ.	I	.⊢	subP	2	subC LsubB	OVERS BL	eubN La	T Mqn	LsubW THRUPUT	(S
SOURCE	0	Ö	(x1000 gal)	Ę.			(psta)	3	£	€	(F)	ε	€	(1) (lb/yr)	ε	3	b/yr) (1	(lb/yr) (1000gal/yr)	(lb/yr)
							B. C. C.	C C	o c	5	Š	4	1 290	1.0	269	0.28	7	8002.6	6:
	PENIA WK	<u> </u>	0.87	2 4	O.3% TENES	956	80000	13.0	30.0								1.5	12274.3	2.3
	PENIA WA	£ \$	0.63	3 5	A 5% PENTA	266	0.00008	10.0	16.0	0.9				1.0 0.7	132 0	0.42	0.3	1308.8	1.0
	DENTA TAN	. A	9 CF	3 2	40%PENTA	266	0.00038	10.01	18.0	6.0	8			1.0 2.1	23 1	1.00	9.0	251.5	2.7
	DENTA BLO	9 6	8	2	PENTA	266	0.00008	10.0	14.0	3.0	8	4.1	0.54	1.0 0.5	148 1	9.	9.0	1215.9	7
	DOIN SEPE	3 4	12.3	2	PENTA	566	0.00008	10.0	21.0	3.0	8	1.4	0.54	1.0 0.5	1 66	1.00	9.0	1215.9	Ξ
	SECOND SF	, v	12.3	2 2	PENTA	266	0.00008	10.0	21.0	3.0	20	1.4	0.54 1	1.0 0.5	99	1.00	9.0	1215.9	7
	10.000)	1	ļ												TOTAL	TOTAL EMISSIONS	SNS	11.3
(1) Olmensionless	655																		
tal loss	(2) Total losses include breathing losses (LsubB) and working losses	thing los	ses (LsubB) a	nd workl	ng losses (LsubW).	W													
NUM P	VACUUM PUMP EMISSIONS	SNO																	
į	9				FMISSION		VOLUME		EMISSION										
EMISSION	PUMPS		COMPONENT	_	FACTOR		(×1000)												
					(lp/cn ft)		(cu ft/yr)		(lb/yr)		ne.								
			PENTA		5.35E-07		32616		17.4										
TIVE (fugitive cylinder emissions: Unloading	MISSIO	NS: UNLO	ADING															
			VOID																
EMISSION	PROCESS	BATCH	SPACE	TEMP	_	TREATING	m		윱	٥	_	E.	EMISSIONS						
SOURCE	DESCRIPTIO	MEAR	(cf/batch)	E.		AGENT	¥ V		(lsd)	£	€		(lp/yr)	1					
E-14a	CYLINDER 1	346	2941	140		8.5% PEN	566		0.00008	6.0	160		3.4						
F-14b	CYLINDER 5		2093	140		8.5% PEN	266		0.00008	6.0	130		3.8				•		
	47						(<u> </u>	¥	TOTAL EMISSIONS	SIONS			7.195						
•	6/14/93								هـَـ	Page 1									

0.2

8.50

PENTA

E-18

TANK POL	TANK POINT EMISSIONS	S																		
																				TOTAL
								TANK		VAPOR				98	BRTHN	TANK	\$	WRKG.		TANK
EMISSION	PROCESS	TANK	TANK	TANK	TREATING		VAPOR	DIA.	TANK	SPACE		u_		ъ 5	LOSSES	TURN	7	LOSSES		LOSSES
SOURCE	DESCRIPTIO	Š	CAPACITY	TEMP	AGENT	×××	PRESS.	٥	Ħ.	Ŧ	5	eubP	ပ	subC L	LsubB	OVERS	subN L	LsubW 1	THRUPUT	ල
			(x1000 gal)	(F)			(psla)	ε	£	£	(F)	ε	€	E	(lb/yr)	€	3	(lb/yr) (1	(1000gal/yr)	(lb/yr)
E-24a	DEHYDRAT	OEH-1	5.0	212	CREO.	168	0.28	6.0	19.7	3.3	20	4.1	0.30	0.1	0.0	0	1.00	0.0	0.0	0.0
E-24b	DEHYDRAT	DEH-2	S:0	212	CREO.	168	0.28	9:0	19.7	3.3	20	7 .	0.45	1.0	29.9	22	1.00	121.9	108.0	151.8
E-3a	STORAGE	T-15	111.6	99	CREO.	168	0.002	29.0	24.2	10.7	20	*	1.00	0.1	63.4	ĸ	1.00	4.2	523.7	67.6
E-3b	TANK	4-	105.7	9	60/40CRE.	168	0.002	30	8	5	8	4:	1.00	0.	63.4	ın	1.00	4.2	523.9	67.6
4	TANK	T-2W	29.6	200	60/40CRE.	168	0.2220	13.0	30.0	2.0	n 02	<u> </u>	0.65	1.0	108.6	261	0.26	1809	7772.4	1917.5
!	TANK															,			;	
F46	WORK	T-2W	29.8	200	CREO.	168	0.2220	13.0	30.0	2.0	20	4.	0.65	6.	108.6	N)	8	131.2	146.6	239.8
<u>F</u>	♣4 VERT	7₹	4.2	200	CREO.	168	0.2220	6.7	20.0	2.0	8	4.	0.35	1.0	18.4	8	0.24	61.0	377.1	99.4
E-40	₽4 HORIZ	1 4	22.4	200	CREO.	168	0.2220	6.7	106.0	3.3	20	1.2	0.35	1.0	20.3	228	0.32	1461	5100	1481.2
F-48	♣ 4 VERT	≱	4.2	200	60/40CRE.	168	0.2220	6.7	8	8	20	4:	0.35	-	4.4	118	0.48	1461	31.4	1465.2
E-19	STORMWAT STORAGE TANK	17 17	259.0	90	5% CREO.	168	0.007	35.1	36.0	18.0	8	1.3	1.00	5.	250.3	~	1.00	49.4	1750.0	15.0
E-20	PROCESS SURGE TANK	t t	111.0	85	15% CREO.	168	0.0060	28.0	24.1	12.6	20	4.4	0.99	1.0	135.5	74	1.00	124.9	5161.9	39.1
д	CREO BLOW	C-BD	8.2	06	15% CREO	168	0.007	5.0	14.0	3.0	8	4.4	0.25	1.0	0.9	121	1.00	27.9	0.068	2
E-21	SEPERATOR	<u>8</u>	99	2	10% CREO	168	0.003	22.0	11.5	3.0	8	4.	0.82	0.1	24.9	105	0.48	40.1	6912.0	6.5
(1) Dimensionless (2) Total losses	(1) Dimensionless (2) Total losses include breathing losses (LsubB) and working losses	1 Bulthee	losses (LsubB)) and wor	king losses (LsubW).	.; РМ)													TOTAL	5,555.0

LOADIN	unloading emissions	ſΛ.									
EMISSION	PROCESS		TANK	TEMP		VAPOR	SATURATION	Ę	(1)LOADING	тняоианрит	TOTAL
SOURCE	DESCRIPTIO	COMPO.	CAPACITY	Ē.	₩W	PRESS	FACTOR	_	LOSSES		LOSSES
			(x1000 gal)			(psla)			(lb/yr)	(1000 gal/yr)	(lb/yr)
	TANK CARS	CREO.	19.1	220	168	0.33	0.5		1.565	57.4	89.8
ading l	Loading losses (lb/1000 gals.) AP-42 Section 4.4, Equation 1.	Jals.) = 12 on 1.	.46°saturatior	factor*m	olacular welghi	(1) Loading losses (ib/1000 gals.) = 12.46*saturation factor*molecular weight*vapor pressure (psia)/temperature(F) AP-42 Section 4.4, Equation 1.	psia)/temperature	Ē	•		
INE	fugitive cylinder emissions: Unloading	MISSION	S: UNLOA	DING							
			OIO,								
EMISSION	PROCESS	BATCH	SPACE	TEMP	TREATING		ĝ.	۵	ب	EMISSIONS	
SOURCE	DESCRIPTIO	MEAR	(cf/batch)	Ē	AGENT	MM	(bsl)	3	3	(lb/yr)	
	CYLINDER 2	16	2492	190	#1 CREO	168	0.17	6.0	130	930	
	CYLINDER 4	239	2492	190	₽1 CREO	168	0.17	6.0	130	2441	
	CYLINDER 2	273	1899	190	60/40 CCTS	168	0.17	6.0	130	2125	
	CYLINDER 4	95	1899	190	60/40 CCTS	168	0.17	6.0	130	2125	
						11	TOTAL EMISSIONS	δ		7621	
						10 20					
						,					
						Es .					

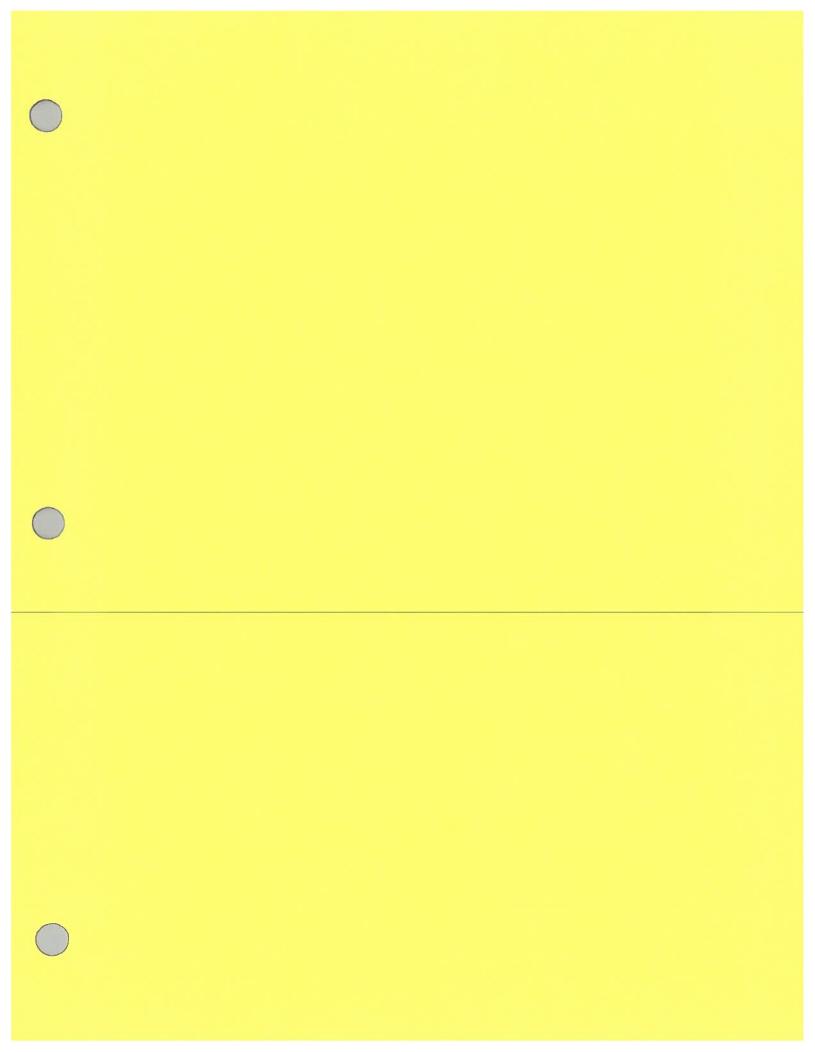
Page 4

	EMISSIONS	(lb/yr)	30.1	2.9	88 33	7.5	36.6 175.5 17.5 2 7 0 5
OPERATING	HOURS	(hrs/yr)	1069	1069	1069	1069	1069 TOTAL EMISSIONS
	EMISSIONS	IN SERVICE (Ib/hr/source)	0.005	5E-05	0.023	4E-04	2E-04 TOTAL I
LEAKS	NUMBER	N SERVICE	ω	ž	4	S 19	061
FUGITIVE EQUIPMENT LEAKS 60/40 ccts	EMISSION	SOURCE	PUMP SEALS	VALVES(IN LINE)	Pressure relief	OPEN ENDED VALVES	FLANGES
	EMISSIONS	(lb/yr)	18.6	2.4	60.7	7.	29.7
OPERATING	HOURS	(hrs/yr)	1320	1320	1320	1320	1320 TOTAL EMISSIONS
	EMISSIONS	(lb/hr/source)	0.0047	5.1E-05	0.023	0.00037	0.00018
EAKS	NUMBER	SERVICE	m	35	N	~	125
Fugitive Equipment Leaks #1 creosote	PROCESS	DESCRIPTIO N SERVICE	PUMP SEAL	VALVES(IN	PRESSURE VALVES	OPEN ENDE	FLANGES
FUGITIVE E	EMISSION	SOURCE	6-1	6.9	9 . 7	6.9	е 6

VACUUM F	VACUUM PUMP EMISSIONS	•				
EMISSION	TREATING AGENT	CYCLE	EMISSION	VACUUM	NO. OF	EMISSIONS
SOURCE		8	FACTOR	(hrs/chg)	CHARGES	(lb/yr)
ф.	CREOSOTE	2	0.01055	N	330	6.98
ę. 6	60/40 CCTS	BOLT.	0.01055	F	115	13.35
	60/40 CCTS	2	0.0054	2.5	269	3.90
TÀNK BREAT	TÀNK BREATHING AND WORKING LOSSES, AP-42, 9/85 ed.	ES, AP-42,	9/85 ed.			24.21

FUGITIVE EQUIPMENT LEAKS ARE BASED ON EMISSION FACTORS OBTAINED FROM APPENDIX D-1 OF EPA 560/4-88-002, THE CREOSOTE/CTS EMISSION FACTORS FUGITVE CYLINDER EMISSIONS ARE BASED ON CALCULATIONS FROM EPA 560/4-88-002, DECEMBER 1987, PAGES 3-10,11.

AND PENTA EMISSION FACTORS WERE DIVIDED BY 10 AND BY 100, RESPECTIVELY, IN ACCORDANCE WITH AWPI GUIDANCE DOCUMENT, MAY 1990, PAGE 7.


HOURS/YEAR FOR FUGITIVE EQUIPMENT LEAKS ARE BASED ON TYPICAL TREATING TIMES PER CHARGE AND CHARGES PER YEAR OBTAINED

FROM WORKSHEET 5 OF SARA TITLE III, FORM R.

VACUUM PUMP EMISSIONS- GUIDANCE DOCUMENT IN COMPLETION OF SARA SECTION 318 OF TOXIC CHEMICAL RELEASE INVENTORY REPORT,

AMERICAN WOOD PRESERVERS INSTITUTE, JUNE 1989.

SUSQUEHENNA VACUUM PUMP EMISSION STUDY, PERFORMED BY KEYSTONE ENVIRONMENTAL RESOURCES, MAY 1990.

Worksheet (Chemical Information)

KOPPERS INDUSTRIES, INC. WOOD TREATING PLANTS TITLE III, FORM R

Plant:	GrewAda Ms	Reporting Year 1992	ng Year	1992	e.		
Chemicals	Total Usage (lbs)	Maximum Inventory (lbs)	bs)	Total Cubic Feet Treated for Each Preservative	% of Treated Material Contained On concrete	Is Lath Used To Separate Layers On Charges (yes/no)?	
Creosote (lbs)	4973,540 1bs.	870499 lbs.	lbs.	398,972	%00/	Piling, Ales - No Square Stock - yes	
Creosote Coal Tar Solution (lbs)	3,959,074 lbs.	201 204,128	sql	512,980	%00/	534	1
50/50 Solution (creosote/ petroleum) (lbs)	NA	NA		NA-	NA-	NA-	
Pure Penta- chlorophenol (lbs)) 930,982 165.	32, 148 1bs	Ibs.	ተ63'61ተ'1	100%	Polec - No Lumber - yes	1 1
CCA (lbs of Oxide)	e) NA-	NA		λĄ	NA	NA	6 1
NCX (Formaldehyde, phosphoric acid)	yde, λλ-	AA		NA-	NA	NA	
FCAP (Disodium Arsenate, Sodium Chromate)	NA-	A Z		NA-	AA	NA	
Other Chemicals	Sodium Hydroxide 17,550 lbs.	5200	LRS	4N	NA	AN	
List (specify)	Sulfric Acid 8400 105.	700	165.	2331,516			
11-302	Phosphoric Auid 4970 lbs.	710	lbs.		Information Complet	Information Completed by: Mande Seed.	

Information Completed by: Mail Good

Worksheet 3 (Air Information)

KOPPERS INDUSTRIES, INC. WOOD TREATING PLANTS TITLE III, FORM R

Plant:

Greatde, MS Reporting Year 1992

Point Source Emissions

Emissions Control Devices (Y/N) If yes, describe)	No	ەرى	92	સુ	47	Oly	ిర్ద	-0p	*47	
Maintenance	None	ები ბ£	Non E	Jons.	3002	NONE	3000	4TE NOWE	3000	
Material Stored*	8.5% RoTA	60/40 Gres /CTS	Cto sort	60/40 CTS	G. to \$0.72	8.5% Perm	8.5% Peora	40% PENTA CONCENTRATE	Gresore	
1992 Throughput (gal./yr.)	6,960,000 (20,000 5-1/chers)	(20,000 gel/Chu-5c X 273 Che-565)	1,820,000 (20,000 3) (Che-30)	4 4 W.T. 4,780,000 (20,000 x 1201-11)	377,000	11,000,000 (20,000 sul/chisa	1,308,882	251,546	523,723	
Ta.ık No.	# [w.T.	12 W.T.	F. 20 7#	44 (Horizonne)	14 CVETICALY	١٠	from Mir TK	PENTE CON TK	Troと 12 本 5.T. 丁比	

Maintanence includes improvement of tank condition such as painting, color changes, or restructuring.

Note: In the emission control devise column, please include the type of devise and reduction of emissions expected.

Reactivation of an old tank, or installation of a new tank, requires additional tank information to the lines above and the completion of a storage tank data sheet provided in the packet.

KOPPERS INDUSTRIES, INC. WOOD TREATING PLANTS TITLE III, FORM R

Plant:

42Acta Ms

Reporting Year 1992

Point Source Emissions

Emissions Control Devices (Y/N) If yes, describe)	οlv	\$	οςγ	λλο	ەرى	ବ୍ୟୁ	μb		
Maintenance	HONE	Done	אריסנת	אניפנא	Nows	Nov E.	No J.		
Material Stored*	60/40 Cres /crs	#2 Diesel Person	50% Cres/Water mix	50% Gres /WATER MIX	15% Cres /WATEL Mik	15% Cres / WATER Mix	60/40 Geb /cTS		
1992 Throughput (gal./yr.)	523929	* 305,322,1	.0-	108,000	Q				
Tank No.	TANK # 15	TANK # 14	Dehydranort	Dehydrutoral	Process Sure TK	STOCKLOWITY S.T.	thy (therizoward)		

Maintanence includes improvement of tank condition such as painting, color changes, or restructuring.

Note: In the emission control devise column, please include the type of devise and reduction of emissions expected.

Reactivation of an old tank, or installation of a new tank, requires additional tank information to the lines above and the completion of a storage tank data sheet provided in the packet.

Worksheet 4

KOPPERS INDUSTRIES, INC. WOOD TREATING PLANTS TITLE III, FORM R

FUGITIVE EMISSION INVENTORY

Plant:	(MENDO	M, MS	Reporting	year 1992
Preservative	e System:	8.5 %	flora	
				<u>Total #</u>
Pipe Valves	3			39
Open-end V (Sample v				5
Flanges				114
Pumps				2
Pressure-re	lief Valves			3

Valve, Flange and Pump Count

Please fill out a new Fugitive Emission Inventory Form for each preservative system and (creosote, 60/40 CCTS, penta, etc.). It is important to count only those flanges, valves and pumps that have throughputs or pressure from product chemical listed on Worksheet 1.

Worksheet 4

KOPPERS INDUSTRIES, INC. WOOD TREATING PLANTS TITLE III, FORM R

FUGITIVE EMISSION INVENTORY

Plant: Gree	Ada, Ms	Reporting year 199	2
Preservative System:_	CrEOSOTE	(GRADE +1)	
			Total #
Pipe Valves			32
Open-end Valves (Sample valves)			7
Flanges			128
Pumps			3
Pressure-relief Valves	i		2

Valve, Flange and Pump Count

Please fill out a new Fugitive Emission Inventory Form for each preservative system and (creosote, 60/40 CCTS, penta, etc.). It is important to count only those flanges, valves and pumps that have throughputs or pressure from product chemical listed on Worksheet 1.

Information Completed by: Mark Good

Worksheet 4

KOPPERS INDUSTRIES, INC. WOOD TREATING PLANTS TITLE III, FORM R

FUGITIVE EMISSION INVENTORY

Plant:	CYENA	LAY ITE	Reporting year 199.	2
Preservative S	System:	60/40	Creo/CTS	
		, p		Total #
Pipe Valves				54
Open-end Va (Sample val	lves ves)			19
Flanges				190
Pumps				6
Pressure-relie	ef Valves			A

Valve, Flange and Pump Count

Please fill out a new Fugitive Emission Inventory Form for each preservative system and (creosote, 60/40 CCTS, penta, etc.). It is important to count only those flanges, valves and pumps that have throughputs or pressure from product chemical listed on Worksheet 1.

Worksheet 4 (Cont'd)

KOPPERS INDUSTRIES, INC. WOOD TREATING PLANTS TITLE III, FORM R

FUGITIVE EMISSION INVENTORY

Plant:

Grenada, Ms

Reporting year 1992

Fugitive Emissions

Cylinder No.*	No. of Charges Treated 1992	<u>Preservative</u>
#1	348	8,5% PENTA
+2	273	60/40 Creo/cts
#2	91-	CrEOSOTE
न रा	16	60/40 Creo/cts
# 1	239	CrEDSOTE
#2	550	8.5% PENTA

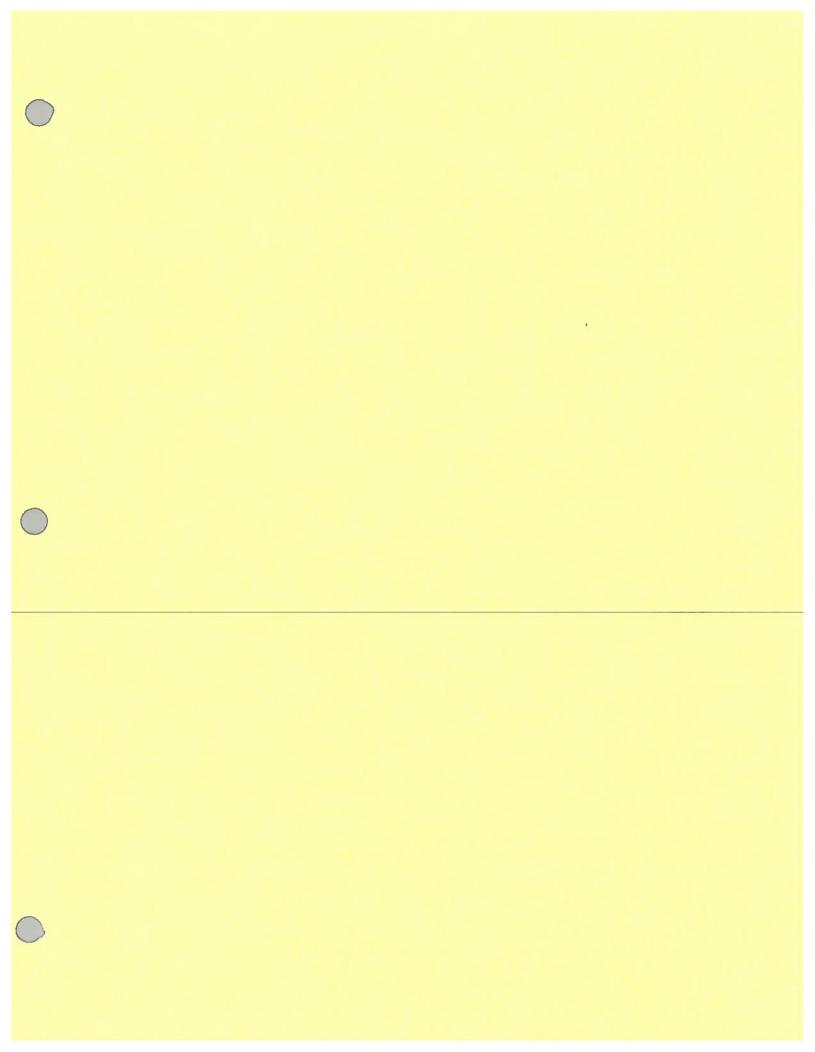
If any cylinders have been added, list length and diameter.

Information Completed by: Mark Sood

KOPPERS INDUSTRIES, INC. WOOD TREATING PLANTS TITLE III, FORM R

Plant: (your Add Ms

Reporting Year 1992


FINAL STEAMING	(HRS.)	Nove	Nove	None	אמטע	Nong	NONE	Nonz	30.01	1.5	No ME	30vofv		
FINAL	ļ	2.5	2.5	2.5	2.5	て	7	7	7	٦.	d	a		
PRESSURE	(HRS.)	4	4	3	3	4	4	中	市	0.5	2,0	7		
INITIAL AIR THE PRESSURE PRESSURE	(PSI)	Nove	שניסנת	50	50	50	50	50	50	09	9	50		
TIME	(IIRS.)	Abal	NONE	0.5	2,0	5,0	2.0	0,5	٥, د	6.5	0.5	0.5		
BOULTON	(HRS.)	None	12.0	NONE	8.0	NonE	3000	ひっとん	2007	אמט	Nons	3008		
PRECONDITION (HRS.) BOULTON	VACUUM	NowE	Nows	Non.	りかん	7	ব	0	2.5	0	Μ	0		
DRECOND	STEAMING	NoNE	None	NONE	NONE	Δ	0	2	15	1.5	77	Ч	. :	
CII ET PEP	YEAR	910,281	133,638	899,001	47,952	13,631	31804	85,538	318,483	549889	730,929	48192		
CHADGES BED CIL ET P	YEAR	96	84	63	31	Ь	Ď	9	231	406	492	34	:	
	PRESERVATIVE	60/40 c/dTS	60/40 c/crs		60/40 c/cTS	60/40 c/cTS	GressTE	Crossott	Cresort	8.5 PENTA	8.5 PENTA	(grosste		
	PRODUCT	Dry OAK TIES	Grees Oak Ties	Dry hixes Hardwood Tigs	Green Mixed Hardwood Ties	Green Pine Lumber	Green Pinz Lumber	Dry Pine Poles	Green Pine Poles	Dry Pine Alss	Green Pine Poles	Dry Plas Lember	•	23.2

KOPPERS INDUSTRIES, INC. WOOD TREATING PLANTS TITLE III, FORM R

Plant: Cready, Ms Reporting year 1992											
CREOSOTE TANK CAR UNLOADING INFORMATION											
Number of Creosote Tank Cars Unloaded	3										
Total Gallons of Creosote Unloaded from Tank cars	<u>57 378</u>										
Number of Hours Heated	8										
Average Temperature of Creosote	330, E										
Air Agitation Used While Heating											
(Yes or No)	<u> </u>										
Overhead or Bottom Unloading System	over Herro										
•											

Completed by: Mark Soul

KII Workshi8

NO.	SUSQUEHA DATE	ANNA PI	_ANT i	FUEL <i>f</i> %N	ANALYSE %O	S WET %S	DRY %S	WET %ASH	DRY %ASH	%H2O	WET BTU/#	DRY BTU/#
1b 2 3 4 5 6 7 8 9b 10 11 12a 12b	30MAY90 31MAY90 14MAY90 14MAY90 25MAY90 25MAY90 23MAY90 24MAY90 AVG.	51.17 54.62 47.97 50.90 44.89 49.87 49.44 51.96 47.77 52.06 52.95 51.60 51.85 50.70 55.51	5.74 5.67 5.18 5.56 4.31 5.98 5.21 5.23 5.63 5.72 5.63 5.72 5.63	0.35 0.35 0.37 0.59 0.44 0.30 0.57 0.66 0.45 0.38 0.52 0.46	40.36 29.63 32.13 41.03 30.80 42.11 41.72 36.95 45.07 37.58 40.66 40.02 38.92 36.59 37.87 45.07	0.64 0.17 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0		4.01 4.13 16.08	2.33 9.00 14.16 2.06 19.36 2.36 3.05 4.87 1.11 8.68 1.15 0.88 3.25 5.42 5.44	21.93 26.61 14.65 19.80 44.95 16.96 35.90 32.52 31.45 23.71 37.84 29.01 32.79 28.69 25.93 28.18 44.95	7931 7297 7029 5361 8063 6842 4675 5938 5577 5773 5901 6525 5039 5966 5849 6088 6471 6254 8063	9003 7305 9447 8531 8492 7151 8700 8555 8609 8553 8107 8404 8703 8538 8736 8456
	MIN.	44.89	4.31	0.03	29.63	0.05	0.05	0.59	0.00-	14.00	40/3	,

C.C.R. METALS California Title 22 (Title 26) Protocol TTLC (Total) Data Sheet

Client Name: Koppers Company, Inc.

Client ID:

RR.T

Lab ID: Matrix: Authorized: 065543-0001-SA SOLID

22 AUG 92

Sampled: 25 AUG 92 Prepared: See Below

Received: 31 AUG 92

Analyzed: See Below

Parameter	Result	Units	Reporting Limit	Analytical Method	Prepared Date	Analyzed Date
Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Lead Mercury Molybdenum Nickel Selenium Silver Thallium Vanadium 7inc	ND ND ND ND 7.0 ND ND ND ND ND ND ND ND ND ND	mg/kg	15.0 50.0 100. 0.75 1.0 5.0 80.0 25.0 2.0 350 20.0 5.0 100 24.0 250	6010 7060 6010 6010 6010 6010 6010 7421 7470,7471 6010 6010 7740 6010 7841 6010 6010	NA NA NA NA NA NA NA NA NA NA NA NA	15 SEP 92 14 SEP 92 15 SEP 92 15 SEP 92 15 SEP 92 15 SEP 92 15 SEP 92 14 SEP 92 15 SEP 92

Used RR tie date @ FR

ND = Not detected NA = Not applicable

Reported By: Ron Hubbartt

Approved By: Barry Votaw

The cover letter is an integral part of this report.

Rev 230787

Was Sarciy

NOV 021992

KOPPERS INDUSTRIES, INC. FLORENCE

WORK ORDER #M92-10-33

KEYSTONE-MONROEVILLE

Treated Wood
Fue/ (Creo +
Penta Mixed)

4 Ash
FLORENCE, SC

Keystone Lab-Monroeville 3000 Tech Center Drive Monroeville, PA 15146 412-825-9833 FAX 412-825-9727

CHESTER LabNet

October 30, 1992

Mr. Steve Smith Koppers Industries, Inc. 436 Seventh Avenue Suite 1701 Pittsburgh, PA 15219

Dear Mr. Smith:

Thank you for selecting Keystone Lab-Monroeville to carry out your recent sample analyses. We have completed the analyses that you requested and have enclosed a summary of the data for your review.

Your confidence in our service is appreciated. We look forward to serving you again.

Sardney KAR

Sincerely,

Penny R. Gardner Laboratory Director

PRG:kar #R002

Enclosure

=
2
بنا
=
. .
~
\Box
0
<u> </u>
2
5
-
_
2
\mathbf{c}
_
z
=
\leq
=
ပ

*		REMAKS OR	OBSERVATIONS		1-4:0.1000 13:0.	A TELLON TON	Sin do Late Little Suy On Late Bruns	-										Dote Time Received by: (Signature)		Date Time Received by: (Signature)		
				\ \ '							† -							: (Signature)	•	: (Signature)	Remarks:	
		0 600		\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	2	7												Relinquished by: (Signature)		Relinquished by: (Signature)		091169-6-01
	130)CH	40	COSTA1 ITERS	E .	/			-			 							ignature				7
	OS +ASH			SIATION LOCATION	Florence, SC	. //	-	-										Received by: (Signatura)		Received by: (Signatura)	Received for Laboratory by:	Copy to Coordinal
	wood CHips		77	BH	F							-							-+	E E	Time	hipment;
			-dx	-	7	7						-						Jale	78//	· Data	Date	panica s
	e TREATE d	Som Killing			9/24/92 11:00H	9/24/92 11:00A			.						 •	-		by; (Signature)	hellen	iteunquippo byi (storatora)	itelinquished by: (Signature)	DISTRIBUTION: Original accompanies shipment; Copy to Coordinator Field Files.
1000 100 10	FLORENCE	3000	STA. HO.	- 1											·		,	Relinquished by:	Court 1	n emramfulae	itchmquished	DISTRIBUTIO

REPORT TO:

ners Industries Inc Seventh Avenue Pittsburgh PA 15219 WORK ORDER: M92-10-33 DATE RECEIVED: 2-OCT-1992 DATE REPORTED: 30-OCT-1992

PREPARED BY:

Keystone Lab - Monroeville 3000 Tech Center Drive

Monroeville, PA 15146 (412) 825-9600

ATTENTION: Steve Smith

PROJECT ID: p.o. NUMBER:

REVISION

CERTIFIED BY: Kennich J. Kryen

Please call the above number if you have any questions regarding this Work Order. NOTE: All samples will be retained for 60 days. Unused soil and waste samples will be returned to you at no charge. Alternately, Keystone can make disposal arrangement for a fee.

Samples included in this report:

Keystone	Client's	Date	Sample
Sample ID	Sample Name	Collected	Matrix
M92-10-33-001 M92-10-33-002 M92-10-33-003 M92-10-33-004 M92-10-33-005	LAB BLANK LAB CONTROL SAMPLE 2-B WOOD CHIP 1-A WOOD ASH MS	24-SEP-1992 24-SEP-1992	OTHER OTHER OTHER OTHER OTHER

Analyses and Descriptions referred to in this report.

Analysis ID	Parameter Description
8270 8270X TCLPN	Semi-Volatiles (Soil) Semi-Volatiles Non-Volatile TCLP Extraction Procedure

Summary of Analytical Results

Date received: 2-OCT-1992

Customer: Koppers Industries Inc

		Samples	
Variables ID		33-003	33-004
Keystone ID		24-SEP-1992	24-SEP-1992
Date Sampled Customer ID		2-B WOOD CHIP	1-A WOOD ASH
CUSTOMER ID		E D HOLL WILL	*
Parameters	Units		
TCLP EXTRACT - 8270			40.0
2-Chlorophenol	ug/L	<100	<10.0
2.4-Dichlorophenol	ug/L	<100	<10.0
2,4-Dimethylphenol	ug/L	4 27	<10.0
4.6-Dinitro-2-Methylphenol	ug/L	<500	<50.0
2,4-Dinitrophenol	ug/L	<500	<50.0
2-Methylphenol	ug/L	<100	<10.0
4-Methylphenol	ug/L	<100	<10.0
2-Nitrophenol	ug/L	₹100	<10.0
4-Nitrophenol	ug/L	<500	<50.0
4-Chloro-3-Methylphenol	ug/L	⟨100	<10.0
	ug/L	1630	<50.0
Pentachlorophenol	ug/L	₹100	₹10.0
Phenol	-	₹500	<50.0
2,4,5-Trichlorophenol	ug/L	<100	<10.0
2.4.6-Trichlorophenol	ug/L	405	<10.0
Acenaphthene	nā/F		<10.0
Acenaphthylene	ug/L	<100	<10.0
Anthracene	ug/L	₹100 ₩	₹10.0
Benzo(a)anthracene	ug/L	₹100	⟨10.0
Benzo(a)pyrene	u₫/L	<100	<10.0 <10.0
Benzo(b)fluoranthene	ug/L	<100	<10.0
Benzo(g,h,i)perylene	ug/L	<100	
Benzo(k)fluoranthene	uo/L	<100	⟨10.0
Benzoic Acid	ug/L	<500	<50.0
Benzyl Alcohol	ug/L	<100	<10.0
Bis(2-Chloroethoxy) methane	ug/L	<100	<10.0
Bis(2-Chloroethyl) ether	ug/L	<100	<10.0
Bis(2-Chloroisopropyl) ether	-	<100	<10.0
Bis(2-ethylhexyl) phthalate	ug/L	₹100	<10.0
4-Bromophenyl phenyl ether	ug/L	<100	<10.0
Butyl Benzyl phthalate	ug/L	<100	<10.0
4-Chloroaniline	ug/L	<100	<10.0
	ug/L	<100	<10.0
2-Chloronaphthalene	ug/L	<100	<10.0
4-Chlorophenyl phenyl ether	-	₹100 ⊕	<10.0
Chrysene	ug/L		⟨10.0
Dibenzo(a,h)anthracene	ug/L	<100	₹10.0
Dibenzofuran	nō/F	401	<10.0
1,2-Dichlorobenzene	ug/L	₹100	₹10.0
1,3-Dichlorobenzene	ug/L	<100	₹10.0
1,4-Dichlorobenzene	ug/L	<100	<20.0
3.3'-Dichlorobenzidine	ug/L	<200	
Diethyl phthalate	ug/L	<100	(10.0

REVISION

Summary of Analytical Results

Date received: 2-OCT-1992

Customer: Koppers Industries Inc

		Samples	
Keystone ID Date Sampled Customer ID		33-003 24-SEP-1992 2-B WOOD CHIP	33-004 24-SEP-1992 1-A WOOD ASH
Parameters	Units		
TCLP EXTRACT - 8270 (continue	:d)		
Dimethyl phthalate	ug/L	<100	<10.0
Di-n-butyl phthalate	ug/L	<100	<10.0
2.4-Dinitrotoluene	ug/L	<100	⟨10.0
2,6-Dinitrotoluene	ug/L	<100	⟨10.0
Di-n-octyl phthalate	ug/L	<100	<10.0
Fluoranthene	ug/L	127	<10.0
Fluorene	ua/L	531	<10.0
Hexachlorobenzene	ug/L	<100	<10.0
Hexachlorobutadiene	ug/L	<100	<10.0
Hexacvclochloropentadiene	ug/L	<100	<10.0
Hexachloroethane	uq/L	<100	<10.0
Indeno(1,2,3-cd)pyrene	ua/L	<100	<10.0
Isophorone	ug/L	5030	<10.0
2-Methylnaphthalene	ug/L	340	<10.0
Naphthalene	uq/L	1410	<10.0
2-Nitroaniline	ua/L	<500	<50.0
3-Nitroaniline	ug/L	₹500	<50.0
4-Nitroaniline	ua/L	<500	<50.0
Nitrobenzene	uq/L	<100	₹10.0
N-nitrosodi-n-propylamine	ug/L	₹100	<10.0
N-nitrosodiphenylamine	ug/L	₹100	<10.0
Phenanthrene	ug/L	451	<10.0
Pyrene	ug/L	<100	<10.0
1,2,4-Trichlorobenzene	ug/L	⟨100	<10.0

Summary of Analytical Results

Date received: 2-DCT-1992

Customer: Koppers Industries Inc

		Samples	
Kevstone ID		33-003	33-004
Date Sampled		24-SEP-1992	24-SEP-1992
Customer ID		2-B WOOD CHIP	1-A WOOD ASH
Parameters	Units		
8270X			⟨330
2-Chlorophenol	ug/Kg	<165000	<330
2.4-Dichlorophenol	ug/Kg	<165000	<330
2.4-Dimethylphenol	ug/Kg	<165000	₹1600
4,6-Dinitro-2-methylphenol	ug/Kg	⟨800000	<1600 <1600
2,4-Dinitrophenol	ug/Kg	⟨800000	⟨330
2-Methylphenol	ug/Kg	<165000	⟨330
4-Methylphenol	ug/Kg	<165000	⟨330
2-Nitrophenol	ug/Kg	<165000	₹350 ₹1600
4-Nitrophenol	ug/Kg	<800000	_ <330
4-Chloro-3-methylphenol	ug/Kg	<165000	
Pentachlorophenol	ug/Kg	1920000	<1600 (320
Phenol	ug/Kg	<165000	<330 (1/0)
2,4,5-Trichlorophenol	ug/Kg	<800000	<1600 4000
2,4,6-Trichlorophenol	ug/Kg	<165000	⟨330
Acenaphthene	ug/Kg	2660000	<330 cana
Acenaphthylene	ug/Kg	225000	<330
Anthracene	ug/Kg	1400000	(330
Benzo(a)anthracene	ug/Kg	960000	<330 (233)
Benzo(a)pyrene	ug/Kg	239000	(330
Benzo(b)fluoranthene	ug/Ko	292000	(330
Benzo(g,h,i)perylene	ug/Kg	<165000	<330
Benzo(k)fluoranthene	ug/Kg	363000	⟨330
Benzoic Acid	ug/Kg	(800000	(1600
Benzyl Alcohol	ug/Kg	<165000	⟨330
Bis(2-Chloroethoxy) methane	ug/Kg	<165000	⟨330
Bis(2-Chloroethyl) ether	ug/Kg	<165000	⟨330
Bis(2-Chloroisopropyl) ether	ug/Kg	<165000	<330
Bis(2-ethylhexyl) phthalate	ug/Kg	<165000	<330
4-Bromophenyl phenyl ether	ug/Kg	<165000	⟨330
Butyl Benzyl phthalate	ug/Kg	<165000	⟨330
4-Chloroaniline	ug/Kg	<165000	(330
2-Chloronaphthalene	ug/Kg	<165000	<330
4-Chlorophenyl phenyl ether	ug/Kg	<165000	₹330
Chrysene	ug/Kg	916000	<330
Dibenzo(a,h)anthracene	ug/Kg	<165000	⟨330
Dibenzofuran	ug/Kg	1580000	⟨330
1.2-Dichlorobenzene	ug/Kg	<165000	⟨330
1.3-Dichlorobenzene	ug/Kg	<165000	⟨330
1,4-Dichlorobenzene	ug/Kg	<165000	⟨330
3.3'-Dichlorobenzidine	ug/Kg	<330000	<660
Diethyl phthalate	ug/Kg	<165000	⟨330
nternat hurnarare	-9/ ·>		

REVISION

Summary of Analytical Results

Date received: 2-OCT-1992

Customer: Koppers Industries Inc

		Samples	
Keystone ID Date Sampled Customer ID		33-003 24-SEP-1992 2-B WOOD CHIP	33-004 24-SEP-1992 1-A WOOD ASH
Parameters	Units		
8270X (continued)			
Dimethyl phthalate	ug/Kg	<165000	⟨330
Di-n-butyl phthalate	ug/Kg	<165000	₹330
2.4-Dinitrotoluene	ug/Kg	<165000	⟨330
2.6-Dinitrotoluene	ug/Kg	<165000	⟨330
Di-n-octyl phthalate	ug/Kg	<165000 ·	⟨330
Fluoranthene	ug/Kg	2310000	⟨330
Fluorene	ug/Kg	2640000	⟨330
Hexachlorobenzene	ug/Kg	₹165000	⟨330
Hexachlorobutadiene	ug/Kg	₹165000	₹330
Hexacvclochloropentadiene	ua/Kg	<165000	⟨330
Hexachloroethane	ug/Kg	<165000	<330
Indeno(1,2,3-cd)pyrene	ug/Kg	<165000	₹330
Isophorone	ug/Kg	293000	⟨330
2-Methylnaphthalene	ug/Kg	1570000	<330
Naphthalene	ug/Kg	2790000	1150
2-Nitroaniline	ug/Kg	<800000	<1600
3-Nitroaniline	ug/Kg	<800000	<1600
4-Nitroaniline	ug/Kg	<800000	<1600
Nitrobenzene	ug/Kg	(165000	₹330
N-nitrosodi-n-propylamine	ug/Kg	<165000	⟨330
N-nitrosodiphenylamine	ug/Kg	<165000	<330
Phenanthrene	ug/Kg ug/Kg	3990000	⟨330
	ug/Kg	2450000	₹330
Pyrene 1.2.4-Trichlorobenzene	ug/Kg	<165000	⟨330

Summary of QA/QC Results

Date received: 2-OCT-1992

Customer: Koppers Industries Inc

		Samples		
Keystone ID Sampling Point Customer ID		33-001 Qa_QC Lab Blank	33-002 0a_gC Lab Control Sample	33-005 GA_GC MS
Parameters	Units			
TCLP EXTRACT - 8270				
2-Chlorophenol	ug/L	<10.0	NR	NR
2.4-Dichlorophenol	ug/L	<10.0	NR:	NR
2.4-Dimethylphenol	ug/L	<10.0	NR	NR.
4.6-Dinitro-2-Methylphenol	ug/L	<50.0	NR.	NR
2.4-Dinitrophenol	ug/L	<50.0	NR	NR
2-Methylphenol	ug/L	<10.0	72.9 % Rec.	63.2 % Rec.
4-Methylphenol	ug/L	<10.0	127 % Rec.	132 % Rec.
2-Nitrophenol	ug/L	<10.0	N P.	NR
4-Nitrophenol	ug/L	<50.0	NR	NR
4-Chloro-3-Methylphenol	ug/L	<10.0	NR	NR
Pentachlorophenol	ug/L	<50.0	70.4 % Rec.	63.7 % Rec.
Phenol	ug/L	(10.0	NR:	NR
2,4,5-Trichlorophenol	ug/L	<50.0	69.9 % Rec.	67.2 % Rec.
2,4,6-Trichlorophenol	ug/L	⟨10.0	85.7 % Rec.	85.6 % Rec.
Acenaphthene	ug/L	<10.0	NR	NR
Acenaphthylene	ug/L	⟨10.0	NR	NR
Anthracene	ug/L	⟨10.0	NR	NR
Benzo(a)anthracene	ug/L	⟨10.0	NR	NFC
Benzo(a)pyrene	ug/L	<10.0	NR.	NR
Benzo(b)fluoranthene	ug/L	<10.0	NR.	NR
Benzo(g,h,i)perylene	ug/L	<10.0	NR	NR
Benzo(k)fluoranthene	ug/L	₹10.0	NR	NR
Benzoic Acid	ug/L	₹50.0	NR	NR
	na\r na\r	₹10.0	NR	NR
Benzyl Alcohol Bis(2-Chloroethoxy) methane	ug/L	₹10.0	NR	NR
Bis(2-Chloroethyl) ether	ug/L	(10.0	NF:	NR
Bis(2-Chloroisopropy1) ether	•	⟨10.0	NR	NR
Bis(2-ethylhexyl) phthalate	ug/L	⟨10.0	NR:	NR
4-Bromophenyl phenyl ether	ug/L	⟨10.0	NR	NR
Butyl Benzyl phthalate	ug/L	<10.0	NR	NR
4-Chloroaniline	ug/L	<10.0	NF:	NFR
2-Chloronaphthalene	ug/L	<10.0	NR	NR
4-Chlorophenyl phenyl ether	ug/L	⟨10.0	NR	NR:
, ,	ug/L	<10.0	NR	NR
Chrysene Dibenzo(a.h)anthracene	ug/L	₹10.0	NR	NR
Dibenzofuran	ug/L	⟨10.0	NR	NR
1.2-Dichlorobenzene	ug/L	<10.0	NR	NR
1,3-Dichlorobenzene	ug/L	(10.0	NF:	NR
1,4-Dichlorobenzene	ug/L	₹10.0	52.9 % Rec.	59.2 % Rec.
3.3'-Dichlorobenzidine	ug/L	₹20.0	NR.	NP:
	ug/L	₹10.0	NR	NR
Diethyl phthalate	uy/ L	72414	 -	

Summary of QA/QC Results

Date received: 2-OCT-1992

Customer: Koppers Industries Inc

		Samples		
Keystone ID Sampling Point Customer ID		33-001 GA_GC LAB BLANK	33-002 0A_QC LAB CONTROL SAMPLE	33-005 GA_GC MS
Parameters	Units			
TCLP EXTRACT - 8270 (continue	d)			AIF.
Dimethyl phthalate	ug/L	<10.0	NR	NR MB
Di-n-butyl phthalate	ug/L	<10.0	NR	NR
2.4-Dinitrotoluene	ug/L	<10.0	90.8 % Rec.	90.4 % Rec.
2.6-Dinitrotoluene	ug/L	<10.0	NR	NR
Di-n-octyl phthalate	ug/L	<10.0	NR	NR
Fluoranthene	ug/L	<10.0	NR	NR
Fluorene	ug/L	<10.0	NR	NR
Hexachlorobenzene	ua/L	<10.0	79.8 % Rec.	65.3 % Rec.
Hexachlorobutadiene	ug/L	<10.0	60.9 % Rec.	46.6 % Rec.
Hexacvclochloropentadiene	ug/L	(10.0	N R	NR
Hexachloroethane	uo/L	<10.0	58.3 % Rec.	52.7 % Rec.
Indeno(1,2,3-cd)pyrene	ug/L	<10.0	NR	NR
Isophorone	ug/L	<10.0	NR	NR
2-Methylnaphthalene	ug/L	<10.0	NR	NR
Naphthalene	ug/L	<10.0	NR	NR
2-Nitroaniline	ua/L	₹50.0	NR:	NR
3-Nitroaniline	ug/L	<50.0	NR	NR
4-Nitroaniline	ug/L	<50.0	NR	NR
Nitrobenzene	ug/L	⟨10.0	81.2 % Rec.	84.2 % Rec.
N-nitrosodi-n-propylamine	ug/L	<10.0	NR	NR
N-nitrosodiphenylamine	ug/L	<10.0	NR	NF:
Phenanthrene	ug/L	<10.0	NR	NR
Pyrene	ug/L	<10.0	NR	NR
1,2,4-Trichlorobenzene	ug/L	<10.0	NP:	NR:

Summary of QA/QC Results

Date received: 2-OCT-1992

Customer: Koppers Industries Inc

		Samples		
Keystone ID Sampling Point Customer ID		33-001 0a_0c Lab Blank	33-002 GA_OC LAB CONTROL SAMPLE	
Parameters	Units			
8270X				
2-Chlorophenol	ug/Kg	<330	73.7 % Rec.	
2,4-Dichlorophenol	ug/k.g	<330	NR.	
2,4-Dimethylphenol	ug/Kg	<330	NR	
4.6-Dinitro-2-methylphenol	ug/Kg	<1600	NR:	
2,4-Dinitrophenol	ug/Kg	<1600	NR	
2-Methylphenol	ug/Kg	<330	NR.	
4-Methylphenol	ug/Kg	<330	NR	
2-Nitrophenol	ug/Kg	<330	NR	
4-Nitrophenol	ug/Kg	<1600	77.8 % Rec.	
4-Chloro-3-methylphenol	ug/Kg	₹330	79.9 % Rec.	
Pentachlorophenol	ug/Kg	<1600	55.9 % Rec.	
Phenol	ug/Kg	₹330	88.0 % Rec.	
2,4,5-Trichlorophenol	ug/Kg	<1600	NR	
2,4,6-Trichlorophenol	ug/K.g	<33 0	NR	
Acenaphthene	ug/Kg	<330	73.9 % Rec.	
Acenaphthylene	ug/Kg	<330	NR .	
Anthracene	ug/Kg	₹330	NR	
Benzo(a)anthracene	ug/Kg	<33 0	NR .	
Benzo(a)pyrene	ug/Kg	<330	NR	
Benzo(b)fluoranthene	ua/Kg	₹330	NR NR	
Benzo(g,h,i)perylene	ug/Kg	<330	NR	
Benzo(k)fluoranthene	ug/Ka	<33 0	NF:	
Benzoic Acid	ug/Kg	<1600	NR	
Benzyl Alcohol	ug/Kg	<33 0	NR	
Bis(2-Chloroethoxy) methane	ug/Kg	<330	NR	
Bis(2-Chloroethvl) ether	ug/Kg	<330	NR	
Bis(2-Chloroisopropyl) ether	ug/Kg	<330	NR	*
Bis(2-ethylhexyl) phthalate	ug/Ka	<330	NR	
4-Bromophenyl phenyl ether	ug/Kg	<330	NR	
Butyl Benzyl phthalate	ug/Kg	<330	NR	
4-Chloroaniline	ug/Kg	<330	NR	
2-Chloronaphthalene	ug/Kg	<330	NR	
4-Chlorophenyl phenyl ether	ug/Kg	<330	NR	
Chrysene	ug/Kg	<330	NR	
Dibenzo(a,h)anthracene	ug/Ka	<330	NR	
Dibenzofuran	ug/Kg	⟨330	NR	
1.2-Dichlorobenzene	ug/Kg	<330	NR	
1.3-Dichlorobenzene	ug/Kg	₹330	NR	
1,4-Dichlorobenzene	ug/Kg	K330	72.9 % Rec.	
3.3'-Dichlorobenzidine	ug/K.g	<660	NF.	
Diethyl phthalate	ug/Kg	<33 0	NR .	
- Panelija pirelizante	-2,2		•	

Summary of QA/QC Results

Date received: 2-OCT-1992

Customer: Koppers Industries Inc

		Samples		
Keystone ID Sampling Point Customer ID Parameters	lh:4-	33-001 GA_GC LAB BLANK	33-002 QA_QC LAB CONTROL SAMPLE	
	Units			
8270X (continued)				
Dimethyl phthalate	ug/Kg	<330	NR	
Di-n-butyl phthalate	ug/Kg	<330	NR	
2.4-Dinitrotoluene	ug/Kg	<330	74.8 % Rec.	
2,6-Dinitrotoluene	ug/Ka	₹330	NR	
Di-n-octyl phthalate	ug/Kg	<330	NR	
Fluoranthene	ug/Kg	<330	NR	
Fluorene	ug/Kg	<330	NR	
Hexachlorobenzene	ug/Ka	<330	NR:	
Hexachlorobutadiene	ug/Kg	⟨330	NR	
Hexacyclochloropentadiene	ug/kg	<330	NR	
Hexachloroethane	ug/Kg	₹330	NR	
Indeno(1,2,3-cd)pyrene	ug/Ka	<330	NR	
Isophorone	ug/Kg	₹330	NR	
—— 2-Methylnaphthalene	ug/Kg	<33 0	NR	\$
Naphthalene	ug/Kg	⟨330	NR	
2-Nitroaniline	ug/Ka	<1600	NR	
3-Nitroaniline	ug/Ka	<1600	NR NR	
4-Nitroaniline	ug/Ko	₹1600	NR	
Nitrobenzene	ug/kg	<330	NR	
N-nitrosodi-n-propylamine	ug/Ka	K330	NR	
N-nitrosodiphenylamine	ug/Kg	(330	58.7 % Rec.	
Phenanthrene	ug/Kg	<330	NR	
Pyrene	ug/Kg	<330	NK 64.6 % Rec.	
1,2,4-Trichlorobenzene	uą/Kg	⟨330	80.6 % Rec.	

From: Environmental Diagnostic Laboratories

P.O. Box 15098

Hattiesburg, MS 39404-5098

(601) 264-2222

May 13, 1993

To: Mr. Mark Good

Koppers Industries

P.O. Box 160

Tie Plant, MS 38960

The following analytical results have been obtained for the indicated sample which was submitted to this laboratory:

Sample I.D. AA01561 Location Code: KOPPERS

Purchase order number: VERBAL Sample Description: Boiler Ash

Sample collector: MARK GOOD

Sample collection date: 05/10/93 Time: 08:00 Lab submittal date: 05/11/93 Time: 09:30

Received by: RLH Validated by: RLH

Parameter: TCLP Extraction (Leach)

Method reference: SW846-1311

Result: Completed MDL or sensitivity: Date started: 05/11/93 Date finished: 05/12/93

Time started: 10:30 Analyst: PBD

Parameter: TCLP Extraction for volatiles

Method reference: SW846-1311

Result: Completed MDL or sensitivity: Date finished: 05/12/93 Date started: 05/11/93

Time started: 10:30 Analyst: PBD

Parameter: TCLP Volatiles Method reference: SW846-8240

Result: see below

Date started: 05/12/93 Date finished: 05/12/93

Time started: 12:06 Analyst: PBD

Parameter: TCLP Semivolatiles Method reference: SW846-8270

Result: see below

Date started: 05/12/93 Date finished: 05/13/93

Time started: 21:09 Analyst: JPH

Parameter: TCLP Metals

Method reference: SW846-6010

Result: see below

Date started: 05/13/93 Date finished: 05/13/93

Time started: 09:50 Analyst: MSJ . Mr. Mark Good Sample I.D. AA01561 (continued)

Page: 2 May 13, 1993

Parameter: BNA Extraction on TCLP Fluid

Method reference: SW846-8270

Result: Completed MDL or sensitivity: Date started: 05/12/93 Date finished: 05/12/93

Time started: 10:10 Analyst: SPH

Parameter: Solid pH

Method reference: SW846-9045

Result: 11.2 pH Units MDL or sensitivity: .01 Date started: 05/11/93 Date finished: 05/11/93 Time started: 10:30

Analyst: JPH

Parameter: Reactive Sulfide Method reference: SW846

Result: Less than mg release/Kg MDL or sensitivity: 10 Date started: 05/11/93 Date finished: 05/11/93

Time started: 10:30 Analyst: SPH

Parameter: Reactive Cyanide Method reference: SW846

Result: Less than mg release/Kg MDL or sensitivity: 10 Date started: 05/11/93

Date finished: 05/11/93 Time started: 11:00

Analyst: SPH

Data for TCLP Volatiles ug/L:

Component Name Benzene Carbon Tetrachloride				lt detected detected	Component 10	MDL
Chlorobenzene Chloroform				detected	10	
1,2-Dichloroethane				detected	10	
1,1-Dichloroethene				detected	10	
2-Butanone				detected	10	
Tetrachloroethene				detected	50	
Trichloroethene				detected detected	10	
Vinyl Chloride				detected	10 20	
1,2-Dichloroethane-d4 (surr)	왕	Recovery	96	accecced	20	
Toluene-d8 (surr)		Recovery	103			
		Recovery	101			

Data for TCLP Semivolatiles ug/L:

Component Name 2-Methylphenol (o-Cresol) 3- & 4-Methylphenol (m & p Cresol), total 1,4-Dichlorobenzene 2,4-Dinitrotoluene Hexachlorobenzene	Not detected Not detected	Component MDL 10 10 10
2,4-Dinitrotoluene		•
Hexachlorobenzene	Not detected Not detected	— -
Hexachlorobutadiene	Not detected	10 10
Hexachloroethane	Not detected	10
Nitrobenzene	Not detected	10

Mr. Mark Good Sample I.D. AA01561 (continued)

Page: 3

May 13, 1993

Data for TCLP Semivolatiles (continued):

Component Name Pentachlorophenol		Result Not detected	Component MDL 50
Pyridine		Not detected	20
2,4,5-Trichlorophenol		Not detected	50
2,4,6-Trichlorophenol		Not detected	50
2-Fluorophenol (surr)	<pre>% Recovery</pre>		
Phenol-d5 (surr)	% Recovery		
2-Chlorophenol-d4 (surr)	% Recovery		
1,2-Dichlorobenzene (surr)	% Recovery		
Nitrobenzene-d5 (surr)	% Recovery		
2-Fluorobiphenyl (surr)	% Recovery		
2,4,6-Tribromophenol (surr)	% Recovery		
Terphenyl-d14 (surr)	% Recovery		

Data for TCLP Metals mg/L:

Component Name	Result	Component MDL
Arsenic	Not detected	0.05
Barium	2.94	0.003
Cadmium	0.014	0.004
Chromium	Not detected	0.007
Lead	0.3	0.05
Mercury	Not detected	0.001
Selenium	0.05	0.05
Silver	Not detected	0.007
		

Sample comments:

Reference Lab Report No. R1162.

QA/QC Data:

Volatile Organics

Method Blank - All target	compounds	less than M	DL.
Compound	MS %Rec	MSD %Rec	RPD %
1,1-Dichloroethene	93	88	6
Trichloroethene	94	93	1
Benzene	94	93	1
Toluene	94	94	0
Chlorobenzene	95	93	2

Semi-Volatile Organics

Method Blank - All target	compounds	less than M	DL.
Compound	MS %Rec	MSD %Rec	RPD %
Phenol	25	23	8
2-Chlorophenol	69	68	1
1,4-Dichlorobenzene	47	48	2
N-Nitroso-di-n-propylamine	63	62	2
1,2,4-Trichlorobenzene	53	54	2
4-Chloro-3-methylphenol	83	85	2
Acenaphthene	64	67	5
4-Nitrotoluene	28	23	20

Mr. Mark Good Sample I.D. AA01561 (continued)

Page: 4

May 13, 1993

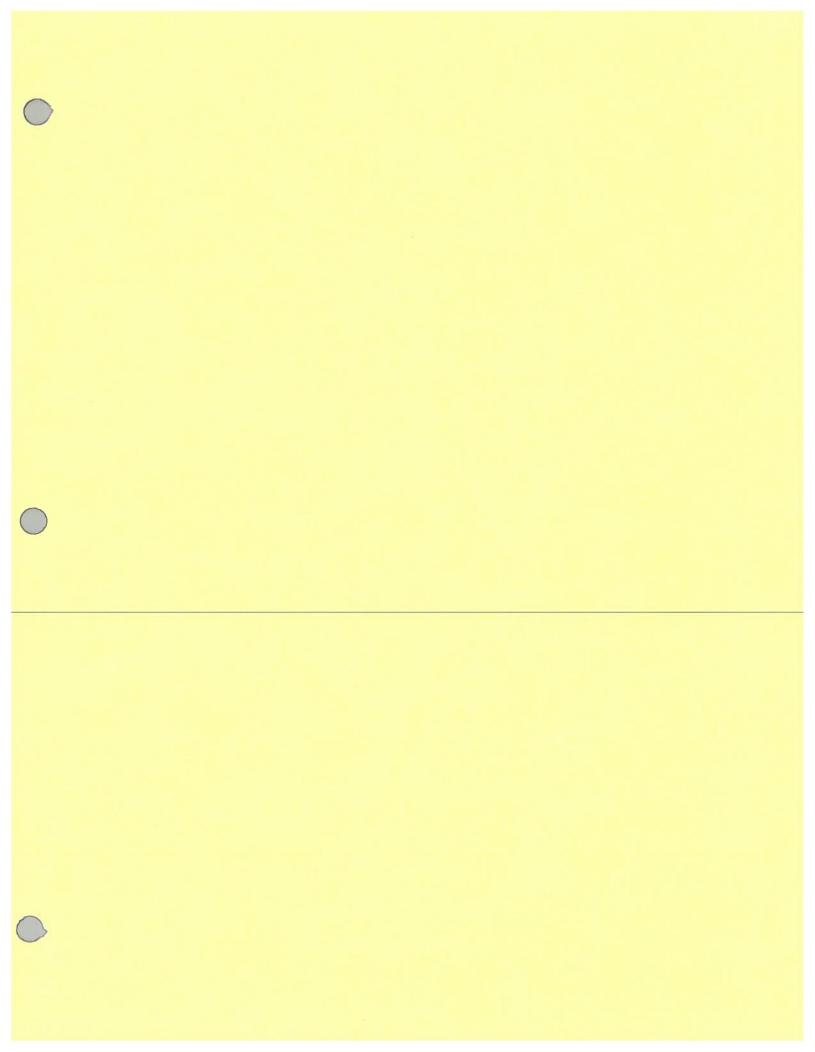
Sample comments (continued):

2,4-Dinitrotoluene	82	79	4	
Pentachlorophenol	93	87	7	
Pyrene	100	95	5	
Metals Method Blank - All Metal Arsenic			RPD 3	00

7	Dens arec	MSD &KEC	RPD %
Arsenic	99	96	3
Barium	100		2
Cadmium		103	3
	86	83	3
Chromium	96	91	5
Lead	113		5
Mercury		112	1
	96	96	0
Selenium	101	97	1
Silver	95	97	2

If there are any questions regarding this data, please call.

Reviewed by: Ricky L. Hatton



Environmental Diagnostic Laboratories, Inc.

Office: 601-264-2222*Fax: 601-268-2030 39 King Road Hattiesburg, MS 39402

CHAIN OF CUSTODY RECORD

			Time	
E.			Date	
			Received by:	
8000			Date Time	-\s
No. of Containers	MStd	+ Cypaciaes)	Relinquished by: Da	REMARKS
TIME COMP. ICEA.	CLR 190/18 190/180	1-204- (SLIA: Les	Received by: Date Time	Date Time 5/1/43 08.30
Signature) M GAR S	Sept. 19 19 19 19 19 19 19 19 19 19 19 19 19	Ctaching	<u> </u>	Time
Samplers: (signature) SAMP NO. STA.NO.	tm 0		Relinquished by:	Relinquished by:

Phone: 412/227-2694

436 Seventh Avenue, Suite 1940, Pittsburgh, PA 15219

Fax: 412/227-2436

July 1, 1988

CERTIFIED MAIL RETURN RECEIPT REQUESTED

Mr. Dan Jackson Mississippi Department of Natural Bureau of Air Pollution Control 2380 Highway 80 West Jackson, MS 39209

Koppers Company, Inc. Grenada Facility

Boiler Stack Test Results

Dear Mr. Jackson:

As stipulated by the air operating permit for the Koppers Company, Inc,. Grenada, MS facility, please find enclosed the results for the boiler stack test performed during the week of May 2, 1988. These results show that the boiler is well within compliance with regards to particulate emissions, and that the boiler effectively destroys constituents associated with using wood treating wastes as fuel additive material.

If you would like additional information or have any questions, please call.

Sincerely,

Robert J. Anderson Staff Program Manager

Koppers Treated Wood Products

RJA/cr Enclosure

"TE BE GERVEON

J. Batchelder

J. Kane (w/o enclosure)

J. Lampe (w/o enclosure)

TABLE OF CONTENTS

]	Page
LIST	OF TABLES	iii
	OF FIGURES	
1.0	INTRODUCTION	
2.0	TEST DESIGNATION AND PROGRAM	
3.0	FUEL ADDITIVE MATERIAL PARAMETERS	
4.0	BOILER OPERATION	4-1
5.0	STACK TEST METHODOLOGY	
6.0	RESULTS	
7.0	QUALITY ASSURANCE	.7-1
8.0	CONCLUSIONS	.8-1

LIST OF TABLES

1	Pag
1	Wood Fired Boiler Test Burn Testing Sequence1-12
2	Fuel Additive Analytical Results4-1a
3	Boiler Operating Conditions - Background Testing5-1b
4	Boiler Operating Conditions - 400 lb/hr. Creosote5-1c
5	Boiler Operating Conditions - 800 lb/hr. Creosote5-1d
6	Boiler Operating Conditions - 400 lb/hr. Penta5-1e
7	Fuel Additive Test Burn Particulate Emission Summary Background Test6-1a
8	Fuel Additive Test Burn POHC Emissions Summary Background Summary6-1b
9	Fuel Additive Test Burn Particulate Emission Summary 400 lb/hr. Creosote6-1c
10	Fuel Additive Test Burn POHC Emission Summary 400 lb/hr. Creosote6-1d
11	Fuel Additive Test Burn Particulate Emission Summary 800 lb/hr. Creosote
12	Fuel Additive Test Burn Chloride Emission Summary 400 lb/hr. Creosote6-1f
13	Fuel Additive Test Burn POHC Emission Summary 800 lb/hr. Creosote6-1g
14	Fuel Additive Test Burn Penta Emissions Summary 400 lb/hr. Penta6-1h
15	Modified Method 5 Collection Efficiency
	LIST OF FIGURES
1	Page
•	Boiler Arrangement5-1a

1.0 INTRODUCTION

Koppers Company, Inc. undertook a trial burn program at its Grenada, Mississippi Tie Plant, wood treating plant during the week of May 2, 1988. This program tested emmissions from the wood fired boiler steam generation plant. The tests determined the destruction and removal efficiency (DRE) of principal organic hazardous constituents (POHC) of a blended process by-product used as a fuel additive. Other parameters evaluated as part of the program were opacity, particulate, and chloride emission rates. Also established was the relationship between the combustion zone temperature and DRE. The purpose of the program was to provide the Mississippi Department of Natural Resources (DNR), Bureau of Pollution Control, data on this temperature relationship and fulfill the permit obligation which requires source retest within three years of the permit issuance date.

The tests were performed by the Air Quality Engineering division (AQE) of Keystone Environmental Resources, Inc. The test team was comprised of Mark Grunebach, Vince Bouma, and Frank Paola. The Department of Natural Resources was represented by Ken Petre.

The results of the modified method 5 testing showed average total PAH emissions of 0.018 lb/hr with a creosote fuel additive feed rate of 400 lb/hr and 0.010 lb/hr with a creosote feed rate of 800 lb/hr. When burning pentachlorophenol in oil preservative (penta) analysis was performed for pentachlorophenol emissions (PCP) and an average emission rate of 0.00045 lb/hr PCP was calculated.

The results of testing can be analyzed by reviewing the destruction and removal efficiency values (DRE) for the different test conditions. The results of the destruction and removal efficiency evaluations show DRE values of 99.99% or better in 12 of 17 calculations for removing principal organic hazardous constituents while 400 lb/hr of creosote fuel additive were fed to the boiler with all DREs greater than 99.93%. The DREs were above 99.99% for 14 of 17 calculations for a creosote feed fuel additive rate of 800 lb/hr for all DREs with all DREs above 99.96%. These results show that the boiler efficiently destroys the POHC associated with wood treating process wastes.

KOPPERS COMPANY, INC. GRENADA, MISSISSIPPI

TABLE 1 Boiler Test Burn Test Sequence

Run # (GR-BS)	Date	Time	Description	
44 45 46 47 48 49	5/3/88	10:30-11:34 11:41-12:47 12:16-13:36 13:05-14:14 13:51-15:15 14:44-15:59	This series of tests was conducted under normal conditions	-
50 51 52 53 54 55	5/4/88	8:45-9:49 9:18-10:33 10:01-11:11 10:40-11:50 11:18-12:31 12:00-13:03	This series of tests was conducted with a creosote feed rate of 400 lb/hr.	<u>-</u>
56 57 58 59 60 61	5/4/88	15:32-16:36 16:05-17:14 16:43-17:54 17:32-18:39 18:08-19:33 19:02-20:07	This series of tests was conducted with a creosote feed rate of 800 lb/hr.	
62 63 64 65 66 67	5/5/88	8:30-9:35 9:03-10:19 9:48-11:25 10:44-12:08 11:37-12:55 12:24-13:32	This series of tests was conducted with a penta feed rate of 400 lb/hr.	

2.0 TEST DESIGNATION AND PROGRAM

Stack test runs made during the trial burn program have been identified by nomenclature which identifies the Grenada plant (GR) and the boiler stack (BS) as the source on which these test runs were conducted. Individual runs are identified by numbers starting with 44 (GR-BS-44) through GR-BS-67. The numbering begins with 44 as previous runs were performed on the source by Air Quality Engineering in May, 1982 and August 1984.

Due to the clean-up and extraction procedures necessary for the two classes of principal organic hazardous constituents, six separate runs were necessary to calculate the required data for each condition. Even numbered runs were used for the benzene extractable principal organic hazardous constituents found in the penta in oil by-product as well as chloride and chlorine emission rates. Odd numbered runs were used for the methylene chloride extractable POHC found in the creosote by-product. Particulate determinations were also performed on odd numbered runs.

Table 1 lists a description of the testing sequence as performed during the May trial burns. The information is organized to include a single description for groups of runs which are averaged to yield a single trial burn test.

3.0 FUEL ADDITIVE MATERIAL PARAMETERS

The purpose of this program was to acquire data which would allow the operating permit to be renewed. The stack emissions were monitored under four operating conditions. These conditions were:

- 1. Operating the boiler with no fuel additive feed (primary fuel woodwaste only).
- 2. Operating the boiler with a creosote process waste fuel additive feed rate of 400 lb/hr.
- 3. Operating the boiler with a creosote process waste fuel additive feed rate of 800 lb/hr.
- 4. Operating the boiler with a penta process waste fuel additive feed rate of 400 lb/hr.

Samples were collected of the fuel additive feed stock and returned to Monroeville for analysis. This data is presented in Table 2.

4.0 BOILER OPERATION

The unit for which this study was performed is a wood-waste fired boiler/steam generator. The boiler currently uses bark, wood chips, sawdust, and hogged material as the primary fuel. The fuel is stored in a bin which has a 3-day storage capacity. Fuel is drawn from the bottom of the bin by screw conveyor. These conveyors drop the wood waste on a drag-chain conveyor which runs to a surge bin for each cell of the boiler combustion process.

The boiler consists of two identical combustion cells. The wood waste is fed to each cell by screw conveyor from the bottom of the surge bins. The fuel falls to the bottom of the combustion cell forming a pile. Combustion takes place in what approximates two-stage oxidation. The wood wastes decompose pyrolytically in the cell pile producing a combustible gas. This gas burns in the upper region of the cell.

Air is introduced to the combustion zone in three areas. The primary air is fed to the waste pile through the bottom grates. Secondary air is fed tangentially to the combustion zone through openings in the lower walls of the cell. Tertiary air is fed diagonally in the upper region of the combustion cell to break-up cyclonic flow of the exit gas. The combustion gas is now approximately 2000°F. This gas flows into the entrainment zone which, together with the combustion zone, affords approximately a two second retention time at a minimum temperature of 1400°F.

The hot off-gas, contacts the boiler tubes above the entrainment zone. The tubes represent the area of the boiler where the actual steam is produced. The off-gas is cooled to between 500 to 600°F in the tube section. The off-gas is further processed for removal of particulate by a multiclone inertial separator before discharge at the stack. Further heat is recovered from the off-gas in the air preheater. The combustion gas is cooled to 200 to 300°F while heating ambient air prior to use in the combustion zone. Figure 1 offers a sketch showing the approximate layout of the steam generation process.

Fuel additive is added to the primary fuel drag-chain from its storage bin by a dragchain. This chain is activated by the primary drag-chain operation and an affirmative signal from the lockout instrumentation installed as described in the permit. This instrumentation requires the boiler to be operating at a specified load and for

KOPPERS COMPANY, INC GRENADA, MISSISSIPPI

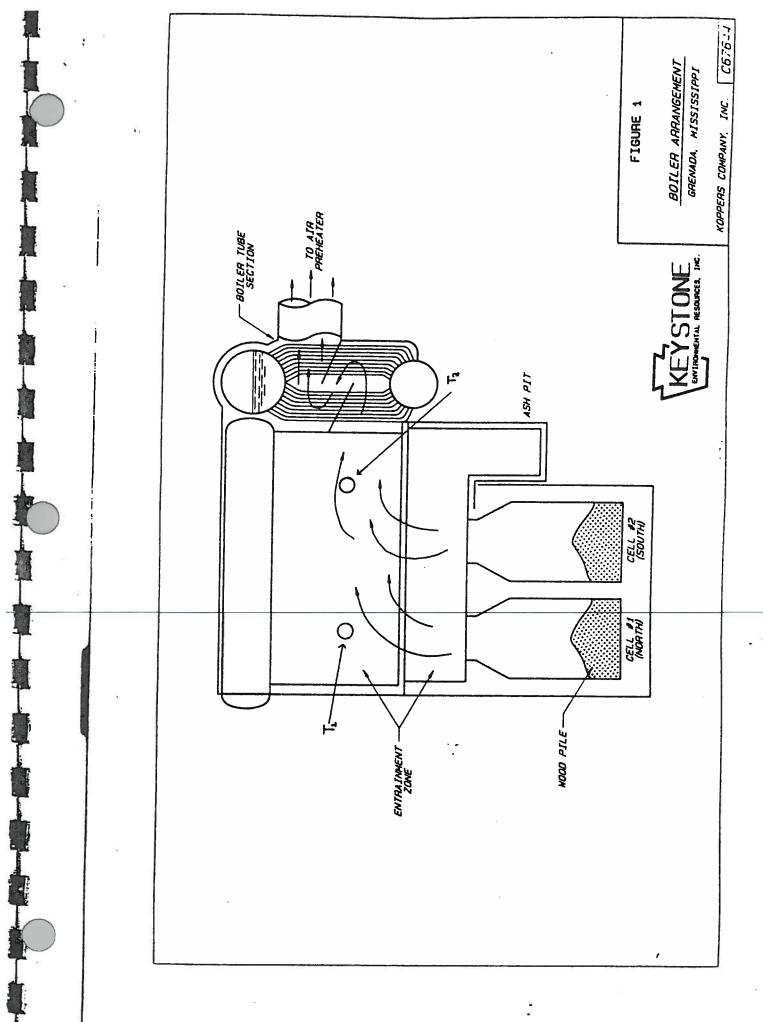
TABLE 2

FUEL ADDITIVE ANALYTICAL RESULTS

	400 lb/hr	800 lb/hr
Acenaphthene	44100	23000
Acenapthylene	5260	3500
Anthracene	97400	5380
Benzo(a)anthracene	5690	6660
Benzo(a)pyrene	1950	1200
Benzo(b)fluoranthene	2860	1960
Benzo(g,h,i)perylene	1800	1380
Benzo(k)fluoranthene	1100	748
Chrysene	6840	7610
Dibenz(ah)anthracene	2420	2490
Fluoranthene	40000	20600
Fluorene	34000	20000
Indeno(123-cd)pyrene	1040	801
Phenanthrene	92800	62200
Pyrene	33600	15300
Carbazole	35300	8800
Naphthalene	36900	22000

All weights in mg/Kg.

temperatures of the combustion zone of entrainment zone at or above a pre-set condition. Failure of any one of these conditions electrically shuts down the additive feeder.


Appendix A contains strip charts of all pertinent operating data. Also in Appendix A are the field sheets which develop the temperature profile of the combustion/entrainment zones during testing conditions. Tables 3-6 lists the boiler temperature and date for each day of testing. Also, Figure 1 is an arrangement of the boiler process which also gives approximate locations of the temperature monitoring points.

5.0 STACK TEST METHODOLOGY

The brunt of the data gathered for the trial burns centers around the measurement of the required stack gas constituents and parameters. The direction of the program produces data as required for a hazardous waste incineration program as well as additional data requested by the DNR. This direction is taken to show that, while the process is technically not hazardous waste incineration, the process is environmentally sound.

Pursuing the required parameters meant development of data on particulate and principal organic hazardous constituents (POHC) as well as chlorine and chloride. Stack test methods follow EPA Methods 1 through 4 for determination of sample point location, traverse points, and stack gas velocity, moisture and molecular weight (fixed gases). Particulate is determined utilizing EPA Method 5.

POHC has been captured from the stack gas using a modification of the Method 5 train as well as additional analysis of the particulate catch once the gravimetric procedures outlined in Method 5 are completed. The train modification involves fitting a canister with approximately 40 g of a sorbent resin between the third and fourth impingers. The resin, XAD-2, has been chosen because of its good properties of adsorption and solvent desorption of the desired POHC. The additional analysis, which proceeds once particulate and moisture determinations are made, involve extraction of these materials. The acetone probe, glassware rinse residue, and the filter are extracted in methylene chloride for creosote components and benzene for penta components. Likewise, the impinger volumes and XAD resin are extracted with the corresponding solvent. Individual sample train extracts are combined with sample train rinses and condensed to yield a sample which represents an extract of the entire sample train. Methylene chloride extracts are analyzed by EPA Method 610. Penta components are determined utilizing two chromatographic techniques. Variations of the stack test technique are incorporated in the penta-benzene extractable sample trains (even numbered tests). A filter was incorporated but particulate analysis was not performed. Sample train front half was only rinsed with benzene. Also, the impinger solution was 1 percent (wt) sodium hydroxide. The caustic solution is better for absorbing penta and will pick-up chloride and chlorine in the sample stream. A volume of 20 ml. of impinger solution was set aside for chloride/chlorine analysis. Chloride was determined by ion chromatography.

KOPPERS COMPANY, INC. GRENADA, MISSISSIPPI

TABLE 3 Boiler Operating Data Background Testing May 3, 1988

Time	т ₁	т2	Flow	Steam Pressure	Temp	CO % 0-1000	CO ₂	O ₂ % O-25
10:30	1700	1650	27,000	155	430	75	6.1	14.0
10:45	1750	1700	30,500	155	430	100	7.1	14.0
11:00	1775	1725	29,000	155	430	60	6.1	14.5
11:15	1750	1725	28,000	160	440	110	6.7	14.0
11:30	1775	1745	27,000	165	435	70	6.4	14.5
11:45	1725	1650	28,000	150	435	50	5.8	14.7
12:00	1750	1700	27,500	165	440	75	6.2	14.0
12:15	1700	1650	29,500	157	440	80	5.8	15.0
12:30	1400	1400	30,000	75	400	100	4.5	16.5
12:45	1650	1600	32,000	90	410	100	6.0	15.0
13:00	1700	1650	30,000	100	430	100	5.8	14.5
13:15	1725	1700	30,000	145	430	75	6.6	14.5
13:30	1750	1725	29,500	140	430	75	6.6	14.5
13:45	1750	1725	28,000	155	440	7 5	6.6	14.5
14:00	1750	1700	31,000	135	430	100	6.2	15.0
14:15	1700	1650	27,000	150	45	0100	6.4	14.5
14:30	1800	1775	30,000	160	430	100	6.7	15.0
14:45	1750	1725	29,000	155	440	90	6.4	15.0 ·
15:00	1600	1550	28,000	150	440	100	4.7	15.5
15:15	1650	1600	25,000	150	430	70	6.1	15.0
15:30	1700	1650	28,000	150	440	105	6.3	15.0
15:45	17175	1750	25,000	170	440	90	6.2	14.5

KOPPERS COMPANY, INC. GRENADA, MISSISSIPPI

TABLE 4 Boiler Operating Data 400 lb/hr Creosote May 4, 1988

Time	т1	Т2	Flow	Steam Pressure	Temp	CO % 0-1000	^{CO} _% 2	0 ₂
8:45 9:00 9:15 9:30 9:45 10:00 10:15 10:30 10:45 11:00 11:15 11:45 12:00 12:15 12:30	1800 1800 1750 1825 1875 1750 1750 1750 1850 1800 1800 1800 1900 1800 1750 1850	1650 1700 1650 1725 1850 1650 1650 1650 1750 1750 1750 1750 1750 1750 1750	27,000 27,000 29,000 30,000 31,000 27,000 27,000 27,000 28,000 31,000 33,000 28,000 31,000 27,000 26,000	155 160 150 140 160 160 160 165 165 155 160 165 130 160	430 440 440 440 440 440 440 440 440 440	40 50 50 60 70 60 60 50 60 75 75 75 90	5.8 5.7 5.6 6.6 7.0 5.5 5.6 6.0 5.8 6.5 6.0 6.8 7.0 7.1 6.1 6.4	14.5 14.8 15.0 14.5 14.0 14.5 15.0 15.0 14.5 15.0 14.0 14.0 14.0 14.0

KOPPERS COMPANY, INC. GRENADA, MISSISSIPPI

TABLE 5 Boiler Operating Data 800 lb/hr Creosote May 4, 1988

Time	т1	т2	Flow	Steam Pressure	Temp	CO % 0-1000	CO ₂	O ₂ % O-25
3:30	1775	1700	29,000	140	440	50	6.0	445
3:45	1800	1700	29,000	155	440 440	50 40	6.0	14.5
4:00	1800	1700	28,000	160	440	40 20	5.8	14.5
4:15	1800	1750	27,000	155	445	30	5.3	15.0
4:30	1800	1725 ·	28,000	170	445	50	5.3	14.5
4:45	1750	1650	25,000	165	440	60	5.4	64.5
5:00	1750	1650	29,000	150	440 440	25 25	6.0	14.5
5:15	1750	1650	27,000	155		25	6.1	14.5
5:30	1800	1750	27,000	165	440	100	5.6	15.0
5:45	1800	1700	26,000		445	75 50	5.5	15.0
6:00	1400	1750	25,000	160	440	50	5.4	15.0
6:15	1750	1700		160	440	75	5.1	15.0
6:30	1700	1650	26,000	160	440	75	5.0	15.0
6:45	1700	1650	25,000	150	440	60	4.8	16.0
7:00	1750		24,000	160	440	60	4.4	16.0
7:15		1675	30,000	140	440	50	6.0	14.5
7:30	1750	1650	29,000	130	440	60	5.5	15.0
7:45	1700	1650	29,000	140	440	75	5.5	15.0
	1700	1650	29,000	140	440	100	6.0	14.5
8:00	1700	1650	30,000	150	440	70	5.9	15.0

KOPPERS COMPANY, INC. GRENADA, MISSISSIPPI

TABLE 6 Boiler Operating Data 400 lb/hr Penta May 5, 1988

Time	т1	T ₂	Flów	Steam Pressure	Temp	CO % 0-1000	^{CO} _% 2	O ₂ % O-25
8:30	1800	1700	28,000	150	430	20	6.0	14.5
8:45 9:00	1800	1700	30,000	150	450	25	6.0	14.5
9:15	1850	1750	30,000	150	430	40	6.2	14.5
9:30	1800 1725	1750	30,000	150	430	45	6.2	14.5
9:45	1800	1700	27,000	155	440	50	5.6	15.0
10:00	1800	1700	22,000	160	440	<i>5</i> 0	8.7	15.0
10:15	1850	1725 1750	27,000	160	440	60	5.9	14.5
10:30	2000	1600	29,000	165	440	50	6.0	64.0
10:45	1900	1800	32,000	150	440	40	5.9	14.5
11:00	1900	1800	30,000	155	440	<i>75</i>	6.3	15.0
11:15	1800	1700	30,000	150	440	60	6.5	14.0
11:30	1675	1650	27,000	150	440	100	6.8	14.0
11:45	1700	1600	25,000	150	440	100	5.8	14.5
12:00	1750	1650	30,000	150	440	30	5.2	15.0
12:15	1750	1650	30,000	150	440	40	5.4	14.5
12:30	1775	1700	28,000	150	440	50	5.6	15.0
12:45	1750	1650	29,000	150	440	50	5.6	15.0
1:00	1750	1650	31,000	155	450	50	5.4	15.0
	1/50	1020	30,000	150	440	40	5.2	15.2

6.0 RESULTS

Stack test results and DRE results are listed in Tables 7 through 14. These tables contain the information necessary to determine compliance with the hazardous waste incinerator guidelines and DNR requirements. Each of the tables lists three individual runs made during a feed condition. The data of each is used to calculate an average for each parameter of that feed condition. In Tables 7 through 9, data accumulation stops at this point as it represents information collected for the background test. Tables 10 through 14 have two additional columns of information. The first includes the quantity of each POHC that is fed to the boiler at the given additive feed rate. The second additional column is the calculated DRE which is the average mass emission rate of the given component corrected for background and divided by the boiler input rate of that component. The correction for background levels as mentioned yields the change in POHC emission due to the thermal treatment of these materials. The background tests provide the initial information of how much of each POHC is emitted when only the primary fuel is fired in the boiler. This number is subtracted from the average of the three stack runs for a given additive feed condition. The individual emission rate calculations of the POHC as well as a printout of all calculations for each stack run is included in Appendix B.

Values listed in Tables 10 through 14 under the DRE calculation as approximately 100 are determinations whose value is less than the average background level of that POHC but not equal to zero.

TABLE 7

E

	V	6.16503	
Run 3	GR-BS-48 13:51 15:15	3.68719	
Run 2	GR-BS-46 12:26 13:36 Emissions (lb/hr)	7.58788	
Run 1	GR-BS-44 10:30 11:34	7.22003	
	5/03/88 Start Time Finish Time Component:	Particulate	

616 16/4 x 24 x 365

= 53,9%1 14 = 27 tv

BURN	TS
ADDITIVE TEST	KGROUND TES
FUEL AI	BACKG

	Run 1	Run 2	Run 3	
5/03/88 Start Time Finish Time Component:	GR-BS-45 11:41 12:47	GR-BS-47 13:05 14:14 Emissions (lb/hr)	GR-BS-49 14:44 15:59	Aversoe
Acensohthene				Service
Acenanthylene	0.0016002	0.0017656	0.0031900	0.0021852
Anthracene	0.0005238	0.0007521	0.0007719	0.0006826
Benzo(a)anthracene	0.00032/3	0.0004409	0.0012539	0.0006741
Benzo(a) invene	0.0001433	0.0002244	0.0004418	0.0002698
Benzo(h) Anoranthene	0.000013@	0.0000419	0.0000304	0.0000284
Benzola hi)nemiene	0.0000316	0.0000985	0.0000627	0.0000642
Renzo (k) fluoro attor	0.0000167	0.0000907	0.0000235	0.0000436
Christian Allucia minimicine	0.0000140	0.0000332	0.0000255	0.0000132
Dihenz(ah)anthanan	0.0001200	0.0002166	0.0004810	0.0002725
Finoranthene	0.0000270	0.0001249	0.0000519	0.0000679
Finorena	0.0005647	0.0008779	0.0016751	0.0010392
Indeno(103.cd)mrene	0.0010327	0.0013071	0.0033900	0.0019099
Phenanthrene	0.0000130	0.0000751	0.0000108	0.0000329
Pyrene	0.0026900	0.0037000	0.0084500	0.0049466
Carbazole	0.0003433	0.0005307	0.0010286	0.0006342
Nanhthologo Nanhthologo	0.0000930	0.0000975	0.000000	0.000061
rapimalene	0.0052300	0.0050800	0.0059500	0.0054200
TOTAL PAH	0.0127838	0.0154571	0.0269351	

		Average	7.25368
EST BURN SOTE	Run 3 GR-BS-60 18:08 19:33		7.28475
FUEL ADDITIVE TEST BURN 400 LB/HR CRESOTE	Run 2 GR-BS-58 16:43 17:54	Emissions (Ib/hr)	7.61755
	Run 1 GR-BS-56 15:32 16:36		6.85876
	5/04/88 Start Time Finish Time Component:	Particulate	

BURN	TE
TE TEST	CREOSOTE
ADDITIVE	LB/HR
FUEL	94

	Run 1	Run 2	Run 3			
5/04/88 Start Time Finish Time Component:	GR-BS-51 9:18 10:33	GR-BS-53 10:40 11:50 Emissions (lb/hr)	GR-BS-55 12:00 13:03	Average	Boiler Feed Rate (lb/hr)	DRE (%)
Acenaphthene Acenapthylene	0.0035700	0.0028300	0.0029700	0.0023425	17.64	99.98
Anthracene Benzo(a)anthracene	0.0004984	0.0004533	0.0005250	0.0003691	38.96	~100.00 80.00
Benzo(a)pyrene Benzo(b)fluoranthene	0.0000175	0.0000119	0.0000245	0.0000134	0.78	~ 100.00
Benzo(g,h,i)perylene	0.0000428	0.0000179	0.0000373	0.0000282	1.14	8,8 8,8
Benzo(k)tiuoranthene Chrysene	0.0000165	0.0000109	0.0000147	0.0000105	0.4	96:96
Dibenz(ah)anthracene	0.0000311	0.0000258	0.0000343	0.0000228	2.74 0.97	8.8 8.8
riuorantnene Fluorene	0.0009247	0.0007509	0.0009204	0.0006490	16.00	86.8
Indeno(123-cd)pyrene	0.0000127	0.0000079	0.0000088	0.0000073	0.42	~ 100.98
r nenammene Pyrene	0.0044200	0.0038300 0.0005515	0.0047300	0.0032450	37.12	96.98
Carbazole Naphthalene	0.0000973	0.0000992	0.0000981	0.0000736	14.12	~ 100.00 99.94
TOTAL PAH	0.0205318	0.0180696	0.0176175			

KOPPERS COMPANY, INC GRENADA, MISSISSIPPI	
T	

TABLE 11

	Average	11.57317
Run 3	GR-BS-54 11:18 12:31	10.03795
Run 2	GR-BS-52 10:02 11:11 Emissions (lb/hr)	17.84440
Run 1	GR-BS-50 8:45 9:49	6.83715
	5/03/88 Start Time Finish Time Component:	Particulate

		PENTA		Average	8.50300 0.01043
ANY, INC SISSIPPI	•	EST BURN	Run 3 GR-BS-66 11:37 12:55		6.81583 0.01028
KOPPERS COMPANY, INC GRENADA, MISSISSIPPI	TABLE 12	FUEL ADDITIVE TEST BURN 400 LB/HR CRESOTE—	Run 2 GR-BS-64 9:48 11:25	Emissions (lb/hr)	12.17014 0.01064
		**	Run 1 GR-BS-62 8:30 9:35	,	6.52303 0.01029
3 %	Sec.		5/05/88 Start Time Finish Time	Particulate	Chloride

TABLE 13

FUEL ADDITIVE TEST BURN 800 LB/HR CRESOTE

	Run	_	Run 2	Run 3			
5/04/88 Start Time Finish Time Component:	GR-BS-57 16:05 17:14	_	GR-BS-59 17:23 18:39 Emissions (lb/hr)	GR-BS-61 19:02 20:07	Average	Boiler Feed Rate (1b/hr)	DRE
Acenaphthene	0.0002572	572	0.0034100	0.0015618	0.0013072	18.40	
Acenapthylene	0.000141	411	0.0004697	0.0008420	0.0003632	2.80	8.8
Anthracene	0.000035	355	0.0004687	0.0002373	0.0001853	4.30	868
Denzo a janturacene	0.0000144	4	0.0001139	0.0000230	0.0000378	5.33	~100.00
Benze / Allienstein	0.0000015	919	0.0000250	0.0000110	0.0000094	96.0	~ 100.00
Denzo (b) nuorantnene	0.0000038	038	0.0000320	0.0000050	0.0000102	1.57	~ 100 00 ~
Denzo(g,n,1)peryiene	0.000	067	0.0000190	0.000000	0.0000081	1.10	100.00
Denzo(K)Illuoranthene	0.0000019	019	0.0000120	0.0000030	0.0000042	0.60	
Dibers of the section	0.0000163	163	0.0001209	0.0000481	0.0000463	60.9	~ 100.00
Diograph an Januarene	0.0000029	029	0.0000280	0.0000120	0.0000107	1.99	~ 100.00
	0.0000614	614	0.0006306	0.0003704	0.0002656	16.48	86.86
Tadeno(103 - 1)	0.0001	877	0.0019887	0.0009321	0.0007609	16.00	86.86
Discipo 123-ca)pyrene	0.0000048	8	0.0000120	0.0000050	0.0000054	0.64	~ 100.00 ~
r nenanthrene Denen	0.0003128	128	0.0045100	0.0021900	0.0017532	49.76	8
ryielle	0.000047	470	0.0003158	0.0002343	0.0001492	12.24	~ 100 00 ~
No-tot-land	0.0000960	96	0.0000999	0.0001001	0.0000744	7.04	~ 100 00 100 00
Naphthalene	0.000592	921	0.0058200	0.0037300	0.0025355	17.60	96.66
TOTAL PAH	0.0017186	186	0.0180762	0.0103121			

BURN	
FUEL ADDITIVE TEST	400 LB/HR PENTA

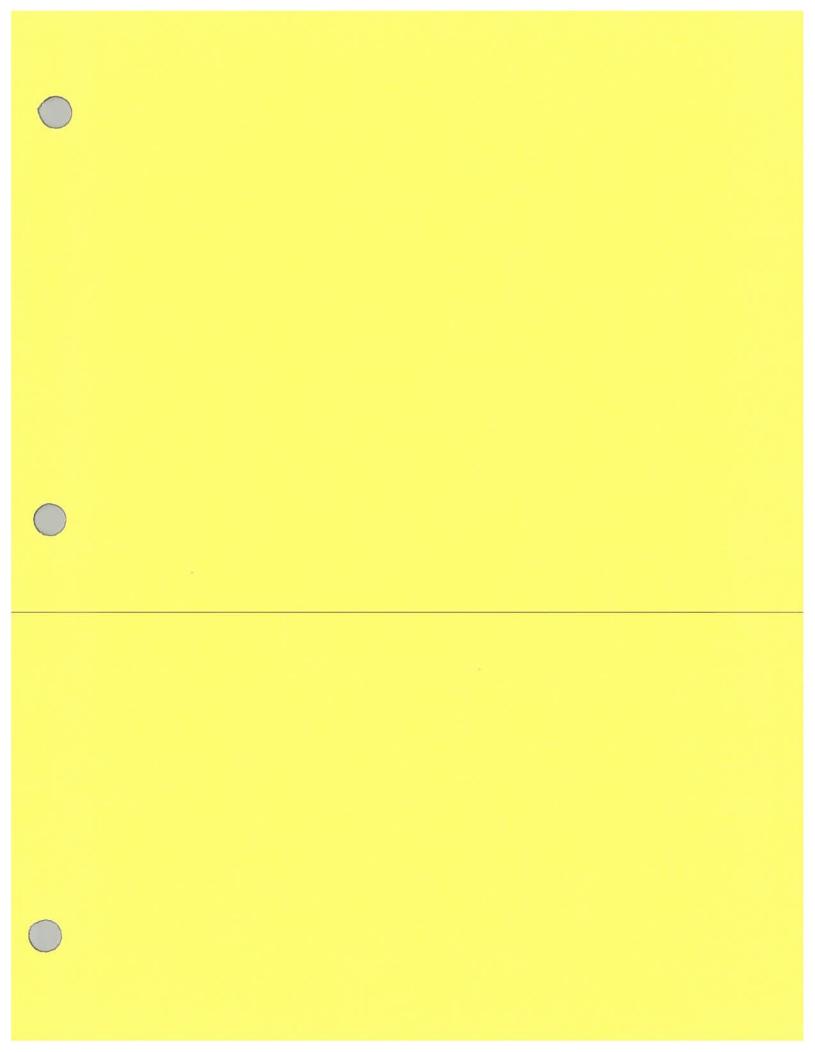
	–	(%)	99.99
	Boiler Feed Rate	(ID/DIL)	2.65
	A	Avelage	0.0001047
Run 3	GR-BS-67 12:24 20:07		0.0000261 0.0000021
Run 2	GR-BS-65 10:44 12:08 Emissions (lb/hr)		0.0000308
Run 1	GR-BS-63 9:03 10:19	CH3COOO O	0.0001411
	5/05/88 Start Time Finish Time Component:	PCP	OCDD/OCDF

7.0 QUALITY ASSURANCE

Part of the POHC test procedure included a backup sorbent resin canister in the sample train. The extract of this second canister is analyzed separately and compared to the total sample train catch. A total of three runs were performed with the use of the backup canister. Table 15 represent a tabulation of the data generated through this portion of the program. The table lists the run number of each test for which the second tube is incorporated. The data for each run is further broken down to list the catch of each component in the second canister. Also listed is percent of the total weight which the sample train catch represents. It should be noted that the amount of each component as listed for each run as the backup catch is included in the total sample train catch used to calculate the actual stack emission rate.

								, O	
			KOPPERS C GRENAD TA	KOPPFERS COMAPANY, INC. GRENADA, MISSISSPPI TABLE 15					
		WO	MODIFIED METHOD 5 COLLECTION BFFICIENCY	COLLECTION EF	FICIENCY				
		GR-BS-49	ologies.		GR-BS-55			GR-BS-61	
	Sample Train	Series Cannister	Train Catch(%)	Sample Train	Scries Cannister	Train Catch(%)	Sample Train	Series Cannister	
Accaphthene	32.6	2.74	5	66	Ş				1

	Sample Train	Series Cannister	Train Catch(%)	Sample Train	Series Cannister	Train Catch(%)	Sample Train	Series Cannister
•								
Acenaphthene	32.6	274	91.60	303	12.0	60.40	Ę	i
Accesspthylene	7.88	<1.0	~100.00	12.4	\$1.0 1.0	10000		į
Anthracene	12.8	<0.25	~ 100.00	5.35	<0.25	100.00	237	7 %
Benzo(a)anthracene	4.51	<0.02	~ 100.00	23	×0.02	~ 100.00		
Benzo(a)pyrene	9050	<0.02	~ 100.00	0.248	<0.02	~ 100 [.] 00.	8	700
J Benzo(b)fluoranthene	0.644	<0.02	~ 100.00	0.376	<0.02	~ 100.00	0.10	70.07
Benzo(g,h,i)perylene	0.238	<0.05	~ 100.00	0.186	× 0.05	100.00	<i>(</i> 100)	70.07
Benzo(k)fluoranthene	0.264	<0.05	~ 100.00	0.148	<0.05	~100.00	0.032	0.07 V 0.08
Chrysene	4.9J	<0.15	~ 100.00	70	<0.15	~ 100.00	0.479	<0.15
Dibenz(ah)anthracene	0.528	<0.03	~ 100.00	0.349	< 0.03	~ 100.00	0.115	200>
Fluoranthene	17.1	0.214	98.75	9.38	0.177	98.11	3.7	0.198
rinovene	34.6	0.31	99.10	19.0	0.18	99.05	9.31	1.59
indeno(123-cd)pyrene	0.112	<0.05	~ 100.00	0.091	<0.05	~ 100.00	<0.05	<0.05
Fuenanthrene	86.3	0.733	99.15	48.2	0.716	98.51	21.9	0.01
Pyrene	10.5	0.117	98.89	5.44	0.105	28.07	7.37	9610
Carbazole	<1.0	<1.0	-100.00	<1.0	<1.0	~ 100.00	0.15	012
Naphthalene	40.7	2.18	96.41	42.5	3.88	78'06	37.3	27.4
								!


All weights are in ug/Kg.

8.0 <u>CONCLUSIONS</u>

The results of the test program show the boiler's combustion process to effectively destroy the hydrocarbon constituents of the fuel additive materials studied in the permit renewal process.

The determination of particulate matter for the conditions tested in this program showed the emissions to be less than the values stated in the permit conditions governing this parameter.

Based on the test results, the boiler can burn fuel additives in compliance with the operating permit.

436 Seventh Avenue, Suite 1940, Pittsburgh, PA 15219

April 11, 1988

Mr. Ronald Gore, Chief Engineering Services Branch Air Division Alabama Department of Environmental Management 1751 Federal Drive Montgomery, AL 36130

Re: Koppers Company, Inc. Montgomery Facility Boiler Compliance Test

Dear Mr. Gore:

Two copies of the report for the compliance test program conducted at the Koppers Company, Inc. Montgomery, Alabama wood treating plant during the week of March 14, 1988 are attached.

The results of the test program showed the boiler source to be emitting 0.084 grains per dry standard cubic foot (gr/scfd) of PM at 50% excess air while only wood and wood waste were fired. The results developed from the tests involving the fuel additive showed the source to be emitting 092 gr/scfd PM and less than 10 parts per million by volume (ppm_v) of total hydrocarbon (as methane). The particulate results determined for the hogged treated wood showed the source to be emitting an average of 0.065 gr/scfd. Chapter 4.8.2(d) of the Alabama Air Pollution Control Rules and Regulation state the limit for particulate emissions as 0.20 gr/scfd at 50% excess air.

This report presents particulate matter results only; information regarding destructive and removal efficiencies will be forwarded when the results are received and tabulated by Keystone Environmental Resources, Inc.

The results of the PM determinations performed for this program show the effect of the changes made in the operation of the steam production facility at the Montgomery plant. Repairs made to the boiler equipment and improvement made in the wood waste fuel quality have reduced the emissions to less than one third of the value determined by the November 1987 program.

Sincerely,

Robert J. Anderson

Staff Program Manager

DIRECT DIAL # 412-227-2683

RJA/da

closures

J. Kane
D. Meadows
J. Batchelder

KOPPERS COMPANY, INC. MONTGOMERY ALABAMA

FUEL ADDITIVE PROGRAM ANNUAL COMPLIANCE TESTING PROGRAM

Prepared for:

KOPPERS COMPANY, INC. MONTGOMERY ALABAMA

Prepared by:

KEYSTONE ENVIRONMENTAL RESOURCES, INC. 440 COLLEGE PARK DRIVE MONROEVILLE, PENNSYLVANIA

PROJECT NO. 187100-01

APRIL 1988

TABLE OF CONTENTS

	Page
LIST OF TABLES	
	V
	······································
TEST PROGRAM	······································
	······3
CONCLUSION	······································
APPENDICES	
APPENDIX A	Stack Test Field Data Sheets
APPENDIX B	Field Process Data
APPENDIX C	Computer Printouts of Stack Calculations
APPENDIX D	Instrument Strip Chart Recordings
APPENDIX E	Calibration Data

LIST OF TABLES

	rag	E
I	Summary of Particulate Test Results Background Test With Woodwaste Fuel	6
II	Summary of Particulate Test Results Hogged Treated Woodwaste	7
Ш	Summary of Particulate Test Results Woodwaste With Fuel Additive	8

LIST OF FIGURES

	rage
1	Koppers Company, Inc. Montgomery Wood Treating Plant 5

INTRODUCTION

During the week of March 14, 1988 a compliance test program was conducted to determine emissions from the boiler at Koppers Co, Inc., Montgomery Alabama Plant. The test program was required following a similar program conducted in November 1987. The intent of the March test program was to demonstrate compliance with proviso 14 of the draft permit following improvements and corrections made to the steam production facility to better control particulate generation and emissions control. The test program determined particulate matter (PM) emissions from the boiler stack while the unit was fired with the primary fuel, wood and wood waste. Also, PM and total hydrocarbon tests were performed while the primary fuel and fuel additive material were burned in combination. An additional condition was added to the program which involved tests performed while the boiler was fired on chipped treated wood only. The material was generated for the test by hogging poles treated with preservative.

Testing was conducted according to a test plan submitted to Alabama Department of Environmental Management (ADEM) for the November program. The tests were observed by Mr. Glen Golson and Mr. Fermon Lindsey of ADEM. The test team was comprised of Mark Grunebach, Vincent Bouma, and John Kane, of Keystone Environmental Resources, Inc., Air Quality Engineering (AQE).

The results of the test program showed the boiler source to be emitting 0.094 grains per dry standard cubic foot (gr/scfd) of PM at 50% excess air while only wood and wood waste were fired. The results developed from the tests involving the fuel additive showed the source to be emitting 0.092 gr/scfd PM and less than 10 parts per million by volume (ppm_v) of total hydrocarbon (as methane). The particulate results determined for the hogged treated wood showed the source to be emitting an average of 0.065 gr/scfd. Chapter 4.8.2(d) of the Alabama Air Pollution Control Rules and Regulation state the limit for particulate emissions as 0.20 gr/scfd at 50% excess air.

TEST PROGRAM

The test program, as described in correspondence to Ronald Gore of ADEM from John Kane dated September 25,1987, utilized Federal EPA methods 1 through 5 and 25 A for the required determinations. Testing was conducted when the boiler was operating under a

steam loading of 24,000 lbs/hr or greater. Figure 1 illustrates the location of the sampling points on the stack diameter as well as the location of the ports on the stack.

The actual testing began on March 15th with the testing of the wood waste only. Three tests were conducted to calculate the average. The boiler was fired at a minimum rate equivalent to the production of 24,000 lb\hr steam.

On March 16th three more particulate determinations were performed to determine the PM emissions while the hogged treated wood was being used as fuel. Two sources exist for this potential fuel supply. One source is generated from expended or unusable materials treated with creosote. The second source is again expendable wood products treated with penta-chlorophenol in oil. Due to the development state of this portion of the program, three feed scenarios were utilized which involved burning hogged penta material for the first test, blended hogged creosote and penta material for the second test, and hogged creosote material for the third test.

The third day of testing included the determination of PM emissions while the boiler was fired on wood and wood waste with fuel additive mixed. Total Hydrocarbons were also monitored during this period. The tests were performed when the boiler was at steady state operation generating 22,500 lb/hr of steam. Sample for the total hydrocarbon was pulled from the stack through a heated teflon sample line with the temperature controlled at 300° F

Addition of the fuel additive material began at 11:40 AM and was controlled by the interlock system. The time of operation (on time) of the additive feed system, as displayed on the elapsed time indicator, was recorded at approximately 10 minute intervals where possible throughout the testing of this mixed feed. Temperature of the upper combustion zone, as indicated on the interlock, and oxygen and carbon monoxide were also recorded at these intervals along with the steam production rate. At the completion of testing, the additive feeder pump rate was measured. This value in pounds per minute is then applied to the on time of the feeder prorated to an hour to yield the addition rate of the fuel additive in pounds per hour. The pump rate test was performed by separating the screw auger trough to allow the material to fall into a drum. The drum, in turn, is positioned on a balance. Time was recorded for each 100 pound increase in drum weight. These field data are contained in the Appendix.

Clean up of the test train components for all was completed at the site. Analysis of particulate train catches were performed at Keystone' AQE laboratory in Monroeville PA. Calibration of the total hydrocarbon monitor was performed on site and recorded on the strip chart recording data for this unit. Stack test field data sheets as well as the continuous emissions monitor strip charts are contained in the Appendix.

TEST RESULTS

Table I represents the summation of the results derived by the portion of this program which involved the determination of PM emissions for wood waste only. Presented are the results as determined by the stack calculation program. Computer printouts of these calculations are found in the Appendix. In addition to the particulate results determined through this calculation, an additional value is provided which adjusts the particulate concentration to reflect 50% excess air. This value has been determined through the use of the following equation:

C50% =
$$\frac{C_{actual}}{1 - \left[\frac{1.5(\%O_2) - 0.133(\%N_2) - 0.75(\%CO)}{21}\right]}$$

Where
$$C_{50\%}$$
 = particulate concentration at 50% excess air C_{actual} = measured particulate concentration $\%O_2$; $\%N_2$; $\%CO$ = measured stack gas concentrations

The results for this portion of the program can be compared to the allowable PM emissions limit of 0.20 gr/scfd at 50% excess air.

Table II summarizes emissions tests results for the study involving the hogged treated wood as the primary fuel. Again the PM emissions are presented along with pertinent stack and sampling conditions encountered during the test program. The PM results show the individual tests, which represent three different feed conditions, as well as the average of the three tests to have concentrations of 0.070 gr/scfd or lower.

Table III lists the results determined by the procedures utilized for the third firing conditions which consisted of the primary fuel mixed with the fuel additive. Again these results

establish the PM emissions rate to be 0.092 gr/scfd. Also included are the results dètermined by the total hydrocarbon continuous monitor.

CONCLUSION

The results of the PM determinations performed for this program show the effect of the changes made in the operation of the steam production facility at the Montgomery plant. Repairs made to the boiler equipment and improvement made in the wood waste fuel quality have reduced the emissions to less than one third of the value determined by the November 1987 program.

DATE

DRAWN

CHECKED

		·····				
	39.75"	SAMPLING POINTS	& STACK BREECHIE	IG DIAGRAM		
				•		
	1	4 4 "				
				€:		1
	0 1	_	Sample Poin	t Inches	from Wall	
		·	1		.7	I
			2	5	.9	
			3	11	.8	
			4	28	.2	
	•		5	34	.1	
			6	38.	.3	
	3.	33"				1
						×
				: \		
				•		
			(• • •		•	
			\ .	•		
				• /		
		.01				
	 	Blower				
,			,			*
ī.						
						ACTIVITY
Корр	ers Company	, Inc				ACTIVITY No. REVISION
Mont	gomery Wood	Treating Plant			Figure 1	
187 REV. & #174	0482 PHOENIX TRACI	NG CLOTH 8-78	7.5			

KOPPERS COMPANY, INC MONTGOMERY, ALABAMA

TABLE I

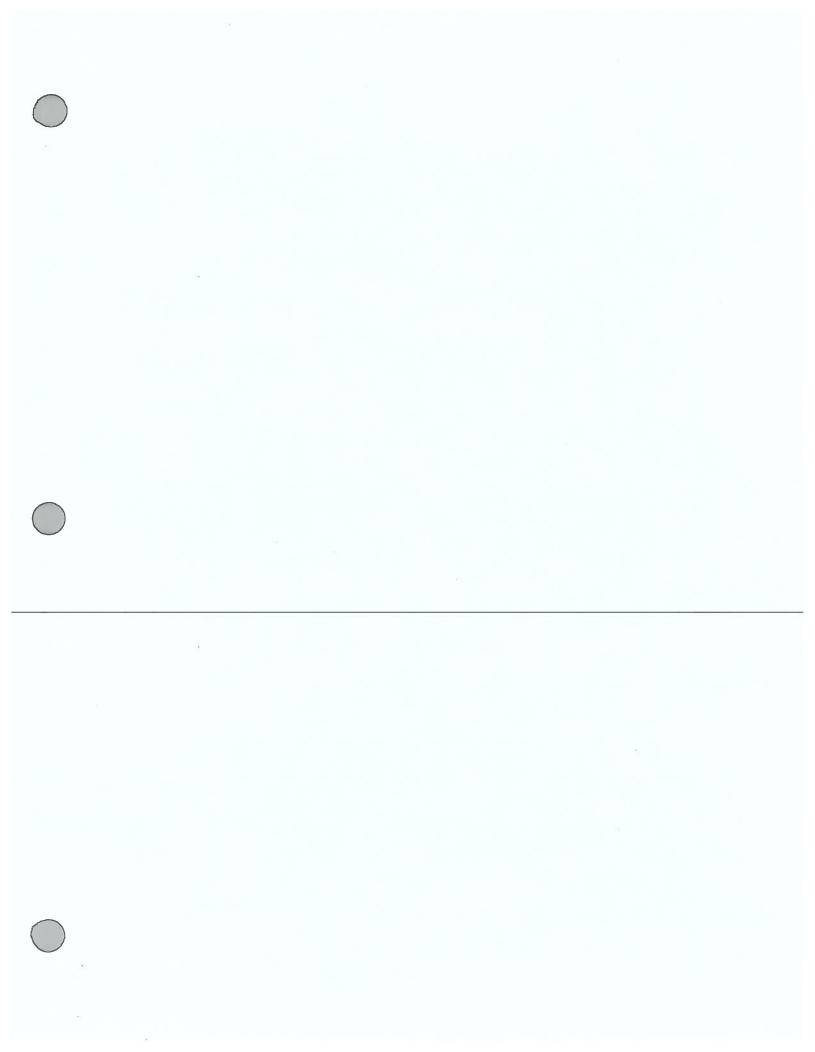
SUMMARY OF PARTICULATE TEST RESULTS BACKGROUND TEST WITH WOODWASTE FUEL

3/15/88		Run 1	Run 2	Run 3	Average
Test No.		MO-BS-31	MO-BS-32	MO-BS-33	•
Emissions					
Particulate	(lb/hr)	9.251	12.45	10.51	10.74
(gr/scfd@50%	(gr/SCFD) % excess air)	0.076 0.089	0.098 0.106	0.082 0.087	0.085 0.094
Allowable Part (gr/scfd@50%					0.20
Stack Conditio	<u>ns</u>				
Flow	(AČFM) (SCFM)	25271 17069	26695 17982	27014 18065	26327 17705
Temperature (OF)	332.3	334.4	340.3	335.7
Moisture (%)		17.24	17.53	16.99	17.25
Sampling Cond	<u>litions</u>				
Sampling Time	(min.)	60.0	60.0	60.0	
Sample Volume	e (SCFD)	29.23	29.83	30.16	
Isokinetics (%)		99.06	96.32	97.94	

KOPPERS COMPANY, INC MONTGOMERY, ALABAMA

TABLE II

SUMMARY OF PARTICULATE TEST RESULTS HOGGED TREATED WOODWASTE


3/16/88		Run 1	Run 2	Run 3	Average
Test No.		MO-BS-34	MO-BS-35	MO-BS-36	
Emissions					
Particulate (gr/scfd@50%	(lb/hr) (gr/SCFD) excess air)	8.316 0.057 0.070 Peura	7.501 0.060 0.069	6.170 0.049 0.055	7.329 0.055 0.065
Allowable Parti (gr/scfd@50%		,-	,,,,,,		0.20
Stack Condition	<u>15</u>				3
Flow	(ACFM) (SCFM)	29504 19218	24109 16269	24265 16333	25959 17273
Temperature (^o Moisture (%)	F)	361.6 11.07	335.7 9.60	337.7 9.98	345.0 10.22
Sampling Condi	tions				
Sampling Time (Sample Volume Isokinetics (%)		60.0 34.59 95.42	60.0 30.80 98.73	60.0 30.32 97.13	

KOPPERS COMPANY, INC MONTGOMERY, ALABAMA

TABLE III

SUMMARY OF PARTICULATE TEST RESULTS WOODWASTE WITH FUEL ADDITIVE

	3/17/88		Run 1	Run 2	Run 3	Average
	Test No.		MO-BS-39	MO-BS-41	MO-BS-43	
	Emissions					
	Particulate (gr/scfd@509 Total Hydroca Allowable Part (gr/scfd@509	rbon (PPM _v) ticulate	10.67 0.084 0.099 <10.0	9.00 0.073 0.091 <10.0	9.31 0.071 0.087 <10.0	9.66 0.076 0.092 <10.0
	Stack Condition	*				
	Flow	(ACFM) (SCFM)	26347 17360	25851 17102	27129 17945	26442 17469
	Temperature (o _F)	357.5	354.3	354.3	355.4
	Moisture (%)	,	14.68	15.72	14.61	15.00
e.	Sampling Cond	litions		•		
	Sampling Time		60.0	60.0	60.0	
	Sample Volume	` '	38.31	39.17	40.24	
	Isokinetics (%)		102.0	102.7	103.6	
	Operating Cone	ditions				
	Additive Feed I	Rate (lb/hr)	394	357	421	

KOPPERS COMPANY, INC. MONTGOMERY, ALABAMA

FUEL ADDITIVE PROGRAM ANNUAL COMPLIANCE TESTING

Prepared for:

KOPPERS COMPANY, INC. MONTGOMERY, ALABAMA

Prepared by:

KEYSTONE ENVIRONMENTAL RESOURCES, INC. 440 COLLEGE PARK DRIVE MONROEVILLE, PENNSYLVANIA

PROJECT NO. 187100-01

JULY 1988

TABLE OF CONTENTS

	Page
INTROD	UCTION 1
TEST PR	OGRAM2
	SULTS3
	SION 16
APPEND	
A B C D E	Stack Test Field - Data Sheets Field Process Data Computer Printouts of Stack Calculations Analytical Results Calibration Data
	LIST OF TABLES
	Page
I	Wood Fired Boiler Test Burn Test Sequencing 4
II	Hogged Treated Woodwaste Test Burn Boiler
	Operation/Woodwaste and Fuel Additive Test Burn Boiler Operation
III	Analytical Results8
IV	Hogged Treated Wood Test Burn Analytical Results Test MO-BS-34/Test MO-BS-35/Test MO-BS-36
V	Hydrocarbon Emissions Summary Hogged Treated Woodwaste Test Burn
VI	Hydrocarbon Emissions Summary Hogged Treated Woodwaste Test Burn
VII	Hydrocarbon Emissions Summary Woodwaste and Fuel Additive Test Burn14
VIII	Hydrocarbon Emissions Summary 15

INTRODUCTION

During the week of March 14, 1988 a compliance test program was conducted by Keystone Environmental Resources, Inc., to determine emissions from the Koppers Company Inc., steam production facility at the Montgomery, Alabama Plant. The intent of the March test program was to demonstrate compliance with the draft permit provisos. Testing was performed to demonstrate that the boiler can effectively destroy constituents of concern while using wood treating process wastes as a fuel additive. The results of this testing can be used to establish permit stipulations allowing the use of process materials and treated wood as fuel supplements. Testing would also illustrate the effects of improvements and corrections recently adopted to better control particulate matter emissions and evaluate the performance of the boiler in the destruction and removal of constituents contained in the fuel additive material and the hogged treated wood.

The test program results determining particulate matter (PM) emissions from the boiler stack have been submitted in the <u>Fuel Additive Program/Annual Compliance Testing Program</u> report dated April 11, 1988. The results of hydrocarbon and pentachlorophenol (PCP) emissions test program were not available for inclusion in the April 11th report and are summarized in the following report. Analysis of the stack gas was performed on samples taken when the boiler was operating using a fuel additive in combination with the wood waste feedstock and when chipped treated wood was fired. The chipped material was generated by hogging poles treated with wood preservative.

Testing was conducted according to the test plan submitted to the Alabama Department of Environmental Management (ADEM) for the November test program. The tests were observed by Mr. Glen Golson and Mr. Fermon Lindsey of ADEM. The test team was comprised of Mark Grunebach, Vincent Bouma, and John Kane, Manager of Keystone's Air Quality Engineering Group (AQE).

When burning hogged wood treated with creosote or fuel additive material analysis was conducted to determine polynuclear aromatic hydrocarbon (PAH) emissions. The results of modified method 5 testing show average total PAH emissions of 0.0138 lb/hr when burning the hogged material, and 0.00641 lb/hr when burning wood waste with the fuel additive. When burning hogged wood treated with pentachlorophenol in oil preservative (penta) analysis was performed for pentachlorophenol emissions (PCP) and an average emission rate of 0.00045 lb/hr PCP was calculated.

The results of testing can be analyzed by reviewing the destruction and removal efficiency values (DRE) for the different test conditions. The hogged treated wood tests yielded DRE values of 99.99% or greater for all principal organic hazardous components (POHC) except for acenaphthylene and naphthalene destruction which averaged 99.93% on one run only (run 2). The results of the fuel additive program illustrate an average DRE for all components of 99.99% or greater, except for carbazole which had a DRE of 99.97%. Of the 53 DRE values determined only 3 were below 99.99%, and none were below 99.92%. These results show that the boiler efficiently destroys the POHC associated with treated wood and wood treating wastes.

TEST PROGRAM

The test program, as described in correspondence to Ronald Gore of ADEM from John Kane dated September 25,1987, utilized Federal EPA methods 1 through 5, MM5 and 25 A for the required determinations. Testing was conducted when the boiler was operating under a steam loading of 24,000 lbs/hr or greater.

Actual testing began on March 15th with initial testing of boiler operations using a wood waste feedstock. Three EPA method 5 tests were conducted to calculate an average particulate emission value when burning only wood waste.

On March 16th three particulate determinations and three modified method five tests were performed to determine PM and POHC emissions while the hogged treated wood was being used as fuel. Two sources exist for this potential fuel supply. One source is generated from expended or unusable materials treated with creosote. The second source is expendable wood products treated with penta-chlorophenol in oil (penta). Due to developmental nature of this portion of the program, three feed scenarios were utilized: burning hogged material treated with penta for the first test, blended hogged creosote and penta material for the second test, and hogged creosote material for the third test. For analysis of this process, destruction and removal efficiency calculations were performed. The POHC evaluated were PAH when creosote was the treating agent and PCP when wood waste treated with penta was used for fuel.

The third day of testing included the determination of PM and POHC emissions while the boiler was fired on wood and wood waste mixed with a fuel additive. The fuel additive used

was work by-product associated with the preservation of wood with creosote and pentachlorophenol. The tests were performed when the boiler was operating at steady state conditions generating 22,500 lb/hr of steam.

Addition of the fuel additive material began at 11:40 AM and was controlled by the interlock system on the feed system. The time of operation (on time) of the additive feed system, as displayed on the elapsed time indicator, was recorded at approximately 10 minute intervals where possible throughout the testing of this mixed feed. Temperature of the upper combustion zone, as indicated on the interlock, oxygen, and carbon monoxide were also recorded at these intervals in addition to the steam production rate. At the completion of testing, the additive feed pump rate was measured. This value in pounds per minute is then applied to the on time of the feeder prorated to an hour to yield the addition rate of the fuel additive in pounds per hour for that test period. The pump rate test was performed by separating the screw auger trough to allow the material to fall into a drum. The drum, in turn, is positioned on a balance. Time was recorded for each 100 pound increase in drum weight. The boiler operating temperature was monitored during testing. An average value of 1955 OF was recorded during the test burns conducted using hogged materials and a value of 1840 OF was recorded when wood waste with fuel additive material was burned. Field data associated with these determinations is contained in the Appendix.

The permit conditions of an operating temperature of 1600°F, carbon monoxide concentration less than 500 ppm and an oxygen concentration greater than 9% were maintained throughout the test program.

Clean up of the test train components was completed at the site. Analyses of the method 5 and modified method 5 train catches were performed at Keystone's laboratories in Monroeville, Pennsylvania.

TEST RESULTS

Tables I-VII represent the summation of results derived by the portion of this program which involved the determination of POHC emissions. Presented are the results of analysis determined by Keystone's Analytical Division and evaluation of the analytical data by the Keystone's Air Quality Engineering Group. The raw analytical data, raw field data sheets, and computer printouts of the stack gas calculations are found in the Appendix.

KOPPERS COMPANY, INC MONTGOMERY, ALABAMA

TABLE I

WOOD FIRED BOILER TEST BURN TEST SEQUENCING

Run # (<u>MO-BS-)</u>	<u>Date</u>	<u>Time</u>	Description	
31 32 33	3/15/88	14:00-15:03 15:15-16:19 16:45-18:18	This series of tests was conducted with the boiler using a woodwaste feedstock.	
34 35 36 36S	3/16/88	15:29-16:58 17:45-19:12 19:30-20:57 19:30-20:57	This series of tests was conducted with the boiler using a hogged treated wood feedstock.	
37 39 40 41 42 42S 43	3/17/88	11:38-12:58 15:00-16:03 15:49-17:16 16:56-17:59 17:45-19:12 17:45-19:12 18:52-19:55	This series of tests was conducted with the boiler using woodwaste fuel and a fuel additive.	

KOPPERS COMPANY, INC MONTGOMERY, ALABAMA

TABLE II
HOGGED TREATED WOODWASTE TEST BURN
BOILER OPERATION

<u>Date</u>	Test	<u>Time</u>	Temperature	O ₂ (%)	CO (ppm _v)	
3/16/88	MO-BS-34	15:20	1930	9.0	0	
		15:40	1910	9.0	0	
		15:50	1925	9.5	0	
		16:00	1970	8.0	0	
		16:20	1975	9.5	10	
		16:30	1995	9.0	10	
	• "	16:40	1995	8.5	. 0	
	MO-BS-35	17:30	1920	9.0	5 :	
		17:45	2015	7.5	0	
		18:00	1980	8.0	0	
		18:15	1970	7.5	0	
	.XZ.	18:30	1950	8.5	10	
		18:45	1935	9.0	0	
		19:00	1920	9.5	10	
	MO-BS-36	19:30	1915	9.5	5 *	
		19:45	1925	8.5	5	
		20:00	1940	9.0	10	
		20:15	1950	8.0	5	
		20:30	1975	8.8	15	

KOPPERS COMPANY, INC MONTGOMERY, ALABAMA

TABLE II (continued)

WOODWASTE AND FUEL ADDITIVE TEST BURN BOILER OPERATION

<u>Date</u>	<u>Test</u>	<u>Time</u>	Temperature (° <u>F)</u>	O ₂ (%)	CO (ppm _v)
3/17/88	MO-BS-37	11:40	1863	10.0	25
		11:50	1826	10.5	75
		12:00	1841	10.0	50
		12:10	1824	10.2	50
		12:22	1781	10.5	50
		12:33	1807	10.5	45
		12:43	1725	11.0	` 30
	MO-BS-39	15:00	1852	9.0	80
		15:10	1894	9.0	50
		15:20	1875	9.0	55
		15:40	1818	10.0	45
. Ti	MO-BS-40	15:50	1883	9.0	35
		16:00	1889	9.0	50
		16:20	1901	9.1	60
		· 16:33	1855	9.5	45
	MO-BS-41	16:45	1877	9.5	60
		17:10	1855	8.5	<i>75</i>
	MO-BS-42	17:30	1834	9.5	65
	MO-BS-42s	18:35	1775	10.5	75
	MO-BS-43	19:20	1813	10.0	<i>5</i> 0

Hydrocarbons and PCP emissions in the stack gas can be compared to the levels in the feedstock to evaluate boiler performance. This comparison is used to calculate the Destruction and Removal Efficiency (DRE). The formula used in this calculation is as follows:

 $DRE = \underline{M(IN) - M(OUT)}$ M(IN)

Where

M(IN) is the mass per unit time of POHC fed to the boiler in the feedstock

and

M(OUT) is the mass per unit time of POHC in the stack gas

The DRE values are reported for the hogged treated wood tests in Table VI and in Table VII for the fuel additive tests. The stack conditions encountered during testing are summarized in Table VIII.

The results of tests performed while using hogged treated wood as fuel are summarized in Table VI. When hogged wood waste treated with pentachlorophenol in oil was used as fuel (test MO-BS-34) a DRE of 99.999% for PCP was calculated. Using a mixture of hogged wood waste treated with creosote and penta DRE results were above 99.99% for PAH and PCP except for acenaphthylene and naphthalene, which had DRE values above 99.92%. The final test run, which used hogged wood waste treated with creosote as fuel, showed all DRE values were above 99.99%.

Testing conducted when a fuel additive was used in conjunction with the wood waste fuel is summarized in Table VII. The DRE values calculated were 99.99% or greater for all components except carbazole which had a value of 99.97%.

The lower DRE value for carbazole may be explained by its low concentration in the boiler feedstock and stack off-gas streams. Where the concentration of the measured constituent was below the detection limits of the analytical instruments the value of the detection limit was used to calculate the DRE value. For carbazole the amount of the component present in the feedstock and stack gas was below the analytical detection limit.

KOPPERS COMPANY, INC MONTGOMERY, ALABAMA

TABLE III

ANALYTICAL RESULTS

Woodwaste Fuel:

3/15/88

Ultimate Analysis: (Wt. %)

Parameter	Results
Volatiles @ 105 ⁰ C Ash @ 900 ⁰ C Carbon Hydrogen Nitrogen Sulfur	39.0 1.2 30.0 7.6 0.06 <0.1
Heat of Combustion: (BTU/lb)	4,905

Fuel Additive Material:

3/17/88

Ultimate Analysis: (Wt. %)

Parameter	Results
Volatiles @ 105 ⁰ C Ash @ 900 ⁰ C	29.0 6.5
Carbon	57.0
Hydrogen Nitrogen	7.3 0.5
Sulfur	0.41
Heat of Combustion: (BTU/lb)	11,986

KOPPERS COMPANY, INC MONTGOMERY, ALABAMA

TABLE IV

HOGGED TREATED WOOD TEST BURN ANALYTICAL RESULTS

SAMPLES COLLECTED 3/16/88 TEST MO-BS-34

Hogged Woodwaste (Treated with Pentachlorophenol in Oil):

Ultimate Analysis: (Wt. %)

Parameter	Results
Volatiles @ 105 ^o C Ash @ 900 ^o C Carbon Hydrogen Nitrogen Sulfur	24.0 0.4 41.0 7.5 0.04 <0.1
Heat of Combustion: (BTU/lb)	6,988

Hydrocarbon Levels in Feedstock: (lb/hr)

Feedrate 8510 lb/hr

Acenaphthene	1.1657933
Acenapthylene	
	0.6169344
Anthracene	0.4492984
Benzo(a)anthracene	0.0201674
Benzo(a)pyrene	0.0047227
Benzo(b)fluoranthene	0.0131045
Benzo(g,h,i)perylene	0.0033272
Benzo(k)fluoranthene	0.0061608
Chrysene	0.2527304
Dibenz(ah)anthracene	0.0061608
Fluoranthene	0.2527304
Fluorene	0.2799606
Indeno(123-cd)pyrene	0.0027145
Phenanthrene	1.5402086
Pyrene	0.3037870
Carbazole	0.0298681
Naphthalene	2.8761907
Pentachlorophenol	48.847400

KOPPERS COMPANY, INC MONTGOMERY, ALABAMA

TABLE IV (continued)

HOGGED TREATED WOOD TEST BURN ANALYTICAL RESULTS

SAMPLES COLLECTED 3/16/88 TEST MO-BS-35

Hogged Woodwaste (Treated with Penta and Creosote):

Ultimate Analysis: (Wt. %)

Parameter	Results
Volatiles @ 105 ^o C Ash @ 900 ^o C Carbon Hydrogen Nitrogen Sulfur	22.0 0.6 46.0 6.9 0.12 0.12
Heat of Combustion: (BTU/lb)	8,155

Hydrocarbon Levels in Feedstock: (lb/hr)

Feedrate 6720 lb/hr

Acenaphthene	35.139894
Acenapthylene	2.4255261
Anthracene	14.580033
Benzo(a)anthracene	7.3907999
Benzo(a)pyrene	1.6125382
Benzo(b)fluoranthene	2.4792774
Benzo(g,h,i)perylene	0.8936149
Benzo(k)fluoranthene	0.9137716
Chrysene	6.7860981
Dibenz(ah)anthracene	1.4781600
Fluoranthene	22.642723
Fluorene	15,722247
Indeno(123-cd)pyrene	0.5334814
Phenanthrene	45.755770
Pyrene	20.828618
Carbazole	7.1892326
Naphthalene	23.448992
•	
Pentachlorophenol	31.785600

KOPPERS COMPANY, INC MONTGOMERY, ALABAMA

TABLE IV (continued)

HOGGED TREATED WOOD TEST BURN ANALYTICAL RESULTS

SAMPLES COLLECTED 3/16/88 TEST MO-BS-36

Hogged Woodwaste (Treated with Creosote):

<u>Ultimate Analysis:</u> (Wt. %)

Parameter	Results
Volatiles @ 105 ^O C Ash @ 900 ^O C Carbon Hydrogen Nitrogen Sulfur	24.0 0.6 48.0 6.7 0.20 0.14
Heat of Combustion: (BTU/lb)	8,523
** •	

Hydrocarbon Levels in Feedstock: (lb/hr)

Feedrate 6670 lb/hr

Acenaphthene	50.333333
Acenapthylene	3.0933333
Anthracene	17.000000
Benzo(a)anthracene	11.066667
Benzo(a)pyrene	2.7133333
Benzo(b)fluoranthene	4.5933333
Benzo(g,h,i)perylene	1.4066667
Benzo(k)fluoranthene	1.6666667
Chrysene	10.600000
Dibenz(ah)anthracene	1.9533333
Fluoranthene	32.866667
Fluorene	17.133333
Indeno(123-cd)pyrene	0.8200000
Phenanthrene	51.733333
Pyrene	28.066667
Carbazole	11.333333
Naphthalene	10.800000
Pentachlorophenol	13,273300

KOPPERS COMPANY, INC MONTGOMERY, ALABAMA

TABLE V

HYDROCARBON EMISSIONS SUMMARY HOGGED TREATED WOODWASTE TEST BURN

	Run 1	Run 2	Run 3
3/16/88	MO-BS-34	MO-BS-35	MO-BS-36
Start Time Finish Time	15:29 16:58	17:45 19:12	19:30 20:57
Hydrocarbon Emissions: (lb/hr)			
Acenaphthene Acenapthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(k)fluoranthene Chrysene Dibenz(ah)anthracene Fluoranthene Fluorene Indeno(123-cd)pyrene Phenanthrene Pyrene Carbazole Naphthalene	0.0007631 0.0003268 0.0000373 0.0000148 0.0000013 0.0000066 0.0000165 0.0000047 0.0000393 0.0000020 0.0001637 0.0001148 0.0000080 0.0005550 0.0001259 0.0000652 0.0110200	0.0008888 0.0015100 0.0000569 0.0000196 0.0000013 0.0000061 0.0000042 0.0000478 0.0000019 0.0000019 0.0005699 0.000077 0.0007501 0.0001658 0.0000630 0.0178400	0.0004876 0.0000641 0.0000330 0.0000110 0.0000018 0.0000074 0.0000026 0.0000253 0.0000019 0.0000807 0.00001583 0.0000032 0.0003684 0.0000775 0.0000641 0.0047300
TOTAL PAH	0.0132650	0.0221615	0.0061205
Pentachlorophenol	0.0005342	0.0004829	0.0003402
	Penta-in-oil trocted word	Mixed penta toreo treadod wood	Crowsole trialed cucarl

KOPPERS COMPANY, INC MONTGOMERY, ALABAMA

TABLE VI

HYDROCARBON EMISSIONS SUMMARY HOGGED TREATED WOODWASTE TEST BURN

Hydrocarbon Emissions: Destruction and Removal Efficiency (%)

	Run 1	Run 2	Run 3
3/16/88	MO-BS-34	MO-BS-35	MO-BS-36
Acenaphthene		99.998	99,999
Acenapthylene		99.938	99.998
Anthracene		99.9996	99.9998
Benzo(a)anthracene		99.9997	99.9999
Benzo(a)pyrene		99.9999	99.9999
Benzo(b)fluoranthene		99.9998	99.9999
Benzo(g,h,i)perylene		99.998	99.9995
Benzo(k)fluoranthene		99.9995	99.9998
Chrysene	8	99.995	99.9998
Dibenz(ah)anthracene		99.9999	99.9999
Fluoranthéne		99.999	99.9998
Fluorene		99.996	99.999
Indeno(123-cd)pyrene		99,999	99.9996
Phenanthrene		99.998	99.999
Ругепе		99.999	99.9997
Carbazole		99.999	99.999
Naphthalene		99.924	99.999
PCP .	99.999	99,999	

KOPPERS COMPANY, INC MONTGOMERY, ALABAMA

TABLE VIII

HYDROCARBON EMISSIONS SUMMARY

Hogged Treated Woodwaste Stack Conditions

3/16/88	Run 1	Run 2	Run 3
	MO-BS-34	MO-BS-35	MO-BS-36
Flow (ACFM) (SCFM) Temperature (OF) Moisture (%)	29504	24109	24265
	19218	16269	16333
	361.6	335.7	337.7
	11.07	9.60	9.88
Sampling Conditions			
Sampling Time (min) Sample Volume (SCFD) Isokinetics (%)	84.0	84.0	84.0
	34.59	30.80	30.32
	95.42	98.73	97.13

Fuel Additive Test Burn Stack Conditions

	Run 1	Run 2	Run 3
3/17/88	MO-BS-37	MO-BS-40	MO-BS-42
Flow (ACFM) (SCFM) Temperature (°F) Moisture (%)	22680 15434 331.5 12.76	27582 18069 362.3 15.45	26866 17701 357.6 14.63
Sampling Conditions			
Sampling Time (min) Sample Volume (SCFD) Isokinetics (%)	77.0 26.16 99.94	84.0 33.59 103.7	84.0 32.86 102.5

CONCLUSION

the Last East Car

The results of particulate matter, hydrocarbon, and PCP determinations performed for this program show the effect of the changes made in the operation of the steam production facility at the Montgomery plant. Repairs made to the boiler equipment and improvement made in the wood waste fuel quality have reduced mass emissions to less than one third of the value determined by the November 1987 program. Destruction and removal efficiency values were maintained above 99.99% for 50 of the 53 components evaluated.

These results show that in addition to being well below the compliance limitations for particulate matter emissions, the boiler at Koppers Montgomery, Alabama Plant is capable of destroying the POHC (PAH and PCP) associated with fuel additive material consisting of process wastes generated by the wood treating operations. Constituents found in treated wood were also effectively destroyed by the boiler. The results of stack testing show that wood treating process wastes are a good fuel additive material, and that treated wood is an efficient boiler fuel, and can be beneficially used accordingly.

CALIFORNIA FORESTRY ASSOCIATION

CCCUPATIONAL HEALTH & PRODUCT SAFETY

AUG 15 1991

August 8, 1919 File No. 8113.1

1311 I STREET
SUITE 100
SACRAMENTO
CALIFORNIA
95814
PHONE 916 444 6592
FAX 916 444 0170

TO: CFA Wood-Fired Boiler Pool Members

-FR: Steven Petrin Gell

RE: Project Wrap-Up and Final Report

We are finally wrapping-up active involvement in the wood-fired boiler testing pool. This memo will take care of a few final items and let you know where things stand.

Final Report

We have enclosed a copy of the Final Report for the project. This is based upon a paper Chuck Sassenrath did for a recent TAPPI conference, but with some editing and suggested changes by myself. Since it provides an overview of the legislation and the pooled testing project, you may know much of this already. However, the tables in the back summarize the data for all the facilities tested, some of it in different forms than reported to the districts (see the expanded table on dioxins and furans, for instance). The discussion of the project also contains background on some behind-the-scenes issues that you all may not have been aware of.

This is a summary and does not include the complete set of data results. Due to the time, expense, and the probable lack of need, we have not included the complete results. However, we have put together a packet comprised of the data tables from all the site reports. This packet is available for those who request it — just call the CFA office. But please, this is 50-60 pages long so only call if you really want it.

Addition of Chrysene to Testing List

It has come to my intention that there has been a slight change in reporting requirements after all. This is small enough that most of the districts probably won't even notice it. However, to stay legal some of you may have to update your emissions report. Fortunately, it will be very easy.

The ARB has added chrysene to the list of PAHs that must be reported. The PAH test that we ran includes chrysene, so we have the data but just hadn't included it in the prior round. Thus, there will be no need for further testing, just a simple addition to your report of emissions. I had asked Chuck to write-up a sheet on how to make this addition and the enclosed letter (date July 30) is the result. Note that only some facilities (those using boilers 2,4,5,10, and 11) will need to add the chrysene emissions, the others having detected none. The numbers are still quite low.

Input Needed on Risk Prioritization and Assessment Results

From our perspective, we would like to get some idea of how things worked out for everyone on the risk prioritization and assessments. Not only do we need this for our own final project assessment, but we will be presenting a paper to the NCASI

conference in October. I had done a paper two years ago at the initiation of the project, so this will be a follow-up for them. PLEASE answer the questionnaire on the next page and send it in so that we can gather this information. As indicated below, I will be at a new address and would like the questionnaires sent there — once I have gathered the information for the NCASI conference, the questionnaires will be sent on to the CFA office. Please note that the NCASI paper will only address facilities in the aggregate — no specific facilities will be referred to by name.

CFA Environmental Director Leaving

Those of you who are not members of CFA may not be aware that I will be leaving the Association to take a position with Georgia-Pacific. I will be their new Senior Environmental Engineer, based out of the Portland office. As I will have oversight of the California mills, I'll still be involved and around, but will no longer be coordinating any future efforts related to the testing project.

You may feel free to contact me if you need to follow-up on any aspects of the project. My new address and phone number will be:

STEVEN A. PETRIN
Georgia-Pacific Corporation
900 SW Fifth Avenue
Portland, Oregon 97204

(503) 248-7341

Please send the risk assessment questionnaires to this address. Also note that I will not be starting there until September 3, but I will still be checking in to the CFA office periodically prior to then, so you may leave messages there if you need to contact me.

Thanks to all of you who have been involved in the project. It has at least been interesting and I hope to be able to work with you again in the future.

Enclosures

2202 E Street, Eureka, CA 95501

July 30, 1991

PAH FACTOR (lb/1000lb steam)

Mr. Steve Petrin, Director Environmental Affairs California Forestry Assn. 1311 I Street Sacramento, CA 95812

RE: CHRYSENE ADDITION TO PAH LIST

Dear Steve,

In September 1990, ARB added chrysene to the listing of PAH substances that are designated by them as carcinogens. Chrysene was only detected at five of the eleven TAC wood fired boiler test sites in very low concentrations. The item indicated as ARB (A-I) PAH'S 1050 on the air toxic emission summary sent out to all boiler pool participants should be increased for each of these five test prototype sites as follows:

			, , , , , , , , , , , , , , , , , , , ,	
BOILER	# TYPE	LOCATION	OLD FACTOR	NEW FACTOR
2	FUEL CELL W/MULTICLN	BEIBER	4.1E-7	5.5E-7
4	DUTCH OVEN W/SCRUBBER	ANDERSON	3.0E-7	4.3E-7
5	STOKER W/SCRUBBER	ANDERSON	9.8E-8	1.1E-7
10	AIR SUSPENSION	ROCKLIN	7.0E-7	8.7E-7
11	FLUIDIZED BED	NORTH FORK	1.2E-8	6.0E-8

All these PAH factors are so low it is very doubtful that they will cause a change in the priority rating of any of the wood fired boilers.

Sincerely

Charles Sassenrath, P.E.

TIME SEC.

AIR TOXIC EMISSIONS FROM WOOD FIRED BOILERS

Charles P. Sassenrath, P.E. Consulting Chemical Engineer Eureka, California, 95501

INTRODUCTION

In 1987 the California State Legislature passed legislation directing prescribed emission sources to inventory and report their emissions of designated air toxics. The inventory reporting procedure was based upon actual source tests or verified emission factor data. Facilities were required to prepare and submit AIR TOXIC EMISSION INVENTORY PLANS to the individual air pollution control districts prior to August 1, 1989. These INVENTORY PLANS were to consider a listing of 326 toxic substances and were needed for facilities identified as emitting in excess of 25 tons per year of any of the criteria pollutants: particulate matter, oxides, nitrogen oxides, hydrocarbons. or Smaller facilities were brought into the inventory program one year later. The AIR TOXIC EMISSION INVENTORY PLANS were reviewed by the air districts and were approved or revised prior to the start of testing. Emission source testing was to be completed and final AIR TOXIC EMISSION INVENTORY REPORTS were to be filed with the air districts within six months of Plan approval (June 1, 1990). Based upon data contained in these Reports, the individual facilities were prioritized by the air districts using a screening process to predict potential health risks. classified as "High Priority" were required to prepare air

emission risk assessments which will be available for public disclosure.

The Air Toxic Emission Inventory Program was designed to evaluate all possible air toxic emission release points, but the major focus of the inventory was placed upon combustion processes, as they represent the greatest potential for release of large volumes of air emissions at oil refineries, chemical plants, utility boilers, lime kilns, smelters, kraft pulp mills and a vast array of fuel burning operations.

EMISSION INVENTORY PROGRAM

The California State Legislature had established an optimistic time schedule to accomplish the Air Toxic Program, considering the large number of industrial facilities operating in California.

August 1, 1989 ----- File Inventory Plans June 1, 1990 (est.) ---- File Inventory Reports December 1,1990 ----- Prioritize Facilities May 1, 1991 ----- File Risk Assessments

The time schedule for this enormous air toxic inventory effort placed financial and manpower resource demands upon industry to test thousands of air emission release points throughout California. Manpower demands imposed upon testing firms capable of performing the needed source tests were further strained. There were too few testing firms to perform the source tests and many of these firms were not familiar with the specific testing procedures required to measure a vast array of substances by new source testing methods still being developed by the California Air Resources Board (CARB). This resource squeeze was extended to

the few laboratory firms in the state qualified to perform the test analyses. Needless to say, the cost of source testing and laboratory analyses succumbed to the law of supply and demand. Source testing and laboratory charges began to escalate to where a complete air toxic emission test project for a single stack could cost as much as 60,000 dollars.

Fortunately, one safety valve was built into this inventory during the drafting of the regulations. CARB allowed groups of similar process operations to "pool" their resources, test representative prototype air emission processes, develop air toxic emission factors and apply these prototype factors to similar facilities participating in the test pool. Although this procedure reduced the source testing costs and manpower demands. it imposed another layer of governmental review upon the process. The test approval process was extended from the individual air districts to the California Air Resources Board, adding another layer of bureaucratic oversight to the inventory process. Hundreds of individual air toxic test plans had to be submitted to CARB for review prior to final air district approval. This new layer of inventory plan review caused a six month delay in starting the testing programs. Many test activities scheduled for Fall 1989 were postponed until June 1990.

WOOD FIRED BOILER TEST POOL SELECTION

The forest products industry in California uses an array of boiler types, ranging from small Dutch Oven boilers built in the 1940's to modern spreader stoker or fluidized bed boilers used

for generating electric power for sale to utility companies. The California Forestry Association (formerly the Timber Association of California), under the direction of its Environmental Director, Mr. Steven Petrin, sponsored a pooled wood fired boiler test program representing over 90 wood fueled boilers located at 66 sawmill or wood fueled power generation plants. An industry committee was appointed to evaluate the boiler characteristics and operating variables to be studied in the pooled test program. The air toxic substances requiring evaluation by CARB were determined to include toxic metals, silica, benzene, aldehydes, phenolics, polycyclic aromatic hydrocarbons (PAH's), dioxins and dibenzofurans.

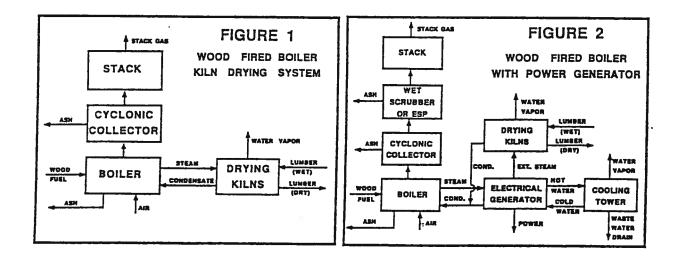
The main boiler system variables that could affect air toxic emissions were chosen by the industry committee to include:

- o BOILER TYPE
- o WOOD FUEL SPECIES
- o BOILER LOCATION
- o AIR EMISSION CONTROLS

Five major boiler type categories were selected for air toxic emission testing.

- o DUTCH OVENS (19)
- o FUEL CELLS (26)
- o SPREADER STOKERS (40)
- o FLUIDIZED BEDS (4)
- o AIR INJECTION BURNERS (4)

The industry committee decided early in the pooled test program to limit the emission studies to boilers fueled exclusively with wood to minimize complications arising from burning fuel oils, petroleum coke, municipal waste and thereby, introducing a variety of other complicating comparison factors. However, fuel


species variations within the timber industry were evaluated, such as:

- o DIRTY BARK
- O CLEAN SAWDUST AND SHAVINGS
- o WOOD SPECIES
- o LOCATION VARIATIONS

Wood fired boilers in California use three main types of particulate control systems. All, but the oldest, have primary cyclones or multiple cyclone type particulate collectors. The larger, more modern or retrofitted boilers, also use wet scrubbers or electrostatic precipitators (ESP) as the final particulate collection device. Three specific control systems were selected for emission testing and analyses.

- o CYCLONIC TYPE COLLECTORS (36)
- o MULTICLONES AND WET SCRUBBERS (21)
- o MULTICLONES AND ESP (31)

This control system field presented almost a 1,000 fold range of particulate collection efficiencies to be evaluated, with stack emission rates ranging from 0.001 grains to 1.0 grain per dry standard cubic foot of exhaust gas.

The final eleven prototype wood wired boilers chosen as representative of these variables are described on Table 1.

AIR TOXIC TESTING

The source test methods and procedures used for the pooled test program were specified by CARB in their Air Toxics Testing Methods Manual. An extensive source test protocol was prepared and a detailed Request For Proposal (RFP) was sent out for bid to six testing firms. After evaluation of the bid prices and qualifications of the RFP respondents, the California Forestry Association Committee selected Galson Technical Berkeley, California, the project testing contractor. as Following test pool approval delays by the air districts and CARB, air toxic testing finally began in June 1990, about six months behind the originally anticipated schedule. Testing of the eleven wood fueled boilers was completed in October 1990.

Emission data generated from the Pooled Test Program were developed to relate emissions against boiler steam rates, stack gas flow rates, fuel types, combustion efficiencies, particulate collection control device variations. From these test data emission factors were derived and presented standardized format for use by each of the participants in the pooled test program.

An early unsuspected challenge of the test program data evaluation procedure was selection of a presentation format for emission factors. There was no readily applicable consistent format for expressing an array of particulate metal and volatile

gaseous organic emissions for these wide ranging test results on a single simple reference base. Literature searches showed comparison values being expressed as pounds per ton of wood burned, micrograms per dry standard cubic meter of exhaust gas, pounds per million BTU heat input, and picograms per Joule, just to mention a few references bases that were investigated and found to present a mathematical manipulation nightmare. Each person who had previously worked in this study arena seemed to have developed his or her own special emission relationship factors. This dilemma proved more serious in our study than in many of the prior works, because of the range of values encountered. We finally decided to base the emission factors on relationships that were easily derived from the sampling and laboratory analyses calculation methods. Particulate metals are largely detected on the collection filter, so we related most metal factors on the basis of parts per million by weight of the particulate catch. This also equates as micrograms per gram of EPA Method 5 particulate. Except for mercury, which is partially volatile at stack conditions, this proved to be a satisfactory procedure. Very distinct distribution patterns were found for the several control systems studied, with trace metals becoming more concentrated as the large fly ash particles were removed by the more efficient collectors as indicated in Table 2.

Mercury, benzene, aldehydes and other volatile organic emission factors were based upon stack exhaust gas flow rates that had been normalized to a combustion reference of 12 percent carbon dioxide. Emission concentrations of these substances were

expressed as parts per billion by volume in the stack exhaust gas and showed no significant variation with differing exhaust stack gas temperatures ranging from 140 to 500 degrees Fahrenheit as displayed on Table 3. An attempt was made to develop a relationship between organic volatiles and exhaust stack carbon monoxide or hydrocarbon concentrations. A trend of this type was recognized at several of the prototype test units, but no correlation of these parameters between boiler units could be developed.

PAH's, dioxins and dibenzofurans tend to be distributed between the particulate and gaseous states at normal boiler stack gas temperatures. Since their concentrations were small in this boiler study, we used the generally accepted EPA reporting relationship of micrograms or nanograms per dry standard cubic meter at 12 percent carbon dioxide. As in all prior wood fueled boiler PAH studies, naphthalene was the predominant compound found. Our test values have been converted into micrograms per kilogram of wood burned and are presented in Table 4 for comparison with the PAH study conducted by the National Council for Air and Stream Improvement on seven wood fired boilers in North Carolina (4). Considering the extremely low concentrations of these many PAH compounds, good agreement is shown between the two studies.

The emission factors used for dioxins and dibenzofurans in this AIR TOXIC EMISSION INVENTORY PROGRAM were derived from source tests conducted by the California Air Resources Board in 1988 on

four types of wood fired boilers. These CARB emission factors are presented in Table 5, with dioxin and dibenzofuran values listed separately and expressed as the 2,3,7,8 TCDD equivalent, based on the California Department of Public Health conversion factors and the EPA conversion factors. In all cases the EPA values are less than the California values.

Due to cost factors and the general feeling that CARB derived dioxin and furan values were appropriately low, it was decided that using CARB derived emission factors would be acceptable, However, one boiler site chose to have tests for dioxins and furans conducted. The results were nondetectible throughout the range of species, showing that CARB's numbers and resultant emission factors used for the boilers may be high.

The treatment of nondetectable levels of air toxics in this emission study program presented a major difficulty, because of the high detection limits that occur when dust collection efficiencies are extremely high. After lengthy review the CFA committee decided to report emission concentrations as zero if a substance was undetected in all three stack samples. If positive detection of a substance occurred in one of the three stack samples, the remaining nondetectable measurements were counted as one-half the detection limit. This is a commonly accepted practice in toxicological evaluations.

TEST PROGRAM DILEMIMAS

Because of the developmental status of the new air toxic test methods that we were required to use in the pooled test program

and the extremely tight testing time frame, there was no possibility to examine test results and make mid-course adjustments. When a testing, laboratory or procedural error was detected we were about five source tests downstream. Further early project delays were encountered by uncertainty in the multiple metals test methodology and air district variations in required tests for phenolics and crystalline silica, both of which proved to yield insignificant emissions.

The major dilemma throughout the entire test program was the loss of detection sensitivity for metals at test sites which had high efficiency particulate collectors. Test runs as long as four hours would only give a detection limit of 1000 parts per million, which was obviously far above the expected metal value. A new high volume sampling technique needs to be developed to solve this difficulty.

We did not expect to find hexavalent (hex) chromium in the metal samples, but it occasionally appeared at borderline detection limit levels. The first such hex chrome occurrence was at a particleboard plant which burned only clean sanderdust, containing traces of phenolic resin, in an air suspension burner. At three other boiler test sites we found hex chrome in only one of the three stack exhaust gas samples at almost the same concentration level as the total chrome. The sporatic nature of detection and the unusual relationship between hex chrome and total chrome suggests that these may be false positive values. Bulk samples of ash and stack particulate at several alternate

facilities were tested and yielded no indication of hexavalent chrome. Some boiler chromium, and possibly hex chrome derivatives may be created from the use of a specific chromium trioxide, sodium silicate cement placed under the boiler grates.

CONCLUSIONS

Air toxic metal emissions from the new generation of wood fired boilers equipped with electrostatic precipitators are minimal because of the high efficiency of these collectors. It would be interesting to explore the origin of these metals, as some are coming from the wood, while others come from the dirt that is brought into the boiler with the bark. At the one site where we found selenium, was it contained in the wood or did it enter with occluded soil?.

Aldehydes and benzene are the predominant volatile organic hydrocarbons created by wood combustion, with levels up to one part per million sometimes occurring. Volatile organic emissions are slightly lower for fuel cell and Dutch oven boilers, probably because of the large area of hot refractive surface relative to the furnace combustion zone. The cooler boiler tubes in the fireboxes of the large spreader stokers may be partially quenching the combustion process for some organics.

Volatile organic concentrations in the stack gas rose with an increase in carbon monoxide concentration in some individual boilers, but no similar combustion efficiency relationship could be established between boiler types.

PAH emissions from properly operated wood fired boilers are very low and probably not worthy of the high degree of concern that they have received in past studies. The highly toxic benzo(a) pryene was only detected in one sample of the entire test series. This observation may not apply to wood stove combustion, which is far less efficient.

ACKNOWLEDGEMENTS

I would like to express my appreciation to the California Forestry Association for choosing me to serve as Project Manager of this Wood Fired Boiler Air Toxics Test Program and to its Environmental Director, Mr. Steven Petrin for reviewing and helping to edit this report. Special thanks are extended to the boiler owners and operators at the eleven test sites for the courtesy and consideration shown to Galson's source test crews that moved in on them for the prolonged periods while testing their boilers.

The technical staff of the California Air Resources Board and the nineteen local Air Districts involved with this program have been most cooperative in helping us to get this test program up and running.

LITERATURE CITED

- 1. California Air Resources Board, <u>Technical Guidance Document to the Criteria and Guidelines Regulation for AB-2588</u>: pages 266-276 (August 1989)
- 2. Timber Association of California, <u>Pooled Air Toxics Source</u> <u>Test Program for Wood Fired Boilers</u>: (March 1990)
- 3. U.S. Environmental Protection Agency, <u>Locating and Estimating Air Emissions From Stationary Sources of Polycyclic Organic Materials (POM)</u>: EPA-450/4-84-007p
- 4. National Council of the Paper Industry for Air and Stream Improvement, A Polycyclic Organic Materials Emissions Study for Industrial Wood Fired Boilers: NCASI Technical Bulletin No.400, New York, NY (May 1983)
- 5. Lindner, Gloria and Jenkins, Alfred, <u>Emissions of Criteria Pollutants and Non-Criteria Pollutants from Wood-Fired Incinerators:</u> California Air Resources Board, Air Toxics Conference, Sacramento, CA. October 29, 1990

TABLE

FOR
TESTED
BOILERS
FIRED
WOOD
PROTOTYPE

ATION		PARTICULATE RATE (c)						13 4	Ē	80	ı	æ		0 14	1.5
SSOCI		PARTICUL gr/dscf	0.78	90.0	0.31	0.04		0.013	0.03	0.0008	0.002	0.0008		0.10	0.004
RESTRY A	32	GAS FLOW dscfm(b)	3,000	30,000	23,000	22,000	2	37,000	56,000	62,000	76,000	75,000	S .	16,000	45,000
THE CALIFORNIA FORESTRY ASSOCIATION	•	STEAM RATE GAS FLOW 1b/hour dscfm(b)	6,000	68,000	20,000	37,000	٠	90,000	118,000	136,000	164,000	167,000		43,000	92,000
BY		PARTICULATE CONTROL(a)	CYCLONES (d)	MULTICLONE	MULTICLONE	WET SCRUBBER		WET SCRUBBER	WET SCRUBBER	ESP	ESP	ESP	and to the tipe	THOTTTONE	ESP
AIR TOXIC EMISSIONS		BOILER TYPE	FUEL CELL	FUEL CELL	DUTCH OVEN	DUTCH OVEN		STOKER	STOKER	STOKER	STOKER	STOKER	ATR TN:T		FLUID BED
AIR TOXI		LOCATION	COASTAL	MOUNTAIN	MOUNTAIN	VALLEY		VALLEY	COASTAL	COASTAL	MOUNTAIN	VALLEY	VALLEY	!	MOUNTAIN
		SITE NUMBER LOCATION	Ħ	7	e	4		S)	y	7	ω	თ	10		11

All Boilers Tested Used Multiclone Collectors in Addition to the Units Indicated Dry Standard Cubic Feet per Minute at 12 percent carbon dioxide Expressed as Front Half Particulate Catch Only Prototype Boiler # 1 also used a Rotary Fuel Pre-Drier NOTES:

Ø TABLE

EMISSIONS OF AIR TOXIC METALS FROM WOOD FIRED BOILERS

BOILER NUMBER	н	2		10	4	ល	y	7	بر. م	•	;
BOILER TYPE	FUEL	FUEL	DUTCH	AIR	DUTCH	STOKER	STO	STOKER	STO	STOKER	FLUID
STEAM RATE (Mlb/hr)	v	89	20	 43	37	06	.118	136	164	167	Uada Co
PARTICULATE CONTROL	CYCLONE	MC	MC	MC	WS	WS	WS	ESP	ESD	י פ ע	י ני
BUBSTANCE	EMISSION	- 1	FACTORS	(e)	parts per		million by weight			303	10.1
ARSENIC	œ	ń	5	4	72		565		6 6 6	Particulate	
BERYLLIUM	0	0	0	0	0	0	0	<240> 0	. 0	<240> 0	< 45 × × × × × × × × × × × × × × × × × ×
CADMIUM	1	28	ω	ω	19	36	ω	172	190	. 0	2 6
CHROMIUM	26	33	1.4	25	38	518	74	383	206	<240> 238	173
нех снкоме	0<187>	25		29	0 6	0		0	0	0	0
COPPER	70	257	182	133	380	514	<150> <	1756	<755> <	903	<513> 550
LEAD	187	24	114	63	780	1270	302	890	617	981	260
MANGANESE	745 12	12077	7690	6550	4260	3530	1990 5	53900 1	12795 1		7360
NICKEL	Ŋ	62	33	38	290	130	55	1770	1423		470
SELENIUM	0	0	0	0	0	° 0	0	, 0		<1920> 0	430
ZINC	180 2	2043	1430	1250	7120	8910	6200 2	25900 1	10200	6290	3230
MERCURY (ug/dscm) (f)	0,	0.3	2.4	0	0.5	0.5	0.9	0	0.4	0.3	0
NOTES (e) Expressed	98	Front Half	Parti	Particulate C	Catch Only	>					

(e) Expressed as Front Half Particulate Catch Only(f) Mercury is expressed as micrograms per dry standard cubic meterIndicates Detection Limit for this Metal

က TABLE

EMISSIONS OF AIR TOXIC ORGANICS FROM WOOD FIRED BOILERS

																									٠.
		FLUID	324 13.1 250	MN	21	13	∞	TN	2% CO2	1		0	•	0.48	0	0.21	0.05	0.01	0.05	0	0	0	0 (0.03	500
ŝ	-	AIR	369 9.7 2100	35 0X1da		0	930	IN	at 1	ВР				6.21	•		•	•	•	0		0.41		0.65	
1	<u> </u>	STOKER	350 14.5 300	9 7	09	42	79	₽	c meter	120	0	0	0	0	0	0.01	0 ()	o (0 (o (> 0	> c	0	
	œ	STOKER	304 12.4 500	35 nt carbon		160	490	9	rd cubi	286	0.49	0	0	0.18		0.03	•	>	> (5	> (> 0	> c	0	roblems
	7	STOKER	369 12.6 1000	2 percent	310	33	212	TN	standard	BP	7	0	٦.	99.9	۲.	ო .	ተ የ	>	> 0	> c	o c	.	>		Blank Problems
	9	STOKER	158 11.4 1200	at 1	417	132	1270	HN	per dry	179	.7	.90	. 55	ຜູ່	.77	٠,		•		• •		o c	> C		BPI
	5	STOKER 8	138 5.4 220	by volume	490	06	87 1	11	E 13	ന	.31 2	.10	90.	.23 29	20.	80.	• :	. כ	•		o c	o. c			ive
	4	DUTCH S OVEN	158 9.0 600 NW	uo	72	21	315	6	micr	120	. 59	0	.07	0 69.	. L4	.4.	707	90.	, ,		90		. 0	.20 0	Inoperative
	8	OUTCH D	516 7.6 220 20	أبد	530	130	25	TN	BIONS		.90			14 2							0 90		0	21 0	
	2	FUEL D	272 14.8 2500 12	arts	760	140	10	7	ON EMIS	d d	0.28	\circ	50.03	74.0	10.0	3 0	0	.05	0.12 0	0.01	0.01	0	,01	•	NMInstrument
	-	FUEL	156 2.8 20 25	EMISSIONS:	124	384	0	TN	HYDROCARBON	⊣	o 0	•	7.74			0.40		0	0	0	0	0	0	0	NM
	BOILER NUMBER	BOILER TYPE	STACK TEMP: OF CARBON DIOXIDE:VOL & CARBON MONOXIDE:ppm HYDROCARBONS:ppm	ы		ACETALDEHYDE	BENZENE	PHENOLS	NA DHITHAT PAR		ACENAFILITERE ACENAPHTHENE	TINE TINE TO THE	RENE		H		ANTHRACENE	*CHRYSENE	*BENZO (B&K) FLUORANTHENE	*BENZO(A) PYRENE	*Benzo (Ghi) Perylene	*DIBENZ (AH) ANTHRACENE	3CD) P	TOTAL (*) PAH'S	NOTES NTNot Tested

NT--Not Tested NM--Instrument Inoperative * Classified as a Carcinogen by CARB

BP--Blank Problems

TABLE

POLYCYCLIC AROMATIC HYDROCARBON EMISSIONS FROM WOOD FIRED BOILERS

(micrograms per kilogram wood burned)

NCASI (4)	MEAN OF 7	1314 NM NM	51 108 64	25. 26.	8 10 7	9 19 19
CFA STUDY	MEAN OF 11	2343 36 <1	6 4 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	18 17 <1	<1 <1 NE 0.01	E
	_			CENE	RANTHE	ERYLENE ANTHRACENE D) PYRENE
		NAPHTHALENE ACENAPHTHYLENE ACENAPHTHENE	FLUORENE PHENANTHRENE ANTHRACENE	FLUORANTHENE PYRENE *BENZO (A) ANTHRACENE	*CHRYSENE *BENZO (B&K) FLUORANTHENE *BENZO (A) PYRENE	*BENZO(GHI)PERYLENE *DIBENZ(AH) ANTHRACE *INDENO(123CD)PYRENE

NM - NOT MEASURED

^{* -} CLASSIFIED AS A CARCINGEN BY CARB
(4) - NCASI BULLETIN 400 STUDY OF PAH EMISSIONS FROM 7
WOOD FIRED BOILERS IN NORTH CAROLINA

TABLE 5

BOILERS	+ D(BLND)	STOKER	48			0.000	0.003	000.0	0.000	0.000	0.089	0.261		15	•	. 05	0.042					00	•			
FIRED 1988		STOKER	MULTICLONE	rol	st das	٠.	0.005	0.011	0.015	0.034	20	0.490	7 088	10			0.358		•	0.003		0.003	0.031	83		
S FROM WOOD BOARD STUDY		FLUID BED	MC & ESP	RAN CONGENERS	dioxide in exhaust	00	0.016	0.026	0.048	0.068	Ω,	0.447	dioxide in exhaust	.082	.20	0.227	0.193	0.311	•	•	ω.	.09	0.422		QUIVALENT PR Factors)	
URAN EMISSIONS AIR RESOURCES E	В	FUEL CELL	MC & ESP	AND DIBENZOFURAN	carbon	000	000.0	000.	000.0	0.0	0.141 0.612	6.0	percent carbon die		0.062		0.132		•	•	מינ	. 12	0.301		WOI'AL 2378 TCDD EQUIVALENT sing DHS Factors/EPA Factor	•
ND DIBENZOFURAN CALIFORNIA AIR R	A	FUEL CELL	MULTICLONE	DIOXIN	at 12	900.0	•		•	0.392		•	t 12	•	0.255	•	100.0	•	•	•	•	•	•	E	buisn)	
DIOXIN AND	BOILER ID	BOILER TYPE	PARTICULATE CONTROL		DIOXINE: nanograms/dscm	12378-Pecdo	123478-HXCDD	123678-HxCDD	123789-HxCDD	1234678-HpCDD	OCDD .		FURANS: nanograms/ds	1218-1CDF	23478-Pechr	123478-HXCDF	123678-HXCDF	234678-HXCDF	123789-HXCDF	1234678-HDCDF	1234789-HDCDF	OCDF				

TCDD EQUIVALENTS: nanograms/dscm at 12 percent carbon dioxide in exhaust gas
DIOXINS 0.037/0.023 0.004/0.002 0.022/0.023 0.013/0.011 0.006/0.003
FURANS 0.538/0.231 0.221/0.135 0.561/0.209 0.789/0.643 0.179/0.088

APPLICATION FOR

TITLE 5 OPERATING PERMIT

AND

REVISED PERMIT TO CONSTRUCT

KOPPERS INDUSTRIES, INC. TIE PLANT, MS.

FOR OFFICE	AL LEE ONLY
APPLICATION RECEIN	PT
APPLICATION NO. :	
FOR MODIFICATION MINOR SIGNIFICA	ANT

STATE OF MISSISSIPPI DEPARTMENT OF ENVIRONMENTAL QUALITY OFFICE OF POLLUTION CONTROL AIR DIVISION

P.O. BOX 10385 JACKSON, MS. 39289-0385 PHONE NO.: (601) 961 - 5171

APPLICATION FOR TITLE V AIR POLLUTION CONTROL PERMIT TO OPERATE AIR EMISSIONS EQUIPMENT

PERMITTING Y	INITIAL APPLICATION	
	MODIFICATION RENEWAL OF OPERATING PERMIT	
NAME:	Koppers Industri	ies Inc
CITY:	Tie Plant	
COUNTY:	Grenada	
FACILITY No. (f known): 0960 - 000	/2
Tide V Application	May 31, 1994	Page ≠ 1

APPLICATION FOR TITLE V PERMIT TO OPERATE AIR EMISSIONS EQUIPMENT

CONTENTS

DESCRIPTION	SECTION
Application Requirements	Α
Owners Information	В
Emissions Summary / Facility Summary	С
Emission Point Data:	
Fuel Burning Equipment	D
Manufacturing Processes	E
Coating, Solvent Usage and/or Degreasing Operations	F
Printing Operations	G
Tank Summary	Н
Solid Waste Incinerators	I
Asphalt Plants	J
Concrete Plants	K
Control Equipment	L
Compliance Demonstration	М
Current Emissions Status	N
Compliance Certification	O

1.	Name,	Address & Contact for the Owner/Applicant
	A.	Company Name: Koppers Industries Inc
	В.	Mailing Address:
		1. Street Address or P.O. Box: 436 Seventh Ave 2. City: Pittsburgh 3. State: PA 4. Zip Code: 15219 5. Telephone No.: (412) 227-2677
	C.	Contact:
		1. Name: <u>Stephen Smith</u> 2. Title: <u>Environmental Mgr.</u>
2.	Name,	Address, Location and Contact for the Facility:
	A.	Name: Koppers Industries Inc.
	B.	Mailing Address: 1. Street Address or P.O. Box: PO Box 160
	ā.	1. Street Address or P.O. Box: 10 Box 720 2. City: Tie Plant 3. State: MS 4. Zip Code: 38960 5. Telephone No.: (601) 226-4584
	-C.	Site Location:
		1. Street: <u>Tie Plant Road</u> 2. City: <u>Tie Plant</u> 3. State: <u>M5</u> 4. County: <u>Grenda</u> 5. Zip Code: <u>38960</u> 6. Telephone No.: () <u>Same</u>
		Note: If the facility is located outside of the City limits, please attach a sketch or description to this application showing the approximate location of the site.
	D.	Contact:
		1. Name: Thomas L. Henderson 2. Title: Plant Mgr.
3.	SIC Co	ode(s)(including any associated with alternate operating scenarios):

4.	Number of Employees: 56
5 .	Principal Product(s): Utility Poles & Rail Road Ties
6	Principal Raw Materials: Wood Poles, Lumber, Creosote, Pentachlorophetol
7.	Principal Process(es): Wood Preserving
8.	Maximum amount of principal product produced or raw material consumed per day:
9.	Facility Operating Schedule:
	A. Specify maximum hours per day the operation will occur: 24
	B. Specify maximum days per week the operation will occur:
	C. Specify maximum weeks per year the operation will occur: 52
	D. Specify the months the operation will occur:
10.	Is this facility a small business as defined by the Small Business Act?
11.	EACH APPLICATION MUST BE SIGNED BY THE APPLICANT.
	The application must be signed by a responsible official as defined in Regulation APC-S-6, Section I.A.26.
	I certify that to the best of my knowledge and belief formed after reasonable inquiry, the statements and information in this application are true, complete, and accurate, and that, as a responsible official, my signature shall constitute an agreement that the applicant assumes the responsibility for any alteration, additions, or changes in operation that may be necessary to achieve and maintain compliance with all applicable Rules and Regulations.
	Application Signed N. P. & Secretary V. P. & Secretary Title Signature of Applicants Responsible Official

Tide V Application

May 31, 1994

Page 4-15

EMISSIONS SUMMARY for the ENTIRE FACILITY

List below the total emissions for each pollutant from the entire facility. For stack emissions, use the maximum annual allowable (potential) emissions. For fugitive emissions, use the annual emissions calculated using the maximum operating conditions.

POLLUTANT	ANNUAL EMIS	SION RATE
Footnote 1	lb/hr	tons/yr
See attached "Emission		
Inventory Calculation for		
Synthetic Minor Emission	•	
(High Creo Vulume)"		
·		

1. All regulated air pollutants, including hazardous air pollutants emitted from the entire facility should be listed. A list of regulated air pollutants has been provided in Section A.

With the exception of the emissions resulting from insignificant activities and emissions as defined in Regulation APC-S-6, Section VII, the pollutants listed above are all regulated air pollutants reasonably expected to be emitted from the facility.

SIGNATURE (must match signature on page 17)

Tide V Application May 31, 1994 Page # 18

For the sections listed below incapplication.	licate the number that have been	completed for each section as part of this						
Section B 1	Section L1	Section M1						
Section C 1	Section L2	Section M2						
Section D 3 5	Section L3	Section M3						
Section E 6	Section L4	Section M4						
Section F 1	Section L5	Section M5						
Section G	Section L6	Section M6						
Section H 1	Section L7	Section M7						
Section I		Section M8						
Section J		Section N1						
Section K		Section O2						
As a minimum, sections B, C, M, N and O must be completed for the application to be considered complete. Please list below all insignificant activities required by APC-S-6, Section VII.B that apply to your facility								
e Natural gas fire	ed space heater.	r,						
	-	used to store fuel						
for yard equ	ipment. Constructed	apprex. 1980.						
Tank 25 Diesels	#2 - 20,000 gal							
Tank 26 Gasali	ne - 1,00 gal.							

RISK MANAGEMENT PLANS

Please answer the following questions:

If the source is required to develop and register a risk management plan pursuant to Section 112(r) of the Title III of the Clean Air Act, the permittee need only specify that it will comply with the requirement to register such a plan. The content of the risk management plan need not itself be incorporated as a permit term.

I.	Are you required to develop and register a risk management plan pursuant to Section 112(r)?
	Yes
Only if "yes",	, answer questions II., III., and/or IV.
я П .	Have you submitted the risk management plan to the appropriate agency (i.e. Mississippi Emergency Management Agency (MEMA), Federal Emergency Management Agency (FEMA), etc.)?
	Yes No
ш.	If yes, give agency name and date submitted.
IV.	If no, provide a schedule for developing and submitting the risk management plan to the appropriate agency and providing our agency with certification that this submittal was made.

Title V Application

	FUE!	L BURNIN	G EQUIPM	ENT (page	1 of 2)		SECTION D
	\mathbf{l}_{∞}	Emission Point	No. / Name: U	1-Wood	Fired	Boiler	
	2.	Equipment Des	scription: We serveration f	Hons 2 Ce Power Unit.	ell Comb	bustwa System	n, Boiler
	3	Was this unit of	constructed or modive date and expla	dified after Augu	st 7, 1977?	Yes	
	4 . 6 .		e. Space Heat, Pr		5. Type of Process	burner: Fuel	Cell
	7.	Complete the f		entifying each typ		he amount used. Spec	rify the units for heat
	F	UEL TYPE	HEAT CONTENT	% SULFUR	% ash	MAXIMUM HOURLY USAGE	ACTUAL YEARLY A G
40	Wo	od Waste	4,000 - BTU 6,000 16	0.11-0.25	5.0	8760 n-/m	8424 Approx.
)			9				
						-	
	8.	Please list any Pentachlon	fuel components	that are hazardo	us air pollutar He ~15 %	Naph thalen e	in the fuel.
	9.	Operating Sch	nedule: 2	4 hours/day	_7_	days/week5	2 weeks/year
	10.	Stack Data: A. Heigi B. Insid	ht: e diameter:	80 FT 3 FT		ixit gas velocity: ixit gas temperature:	60 55 F/s 350 °F
	11.	UTM Coordin A. Zone	nates:	В. М	lorth _	C. E	ast

May 31, 1994

FUEL BURNING EQUIPMENT (page 2 of 2)

SECTION D

12. POLLUTANT EMISSIONS:

Emission rate calculations, monitoring data, or stack test data must be attached!

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed. A list of regulated air pollutants has been provided in Section A.

Provide emission rate in units of applicable emission standard, e.g. lb/MMbiu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point. ri

If yes, attach appropriate Air Pollution Control Data Sheet from Section I. or manufacturers specifications if other

	FUE	L BURNIN	G EQUIPM	ENT (page	1 of 2)		SECTION D
	l,	Emission Point				Boiler	
	2.	Equipment De	scription: <u>Ba</u>	ckup s	ervice	beiler.	
	3	Was this unit	constructed or mo	dified after Augu ain.	st 7, 1977?	Ye:	
	4.		y: <u>28.5</u>		0	burner: Atomiz	ing Oil
	6.	Usage Type (i	.e. Space Heat, Pr	rocess, etc.):	Proces	.2	·
	7.	Complete the f	following table, id y usage, and year	entifying each typ y usage.	e of fuel and t	he amount used. Spe	ecify the units for heat
	F	UEL TYPE	HEAT CONTENT	% SULFUR	% ASH	MAXIMUM HOURLY USAGE	ACTUAL YEARLY AGE USAGE
019	· # 2	0;1	18,000 BTU	0.300.50	0	-2000-	-336-
	#2	oil	140,000 BTU/ga	0.50	1.6	204 94/4-	100,00c gal
					,	_	
	8.		fuel components Jane	that are hazardo	us air pollutai	nts and the percentag	ge in the fuel.
	9.	Operating Sch	nedule: 2	4_ hours/day	_7_	days/week	weeks/year
	10.	Stack Data: A. Heig B. Insid	ht: e diameter:	36 F+ 2.5 F+		ixit gas velocity: ixit gas temperature:	32 F+/50c 570 °F
	11.	UTM Coordin A. Zone	nates:	В. 1	lonh -	c.	East

May 31, 1994

?

FUEL BURNING EQUIPMENT (page 2 of 2)

SECTION D

12. POLLUTANT EMISSIONS:

Emission rate calculations, monitoring data, or stack test data must be attached!

una, Cristant Control of anachicul	CONTROL ACTUAL EMISSION RATE PROPOSED ALLOWABLE BOURMENTH EQUIPMENTH EMISSION RATE	yearing fettion note 2 lb/hr indyr	tter 7.88	1.88	15.40 67.45	4.34 19.01	1.08 4.73	0.04 0.18	oiler WIII not operate at same	01. 14:	on 1/2.	
Commercial care careering in the commercial care, or stack test units	POINT NO.	- Attended to the state of the	26 Particulate Matter	1 PM 10	502	. Xo√	00	V 1/0C	Note-This boiler wi	time as source C	\dashv	

- All regulated air pollutants including hazardous air pollutants emitted from this source should be listed. A list of regulated air pollutants has been provided in Section A.
- Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point. ۲i
- * If yes, attach appropriate Air Pollution Control Data Sheet from Section I. or manufacturers specifications if other

					ed in pla	
3	Was this unit If yes please g	constructed or mod give date and expla	dified after Augus	st 7, 1977?	Yes	No
4					burner: <u>Gas</u> Heat	
6. 7.	Complete the		entifying each typ		he amount used. Spe	
F	UEL TYPE	HEAT CONTENT	% SULFUR	% ASH	MAXIMUM HOURLY 	ACTUAL YEARLY USAGE
	tural Gas	1000 BTU/CF		-	320 cfhr	605 MEF
Na		1			320 chr	645 MCF
Na	A 1500	·				
Na					-	

C. East

11.

UTM Coordinates:

A. Zone

B. North

SECTION D

FUEL BURNING EQUIPMENT (page 2 of 2)

12. POLLUTANT EMISSIONS:

Emission rate calculations, monitoring data, or stack test data must be attached!

m .	Į.			Π	T				
WABLI	tn/yr								
PROPOSED ALLOWABLE EMISSION RATE	lb/hr								
PROPOS EM	note 2								
RATE	tn/yr								
ACTUAL EMISSION RATE	1b/htr								
ACTUAL	note 2								
CONTROL EQUIPMENT	eme.	rions.	AV/20						
EQUIP	yezho effe.	emistions	. o Tons						
		ficant	than 0.0						
Companies The Party		519 n. Y	less.				0000		8
		No	All						
EMISSION POINT NO.	W. Carrie	33							

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed. A list of regulated air pullutants has been provided in Section A.

Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point.

* If yes, attach appropriate Air Pollution Control Data Sheet from Section I. or manufacturers specifications if other

~

May 31, 1994

Tide V Application

1 ::	Emission Point	No. / Name:	35 - Nat	ural Gas	Fired Steam	n Cleaner
2::	Equipment De:	scription: Wa	ter heater leaning.	for s	team cleaner	used
3.	Was this unit of If yes please g	constructed or mo	dified after Augu nin. <u>~ 199</u>	st 7, 1977? 2	Yes	No
4, 6.	•	e. Space Heat, Pr			704.7	
7.	Complete the f		ntifying each typ			cify the units for heat
F	UEL TYPE	HEAT CONTENT	% SULFUR	% ASH	MAXIMUM HOURLY USAGE	ACTUAL YEARLY USAGE
Na	tural Gas	1000 BTU/CF	0	٥	8760 hy	2000 hr/rr
	,					
8.	Please list any	-	that are hazardo	us air pollutar	ats and the percentag	e in the fuel.
9.	Operating Sch	nedule:8	hours/day	_5_	days/week 50	weeks/year
10.	Stack Data: A. Heig B. Insid		·		xit gas velocity: xit gas temperature:	
11.	UTM Coordin A. Zone	nates:	В. 1	Vorth _	C. 1	East

FUEL BURNING EQUIPMENT (page 1 of 2)

SECTION D

~

FUEL BURNING EQUIPMENT (page 2 of 2)

SECTION D

12. POLLUTANT EMISSIONS:

Emission rate calculations, monitoring data, or stack test data must be attached!

			-				 	-	
WABLE	taAyr								
PROPOSED ALLOWABLE EMISSION RATE	lb/br								
PROPO: EM	note 2								
RATE	ta/yr		•						
ACTUAL EMISSION RATE	-Ipyl								
ACTUAL	note 2								
TROL	yesho" effic.								
CONTROL EQUIPMENT	yesho	Emissions							
Service Service		No significant							
		ء ملا							
EMISSION POINT NO.		35							

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed. A list of regulated air pollutants has been provided in Section A.

Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point.

If yes, attach appropriate Air Pollution Control Data Sheet from Section I. or manufacturers specifications if other

May 31, 1994

1.	Emission Point				e Shop He	
2.	Equipment Des	scription: Spain tenance	e shap.	ter wo	ed stove	used
3.	Was this unit of	constructed or mo	dified after Augus	st 7, 1977?	<u> </u>	No
4.					burner:	
6.	Usage Type (i	e. Space Heat, Pr	ocess, etc.):	Space	Heat_	
7.:		following table, id y usage, and yearl		e of fuel and t	he amount used. Spec	cify the units for heat
F	UEL TYPE	HEAT CONTENT	% SULFUR	% ASH	MAXIMUM HOURLY USAGE	ACTUAL I
u	Jood	SUO BTU/15			8760 h/yr	720 hr/yr
				· · · · · · · ·		
8.	Please list any		that are hazardo	us air pollutar	its and the percentage	e in the fuel.
9.	Operating Sch	nedule:	2 hours/day	6	days/week /2	weeks/year
10.	Stack Data: A. Heig B. Insid	ht: e diameter:	·		xit gas velocity: xit gas temperature:	
11.	UTM Coordin A. Zone	nates:	В. 1	lorth _	C. E	
					१८८	- AAA

FUEL BURNING EQUIPMENT (page 1 of 2)

SECTION D

May 31, 1994

FUEL BURNING EQUIPMENT (page 2 of 2)

SECTION D

12. POLLUTANT EMISSIONS:

Emission rate calculations, monitoring data, or stack test data must be attached!

EMISSION	BOURDINAM	8	CONTROL	_	ACTUAL EMISSION RATE	RATE	PROPO	PROPOSED ALLOWABLE	WABLE
SOINT NO.			IFMEN	- 1		±	CE	EMISSION NATE	316
PER CONTRACT		yeavno	eme.	note 2	16Air	tn/yr	note 2	lb/br	tn/yr
36	Wd	3					30.6 1/m	0.31	1.34
	00	Z				•	2308 1/m 2.31	2.31	11.01
	VOC	>					43.8 Vrn 0.47	0.44	7.67
	• 2								
					ļ				
	(+								

- All regulated air pollutants including hazardous air pollutants emitted from this source should be listed. A list of regulated air pollutants has been provided in Section A.
- Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point.
- If yes, attach appropriate Air Pollution Control Data Sheet from Section 1. or manufacturers specifications if other

MANUFACTU	RING PROCESSES (p	page 1 of 2)	SECTION E
Emission Po	nt No./ Name: OS-Wood	Preserving Pr.	5562Z
Process Desc poles and	with pentachloropher rail road ties w	reatment of not or creosote ith creosote.	utility
	t constructed or modified after Aug		s <u>X</u> no
Rated Capac	ity (tons/hr): AA 7,0	00,000 CF/YR	
. Raw Materia	il Input:		
MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
Wood	342 CF	570 CF	Upto 5,000,000 C
		800 CF	7,000,000 CF
Product Out PRODUCT of BY-PRODUC	QUANTITY/HR	QUANTITY/HR MAXIMUM	· QUANTITY/YEAR
Treated Woo	d 342 CF	570 CF	Upto S,000,000 CF
		800 CF	7,000,000 CF
B. Ins	ight:	C. Exit gas veloc D. Exit gas tempe	
8. UTM Coord A. Zone	B. North	C. E	ast

SECTION E

MANUFACTURING PROCESSES (page 2 of 2)

13. POLLUTANT EMISSIONS:

Emission rate calculations, monitoring data, or stack test data must be attached!

ISSION TAIC CO.	Cillission rate cateurations, monitoring date, or start	High Ci Bigon Co.				The second second second second		-	The second second
MISSION DINT NO		CONTROL !!		erder Ferrence	EMISSIO	ACTOAL EMISSION RATE		PROPOSED ALLOWABLE BMISSION RATE	WABLE L
建筑		Pedino.	ощ воще	15.6	phr	tn/yr	note 2	1b/br	tnyr
25	See Fmission	Inventory		Calculation		Tables.			
	100	7						6.0	36.25
	Naphthalene	2					,	1.0	4.5
	V0C	5						10.0	43.8
	Nach thelene	7						7.07	4.5
					,				
			_		•				
	The state of the s	The second secon							

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed. A list of regulated air pollutants has been provided in Section A.

Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point. 7

If yes, attach appropriate Air Pollution Control Data Sheet from Section I. or manufacturers specifications if other

May 11, 1994

Title V Application

ANUFACTURIN	G PROCESSES (p	age 1 of 2)	SECTION E
Emission Point No/	Name: 08 · Tre	eated Wood St	brage
Process Description: word proc to shipp	Storage and duct following	handling of treatment and	prion
Was this unit constr If yes please give de		ust 7, 1977? yes	
Rated Capacity (ton	s/hr):		
Raw Material Input	:		
MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
Product Output:	9		
PRODUCT or BY-PRODUCT	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	· QUANTITY/YEAR
Treated Poles			Up +0 5,000,000
Treated Ties			2,000,000 CF
* Total Wood			1055 HARA 5,000,000
			7,000,000 6
Stack Data: A. Height: B. Inside dias	Λ Λ	C. Exit gas veloci D. Exit gas tempe	_
UTM Coordinates: A. Zone _	B. North	C. E	East ————

MANUFACTURING PROCESSES (page 2 of 2)

SECTION E

13. POLLUTANT EMISSIONS:

Emission rate calculations, monitoring data, or stack test data must be attached!

EMISSION POINT NO		CON	CONTROL : ::	grands.	ACTUAL EMISSION RATE	N RATE	PROPO	PROPOSED ALLOWABER BMISSION RATE	WABLE ATE
		още) pmc	2 5100	i lohe	talyr	note 2	Jb/br	tayr
08	See Emission Ih worther	n verte.		Calca later		tables.			
	VOC (fasitive)*								
	Naphthalena			- 20 H				0.88	3.88
	•								
THE CHARLES AND THE PARTY OF TH		A LOCAL DE LA COLUMN DE LA COLU	200	THE RESERVE OF THE PARTY OF THE	THE PERSON NAMED IN COLUMN				

* VOC not applicable to major cate gory when a fusitive.
All regulated air pollutants including hazardous air pollutants emitted from this source should be listed. A list of regulated air pollutants has been provided in Section A.

Provide emission rate in units of applicable emission standard, e.g. lh/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point.

તં

If yes, attach appropriate Air Pollution Control Data Sheet from Section I. or manufacturers specifications if other.

May 31, 1994

_	e of construction for existing sources or date of anticipated start-up for new sources:
Cy a)	lone Data: Cyclone type (if more than 1, put total number):
۵)	Simple Potbellied Multiclone
b)	Efficiency: 90 %
c)	Pollutant viscosity: poise
d)	Flow Rate: acfm
e)	Pollutant size entering cyclone: microns
t)	Pressure drop: inches H ₂ O
g)	Baffles or Louvers (specify):
b)	Cyclone dimensions: Inlet: ft ft
	Body diameter: ft Body height: ft Cone height: ft
ı)	Wet spray: Yes No No. of Nozzles: Type of liquid used:
	3. Flow rate: gpm
	4. Make-up rate: gpm 5. % recycled: %
j)	Fan location: Downstream: Direct emission
	Auxiliary Stack
	2. Upstream: No cap (vertical emissions) Fixed cap (diffuse emissions)
	Wind respondent cap (horizontal emissions)
	nich process(es) does the cyclone(s) control emissions from? Wood Fired Ba

	f construction for existing sources or date of anticipated start-up for new sources: Unk.
	c Data: Cyclone type (if more than 1, put total number):
a)	Simple Potbellied
	High Efficiency Multiclone
b)	Efficiency: %
U)	
c)	Pollutant viscosity: poise
d)	Flow Rate: acfm
-,	
e)	Pollutant size entering cyclone: microns
f)	Pressure drop: inches H ₂ O
~ \	Baffles or Louvers (specify):
g)	
h)	Cyclone dimensions: Inlet: <u>0.83</u> ft Outlet: <u>0.83</u> ft
	Outlet: <u>U.B.S.</u> ft Body diameter: <u>4.0</u> ft
	Body height: 3.0 ft
	Cone height: 4-5 ft
1)	Wet spray: Yes X No
•)	1. No. of Nozzles:
	2. Type of liquid used:
	3. Flow rate: gpm
	4. Make-up rate: gpm 5. % recycled: %
	J. 76 1609 6166.
j)	Fan location:
	1. Downstream: Direct emission
	Auxiliary Stack 2. Upstream: ——— No cap (vertical emissions)
	2. Upstream: No cap (vertical emissions) ———— Fixed cap (diffuse emissions)
	Wind respondent cap (horizontal
	emissions)
	Calldust and
Which	process(es) does the cyclone(s) control emissions from? <u>Sawdust and</u>

SECTION N

Current Applicable Requirements and Status (page 1 of 2)

List applicable state and federal regulations and applicable test methods for determining compliance with each applicable requirement. Clearly identify federal regulations from state requirements. Provide the compliance status as of the day the application is signed.

Emission Point No.	Applicable Requirement	Pollutant	Test Method	Limits	Compliance Status IN / OUT
10	APC-5-7, 5- 3.4(6)	pM	Method S	O.3 grain/osca	In
- 0	APC-5-1 Ser 31	Opacity	CEM	% %	In
10	APr-5-1 (er 4:1 (c)	502	Stack Test a Engr. Calc.	2.4 16/mm 8TU	In
78	APC-5-7 (a. 3.4 (a)	pm	AP.42	E=0.8608 I -0.8667 = 14.36 16/h=	ser In
26		Opacity		40%	In
26		502.	46.42	2.4 15/mm8r	In
	P .				
27	APC-5-1 Sa. L	PM.	AP-42	E=4.1 po.67 27 16/4-	In *
32	11	PM	148-42	4.78 16/Ar	In *
34	1/	pm	AP.42	4.84 15/1-	<i>τ</i> ~ *
Plant	AP-5-1 Sec. 6	Wd	Various	28.4 1/4.	In *
	ance	Evaluation following this form	is form.		

74.0.62

Tide V Application

May 31, 1994

Future Applicable Requirements and Status (page 2.0f 2)

SECTION N

List applicable state and federal regulations and applicable test methods for determining compliance with each applicable requirement. Clearly identify federal regulations from state requirements. Provide the compliance status as of the day the application is signed.

r	ļ				
Emission Point No.	Applicable Requirement	Pollutant	Test Method	Limits	Compliance Status IN / OUT
	None				
	•				
	·	,			

APC-S-I, Section 6. Manufacturing Processes

Compliance Evaluation

05-WoodPreserving - No PM emission

08-Storage Yard Fugitives from Treated Wood - No PM Emission.

31-Dry Kilis - No PM Emission

27 Tie Mill Cyclone

Process - (2,000,000 CE 7.es/yr)(50 16/cs) = 16.67 Tor/hr

(300 day/yr)(10 hr/day)(2000 16/ru)

= 4100.67 - 270 16/4

East = 2 16/hr = 27.0 16/hr

Eact = 2 16/hr = OK

32 Pole Peeler

Process = 9.9 Tn/hr Eallow = 4.1 po.67 = 19.05 16/hr > Eact = 3.46 OK

34 Wood Fuel Preparation + Handling
Process = 12 Ta/hr

Eass = 4.1 p 0.67 = 21.67 7 East = 3.0 16/hr OK

Plant Overall
Product = Total amount of treated wood product

= (7, 500, 500 CF/Yr)(45 16/CF)

(8760 h//yr)(2000 15/th)

= 17.98

Eallow = 4.1 p 0.67 = 28.4/ 16/hr > En = 15.89 15/hr 0K

1,,,	Emission Point No Name _ 01/ Wood Fired Boiler
2.	Indicate the source compliance status:
	A. Where this source is currently in compliance, we will continue to operate and maintain this source to assure compliance for the duration of the permit.
	BThe Current Emissions Requirements and Status form (previous page) includes new requirements that apply or will apply to this source during the term of the permit. We will meet such requirements on a timely basis.
	C. This source is not in compliance. The following statement of corrective action is submitted to describe action which we will take to achieve compliance.
	1. Attached is a brief description of the problem and the proposed solution.
	2 We will achieve compliance according to the following schedule.
_	gress reports will be submitted: arting date: and every six (6) months thereafter

Problem	Action	Deadline
	· ·	
	•	

Emission Point:

01 Wood Fired Boiler

EXPLANATION OF NON-COMPLIANCE

Permit to Construct No. 0960-00012 was issued for the wood fired boiler on November 9, 1994 to allow use of used treated wood as fuel. The permit included emission limitations for which the demonstration of compliance required a stack test. The stack test was conducted on February 20-21, 1996.

The stack test indicated that the limit for NOX would be exceeded when treated wood fuel was burned, that the limit for CO would be exceeded when untreated wood is burned under lower fire conditions, and that HCl would be emitted at major source levels due to the pentachlorophenol treated wood fuel. As a result of the stack test, KII has applied for a permit modification that will allow continued operation within permit limits.

The permit modification is expected before the end of 1996.

l _s	Emission Point No Name KII Plant, All Points except 01.
2,0	Indicate the source compliance status:
	A. Where this source is currently in compliance, we will continue to operate and maintain this source to assure compliance for the duration of the permit.
	B. The Current Emissions Requirements and Status form (previous page) includes new requirements that apply or will apply to this source during the term of the permit We will meet such requirements on a timely basis.
	C. This source is not in compliance. The following statement of corrective action is submitted to describe action which we will take to achieve compliance.
	1 Attached is a brief description of the problem and the proposed solution.
	2. — We will achieve compliance according to the following schedule.
_	ress reports will be submitted: urting date: and every six (6) months thereafter

Problem	Action	Deadline
2011 No. 1 Control of the Control of		
*		

O1-BOILER, WOOD FIRED
Total Wood Burned:
Creo Wood Burned:
Penta Wood Burned:

Untreated Wood Burned:

Removal Efficiency (1):

Sulfur Chlorine tn/yr 0.12% 37,580 0.23% 0.25% 0.04% 20,000 0.25% 0.25% 15,000 0.04% 0.01% 2,580 70.00% 45.00%

(lb/hr): 9375

	Emission			Estimated	Emissions
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr)
Particulate	2.07	lb/tn	2/96 Test	38.90	
SO2	2.80	lb/tn	Mass Calc	52.65	
NOX (3)	3.3	lb/tn	2/96 test	62.01	15.47
CO (2)	8.3	lb/tn	CEM	155.96	
VOC	0.91	lb/tn	FR Test	17.10	
HCI	1.970	lb/tn	2/96 Test	37.02	
Arsenic	8.8E-05	lb/tn	AP-42	0.0017	0.000
Cadmium	1.7E-05	lb/tn	AP-42	0.0003	
Chromium	1.3E-04	lb/tn	AP-42	0.0024	0.001
Lead	3.1E-04	lb/tn	AP-42	0.0058	0.001
Manganese	8.9E-03	lb/tn	AP-42	0.1672	0.042
Nickel	5.6E-04	lb/tn	AP-42	0.0105	0.003
Selenium	1.8E-05	lb/tn	AP-42	0.0003	0.000
Mercury	6.5E-06	lb/tn	AP-42	0.0001	0.000
Total HAP Metals				0.19	0.047

- (1) Removal efficiencies based on 2/96 stack test.
- (2) CO factor is 8.3 for 600 ppm fired on untreated fuel, 2.1 for 150 ppm fired on treated fuel.
- (3) NOX factor is 3.3 for high fire, treated wood. Use 1.6 for untreated wood.

26-BOIL	.ER, Fl	UEL	OIL
---------	---------	-----	-----

0.500 % Sulfur Content: Oil Burned(MGal/yr): 1787 Estimated Emissions **Emission** (lb/hr) Basis (tn/yr) Factor **Pollutant** Units **Particulate** 2 lb/MGal **AP-42** 1.79 0.41 14.48 71 lb/MGal **AP-42** 63.44 SO₂ 4.08 17.87 NOX 20 lb/MGal **AP-42** 1.02 4.47 CO 5 lb/MGal AP-42 0.04 **AP-42** 0.18 VOC 0.2 lb/MGal

Number of days boiler assumed to operate is 365

0.204

Fuel Use Rate(MGal/hr)

05-WOOD PRESERVING PROCESSES

 Creosote Ties
 2,000,000 C. F.

 Creosote Poles
 1,500,000 C. F.

 Total Creosote Wood
 3,500,000 C. F.

 Oil/Penta Poles
 3,500,000 C. F.

Uli/Felila Fules	0,000,000 0.1.						
Pollutant	Emission Factor			Estimated (tn/yr)	Emissions (lb/hr)		
Creosote (VOC)	0.015	lb/cf	Form R	26.25	5.99		
HAPs contained in creosote:							
Benzene	22	% in vapor	Calculation	5.78			
Biphenol	0.16	% in vapor	Calculation	0.04			
Cresols	0.46	% in vapor	Calculation	0.12			
Dibenzofurans	0.61	% in vapor	Calculation	0.16	0.04		
Naphthalene	17	% in vapor	Calculation	4.46	1.02		
P-Xylenes	4.5	% in vapor	Calculation	1.18	0.27		
Phenol	1.4	% in vapor	Calculation	0.37	0.08		
Quinoline	1.5	% in vapor	Calculation	0.39	0.09		
Toluene	26	% in vapor	Calculation	6.83	1.56		
TOTAL CREO. HAP	73.63	% in vapor		19.33	4.41		
Pentachlorophenol (VOC)	2.54E-05	lb/cf	Form R	0.04	0.01		
#6 Oil (VOC)	1.0E-02	lb/cf	Engr. Est.	17.50	3.99		
TOTAL VOC				43.79	9.99		

08-PRESERVATIVE TREATED WOOD STORAGE FUGITIVES

	Emission			Estimated	Emissions
Poliutant	Factor	Units	Basis	(tn/yr)	(lb/hr)
Creosote lies	COLOR				
Creosote (VOC)	4.25E-03	lb/cf	FR Test	4.25	
Naphthalene	1.37E-03	lb/cf	FR Test	1.37	0.31
Benzene	1.74E-06	lb/cf	FR Test	0.00	
Toluene	3.54E-05	lb/cf	FR Test	0.04	0.01
Creosote Poles	0.00000 0.00000 0.00000 0.000000 0.0000000				
Creosote (VOC)	1.15E-02	lb/cf	FR Test	8.63	
Naphthalene	3.34E-03	lb/cf	FR Test	2.505	0.571
Benzene	4.23E-06	lb/cf	FR Test	0.003	0.001
Toluene	1.52E-04	lb/cf	FR Test	0.114	0.026
Penta Poles					
Oil (VOC, est. as creo)	1.15E-02	lb/cf	FR Test	20.13	
Pentachlorophenol	1.9E-06	lb/cf	Engr. Est.	0.003	0.001
Totals					
VOC				33.00	7.52
Naphthalene				3.88	0.88
Benzene				0.005	0.001
Toluene				0.149	0.034
Pentachlorophenol				0.003	0.001
HAP Organics (Total)				4.03	0.92

MAXIMUM	POT	ENTIAL	EMISSIONS

31-DRY KILNS		Batch size (cf):	13000
Poles Dried	1,600,000 C. F.	Batch time (hrs):	72
	Emission	Estimated	d Emissions
Pollutant	Factor Units	Basis (tn/yr)	(lb/hr)
VOC	0.05 lb/cf	Alabama 40.0	9.03

27-CYCLONES FOR WOOD MILLING

Number of Cyclones:	1
Ave. Hours/Day:	8
Ave Days/Yr Each:	300
Total Hours:	2400

	Emission		Estimated Em	issions
Pollutant	Factor Units	Basis	(tn/yr)	(lb/hr)
Particulate	2 lb/hr	AP-42	2.40	2

28-YARD ROADS FUGITIVE PARTICULATES

E=k(5.9)(s/12)(S/30)(W/3)^0.7(w/4)^0.5(365-p)/365 lb/VMT

((5.8)(S/12)(3/30)(VV/3)~0./(W	74) 0.3(303	P)/JOJ ID/ VI		•
k=particle size factor=	1.00			=No. vehicles driving
s=silt content (%) of road=	10	%		=Typ. miles/hr driving
S=mean vehicle speed=	15	mph		=Typ. hrs driving/day
W=mean vehicle weight=	15	tons		=Typ. d/wk driving
w=mean no. of wheels=	4	wheels		=Trtng volume factor
p=no. wet days/year=	110	days	105,300	=Ann veh mi. traveled
VMT=Veh. Mi. Traveled=	105,300	VMT		

	Emission		Estimated I	Emissions
Pollutant	Factor Units	Basis	(tn/yr)	(lb/hr)
Particulate	5.30 lb/VMT	AP-42	278.99	191

⁽¹⁾ Hourly based on 365 days, 8 hours per day

32-POLE PEELER

Poles Peeled=	1,000,000	CF/yr	440 CF/hr
Pole Density=	45	lb/CF	
Pole Amount Peeled=	22,500	tn/yr	9.9 tn/hr

	Emission		Estimated En	nissions
Pollutant	Factor Units	Basis	(tn/yr)	(lb/hr)
Particulate	0.350 lb/ton	AP-42	3.94	3.465

33-SPACE HEATERS, NATURAL GAS

Location	BTU/Hr	BTU/CF	CF/Hr	Hr/Yr	MMCF/Yr
Boiler House	200000	1000	2	00 2016	
Standby Boiler Room	100000	1000	1	00 2016	.00 0.2016
Fire Pump Building	20000	1000		20 2016	.00 0.04032
TOTAL	320000		3	20	0.64512

	Emission			Estimated	Emissions
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr)
Particulate	0.18	lb/MMCF	AP-42	0.00	0.00
SO2	0.6	lb/MMCF	AP-42	0.00	0.00
NOX	94	lb/MMCF	AP-42	0.00	0.00
CO	40	lb/MMCF	AP-42	0.00	0.00
VOC	11	lb/MMCF	AP-42	0.00	0.00

34-WOOD FUEL PREPARATION & HANDLING (Fugitive)

Wood Fuel Processed	37,580 Tn/Yr	12 tn/	hr
	Emission	The second secon	timated Emissions
Pollutan	Factor Units	Basis	(tn/yr) (lb/hr)
Particulate	0.25 lb/tn	Engr. Est.	4.70 3.00

35-STEAM CLEANER, NATURAL GAS FIRED

Fuel	Use	Ra	te

Annual Usage	8760	hours/yr		440	CF/hr
	Emission	Emission		Estimated Emissions	
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr)
Particulate	12	lb/MMCF	AP-42	0.02	0.01
SO2	0.6	Ib/MMCF	AP-42	0.00	0.00
NOX	100	lb/MMCF	AP-42	0.19	0.04
CO	21	lb/MMCF	AP-42	0.04	0.01
VOC	5.8	lb/MMCF	AP-42	0.01	0.00

36-WOOD STOVE HEATER, SHOP

Fuel Use Rate

Annual Usage	87.6 tn/yr		0.01 tn/hr		
	Emission	Emission		Estimated Emissions	
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr)
Particulate	30.6	lb/tn	AP-42	1.34	0.31
SO2	0.4	lb/tn	AP-42	0.02	0.00
NOX	2.8	lb/tn	AP-42	0.12	0.03
CO	230.8	lb/tn	AP-42	10.11	2.31
VOC	43.8	lb/tn	AP-42	1.92	0.44

37-PARTS CLEANERS, DEGREASERS

Number of units operating:	2			
	Emission		Estimated En	nissions
Poljutant	Factor Units	Basis	(tn/yr)	(lb/hr)
VOC	0.33 tn/unit/yr	AP-42	0.66	0.00

TOTAL PLANT EMISSIONS

	Estimated	Emissions
Pollutant	(tn/yr)	(lb/hr)
Particulate (less fugitive)	 48.38	15.89
SO2 (2)	 116.11	27.62
NOX	 80.19	19.62
CO	 170.57	42.24
VOC(less fugitive)	 103.66	23.76
HAPs(Organics/VOC)	 23.40	5.34
Naphthalene	 8.34	1.90
HAP Metals	 0.19	0.05
HCI	 37.02	9.23
Total HAPs	 60.61	14.62

⁽²⁾ Assumes backup boiler operating at same time as primary for number of days shown.

EMISSIONS INVENTORY CALCULATION EXPLANATIONS Page 1

In the Emission Inventory Calculation spreadsheets, emissions are calculated using emission factors. To the right of the emission factors and factor units is a column titled "Basis." In most cases, the basis of the emission factor is the EPA document, AP-42. For factors with a basis other than AP-42, the basis is further explained below.

BOILER, WOOD FIRED

2/96 Test for Particulate

Factor is based on the average test result of stack tests conducted using treated wood fuel on February 20-21, 1996. Average value increased by 25% to allow for variability.

Mass Calculation for SO2

SO2 is calculated on a mass balance basis assuming all sulfur is converted to SO2. The removal efficiency, ie. fraction not emitted as SO2, is based on the 2/96 stack test. The fraction emitted during the stack test was 25%. The fraction emitted used for this inventory is 30%, which is 20% higher than the test to be conservative. Additionally, the fraction of sulfur in the wood fuel is conservatively estimated at 0.25%. The calculation is based on the amount of wood burned and sulfur content of the wood, less removal efficiency.

2/96 Test for NOX

The NOX emission factor was calculated for average conditions during the high fire conditions for the 2/96 stack test. The factor was increased by 20% to allow for variability.

CEM for CO

A continuous emissions monitor (CEM) has been installed on the boiler stack. The factor is calculated based on approximately 600 ppm CO, corrected, measured by the CEM when untreated wood fuel is used and the turbine is not running and using stack gas flow data from the 2/96 stack test.

FR Test for VOC

Emission factor based on the Feather River test, but increased by 20% for variability and unknown factors. This factor is higher than calculated using the 2/96 Grenada stack test. The FR result is used because it may be more accurate for untreated wood fuel.

2/96 Test for HCl

HCl is calculated on a mass balance basis assuming all chlorine is converted to HCl. The removal efficiency, ie. fraction not emitted as HCl is based on the 2/96 stack test. The fraction emitted during the stack test was 48%. The fraction emitted used for this inventory is 55%, which is 15% higher than the test to be conservative. Additionally, the fraction of chlorine in the pentachlorophenol treated wood fuel is conservatively estimated

EMISSIONS INVENTORY CALCULATION EXPLANATIONS Page 2

at 0.25%, compared to 0.15% in the test burn. The calculation is based on the amount of wood burned and chlorine content of the wood, less removal efficiency.

WOOD PRESERVING PROCESSES

Form R for Creosote and Pentachlorophenol

Emissions of creosote and pentachlorophenol are calculated and reported on the Form R annually. The calculation addresses point source emissions from tanks and vacuum pump vents, and fugitive emissions from treating cylinder doors and leaks from pumps, flanges, and valves. Tank and leak emissions are based on AP-42 type calculations, vacuum pump emissions are based on test results for similar equipment, and cylinder door emissions are based on assumed air displacement volume and vapor saturation. The total Form R reported emission is divided by the cubic feet of wood treated for the preservative to determine an emission factor. Emissions are assumed to vary proportionately with treatment volume. The amount of creosote emission is assumed to be equal to the amount of VOC emission from the creosote process.

Calculation for Organic HAPs from creosote

Results of a detailed chemical analysis of creosote and pure component vapor pressures of constituents have been used to estimate the vapor concentration of individual HAPs in the saturated creosote vapor. The amount of each HAP emitted is estimated as the calculated fraction of creosote vapor emitted.

Engr. Est. for Oil (VOC)

The fuel oil used as the carrier for pentachlorophenol is generally of about the same vapor pressure as creosote. For this calculation, the emission factor for oil is assumed to be about equal to the one determined for creosote.

PRESERVATIVE TREATED WOOD FUGITIVES

FR Test for VOC and HAPs

In a test, different from the boiler test, at the Feather River plant in California, HAP emissions were measured from creosote treated wood at various times after treatment from a ventilated enclosure. VOC was not measured directly, so is assumed to be equal to the sum of all measured organic constituents. Emission factors have been derived based on this data and incorporating typical product holding times and stacking geometry.

Engr. Est. for Pentachlorophenol

The factor was derived using a spread sheet program developed by the American Wood Preservers Institute designed to estimate emissions from treated pole storage. The amount so calculated was divided by the amount treated to develop the factor.

June 21, 1996

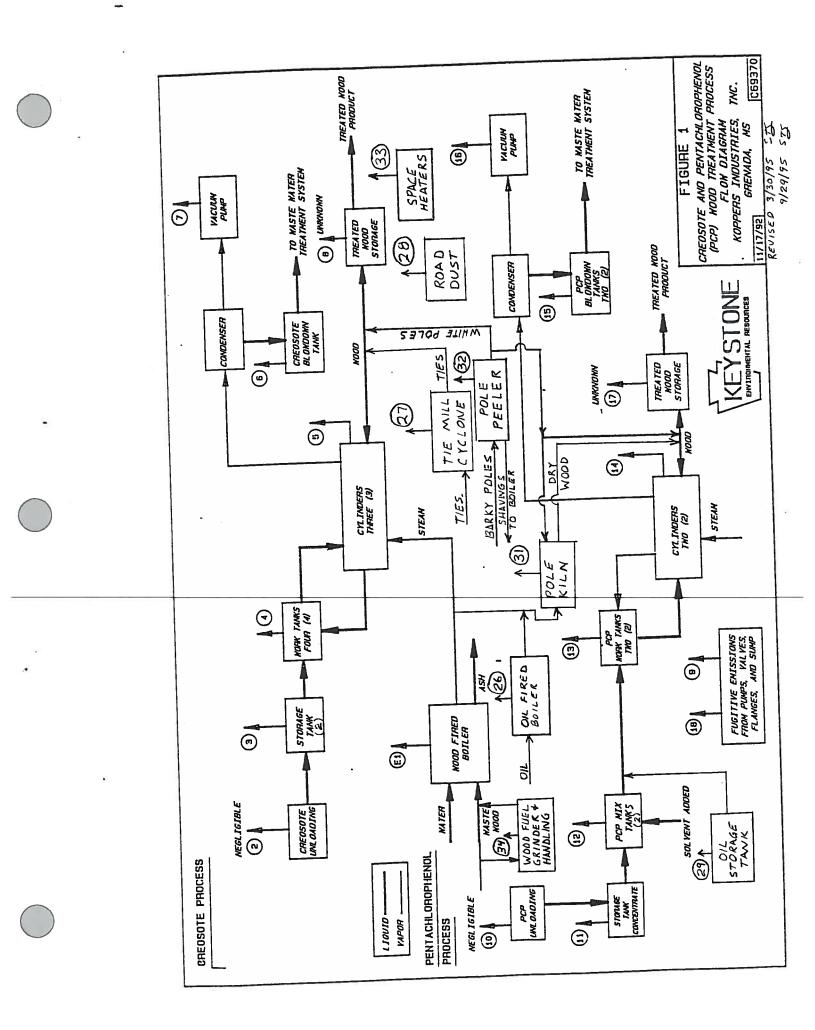
EMISSIONS INVENTORY CALCULATION EXPLANATIONS Page 3

DRY KILNS

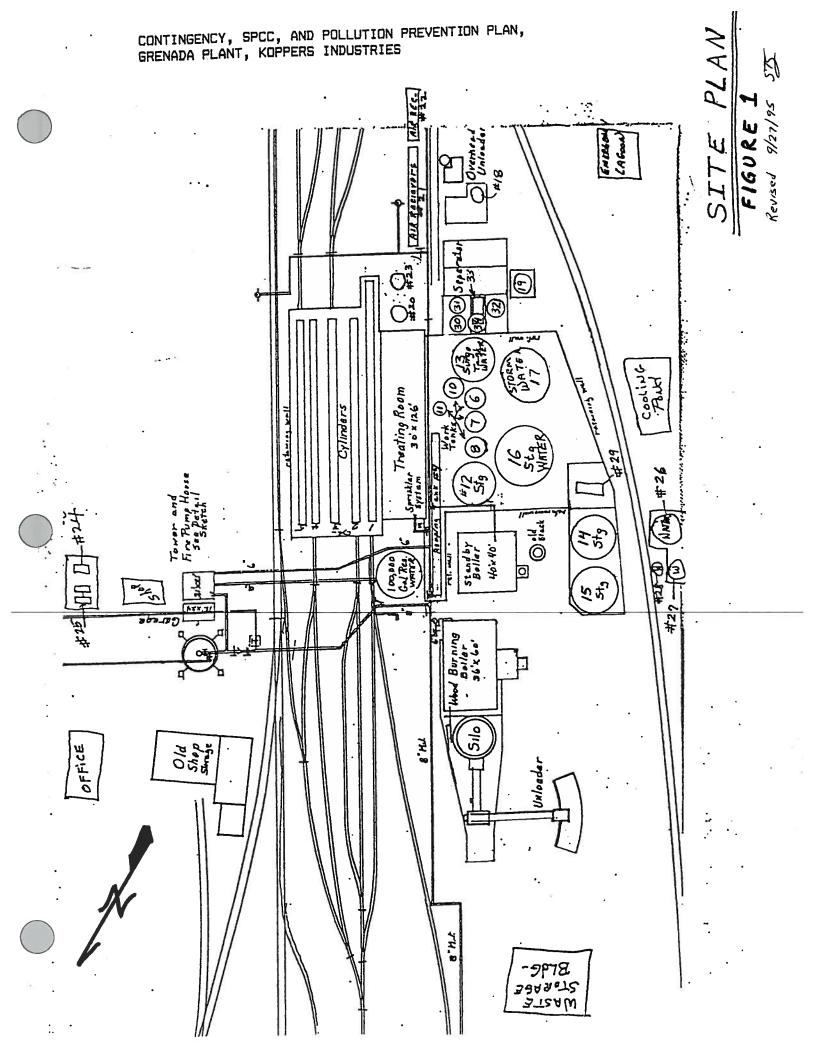
Alabama for VOC

There is very little data available which can be used to estimate emissions from drying wood in kilns. Alabama Department of Environmental Management has reviewed several reports related to dry kiln emissions. They have reviewed test results from lumber dry kilns and have determined that they will accept factors of 4.2 to 6.2 pounds per 1000 board feet (0.050 to 0.074 lb/cf) per Jim Wilson of ADEM. The factor used, 0.05, is at the low end of this range because emissions from poles are expected to be less than from lumber due to the lower ratio of surface area to volume.

POLE PEELER


AP-42

The AP-42 factor used is for plywood veneer log debarking.


WOOD FUEL PREPARATION AND HANDLING

Engr. Est.

Wood fuel preparation includes secondary grinding used tie and pole fuel for use in the boiler and the handling includes transporting and unloading fuel to the conveyor, conveying into the silos, and conveying into the boiler. The factor in AP-42, Table 10.3-1, for Plywood Veneer and Layout Operations, Sawdust Handling, is most appropriate. However, since most of the wood fuel is in chip form, rather than dust, that factor is reduced 75% from 1lb/ton to 0.25 lb/ton based on engineering judgement. Note that a separate permit has been issued to a third party for the primary grinding of ties and poles.



TABLE 3.1 - TANK LISTINGS Koppers Industries, Grenada Plant

Reference No. Name	<u>Contents</u>		Capacity
1	#1 Cylinder	Creosote	35,000
1.	#2 Cylinder	Creosote 60/40	28,000
2. 3.	#3 Cylinder	Steam Conditioning	28,000
3. 4.	#4 Cylinder	Creosote #1	28,000
5.	#5 Cylinder	Oil Borne Treatment	28,000
5. 6.	#5 Work Tank	Penta in Oil	30,000
7.	#2 Work Tank	Creosote 60/40	30,000
7. 8 .	#3 Work Tank	Creosote	30,000
8. 9.	#4 Work Tank	Creosote #1	22,420
9. 10.	2nd Decant Tank	Creosote/Water	30,000
11.	Measuring Tank	Creosote #1	4,200
12.	Creo Storage Tank	Creosote #1	100,000
13.	Water Surge Tank	Process Water	100,000
13. 14.	Oil Storage Tank	Fuel Oil	100,000
15.	Creo Storage Tank	Creosote 60/40	105,000
15. 16.	Process Water Surge Tank	Process Water	300,000
10. 17.	Storm Water Surge	Storm Water	250,000
18.	Coagulant	Dearfloc 4301	2,700
18. 19.	Decant Tank	Creo/Oil/Water	4,500
20.	Creo Blowdown Tank	Water/Creosote	8,000
20. 21.	Air Receivers	Compressed Air	
21. 22.	Air Receivers	Compressed Air	
22. 23.	Penta Blowdown Tank	Water/Penta/Oil	8,000
24.	Gas Tank	Gasoline	1,000
2 5 .	Diesel Fuel	#2 Diesel Fuel Oil	20,000
26.	Aeration Tank	Waste Water	150,000
20. 27.	Clarifier Tank	Waste Water	25,000
28.	Discharge Tank	Waste Water	15,000
29.	Creosote Dehydrator	Not in Use	4,000
30.	N. Penta Equilization	Water/Oil/Penta	14,000
31.	S. Penta Equilization	Water/Oil/Penta	14,000
32.	Penta Mix Tank	Oil/Penta	11,500
33.	Penta Mix Tank	Oil/Penta	5,000
34.	Penta Concentrate Storage	Penta Concentrate	10,500

			TANK SUMMARY TABLE (Section H)	MARY TABL	E (Section F			
1 Emission Point Number		13	4	4	4	30	4	က
Reference No (Table 3.1)		Tank 6	Tank 7	Tank 8	Tank 9	Tank 10	Tank 11	Tank 12
Name		WK TK 5	2	Wk Tk 3	WT 4 H	Decant	Measuring	Storage
Construction Date		1903	8	979	1966	1903	1966	1903
3 Material Stored		Oil/Penta	P2Creosote	P2Creosote	P1Creosote	P2Creosote P2Creosote P1Creosote Water/Creo		P1Creosote P1Creosote
essure a T.	psia							
	psia							
	Deg. F	200	200	200	200	150	200	200
	lb/gal	9.25	9.25	9.25	8.95	7.51	8.95	8.95
L	lb/lbmole							1
	Gal/yr	10000000	8200000	8200000	6500000	114	4/	740000
itv	Gal.	29786	29786	29786	22419	297	423	110544
	Feet	13	13	13	9	13		28
noth	Feet	30	30	30	106	30	20	24
icht	Feet		-	_		_	_	10
		>	>	>	٦.	>	>	>
4K Type of Roof (D or C)		0	D	ס		q	q	ပ
4 Vapor Recovery Sys.?	Z or N	z	C	L	L	u	L	C
4M Type of Tank? Fixed=F		L	4	·	4-	4-	4 _	4-
4N. Closest City?	Memphis							
40. Tank Paint Color?		Black	black	black	Alum	Black	Black	Black
4P Paint Condition (G or P)		d	۵	d	۵	۵	۵	Q
D	SpVB)	Bot.	Bot.	Bot.	Bot.	Bot.	Bot.	Bot.
4R. Not Applicable to any tanks								
4S. Not Applicable to any tanks								
5.1. Breathing Loss	lb/hr							
	ТРҮ							
5.2. Working Loss	lb/hr							
	ТРҮ							
5.3. Total Emissions	lb/hr							
	ТРҮ							

		CC CCCCCC CCCCCCCCCCCCCCCCCCCCCCCCCCCC		00		Incidnif	74
	2	27	3	07	- 1		- 1
Tank	<u>ჯ</u>	Tank 14	Tank 15		Tank 17	lank 18	l ank 19
≥	WW Surge	Storage	Storage		Surge	Coagu	Decar
	1903	903	1903	903	1989		-
≫	Water	#2Diesel	P2Creosote	P2Creosote Proc.Water StormWat.	StormWat.	Dearfloc	Water/Creo
운		09	120	09	00		
	8.34	7.1	9.25	9.25	8.34	8.67	8.34
16	1600000	127500	000099	1400000	2272000		23
-	110544	110544	105750	300800	266490		4512
	28	28	30	40	36		
	24	24	20	32	35	7.6	
			12	15	10	က	2
		>	>	^	^	>	>
		ပ	ပ	ပ	none	ס	O
		u	ב	L		c	داً
		4-	U	-	oben	-	1
							-
ack	¥	Black	Black	Black	Blue	Alum.	Black
		a	۵	۵	D	D	۵
Bot.		Bot.	Bot.	Bot.	SpD	SpD	SpD

			TANK SUMMARY TABLE (Section H)	MARY TABL	E (Section H			
4 Emission Doint Number		9	15	15 Insignif.	Insignif.	nsignif.	Insignif.	Insignif.
Defence No (Toble 3.4)		Tank 20	Tank 23	_				Tank 28
Reference NO. (Table 5.1)		Creo RD	_	Gas	Diesel	Aeration	Clarifier	Discharge
Name		2	Ç	4086	1030	1988	1988	1988
2. Construction Date		081	0081	2000		14/14/040	14/14/0405	W/Water
3. Material Stored		Water/Creo Water/Oil	Water/Oil	Gasoline	#Z Diesei	w water	०० ००वाच	v valor
4A. True Vapor Pressure a T. psia	~							
48 Reid Vapor Pres. at T. psia	a							C
	F	150	100	9	90	08	28	30
	<u>a</u>	8.34	8.34	6.5	7	8.34	8.34	8.34
-	lb/lbmole							
4F Throughout Gallyr	/yr	532000	493000					
ifv		8225	8225	991	20381	169670	30456	1/1
Tank Diameter	-	10	10	3.75	7.25	38	18	18
noth	1	4	14	12	99	20	16	O
icht		12	12	1.5	က			
		>	>	ц Ч	ے	>	>	>
45. Tally Ollelitation (11 St. V)			0			none	none	none
4h. Type of Roof (D.of. C)	Z	5 C		2	c	c	u	L
- 			4	4_	4-	oben	oben	oben
	Memohis							
lor?		Black	Black	Alum	Alum	White	White	White
4P Paint Condition (G or P)		۵	a	D	D	ס	D	מ
40. Type Tank Loading (SpD or SpVB)	/B)	SpD	SpD	Bottom	Bottom	SpD	SpD	SpD
4R. Not Applicable to any tanks								
4S. Not Applicable to any tanks								
5.1 Breathing Loss Ib/hr	ے							
YPT	>							
5.2 Working Loss Ib/hr	٦							
ΛdΤ	>							
5.3. Total Emissions Ib/hr	7				0			
YPY	>							

			TANK SUM	MARY TABL	TANK SUMMARY TABLE (Section H))
1. Emission Point Number		22	23	12	12	17
Reference No. (Table 3.1)		Tank 30	Tank 31	Tank 32	Tank 33	Tank 34
Name		N.Pen.Eq.	S.Pen.Eq.	Penta Mix	Penta Mix	Penta Conc
2. Construction Date		1980	1980	1981	1981	1981
3. Material Stored		Oil/Water	Oil/Water	Oil/Penta	Oil/Penta	PentaConc.
4A. True Vapor Pressure a T.	psia					
4B. Reid Vapor Pres. at T.	psia					
Storage Temperature T	Deg. F	100	100	160	160	09
	lb/gal	တ	တ	7.5	7.5	9.55
<u> </u>	lb/lbmole					
4E. Throughput	Gal/yr			850000	850000	120000
ity	Gal.	10281	10281	9400	5001	10575
4G. Tank Diameter	Feet	10	10	10	8	10
4H. Tank Height/Length	Feet	17.5	17.5	16	13.3	18
4I.Ave. Vapor Space Height	Feet	9	5		1	5
4J. Tank Orientation (H or V)		>	>	>	h	^
4K. Type of Roof (D or C)		ပ	ပ		ပ	Flat
4L. Vapor Recovery Sys.?	Y or N	u	L	n	C	_
4M. Type of Tank? Fixed=F		4	Į	f	-	4
4N. Closest City?	Memphis					
40. Tank Paint Color?		Black	Black	Black	Black	Aluminum
4P. Paint Condition (G or P)		۵	d	d	۵	ס
4Q. Type Tank Loading (SpD or SpVB)	SpVB)	SpD	SpD	Bot.	SpD	Bot.
						-
4S. Not Applicable to any tanks						
5.1. Breathing Loss	lb/hr					
	ТРҮ					
5.2. Working Loss	lb/hr					
	ТРҮ					
5.3. Total Emissions	lb/hr					
	ТРҮ					

Koppers Inc.
Utility Poles and Piling

P. O. Box 160

Tie Plant, MS 38960

Tel 662 226 4584 ext. 11

Fax 662 226 4588

Henders on TL@koppers.com

www.koppers.com

January 26, 2004

CERTIFIED MAIL 7002 0460 0003 7596 0973

Mr. David Lee
MS Dept. of Environmental Quality
Air Facilities Branch
P.O. Box 10385
Jackson, MS 39289-0385

Subject:

Title V Operating Permit - # 0960-00012

Semi-Annual Air Report July - December, 2003

Koppers, Inc. - Grenada, Mississippi

Dear Mr. Lee.

Enclosed you will find the Continuous Emissions Monitoring (CEM) report for the subject period containing information concerning opacity emissions. Information provided in this report is for emission point AA-001, which is the Wellons wood-fired boiler. A second (backup) boiler at the site, emission point AA-002 which is an oil-fired boiler, was not operated during the subject reporting period.

The attached information reflects episodes of excess opacity emissions at AA-001. These episodes were primarily a result of start up attempts and preventive maintenance. Notification was <u>not</u> provided to your office because permitted start up and PM operations may produce emissions exceeding 40% opacity for up to 15 minutes in any one (1) hour period with three (3) start up attempts per 24 hour period.

You were notified by telephone on October 27, 2003 at 2:37 PM and informed that the opacity monitor was not operating and that visual readings would be obtained periodically and recorded until the unit was repaired. A letter dated October 30, 2003 was sent to you indicating that the system had been repaired and was operating.

On November 3, 2003 the opacity monitoring system had failed, and you were notified by telephone of this incident at 3:49 PM. A letter dated November 4, 2003 was sent to you advising of this incident. At that time our service provider mobilized to the site to repair the monitoring system. Following their inspection of the equipment, it was determined that repairs would be difficult to perform due to the age and (lack of) availability of replacement parts. It was also determined that replacement of the system would be a cost effective alternative, as opposed to making necessary repairs. At that time, we decided to purchase a new opacity

monitoring system to replace the existing equipment. You were notified of this decision by telephone on November 5, 2003 and advised that until the new equipment was installed, we would obtain and record visual opacity readings in lieu of the readings from opacity monitoring system.

Visual opacity readings have been made and recorded throughout the period that the opacity monitoring system was not operating. Attached are visual emissions monitoring records for the wood fired boiler (AA-001) during this period. We will continue to obtain visual readings until the system is installed and operating.

If you have any questions, please call me at 662-226-4584 extension 11.

Sincerely,

l nomas L. Henders

Plant Manager

Cc: Tim Basilone, CSG - Pittsburgh, PA

Enclosures

Enertec NTDahs® Episode List Report Koppers Industries

Tie Plant Road
Tie Plant, Miss. 38960
from 07/01/03 00:00 to 09/30/03 23:59
Generated: 01/09/2004

Types: OVER

POLLUTANT: Opac EPISODE: Excess_Opacity

Incident	Incident						
Start	End	Type	Value /	Limit	(%dev)	Reason	Action
07/10/03 10:12	- 07/10/03 10:17	1: OV	41.750 /	40.000	(4.38%)	Preventive Maintenance	Blowing soot
07/10/03 11:54	- 07/10/03 11:59	1: OV	57.683 /	40.000	(44.21%)	Preventive Maintenance	Blowing soot
07/10/03 12:00	- 07/10/03 12:05	1: OV	63.033 /	40.000	(57.58%)	Preventive Maintenance	Blowing soot
07/18/03 15:36	- 07/18/03 15:41	1: OV	42.483 /	40.000	(6.21%)	Preventive Maintenance	Blowing soot
08/18/03 08:48	- 08/18/03 08:53	1: OV	44.217 /	40.000	(10.54%)	Startup	No Action Needed
08/22/03 07:54	- 08/22/03 07:59	1: OV	45.783 /	40.000	(14.46%)	Preventive Maintenance	Blowing soot
08/25/03 10:24	- 08/25/03 10:29	1: OV	42.117 /	40.000	(5.29%)	Startup	known cause
08/28/03 17:12	- 08/28/03 17:17	1: OV	50.067 /	40.000	(25.17%)	Known Excess Cause	Startup

Total Reported Time: 2208.0 hours

TOTAL DURATION = 0.80 hours

1: Over limit = 0.80 hours
3: Startup = 0.20 hours
9: Known Excess Cause = 0.10 hours
15: Preventive Maintenance = 0.50 hours

Enertec NTDahs® Episode List Report Koppers Industries Tie Plant Road

Tie Plant, Miss. 38960 from 10/01/03 00:00 to 12/31/03 23:59 Generated: 01/09/2004

Types: OVER

POLLUTANT: Opac EPISODE: Excess_Opacity

| Incident | Incident | Start | End | Type | Value | / Limit | (%dev) | Reason | Action | | 10/13/03 | 09:30 - 10/13/03 | 09:35 | 1: OV | 58.417 | 40.000 | (46.04%) | Startup | No Action Needed

Total Reported Time: 2208.0 hours

TOTAL DURATION = 0.10 hours

1: Over limit
3: Startup

= 0.10 hours

0.10 hours

Visual Opacity Recording Form

DATE	TIME	DIRECTION (Of Observer)		SKY CONDITIONS		OPACITY
10-27						READING
110-01	7 1CA	Ntos	150'	clear	0.5	10%
10/28	3:130	NAS	150'	clear	0.5	5%
10108	9:55A		 	plondez	5-10	5%
5.16.00	2:200	1 1		1 0	0.5	10%
EUENT!			1001			
			150'	clear	5-10	5%
11-4	9:10A	NXS	150'	Clear	0-5	1097
11.5	2:25p	1			1	10%
11-5	11:15 A	NAS	150'	plovdy	5-10	15°h
14 6	3:150	1 1	1	1	0-5	5%
11-0	12:000	NBS	150'	Clear	5-16	10%
	3:49,	.,1	-1		1	52
11-7	11:40A	Nas	/50'	clear	0-5	152
11-10	3:19p	Ntos	150'	plc	0-5	57
	4:40,	1	1	1	5-10	10%
11-11	1:00p	NPS	150'	clear	0-5	5%
11-12	7.194	NBS	150	Clear	0-5	03 56
	1:00p			1	4	10%
11-13	8:55 A	Nts	150	plc	5-10	10%
	3:15p	1	1	1	0-5	10%
11-14	7:10A	NOS	150'	Clear	5-10	5%
	1:00p		7	Clear	1	10%
11-17	12:00	NOS	150'	Clear	5-10	5%
11-18	9:40A	NOS	150'	Clear	5-16	5%
11-19	8:10 A	Nts	150'	Clear	0-5	10%
	3:47p	1	1	J	5-10	107
11-20	9:44A	Nts	150'	Clardy	5-10	15%
	2:590		1	pllovary	0-5	1000
11-21	7:47A	Nts	100'	Clear	0.5	20%
	2:007				5-10	
11-24	8:504	NTS	150'	Cliox		15%
	1:300	1		. 7	10-15	10 % 5-cy
1-25	7:50 A	Ntos	150'		5-10	
- 2			עכו	Cloudy	0-5	10%

Observation conducted by: Mark Sykes
Signature

Visual Opacity Recording Form

		DIRECTION (Of		sky		OPACITY
DATE	TIME	Observer)		CONDITIONS	WIND MPH	READING
11-25	12000	NAS	150'	Clear	5-10	15%
11-26	8:10A			Clear	0-5	10%
	1:000			7	0-5	10%
12-1	9:40A	Nts		Clean	5-10	6%
	2:20p	1		1	0-5	10%
12-2	8:20A	NOS		Pulorde	0-5	10%
12-3	9:10A	NES		Cloudy	5-10	20% (5
	3:35p	1			10-15	103
12-4	11:40 A	NAS		Clear		10%
	2000	V		Clear		153
12-5	8:10A	NES		Char		5%
	1:10,	1		7		16%
12-8	8:45A	NOS		Clear		102
	3:20p	7				102
12-9	7:50A	NtoS		Cloudy		167
	4:08	1		Clonde		15%
12-10	9:11A	NES		Clark		10%
	1:30p			Cloudy		5%
12-11	955A	NtoS		Quar		5%
	1:420			1	·	10%
12/12	7:40A	NAS		Clear P/C	•	10%
	1:40p	7	1	1		5°%.
12/15	81/0A					0 %
	3105p	Ntos	150'	Clardy		52
12/16	M:40A	NIS		clear		10%
12/17	8:45A 2:45p	NDS		Clear		57
	2:450			Cleur		<i>p</i> 2
12-18	9:30A	NAS		Clarky Clear Clark Clarky Clarky		10%
	1:10,	1		Claran		10%
12-19	11:00A	Nbs		0)19	-	5%
	3:100			Clear		16%
19199	8.45A	NAS		clar		5%
	1:25p	1	1	Clear		50

Observation conducted by: Mark Sykes
Signature
SH&E Form

Visual Opacity Recording Form

				raing Form		
		DIRECTION (Of		SKY		OPACITY
DATE	TIME	Observer)	(From Stack)	CONDITIONS	WIND MPH	READING
12-23	7:10A	NAS	150'	Clear	5-10	53
12-29	11:45A	NES	150'	RAIN	5-10	15%
12-30	81/0A	NAS	150'	Clarde	0.5	10%
	4:08 9	1	7	clarky	1	5%
12-31	7:19A	NAS	/ॐ ′	P/Chody	b-15	20% (st
	2:400		150'	77000		10%
	<u> </u>		730			106
			·			
 						
		· · · · · · · · · · · · · · · · · · ·				
	· · · · · · · · · · · · · · · · · · ·					
	A					
	100 pt 20					
					;	

Observation conducted by: Mark Sykes
Signature
SH&F Form

Add 1-5-04 did not start up until efter 4:00 pm.
KOPPERS

Visual Opacity Recording Form

		visuai Opa	acity Recoi	raing Form			
DATE	TIME	DIRECTION (Of 'Observer)		SKY CONDITIONS	WIND MPH	OPACITY READING	ì
1-6-03	7:4 VA	NAS	1751	Clear	0-5	10%	
	2:10,0		1		1	5%	
1-7-04	8:15A	Nto S	150	Allordy	5-10	0%	
	3.050	1	1	1,100008	045	5%	
1-8-05	10:21 A	5.75 W	125'	clear	0-5	5%	
	12:55p	NAS	150	Clear	0-5	10%	
1-9-04	7:10A	NOS	150'	plelouder	5-10	10%	
	3:05P		1	1	5-10	5%	
1112104	11:194	Ntos.	150	clear	0-5	5%	
1713/01	7:45A	NES	150'	Clear	5-10	03	
1/14/04	10:254	Ntos	150'	pclordy	0-5	10%	
1/15/04	10:50 N	NDS	1.01	clear	05		<u>ل</u> م.
1/16/04	11:10A	NES	150'	Elean	05	16%	
111904	9.304	NES	.191	/ Clorden	05	5%	
	2129	NES	150	clear	0-5	5%	
1120104		NES	150'	clear	5-10	53.	
1	1290	NES	150'	clear	5-10	10%	
12104	10:10A	Nts	150'	pelouder	0-5	5%	5.00
193/24	8:30A	NES	150	Closy	0-5	0-5%	
	3755p	Nts	150'	Claw	0-5	5%	
1 2364		NAS	150	dias	5-10	10%	
	1:30p	NE S	150'	Clear	0-5	5%	
1.26-4		NAS	1501	clear	10-15	10%	
1-26-04		NOS	1509	Clear	0-5	000	m
	11'404	NES	150	Clear	10-15	152	
	2:190	NZS	150'	Clear	10-15	5%	
	9:20A	Nts	150'	Clear	5-10	10%	-
1-28-04	11=11A	Nts	150'	Clos	0.5	5%	
		٠.,		7			
				· ·			
		200					- 5

Observation condu	icted by: Mark Sykes
Signature	
27	SH&F Form

Thomas L. Henderson
Plant Manager

Koppers Inc.
Utility Poles and Piling
P. O. Box 160
Tie Plant. MS 38960
Tel 662 226 4584 ext. 11
Fax 662 226 4588
HendersonTL@koppers.com

March 23, 2004

CERTIFIED MAIL 7002 0460 0003 7596 1277

Mr. Azzam Abu-Mirshid
Office of Pollution Control
Mississippi Dept. of Environmental Quality
P. O. Box 10385
Jackson, MS 39289-0385

Subject: 2003 Title V Air Permit Compliance Certification-REVISION

Title V Permit #0960-00012 Koppers, Inc Grenada, MS

Dear Mr. Abu-Mirshid

Enclosed is a revised copy of the 2003 Title V Certification of Compliance. A copy of the same was forwarded to Ms. Rosalyn D. Hughes at USEPA-Region IV (cover letter attached).

This Certification of Compliance was changed in response to suggestions you provided during our telephone discussion on March 17, 2004.

Please contact me at 662-226-4584 (Extension 11) if you have any questions or concerns.

Sincerely,

Thomas L. Henderson

Plant Manager

Enclosure

cc: Tim Basilone - CSG, Koppers- Pittsburgh, PA

Thomas L. Henderson Plant Manager

Koppers Inc. **Utility Poles and Piling** P. O. Box 160 Tie Plant, MS 38960 Tel 662 226 4584 ext. 11 Fax 662 226 4588 HendersonTL@koppers.com www.koppers.com

March 22, 2004

CERTIFIED MAIL 7002 0460 0003 7596 1260

Ms. Rosalyn D. Hughes USEPA - Region 4 Atlanta Federal Center 61 Forsyth Street Atlanta, GA 30303-8960

Subject:

2003 Title V Air Permit Compliance Certification-REVISED

Title V Permit #0960-00012 Koppers, Inc Grenada, MS

Dear Ms. Hughes,

Enclosed is a revised 2003 Title V Air Compliance Certification (Certification) for the Koppers Inc. facility in Grenada Mississippi. Revisions were made to an earlier transmittal of the 2003 Certification which was sent on January 28, 2004.

The attached version of the Certification contains the following revisions:

- SECTION 1. General Conditions Subsection 1.1: The compliance type was changed to "Intermittent".
- SECTION 1. General Conditions Subsection 1.3: The compliance status was changed to "Yes" and the compliance type was changed to "Intermittent".

These revisions were made based on suggestions made during a telephone conversation with Mississippi Department of Environmental Quality officials on March 17, 2004.

CERTIFICATION:

I certify based on information and belief formed after reasonable inquiry, the statements and information enclosed are true, accurate, and complete.

hemer / Kundulan / Thomas L. Henderson Plant Manager

Date: 4/2/04

Please contact me at 662-226-4584 extension 11 if you have any questions or concerns.

Sincerely,

Thomas L. Henderson

Plant Manager

Enclosure

CC:

Tim Basilone - CSG, Koppers- Pittsburgh, PA

Azzam Abu-Mirshid – MS Department of Environmental Quality

METHOD OF DETERMINING COMPLIANCE	NOTIFICATION LETTER WAS SENT TO MSDEQ ON JULY 17, 2002, INFORMING THEM THAT THE CO MONITOR ON THE WOOD FIRED BOILER HAD MALFUNCTIONED. A REQUEST TO OMIT THE CO MONITORING REQUIREMENTS WAS MADE TO MDEQ ON AUGUST 19, 2002, MSDEQ ISSUED A DRAFT PERMIT ON SEPTEMBER 19, 2003, ACCEPTING THIS REQUEST. A LETTER WAS SUBMITTED TO MSDEQ ON NOVEMBER 3, 2003 NOTIFYING THEM THAT OUR OPACITY MONITOR WAS OUT OF SERVICE. IT WAS DETERMINED THAT THE MONITOR NEEDED TO BE REPLACED. MSDEQ WAS NOTIFIED BY PHONE OF THIS ACTION AND ADVISED UNTIL THE NEW MONITOR WAS INSTALLED THAT OPACITY WOULD BE OBTAINED VISUALLY AND RECORDED. THE BOILER WAS ORIGINALLY PERMITTED WHEN TREATED WOOD WAS BEING USED AS FUEL. TREATED WOOOD IS NO LONGER USED AS FUEL.
COMPLIANCE TYPE (CONTINUOUS/INTERMITTENT)	INTERMITTENT
COMPLIANCE STATUS (YES/NO)	<u>Q</u>
PERMIT CONDITION SECTION 1. GENERAL CONDITIONS	1.1 The permittee must comply with all conditions of this permit. Any permit noncompliance constitutes a violation of the Federal Act and is grounds for enforcement action; for permit termination, revocation and reissuance, or mobification; or for denial of a permit renewal application. (Ref.: APC-S-6, Section III.A.6.a.)
ITEM	÷-

= = = =					
	PERMIT CONDITION		STATUS	CONTINUOUS/	METHOD OF DETERMINING COMPLIANCE
	SECTION 1. GENERAL CONDITIONS		(YES/NO)	INTERMITTENT)	
1.2	1.2 It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit. (Ref.: APC-S-6, Section III.A.6.b.)	enforcement reduce the vith the 1.A.6.b.)	YES	CONTINUOUS	ENFORCEMENT ACTIONS BY MSDEQ HAVE NOT OCCURRED.
£.	1.3 This permit and/or any part thereof may be modified, revoked, reopened, and reissued, or terminated for cause. filing of a request by the permittee for a permit modification, revocation and reissuance, or termination, or of a notification of planned changes or anticipated noncompliance does not stay any permit condition. (Ref.: APC-S-6, Section III.A.6.c.)	be modified, ted for cause. The nit modification, of a notification lance does not ection III.A.6.c.)	YES	INTERMITTENT	PERMIT RENEWAL APPLICATION WAS SENT TO MSDEQ ON SEPTEMBER 26, 2001. MODIFICATION TO THE PERMIT AUGUST 19, 2002. MODIFICATION TO THE PERMIT RENEWAL APPLICATION WAS SENT TO MSDEQ JULY 1, 2003 MSDEQ JULY 1, 2003 MSDEQ ISSUED A DRAFT PERMIT SEPTEMBER 19, 2003. COMMENTS WERE MADE TO MSDEQ OCTOBER 6, 2003.
					OPACITY READINGS ARE CURRENTLY NOT BEING OBTAINED WITH THE CEM SINCE CEM EQUIPMENT IS BEING REPLACED. HOWEVER OPACITY READINGS ARE BEING OBTAINED VISUALLY AND RECORDED (SEE ITEM 1.1 ABOVE)
4.1	1.4 This permit does not convey any property rights of any sort, or any exclusive privilege. (Ref.: APC-S-6, Section III.A.6.d.)	ts of any ection	YES	CONTINUOUS	NO ACTIONS INVOLVING PROPERTY RIGHTS HAVE OCCURRED.
2.	1.5 The permittee shall furnish to the DEQ within a reasonable time any information the DEQ may request in writing to determine whether cause exists for modifying, revoking and reissuing, or terminating the permit of to determine compliance with the permit. Upon request, the	a lest in ying, to st, the	YES	CONTINUOUS	PERMIT RENEWAL APPLICATION WAS SENT TO MSDEQ ON SEPTEMBER 26, 2001. MODIFICATION TO THE PERMIT RENEWAL APPLICATION WAS SENT AUGUST 19, 2002.

Koppers Inc.

Utility Poles and Piling

P. O. Box 160

Tie Plant, MS 38960

Tel 662 226 4584 ext. 11

Fax 662 226 4588

HendersonTL@koppers.com

www.koppers.com

January 28, 2004

CERTIFIED MAIL 7002 0460 0003 7596 0928

Ms. Rosalyn D. Hughes USEPA - Region 4 Atlanta Federal Center 61 Forsyth Street Atlanta, GA 30303-8960

Granala Co.

Subject:

2003 Title V Air Permit Compliance Certification

Title V Permit #0960-00012 Koppers, Inc Grenada, MS

Dear Ms. Hughes,

Enclosed please find the subject information submitted pursuant to Section 4.2 of the Title V Operation Permit for the Koppers, Inc. facility in Grenada, Mississippi.

CERTIFICATION:

I certify based on information and belief formed after reasonable inquiry, the statements and information enclosed are true, accurate, and complete.

QUANT / Thomas L. Henderson Plant Manager

Date: / 1281 04

Please contact me at 662-226-4584 extension 11 if you have any questions or concerns.

Sincerely,

Thomas L. Henderson Plant Manager

Enclosure Cc:

Tim Basilone - CSG, Koppers- Pittsburgh, PA

David Lee - MS Department of Environmental Quality

COMPLIANCE METHOD OF DETERMINING COMPLIANCE TYPE TYPE	NTERMITTENT)	NUOUS NOTIFICATION LETTER WAS SENT TO MSDEQ ON JULY 17, 2002, INFORMING THEM THAT THE CO MONITOR ON THE WOOD FIRED BOILER HAD MALFUNCTIONED. A REQUEST TO OMIT THE CO MONITORING REQUIREMENTS WAS MADE TO MDEQ ON AUGUST 19, 2002, MSDEQ ISSUED A DRAFT PERMIT ON SEPTEMBER 19, 2003, ACCEPTING THIS REQUEST. A LETTER WAS SUBMITTED TO MSDEQ ON NOVEMBER 3, 2003 NOTIFYING THEM THAT OUR OPACITY MONITOR WAS OUT OF SERVICE. IT WAS DETERMINED THAT THE MONITOR NEEDED TO BE REPLACED. MSDEQ WAS NOTIFIED BY PHONE OF THIS ACTION AND ADVISED UNTIL THE NEW MONITOR WAS ORIGINALLY PERMITTED WHEN TREATED WOOD WAS BEING USED AS FUEL. TREATED WOOOD IS NO LONGER USED AS FUEL.	MINISTER ENECODEMENT ACTIONS BY MODEO
COMPLIANCE COMPLIANCE STATUS (YESALO)	l (Called)	NO	YES
			⊢
PERMIT CONDITION SECTION 1. GENERAL CONDITIONS		1.1 The permittee must comply with all conditions of this permit. Any permit noncompliance constitutes a violation of the Federal Act and is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or for denial of a permit renewal application. (Ref.: APC-S-6, Section III.A.6.a.)	1.2 It shall not be a defense for a permittee in an enforcement
2			1.2

				/	
METHOD OF DETERMINING COMPLIANCE	HAVE NOT OCCURRED.	PERMIT RENEWAL APPLICATION WAS SENT TO MSDEQ ON SEPTEMBER 26, 2001. MODIFICATION TO THE PERMIT RENEWAL APPLICATION WAS SENT AUGUST 19, 2002. MODIFICATION TO THE PERMIT RENEWAL APPLICATION WAS SENT TO MSDEQ JULY 1, 2003 MSDEQ ISSUED A DRAFT PERMIT SEPTEMBER 19, 2003. COMMENTS WERE MADE TO MSDEQ OCTOBER 6, 2003.	OPACITY READINGS ARE CURRENTLY NOT BEING OBTAINED WITH THE CEM SINCE CEM EQUIPMENT IS BEING REPLACED. HOWEVER OPACITY READINGS ARE BEING OBTAINED VISUALLY AND RECORDED (SEE ITEM 1.1 ABOVE)	NO ACTIONS INVOLVING PROPERTY RIGHTS HAVE OCCURRED.	PERMIT RENEWAL APPLICATION WAS SENT TO MSDEQ ON SEPTEMBER 26, 2001. MODIFICATION TO THE PERMIT RENEWAL APPLICATION WAS SENT AUGUST 19, 2002.
COMPLIANCE TYPE (CONTINUOUS/ INTERMITTENT)		CONTINUOUS		CONTINUOUS	CONTINUOUS
COMPLIANCE STATUS (YES/NO)		O		YES	YES
	reduce the with the II.A.6.b.)	be modified, ted for cause. The lit modification, of a motification ance does not section III.A.6.c.)		y rights of any -6, Section	a uest in fying, r to sst, the
PERMIT CONDITION SECTION 1. GENERAL CONDITIONS	action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit. (Ref.: APC-S-6, Section III.A.6.b.)	1.3 This permit and/or any part thereof may be modified, revoked, reopened, and reissued, or terminated for cause. filing of a request by the permittee for a permit modification, revocation and reissuance, or termination, or of a notificatio of planned changes or anticipated noncompliance does not stay any permit condition. (Ref.: APC-S-6, Section III.A.6.c.)		1.4 This permit does not convey any property rights of any sort, or any exclusive privilege. (Ref.: APC-S-6, Section III.A.6.d.)	1.5 The permittee shall furnish to the DEQ within a reasonable time any information the DEQ may request in writing to determine whether cause exists for modifying, revoking and reissuing, or terminating the permit or to determine compliance with the permit. Upon request, the
TER		<u></u>		1.4	1.5

	щ.	F @		S H
	METHOD OF DETERMINING COMPLIANCE	MODIFICATION TO THE PERMIT RENEWAL APPLICATION WAS SENT TO MSDEQ JULY 1, 2003 MSDEQ ISSUED A DRAFT PERMIT SEPTEMBER 19, 2003. COMMENTS WERE MADE TO MSDEQ OCTOBER 6, 2003	<u>S</u>	MSDEQ REQUESTED EMISSION INFORMATION. KOPPERS PROVIDED EMISSIONS INFORMATION TO MSDEQ ON JUNE 24, 2003. EMISSION FEE REQUEST WAS PAID TO MSDEQ IN AUGUST 2003. ACTUAL EMISSIONS WERE USED AS THE BASIS FOR THE FEE.
	TERMINING	TO THE LICATION Y 1, 2003 Y 2003. 1, 2003. ERE MAD	KOPPER	STED EM KOPPER ORMATIC 03. EMIS PAID TO ACTUAL THE BAS
	HOD OF DE	MODIFICATION TO THE PERMIT RENEWAL APPLICATION WAS & TO MSDEQ JULY 1, 2003 MSDEQ ISSUED A DRAFT PERN SEPTEMBER 19, 2003. COMMENTS WERE MADE TO M OCTOBER 6, 2003	NO ACTION BY KOPPERS IS NECESSARY.	MSDEG REQUESTED EMISSION INFORMATION. KOPPERS PROPEMISSIONS INFORMATION TO NON JUNE 24, 2003. EMISSION FREQUEST WAS PAID TO MSDECAUGUST 2003. ACTUAL EMISSION WERE USED AS THE BASIS FOFFEE.
	MET	MODIF RENEN TO MS MSDE(SEPTE COMM	NECES	MSDE INFOR ON JUI AUGUS WERE FEE.
	COMPLIANCE TYPE (CONTINUOUS/ NTERMITTENT)		CONTINUOUS	INTERMITTENT
	CON (CON INTER		NO O	NTER THE PERSON NAMED IN T
Manager of the Parket	COMPLIANCE STATUS (YES/NO)			
	8	5	YES	χ ΑΕ
		permittee shall also furnish to the DEQ copies of records required to be kept by the permittee or, for information to be confidential, the permittee shall furnish such records to DEQ along with a claim of confidentiality. The permittee may furnish such records directly to the Administrator along with a claim of confidentiality. (Ref.: APC-S-6, Section III.A.6.e.)	1.6 The provisions of this permit are severable. If any provision of this permit, or the application of any provision of this permit, or the application of any provision of this permit to any circumstances, is challenged or held invalid, the validity of the remaining permit provisions and/or portions thereof or their application to other persons or sets of circumstances, shall not be affected thereby. (Ref.: APC-S-6, Section III.A.5.)	1.7 The permittee shall pay to the DEQ an annual permit fee. The amount of fee shall be determined each year based on the provisions of regulated pollutants for fee purposes and the fee schedule specified in the Commission on Environmental Quality's order which shall be issued in accordance with the procedure outlined in Regulation APC-S-6. (a) For purposes of fee assessment and collection, the permittee shall elect for actual or allowable emissions to be used in determining the annual quantity of emissions unless the Commission determines by order that the method chosen by the applicant for calculating actual emissions fails to reasonably represent actual emissions. Actual emissions shall be calculated using emission monitoring data or direct emissions measurements for the pollutant(s); mass balance calculations such as the amounts of the pollutant(s) entering and leaving process equipment and where mass hallows.
	SITIONS	permittee shall also furnish to the DEQ copies of records required to be kept by the permittee or, for information to confidential, the permittee shall furnish such records to D along with a claim of confidentiality. The permittee may f such records directly to the Administrator along with a claim confidentiality. (Ref.: APC-S-6, Section III.A.6.e.)	1.6 The provisions of this permit are severable. If any provision of this permit, or the application of any provision of this permit to any circumstances, is challenged or held the validity of the remaining permit provisions and/or pt thereof or their application to other persons or sets of circumstances, shall not be affected thereby. (Ref.: APC-S-6, Section III.A.5.)	1.7 The permittee shall pay to the DEQ an annual permit for The amount of fee shall be determined each year based on provisions of regulated pollutants for fee purposes and the factorisions of regulated pollutants for fee purposes and the factorisions of regulated pollutants for fee purposes and the factorial quality's order which shall be issued in accordance with the procedure outlined in Regulation APC-S-6. (a) For purposes of fee assessment and collection, the permittee shall elect for actual or allowable emissions to be used in determining the annual quantity of emissions unless the Commission determines by order that the method chose by the applicant for calculating actual emissions fails to reasonably represent actual emissions. Actual emissions shall be calculated using emission monitoring data or direct emissions measurements for the pollutant(s); mass balance calculations such as the amounts of the pollutant(s) entering and leaving process equipment and where mass hall and leaving process.
	PERMIT CONDITION SECTION 1. GENERAL CONDITIONS	e DEQ control tree or for furnish sufficients and like. The province of the pr	1.6 The provisions of this permit are several provision of this permit, or the application of this permit to any circumstances, is challenge the validity of the remaining permit provisions thereof or their application to other persons o circumstances, shall not be affected thereby. (Ref.: APC-S-6, Section III.A.5.)	1.7 The permittee shall pay to the DEQ an a The amount of fee shall be determined each provisions of regulated pollutants for fee purp schedule specified in the Commission on Env Quality's order which shall be issued in accorprocedure outlined in Regulation APC-S-6. (a) For purposes of fee assessment and permittee shall elect for actual or allowable er used in determining the annual quantity of err the Commission determines by order that the by the applicant for calculating actual emission reasonably represent actual emissions. Actual be calculated using emission monitoring data emissions measurements for the pollutant(s); calculations such as the amounts of the pollul and leaving process equipment and where missions are according process.
	PERMIT CONDITION 11. GENERAL CON	nish to the permitee shall to the orthing the shall onlidential the Adm the Adm the Action of the Section of th	1.6 The provisions of this permiprovision of this permit, or the approvision of this permit, or the apprix permit to any circumstances, the validity of the remaining permipresof or their application to other circumstances, shall not be affected.: APC-S-6, Section III.A.5.)	Il pay to to to be determined by to to be determined by the commination of the comminatio
	SECTION	l also fur kept by t le permit aim of cc aim of cc lirectly to (Ref.: A	isions of is permit, any circun the rema rapplicat shall no 6, Sectio	iftee shal fee shal agulated fied in the which strined in R proses of elect for ining the ining the ining the resent acter is for calc
		ittee shal ed to be fential, th with a cl records d	The provision of the sermit to a salidity of 1 of or their nstances	The perm mount of regions applications measured to regions measured to regions measured regions surprised of regions of r
		permi requir confic along such I confid	1.6 provise this put the vertherection circum (Ref.:	The all provise schedule Quality proceed Quality proceed (a) permit used if the Cc by the Calculation and lead and lead and lead of the Calculation and lead of the calcul
			1.6 1.6 (CON'T)	7.
ŀ			69	•

-			
METHOD OF DETERMINING COMPLIANCE			
COMPLIANCE TYPE (CONTINUOUS/ INTERMITTENT)			
COMPLIANCE STATUS (YES/NO)		*	
	urement of nt data shall be those relating t type (e.g., air engineering ing published udgements where nd/or emission im actual	re is not sufficient the permitted equate uch determination submittal of the Commission the permittee on the permittee will ed fee schedule. Will be paid on (Ref.: APC-S-6,	each year. By July inventory of fee is to be rly payment on of the election
PERMIT CONDITION SECTION 1. GENERAL CONDITIONS	calculations can be supported by direct measurement of process parameters, such direct measurement data shall be supplied; published emission factors such as those relating release quantities to throughput or equipment type (e.g., air emission factors); or other approaches such engineering calculations (e.g., estimating volatilization using published mathematical formulas) or best engineering judgements whe such judgements are derived from process and/or emission data which supports the estimates of maximum actual emission. (Ref.: APC-S-6, Section VI.A.2.)	information available on a facility's emissions, the determination of the fee shall be based upon the permitted allowable emissions until such time as an adequate determination of actual emissions is made. Such determination may be made anytime within one year of the submittal of actual emissions data by the permittee. (Ref.: APC-S-6, Section VI.A.2.) If at any time within the year the Commission determines that the information submitted by the permittee on actual emissions is insufficient or incorrect, the permittee will be notified of the deficiencies and the adjusted fee schedule. Past due fees from the adjusted fee schedule will be paid on the next scheduled quarterly payment time. (Ref.: APC-S-6, Section VI.D.2.)	(c) The fee shall be due September 1 of each year. By Jul 1 of each year the permittee shall submit an inventory of emissions for the previous year on which the fee is to be assessed. The permittee may elect a quarterly payment method of four (4) equal payments; notification of the election
ITEM			

TEM	PERMIT CONDITION		DOMDI IANGE	E CANALIGATION	METUON OF PETERSHIPPO
	SECTION 1. GENERAL CONDITIONS		STATUS (YES/NO)	CONTINUOUS/	
	of quarterly payments must be made to the DEQ by the first payment date of September 1. The permittee shall be liable for penalty as prescribed by State Law for failure to pay the fee or quarterly portion thereof by the date due. (Ref.: APC-S-6, Section VI.D.)	EQ by the first shall be liable for to pay the fee or f∴ APC-S-6,			
	(d) If in disagreement with the calculation or applicability of the Title V permit fee, the permittee may petition the Commission in writing for a hearing in accordance with State Law. Any disputed portion of the fee for which a hearing has been requested will not incur any penalty or interest from and after the receipt by the Commission of the hearing petition. (Ref.: APC-S-6, Section VI.C.)	or applicability of tion the lance with State n a hearing has nterest from and raring petition.			
1.8	1.8 No permit revision shall be required under any approved economic incentives, marketable permits, emissions trading and other similar programs or processes for changes that are provided for in this permit. (Ref.: APC-S-6, Section III.A.8.)	approved s trading s that are	YES	CONTINUOUS	NO PERMIT REVISIONS OF THIS NATURE HAVE BEEN REQUESTED BY PERMITTEE.
c.	1.9 Any document required by this permit to be submitted to the DEQ shall contain a certification by a responsible official that states that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete. (Ref.: APC-S-6, Section II.E.)	bmitted to e official ned after n the PC-S-6,	YES	INTERMITTENT	ALL REQUIRED DOCUMENTS SUBMITTED HAVE BEEN CERTIFIED.
1.10	1.10 The permittee shall allow the DEQ, or an authorized representative, upon the presentation of credentials and other documents as may be required by law, to perform the following:	orized and other	YES	INTERMITTENT	MSDEQ AIR QUALITY INSPECTORS WERE NOT ON-SITE IN 2003. THERE WERE NO REQUESTS FOR SAMPLING OR MONITORING.
	(a) enter upon the permittee's premises where a Title V source is located or emissions-related activity is conducted	here a Title V is conducted, or			

			T The second second	<u> </u>	
METHOD OF DETERMINING COMPLIANCE		ALL NECESSARY SAMPLING PORTS ARE INSTALLED.	ALL NECESSARY SAMPLING PORTS ARE INSTALLED.	PLANT RECORDS.	NO ACTION REQUIRED OF KOPPERS
COMPLIANCE TYPE (CONTINUOUS/ INTERMITTENT)		CONTINUOUS	CONTINUOUS	CONTINUOUS	CONTINUOUS
COMPLIANCE STATUS (YES/NO)	,	YES	YES	YES	YES
	ions of this permit; le times, any is of this permit; ties, equipment l equipment), under the permit; uple or monitor, at for the purpose of able	n, the ease of nent, sphere.	herein, the ng ports and ease he Permit Board existence prior to	ermit shall be irements as of the e requirements the permit or summary is specifically source. (Ref.:	ollowing:
PERMIT CONDITION SECTION 1. GENERAL CONDITIONS	where records must be kept under the conditions of this permit; (b) have access to and copy, at reasonable times, any records that must be kept under the conditions of this permit; (c) inspect at reasonable times any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under the permit; and (d) as authorized by the Federal Act, sample or monitor, at reasonable times, substances or parameters for the purpose of assuring compliance with the permit or applicable requirements. (Ref.: APC-S-6, Section III.C.2.)	1.11 Except as otherwise specified or limited herein, the permittee shall have necessary sampling ports and ease of accessibility for any new air pollution control equipment, obtained after May 8, 1970, and vented to the atmosphere. (Ref.: APC-S-1, Section 3.9 (a))	1.12 Except as otherwise specified or limited hereih, the permittee shall provide the necessary sampling ports and ease of accessibility when deemed necessary by the Permit Board for air pollution control equipment that was in existence prior to May 8, 1970. (Ref.: APC-S-1, Section 3.9 (b))	1.13 Compliance with the conditions of this permit shall be deemed compliance with any applicable requirements as of the date of permit issuance where such applicable requirements are included and are specifically identified in the permit or where the permit contains a determination, or summary thereof, by the Permit Board that requirements specifically identified previously are not applicable to the source. (Ref.: APC-S-6, Section III.F.1.)	1.14 Nothing in this permit shall alter or affect the following:
ITEM		E.	1.12	1. 13	1.14

7			~~			200			
METHOD OF DETERMINING COMPLIANCE		DURING 2003.			NOT AVAILABLE UNDER CAA SECTION 112 (r)(7)(B)(II).	THIS PERMIT EXPIRED IN 2002.	RENEWAL APPLICATION SENT TO MSDEQ ON SEPTEMBER 26, 2001.	MSDEQ ACKNOWLEDGED RECEIPT OF APPLICATION SENT ON SEPTEMBER 26, 2001	MSDEQ ACKNOWLEDGED ON NOVEMBER 27, 2001 THAT THE APPLICATION SUBMITTED ABOVE AS COMPLETE AS SUBMITTED.
COMPLIANCE	(CONTINUOUS/ INTERMITTENT)				CONTINUOUS	CONTINUOUS			
COMPLIANCE	(YES/NO)		W. M		YES	YES			
	SNOIJ	he Federal Act ty of the	r of a source for any to or at the time of e acid rain program, eral Act.	ation from a source	requirement to ittee's facility is Act to register such a	the permittee's right renewal application	is one which is expiration of the Title	ermit is not a sard takes final action shall cease to apply	pecified in writing by fied as being needed is Section IV.C.2.,
PERMIT CONDITION	SECTION 1. GENERAL CONDITIONS	(a) the provisions of Section 303 of the Federal Act (emergency orders), including the authority of the Administrator under that section;	 (b) the liability of an owner or operator of a source for any violation of applicable requirements prior to or at the time of permit issuance; (c) the applicable requirements of the acid rain program, consistent with Section 408(a) of the Federal Act. 	(d) the ability of EPA to obtain information from a source pursuant to Section 114 of the Federal Act. (Ref.: APC-S-6, Section III.F.2.)	1.15 The permittee shall comply with the requirement to register a Risk Management Plan if permittee's facility is required pursuant to Section 112(r) of the Act to register plan. (Ref.: APC-S-6, Section III.H.)	1.16 Expiration of this permit terminates the permittee's right to operate unless a timely and complete renewal application	has been submitted. A timely application is one which is submitted at least six (6) months prior to expiration of the Title V permit. If the permittee submits a timely and complete	application, the failure to have a Title V permit is not a violation of regulations until the Permit Board takes final action on the permit application. This protection shall cease to apply if subsequent to the completeness determination.	permittee fails to submit by the deadline specified in writing by the DEQ any additional information identified as being needed to process the application. (Ref.: APC-S-6, Section IV.C.2., Section IV.B., and Section II.A.1.c.)
ITEM					1.15	1.16			

METHOD OF DETERMINING COMPLIANCE	A REVISED APPLICATION WAS SUBMITTED TO MSDEQ OCTOBER 28, 2002.	MSDEQ ACKNOWLEDGED THE RECEIPT OF THE APPLICATION ON OCTOBER 30, 2002	MODIFICATION TO THE PERMIT RENEWAL APPLICATION WAS SENT TO MSDEQ JULY 1, 2003	MSDEQ ISSUED A DRAFT PERMIT SEPTEMBER 19, 2003.	COMMENTS WERE MADE TO MSDEQ OCTOBER 6, 2003	ALL PROPOSED CHANGES WERE IDENTIFIED IN MODIFICATIONS TO THE PERMIT RENEWAL	APPLICATIONS SUBMITTED JULY 1, 2003. MSDEQ ACKNOWLEDGED THE	CHANGES JOLT 8, 2003
COMPLIANCE TYPE (CONTINUOUS/ INTERMITTENT)						CONTINUOUS		
COMPLIANCE STATUS (YES/NO)			100 500			YES		
3						within their ion	provision owable	d the he proposed e frame as
PERMIT CONDITION SECTION 1. GENERAL CONDITIONS							 (a) the changes are not modifications under any provision of Title I of the Act; (b) the changes do not exceed the emissions allowable under this nermit. 	(c) the permittee provides the Administrator and the Department with written notification in advance of the proposed changes (at least seven (7) days, or such other time frame as
ITEM						1.17		

METHOD OF DETERMINING COMPLIANCE		KOPPERS WAS NOT INFORMED OF ANY AIR POLLUTION EMERGENCY AFFECTING THE OPERATION OF THIS PLANT DURING 2003.	NO ACTION REQUIRED BY KOPPERS
COMPLIANCE TYPE (CONTINUOUS/ INTERMITTENT)		CONTINUOUS	CONTINUOUS
COMPLIANCE STATUS (YES/NO)		YES	YES
SO Z) and the ger applicable as ection 502(b)(10)	ississippi e an Air Pollution quired to operate r approved ence of an irements is for the des" for the level	ations APC-S-2, APC-S-6, "Air the Purposes of wise provided a Permit to Addification is in the method of tual emissions or it pollutant subject to the the emission of the emission of
PERMIT CONDITION SECTION 1. GENERAL CONDITIONS	provided in other regulations for emergencies) and the notification includes: (1) a brief description of the change(s), (2) the date on which the change will occur, (3) any change in emissions, and (4) any permit term or condition that is no longer applicable as a result of the change; (d) the permit shield shall not apply to any Section 502(b)(10) change. (Ref.: APC-S-6, Section IV.F.)	1.18 Should the Executive Director of the Mississippi Department of Environmental Quality declare an Air Pollution Emergency Episode, the permittee will be required to operate in accordance with the permittee's previously approved Emissions Reduction Schedule or, in the absence of an approved schedule, with the appropriate requirements specified in Regulation APC-S-3, "Regulations for the Prevention of Air Pollution Emergency Episodes" for the level of emergency declared. (Ref.: APC-S-3)	1.19 Except as otherwise provided by Regulations APC-S-2, "Permit Regulations for the Construction and/or Operation of Air Emissions Equipment", and Regulations APC-S-6, "Air Emissions Operating Permit Regulations for the Purposes of Title V of the Federal Clean Air Act", or otherwise provided herein, a modification of the facility requires a Permit to Construct and a modification of this permit. Modification is defined as "Any physical change in or change in the method of operation of a facility which increases the actual emissions or the potential uncontrolled emissions of any air pollutant subject to regulation under the Federal Act emitted into the atmosphere by that facility or which results in the emission of any air pollutant subject to regulation under the Federal Act
ITEM		1. 8	0.19 0.19

METHOD OF DETERMINING COMPLIANCE								
COMPLIANCE TYPE (CONTINUOUS/	INTERMITTENT)							
COMPLIANCE STATUS (YES/NO)						2		
	A physical change not include:	ent;	erial by reason of Federal Energy : of 1974 (or any atural gas	of an order or rule	a stationary	ore January nder any stablished under	permit issued under d pursuant to 40	or in the e prohibited under which was to 40 CFR 52.21 or CFR Subpart I or 40
PERMIT CONDITION SECTION 1. GENERAL CONDITIONS	into the atmosphere not previously emitted. A physical or change in the method of operation shall not include:	(a) routine maintenance, repair, and replacement;	(b) use of an alternative fuel or raw material by reason of an order under Sections 2 (a) and (b) of the Federal Energy Supply and Environmental Coordination Act of 1974 (or any superseding legislation) or by reason of a natural gas curtailment plan pursuant to the Federal Power Act;	(c) use of an alternative fuel by reason of an under Section 125 of the Federal Act;	(d) use of an alternative fuel or raw material by a stationary source which:	(1) the source was capable of accommodating before January 6, 1975, unless such change would be prohibited under any federally enforceable permit condition which was established after January 6, 1975, pursuant to 40 CFR 52.21 or under regulations approved pursuant to 40 CFR 51.166; or	2) the source is approved to use under any permit issued un 40 CFR 52.21 or under regulations approved pursuant to 40 CFR 51.166;	(e) an increase in the hours of operation or in the production rate unless such change would be prohibited under any federally enforceable permit condition which was established after January 6, 1975, pursuant to 40 CFR 52.21 ounder regulations approved pursuant to 40 CFR Subpart I or 4
ITEM								

TEM	PERMIT CONDITION		COMPLIANCE	COMPLIANCE	METHOD OF DETERMINING COMPLIANCE	
	SECTION 1. GENERAL CONDITIONS		STATUS (YES/NO)	TYPE (CONTINUOUS/ INTERMITTENT)		
	CFR 51.166; or	# OCA				r
	(i) any change in ownership of the stationary source.	ource.				- 12
	1.20 Any change in ownership or operational control m approved by the Permit Board. (Ref.: APC-S-6, Section IV.D.4.)	control must be 6, Section	YES	CONTINUOUS	NO CHANGE OF OWNERSHIP HAS OCCURRED.	
	1.21 This permit is a Federally approved operating permit under Title V of the Federal Clean Air Act as amended in 1990. All terms and conditions, including any designed to limit the source's potential to emit, are enforceable by the Administrator and citizens under the Federal Act as well as the Commission. (Ref.: APC-S-6, Section III.B.I)	arating permit amended in 1990. ned to limit the the Administrator the Commission.	YES	CONTINUOUS	NO ACTION REQUIRED BY KOPPERS.	
	burning of residential, commercial, institutional, or industrial burning of residential, commercial, institutional, or industrial solid waste, is prohibited. This prohibition does not apply to infrequent burning of agricultural wastes in the field, silvicultural wastes for forest management purposes, land-clearing debris, debris from emergency clean-up operations, and ordnance. Open burning of land-clearing debris must not use starter or auxiliary fuels which cause excessive smoke (rubber tires, plastics, etc.); must not be performed if prohibited by local ordinances; must not cause a traffic hazard; must not take place where there is a High Fire Danger Alert declared by the Mississippi Forestry Commission or Emergency Air Pollution Episode Alert imposed by the Executive Director and must meet the following buffer zones. (a) Open burning without a forced-draft air system must not occur within 500 yards of an occupied dwelling.	I herein, the open al, or industrial as not apply to e field, urposes, land-up operations, debris must not essive smoke ormed if e a traffic hazard; e Danger Alert sion or ed by the ng buffer zones. Ir system must not ig.	YES	CONTINUOUS	PLANT RECORDS. NO OPEN BURNING HAS OCCURRED IN 2003.	
						_

	A PROPERTY OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO	T1	Carallean Landing Co. 199	
METHOD OF DETERMINING COMPLIANCE		NO EMERGENCY EVENTS ADDRESSED IN THIS REQUIREMENT OCCURRED IN 2003.		
COMPLIANCE TYPE (CONTINUOUS/		CONTINUOUS		
COMPLIANCE STATUS (YES/NO)		YES		
	noke may of an arked off- pproval to authority,	mittee shall	an "emergency" I reasonably he source, is immediate , and that causes lission limitation les in emissions / shall not include operly designed e, careless or	ive defense to an technology-based in (¢) following
PERMIT CONDITION SECTION 1. GENERAL CONDITIONS	fires to improve the combustion rate and reduce shoke may be done within 500 yards of but not within 50 yards of an occupied dwelling. (C) Burning must not occur within 500 yards of commercial airport property, private air fields, or marked off-runway aircraft approach corridors unless written approval to conduct burning is secured from the proper airport authority, owner or operator. (Ref.: APC-S-I, Section 3.7)	1.23 Except as otherwise specified herein, the permittee shall be subject to the following provision with respect to emergencies.	means any situation arising from sudden and reasonably unforeseeable events beyond the control of the source, including acts of God, which situation requires immediate corrective action to restore normal operation, and that causes the source to exceed a technology-based emission limitation under the permit, due to unavoidable increases in emissions attributable to the emergency. An emergency shall not include noncompliance to the extent caused by improperly designed equipment, lack of preventative maintenance, careless or improper operation, or operator error.	(b) An emergency constitutes an affirmative defense to an action brought for noncompliance with such technology-based emission limitations if the conditions specified in (¢) following
ITEM		1.23		

100		The Real Property lies						12.11	CONTRACTOR OF THE PROPERTY OF	_
	METHOD OF DETERMINING COMPLIANCE									THE MSDEQ WAS NOTIFIED OF ALL
	COMPLIANCE TYPE (CONTINUOUS/									INTERMITTENT
	COMPLIANCE STATUS (YES/NO)									YES
			all be aneous aude	can identify	g praperly	tee took all that ements in the	cy to the sion This notice steps taken	permittee seeking has the burden of	incy or upset specified	rmittee shall
TOTAL CONTROL OF THE PARTY OF T	SECTION 1. GENERAL CONDITIONS	are met.	(C) The affirmative defense of emergency shall be demonstrated through properly signed contemporaneous operating logs, or other relevant evidence that include information as follows:	(1) an emergency occurred and that the permittee can identify the cause(s) of the emergency;	(2) the permitted facility was at the time being pro operated;	(3) during the period of the emergency the permittee took all reasonable steps to minimize levels of emissions that exceeded the emission standards, or other requirements in the permit; and	(4) the permittee submitted notice of the emergency to the DEQ within 2 working days of the time when emission limitations were exceeded due to the emergency. This notice must contain a description of the emergency, any steps taken to mitigate emissions, and corrective actions taken.	(c) In any enforcement proceeding, the perm to establish the occurrence of an emergency has proof.	(d) This provision is in addition to any emergency or upset provision contained in any applicable requirement specified elsewhere herein. (Re.: APC-S-6, Section III.G.)	1.24 Except as otherwise specified herein, the permittee shall
1004	E 1				3 3					1.24

METHOD OF DETERMINING COMPLIANCE	NON-COMPLIANCE EVENTS WHEN 40% OPACITY WAS EXCEEDED. NOTIFICATION WAS MADE IN REPORTS ISSUED ON JULY 25, 2003	JANUARY 03 – JUNE 03, AND ON JANUARY 27, 2003 COVERING THE TIME PERIOD OF JULY 03 – DECEMBER 03 (SEMI-ANNUAL REPORT).					
COMPLIANCE TYPE (CONTINUOUS/ INTERMITTENT)							
COMPLIANCE STATUS (YES/NO)							
	to upsets, 4)	n affirmative or noncompliance tts of Applicable mit if the permittee mporaneous at include	tee can identify the srly operated; reasonable steps ed the emission ole Rules and	the DEQ and	description of the s, and corrective	seeking to an of proof.	sion
PERMIT CONDITION SECTION 1. GENERAL CONDITIONS	be subject to the following provisions with respect to upsets, startups, and shutdowns. (a) Upsets (as defined by APC-S-1, Section 2.34)	(1) The occurrence of an upset constitutes an affirmative defense to an enforcement action brought for noncompliance with emission standards or other requirements of Applicable Rules and Regulations or any applicable permit if the permittee demonstrates through properly signed contemporaneous operating logs, or other relevant evidence that include information as follows:	 (a) an upset occurred and that the permittee can identify the cause(s) of the upset; (b) the source was at the time being properly operated; (c) during the upset the permittee took all reasonable steps to minimize levels of emissions that exceeded the emission standards, or other requirements of Applicable Rules and Regulations or any applicable permit; 	(d) the permittee submitted notice of the upset to the DEQ within 5 working days of the time the upset began; and	(e) the notice of the upset shall contain a description of th upset, any steps taken to mitigate emissions, and corrective actions taken.	2) In any enforcement proceeding, the permittee seeking to establish the occurrence of an upset has the burden of proof.	(3) This provision is in addition to any upset provision
ITEM							

METUOD OF DETERMINING COMBILANCE											
SOME ISNOT	(CONTINUOUS/										
BOWAL IGHICA	STATUS (YES/NO)										
			-S-1,	source al operation ows:	during a an upset	duration of sign of the cannot be ersons; or	ing a startup Applicable	mittee seeking to luring a startup or	conflicts gent		ed shutdown
MOITINION TIMOTO	SECTION 1. GENERAL CONDITIONS	contained in any applicable requirement.	(b) Startups and Shutdowns (as defined by APC-S-1, Sections 2.31 & 2.26)	(1) Startups and shutdowns are part of normal source operation. Emissions limitations applicable to normal operation apply during startups and shutdowns except as follows:	(a) when sudden, unavoidable breakdowns occur during a startup or shutdown, the event may be classified as an upset subject to the requirements above;	(b) when a startup or shutdown is infrequent, the duration of excess emissions is brief in each event, and the design of the source is such that the period of excess emissions cannot be avoided without causing damage to equipment or persons; or	(c) when the emissions standards applicable during a startup or shutdown are defined by other requirements of Applicable Rules and Regulations or any applicable permit.	(2) In any enforcement proceeding, the permittee seeking to establish the applicability of any exception during a startup or equipped to burden of proof	(3) In the event this startup and shutdown provision conflicts with another applicable requirement, the more stringent requirement shall apply.	(C) Maintenance.	(1) Maintenance should be performed during planned shutdown
1024											

METHOD OF DETERMINING COMPLIANCE								
COMPLIANCE TYPE (CONTINUOUS/ INTERMITTENT)								
COMPLIANCE STATUS (YES/NO)								
j	missions are brief periods ent or functions ent action is, or other brittate the	the maintenance;	erated;	took all reasonable exceeded the of Applicable Rules	maintenance to the maintenance began	of the maintenance, corrective actions	seeking to urden of	licts with
PERMIT CONDITION SECTION 1. GENERAL CONDITIONS	or repair of process equipment such that excess emissions are avoided. Unavoidable maintenance that results in brief periods of excess emissions and that is necessary to prevent or minimize emergency conditions or equipment malfunctions constitutes an affirmative defense to an enforcement action brought for noncompliance with emission standards, or other regulatory requirements if the permittee can demonstrate the following:	(a) the permittee can identify the need for the m	(b) the source was at the time being properly operated;	(c) during the maintenance the permittee took all reasonable steps to minimize levels of emissions that exceeded the emission standards, or other requirements of Applicable Rules and Regulations or any applicable permit;	(d) the permittee submitted notice of the maintenance to the DEQ within 5 working days of the time the maintenance began or such other times as allowed by DEQ; and	(e) the notice shall contain a description of the any steps taken to mitigate emissions, and correct taken.	(2) In any enforcement proceeding, the permittee seeking to establish the applicability of this section has the burden of proof.	(3) In the event this maintenance provision conflicts with another applicable requirement, the more stringent
ITEM								

	-	7		
	METHOD OF DETERMINING COMPLIANCE			PLANT RECORDS. NO DEMOLITION OR RENOVATION ACTIVITIES ADDRESSED BY THIS REQUIREMENT OCCURRED IN 2003.
	COMPLIANCE TYPE (CONTINUOUS/	INIERMIIIENI)		CONTINUOUS
TOWN INTO	STATUS (YES/NO)			YES
				licable standards lant to the as adopted by The permittee of this permit in
PERMIT CONDITION	SECTION 1. GENERAL CONDITIONS	requirement shall apply.	(Ref.: APC-S-I, Section 10)	1.25 The permittee shall comply with all applicable standards for demolition and renovation activities pursuant to the requirements of 40 CFR Part 61, Subpart M, as adopted by reference in Regulation APC-S-1, Section 8. The permittee shall not be required to obtain a modification of this permit in order to perform the referenced activities.
ITEM				1.25

Telephone: (601) 226-4584 FAX: (601) 226-4588

September 26, 2001

CERTIFIED MAIL # 7000 0520 0021 7551 9576

Ms. Melissa Collier
Mississippi Department of Environmental Quality
P.O. Box 10385
Jackson, MS 39289-0385

RE:

Title V Operating Permit - #0960-00012 Koppers Industries, Inc. – Grenada, Mississippi Renewal Application

Dear Ms. Collier,

Enclosed is the renewal application for our existing Title V Operating Permit No. 0960-00012. The enclosed document addresses all requirements of the renewal application.

If you have any questions or concerns, please call me at (662) 226-4584 extension 11.

Sincerely,

Thomas L. Henderson

Koppers Industries, Inc. - Grenada, Mississippi

Cc: Steve Spengler - Environmental permits division MSDEQ - (without site map)

Cc: Tim Basilone, KII - Pittsburgh

1.

Attachments

Renewal Application

Title V Operating Permit

No. 0960-00012

Koppers Industries, Inc.

Tie Plant, MS 38960

TABLE OF CONTENTS

1.0	Introduction
2.0	Changes in Plant Equipment and Operation
3.0	Exempt and Insignificant Activities
4.0	Alternate Operating Scenario
5.0	Monitoring, Recordkeeping & Reporting
6.0	MSDEQ Application Forms

1.0 Introduction.

On 11 March 1997, Koppers Industries, Inc. was issued the Title V Operating Permit No. 0960-00012 for its wood treating plant (the Plant) at Tie Plant MS. This application for renewal of the Title V permit is submitted 6 months in advance of that expiration date, in conformance with MDSEQ requirements.

During the 5 years that the Title V permit has been in effect, the Grenada Plant has operated in compliance with the requirements of the permit. In addition, several changes have taken place. Some sources have been retired from service and some new sources have been added. Some equipment, originally used for one purpose has been switched to a different type of service. For some equipment, the Reference Numbers have been changed to provide consistency with other site permit and programmatic requirements. Importantly, some operations need to be accomplished in a different way and are the basis for an Alternative Operating Scenario not included in the original permit. For both the baseline operations and the Alternative Operating Scenario, the Plant remains a Major Source for purposes of the Title V Operating Permit Program.

The basic operations at the Plant are unchanged. The Plant continues to produce treated wood products such as railroad ties, utility poles and other timber products. During the past 5 years some of these operations have become more streamlined. Others have been replaced or eliminated. Several operations have undergone change in response to KII's pollution prevention efforts. For example, the formulation of KII's creosote has changed since the original application. The reformulated creosote is both easier to use in treating operations and results in lower VOC emissions to the atmosphere during the treating operations.

The remaining sections of this permit application document include all of the changes relevant to the Plant. In addition, the various MSDEQ Forms required for this renewal application are included.

2.0 Changes in Plant Equipment and Operations

Since the original Title V Permit has been in effect, there have been several changes in equipment and operations at the Plant. Some of these changes have been discussed previously in detail with the MSDEQ. Others correspond to exempt and/or insignificant changes. All of these changes are summarized below.

2.1 Changes in Equipment Reference Numbers

Several of these Reference Numbers have been changed to incorporate the numbering system used in the SPCC Plan for the Plant. Other Reference Numbers have been changed because the 1997 Title V Permit had duplicate Reference Numbers. For example, in the 1997 Title V Permit, both Emission Points AA-003 and AA-0010 had a Reference No. 32. By revising the Reference Number system used in this renewal application, this and other duplicate reference numbers have been avoided.

Emission Point	Description (1997 Title V References)	Proposed Ref. No	Comments
AA-001	Title V, Ref. No. 1 - the 60.0 MMBTUH	40	See also Section 4, Alternative
	Wellons/Nebraska Woodwaste Boiler	ŀ	Operating Scenario
AA-002	Title V, Ref. No. 26 - the 28.5 MMBTUH fuel oil	41	
	fired Murray Boiler		
AA-003	SPCC, Ref. No. 5 - the 34,000 gal treatment cylinder	1	
	containing Penta in oil.	<u></u>	
	SPCC, Ref. No. 5 - the 27,000 gal treatment cylinder	2	
	containing Creosote		
	SPCC, Ref. No. 5 - the 27,000 gal treatment cylinder	3	
	containing Creosote		
	SPCC, Ref. No. 5 - the 27,000 gal treatment cylinder	4	
	containing Creosote		
	SPCC, Ref. No. 5 - the 27,000 gal treatment cylinder	5	
	containing Creosote		
	SPCC, Ref. No. 6 - the 29,7786 gal #1 Work Tank	6	
	containing Penta in oil.		
	SPCC, Ref. No. 7 - the 29,786 gal #2 Work Tank	7	
	containing Creosote	1	100
	SPCC, Ref. No. 8 - the 29,786 gal #3 Work Tank	8	
	containing Creosote		
	SPCC, Ref. No. 9 - the 22,419 gal #4 Work Tank	9	
	containing Creosote		lang)
	SPCC, Ref. No. 10 - the 29,786 gal #5 Work Tank	10	
	containing Creosote/Water.	1	
	SPCC, Ref. No. 11 - the 4,200 gal Measuring Tank	11	•
	containing Creosote	- -	
	SPCC, Ref. No. 12 - the 100,000 gal #1 Storage Tank	12	TANK TANK
	containing Creosote	İ	
	SPCC, Ref. No. 13 - the 100,000 gal #2 Surge Tank	13	
	containing Process water	1	
	SPCC, Ref. No. 14 - the 100,000 gal #5 Storage Tank	14	
	containing Diesel #2 fuel oil		
	SPCC, Ref. No. 15 - the 105,000 gal #6 Storage Tank	15	
	containing creosote		2000 A 2000 A 2000 A 2000 A 2000 A 2000 A 2000 A 2000 A 2000 A 2000 A 2000 A 2000 A 2000 A 2000 A 2000 A 2000 A
	SPCC, Ref. No. 16 - the 300,000 gal #10 Surge Tank	16	
	containing process water		
	SPCC, Ref. No. 17 - the 250,000 gal Storm Water	17	
	surge tank containing Storm Water		

Emission Point	Description (1996 Title V References)	Proposed Ref. No	Comments
	SPCC, Ref. No. 18 - the 1,500 gal Coagulant Tank containing water treatment system polymer additive	18	
	SPCC, Ref. No. 19 - the 2,500 gal Decant Tank containing Creo/Oil/Water	19	
	SPCC, Ref. No. 20 - the 8,000 gal Creosote Blowdown tank containing Creo/Water	20	
	SPCC, Ref. No. 21 - the 6 ft. Dia. X 60 ft. long, Air Receiver containing compressed air		Removed from list. Contains onl compressed air
	SPCC, Ref. No. 22 - the 7 ft. Dia. X 40 ft. long Air Receiver containing compressed air		Removed from list. Contains onl compressed air
	SPCC, Ref. No. 23 - the 8,000 gal Penta Blowdown tank containing water/penta/oil	23	
	SPCC, Ref. No. 26 - the 150,000 gal Aeration Tank containing waste water	26	87
	SPCC, Ref. No. 27 - the 25,000 gal Clarifier Tank containing waste water	27	
•	SPCC, Ref. No. 28 - the 15,000 gal Discharge Tank containing waste water	28	
	SPCC, Ref. No. 29 - the 8,000 gal Creosote Dehydrator	29	
	SPCC, Ref. No. 30 - the 14,000 gal North Penta Equalization Tank containing water/penta/oil	30	
	SPCC, Ref. No. 31 - the 14,000 gal South Penta Equalization Tank containing water/penta/oil	31	
	SPCC, Ref. No. 32 - the 9,400 gal Penta Mix Tank containing Oil/Penta	32	
	SPCC, Ref. No. 33 - the 5,000 gal Penta Mix Tank containing Oil/Penta	33	
	SPCC, Ref. No. 34 - the 10,500 gal Penta Concentrate Tank containing 40% Pentachlorophenol Concentrate	34	
	SPCC, Ref. No. 35 – the 100,000 gal Stormwater Tank	35	This Tank has been added.
AA-004	Title V, Ref. No. 27, the Tie Mill and Lumber Mill with cyclone	42	
AA-005	Title V, Ref. No. 33, the Boiler House natural gas fired space heater rated at 0.2 MMBTUH	43	Insignificant Activity per APC-S-6.1 Three (3) space heaters each rated at 0.2mmbtu/hr.
AA-006	Title V, Ref. No. 35, the natural gas fired steam cleaner rated at 0.44 MMBTUH		Insignificant Activity per APC-S-6.1
AA-007	Title V, Ref. No. 36, the Wood Stove Shop Heater rated at 0.10 MMBTUH		Source no longer exists. Has been removed from site.
AA-008	Title V, Ref. No. 8, the Treated Wood Storage Areas	46	
AA-009	Title V, Ref. No. 31, the Pole Kiln	47	
AA-010	Title V, Ref. No. 32, the Pole Peeler	48	
AA-011	Title V, Ref. No. 34, Wood Fuel Preparation and handling including grinding, conveying, and silo loading	49	
	Title V, Ref. No. 37, the two (2) Parts cleaners- degreasers	50	
AA-013	SPCC, Ref. No. 24, the 1,250 gal Gasoline Storage tank containing Gasoline used by company vehicles	51	Insignificant Activity per APC-S-6.I

Emission Point	Description (1996 Title V References)	Proposed Ref. No	Comments
AA-014	SPCC, Ref. No. 25, the 9,000 gal Diesel Storage tank used by company vehicles/Rolling Stock	52	Insignificant Activity per APC-S-6.IV.
AA-015	Title V, Ref. No. 33, the Oil Fired Murray Standby boiler room Natural Gas fired Space Heater rated at 0.1 MMBTUH	54	Insignificant Activity per APC-S-6.IV.
AA-016	Title V, Ref. No. 33, the Fire Pump building Natural Gas fired Space Heater rated at 0.02 MMBTUH		Source no longer exists. Has been removed from site.

2.2 Emission Factors and Emissions.

As noted above, KII has changed the formulation of creosote used for treating ties, poles and timber. This reformulation is a classic pollution prevention program since it made the treating operations easier and it reduced VOC emissions from the treating process as well. The reformulation resulted in an appreciable reduction in the vapor pressure of the creosote. One of the significant advantages to this reformulation was the elimination of certain HAPs from the creosote, which correspondingly reduced the HAP atmospheric emissions.

The PTE emissions for the Plant are included with the various MSDEQ Forms. However, a summary of the changes in the VOC emissions associated with creosote treatment is provided below.

Emissions from Creosote Treated Products

Pollutant	Production Emissions (tpy)	Storage Yard Emission (tpy)
	1996 Applicati	on/1997 Permit
Total VOC	26.25	12.88
Napthalene	4.46	3.88
Benzene	5.78	0.003
Toluene	6.83	0.15
Dibenzofuran	0.16	n.a.
Quinoline	0.39	n.a.
Biphenyl	0.04	n.a.
Total HAPs	19.33	4.03
	2001 Ap	plication
Total VOC	3.43	7.50
Napthalene	1.77	3.88
Dibenzofuran	0.15	0.33
Quinoline	0.08	0.17
Biphenyl	0.06	0.57
Total HAPs	2.06	4.95

NOTES:

All emissions based on 2,000,000 ft³ ties and 1,500,000 ft³ poles

n.a. = not analyzed or reported.

All Emissions on a PTE basis.

1

The summary indicates that there is a substantial reduction in the emissions of VOC and certain organic HAPs from the production of creosote treated wood products. These emissions are included in the affected Forms required by MSDEQ in this reapplication.

5

2.3 Equipment Changes at the Plant

. 1

The equipment associated Emission Points AA-007, the Wood Stove Shop Heater, and AA-015, the Fire Pump Building natural gas fired space heater, have been removed from the site. A new stormwater storage tank has been added. It has been included in AA-003 and has the Reference No. 35.

3.0 Insignificant and Exempt Activities and Equipment

The MSDEQ regulations at APC-S-6.VI includes an extensive list of "Insignificant Activities and Emissions". Several of the operations and equipment at the Plant are listed as "Insignificant" in Sections APC-S-6-VI.A and VI.B. These are listed below and are included in Form C, as required by MSDEQ. In addition, the emissions from several, but not all, of these Insignificant Activities are included in the Plant-wide Emissions Summary, as required under APC-S-6.VI.C and VI.D. See the individual equipment and/or process Forms and the Emission Summary in Form C for the details.

Emission Point	Emission Point Description		
AA-003	Compressed Air Receivers (Ref. Nos. 21 & 22)	APC-S-6.VI.B.27	
AA-005	Boiler House natural gas fired space heater	APC-S-6.VI.B.2.a.	
AA-006	Natural gas fired steam cleaner	APC-S-6.VI.B.2.a.	
AA-013	1,000 gallon Gasoline Storage Tank	APC-S-6.VI.B.7	
AA-014	20,000 gallon Diesel fuel Storage Tank	APC-S-6.VI.B.7	
AA-015	Standby boiler room natural gas fired Space Heater	APC-S-6.VI.B.2.a.	
	Outdoor kerosene heaters (5 units)	APC-S-6.VI.A.17	
	Emergency Power Generators (3 units at 11 hp and 6000 watts; 3 units at 16 hp and 8000 watts)	APC-S-6.VI.B.9	

4.0 Alternative Operating Scenario

In the MSDEQ Title V Permit Program, an applicant has the opportunity to define an Alternative Operating Scenario for inclusion in the Permit. The Alternative Operating Scenario described below is provided in accordance with the requirements given in APC-S-6.II.C.7 and II.D.

The operation of the Wellons wood-fired boiler, Emission Point AA-001, is baselined on using a mixture of used, treated wood and untreated wood as the fuel. The emissions for the baseline operation were included in the original (1996) permit application and are included here as well. However, to be able to assure operation of the Wellons wood-fired boiler in the face of increasingly uncertain supplies of used treated wood products, KII is defining an Alternative Operating Scenario as the full power operation of the Wellons boiler using only untreated wood fuel. Inclusion of this Alternative Operating Scenario will provide KII the flexibility to operate the Plant in the face of fuel supply uncertainties. Note that this Alternative Operating Scenario in no way affects the quantities or mix of treated wood products manufactured at the Plant.

Because, in general, untreated wood fuel has a lower thermal rating (btu/lb of wood) than does used treated wood fuel, the quantity of untreated wood that must be burned as fuel greatly exceeds that of used treated wood fuel. For example, for the Wellons boiler at the Plant, with a nameplate rating of 60,000,000 btu/hr (60mmbtu/hr), the baseline scenario includes 37,580 tons of used treated wood fuel on a PTE basis. Correspondingly, the Alternative Operating Scenario requires 58,400 tons of untreated wood fuel on a PTE basis.

Also, the emissions associated with untreated wood fuel differs somewhat from those associated with used treated wood fuel. The used treated wood fuel mixture contains some pentachlorophenol treated wood. For this reason, emissions of HCl are characteristic of this fuel component and are missing when only untreated wood fuel is used. Also, the untreated wood fuel contains less sulfur which leads to lower SO₂ emissions than with the used treated wood fuel. The emission factors for the Alternative Operating Scenario are taken from AP-42 and are summarized below:

Potential To Emit Basis for Title V Application - Alternative Operating Scenario

AA-001-BOILER, WOOD FIRED	tn/yr	Sulfur	Chlorine	(lb/hr):
Total Wood Burned:	58,403	0.01%	0.04%	13333
Creo Wood Burned:	0	0.25%	0.04%	
Penta Wood Burned:	0	0.25%	0.25%	
Untreated Wood Burned:	58,403	0.01%	0.04%	
Removal Efficiency (1):		70.00%	45.00%	VACCE

	-/:		10.00	70	
Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
Particulate	4.2	lb/tn	AP-42	122.65	28.00
SO2	0.08	lb/tn	AP-42	2.19	0.50
NOX (2)	1.60	lb/tn	1994 Test	46.72	10.67
CO	6.6	lb/tn	AP-42	192.73	44.00
VOC	0.18	lb/tn	AP-42	5.26	1.20
HC1	1.538	lb/tn PCP fuel	2/96 Test	0.00	0.00
Arsenic	8.8E-05	lb/tn	AP-42	0.0026	0.001
Cadmium	1.7E-05	lb/tn	AP-42	0.0005	0.000
Chromium	1.3E-04	lb/tn	AP-42	0.0038	0.001
Lead	3.1E-04	lb/tn	AP-42	0.0091	0.002
Manganese	8.9E-03	lb/tn	AP-42	0.2599	0.059
Nickel	5.6E-04	lb/tn	AP-42	0.0164	0.004
Selenium	1.8E-05	lb/tn	AP-42	0.0005	0.000
Mercury	6.5E-06	lb/tn	AP-42	0.0002	0.000
Total HAP Metals				0.29	0.067

⁽¹⁾ Removal efficiencies based on 2/96 stack test.

The Grenada Plant meets the criteria for a Major Source under the Title V program whether untreated wood or used treated wood fuel is used in the Wellons boiler.

The emissions for the Wellons boiler (AA-001) are summarized in Section D of the MSDEQ Forms for each Scenario. The plant-wide summaries for both Scenarios are included in Section C of the MSDEQ Forms.

For this Alternative Operating Scenario, some of the emission limitations and monitoring & recordkeeping provisions of the existing Title V permit for the Baseline Scenario are no longer appropriate. It is requested that the following changes be made in the new Title V permit for the Alternative Operating Scenario:

a. In Section 3.B, for the Baseline Scenario, there is a temperature limitation in effect when treated wood fuel is used. Since treated wood will not be used for the Alternative Operating Scenario, this limitation should be removed.

8

^{(2) 1994} Stack Test

- b. In Section 3.B, for the Baseline Scenario, there is a limitation on the hourly feed rate of 9375 lb/hour for the used treated wood fuel. This limitation was established in the Construction Permit. For the Alternative Operating Scenario, this limitation must be revised upwards to account for the lower btu/lb heating value of the untreated wood fuel. It is requested that this limitation be set at 15,000 lb/hour for untreated wood fuel. This limitation provides some small margin on the fuel use rate corresponding to the PTE basis in the Emission Summary. This small margin will allow for some variation in the heating value of the untreated wood fuel. The Emission Summary is based on a heating value of 4500 btu/lb. If some fuel contains greater moisture or is lower quality, in general, the actual heating value will be below the value used in the emissions summary.
- c. In Section 5.B, for the Baseline Scenario, there is a recordkeeping requirement to provide for continuous recording of the boiler temperature and to note the time periods when untreated wood fuel is fed to the boiler. For the Alternative Operating Scenario, used treated wood fuel will not be used at any time and it is requested that this monitoring & recordkeeping requirement be eliminated.

5.0 Monitoring, Recordkeeping & Reporting Requirements.

Section 5 of the existing Title V Permit contains several monitoring, recordkeeping and reporting (MRKR) requirements. Based on KII's experience operating in compliance with these requirements, some changes are recommended for the new Permit. These are focused on elimination of duplicative reporting requirements and on removing ambiguity from the existing language. The following changes are recommended:

Existing 5.A.4 – "Except as otherwise specified herein, the permittee shall submit reports of any required monitoring by July 31 and January 31 for the preceding six-month period. All instances of deviations from permit requirements must be clearly identified in such reports and all required reports must be certified by a responsible official consistent with APC-S-6, Section II.E."

Suggestions for Modification of Section 5.A.4:

It is recommended that this is where all of the deviations should be reported and not under Condition 5.A.5. It is felt that semi-annual reporting is timely and that the 5-day reporting requirement in Condition 5.A.5 is burdensome. By eliminating the 5-day reporting requirement, duplicative reporting would be avoided. In addition, it is recommended that the language in the new permit be amended to include an explicit list of those deviations must be reported and what information for each deviation must be reported in the semi-annual reports.

Existing 5.A.5 – "Except as otherwise specified herein, the permittee shall report all deviations from permit requirements, including those attributable to upsets, the probable cause of such deviations, and any corrective actions or preventive measures taken within five (5) days of the time the deviation began."

Suggestions for Modification of Section 5.A.5:

. 2

It is recommended that the language in the new permit be amended to include an explicit list of those deviations which must be reported in the semi-annual reports. In addition, we would like the language of the permit to explain in explicit detail what information must be reported. Also we would like the 5-day reporting period to be eliminated and the Semi-Annual Air Report required under Section 5.A.4 be the only reporting schedule.

The existing Permit provides deviation reporting exemptions for the following conditions:

- a. Startups Opacity may exceed 40% for 15 minutes per startup in any one hour and not to exceed three (3) startups per stack in any twenty-four (24) hour period.
- b. Soot Blowing emissions from soot blowing operations shall be permitted provided such emissions do not exceed 60 percent opacity, and provided further that the aggregate duration of such emissions during any twenty-four (24) hour period does not exceed ten (10) minutes per billion BTU gross heating value of fuel in any one hour.

It is recommended that the following items be listed as exemptions for purposes of reporting deviations:

- 1. A longer duration allowance for soot blowing such as 15 minutes or more, since this is preventative maintenance that occurs 3 times a day on a normal operating day.
- 2. An opacity allowance for pulling ash. This is also a routine preventative maintenance measure that occurs at least twice daily. This practice is especially disruptive to the system in terms of opacity due to the behavior of "fly ash" that is removed from the ash box and the ash collector.
- 3. An opacity allowance for fuel cell clean-out. This is preventative maintenance that occurs 4 times per day and is also disruptive to the system in terms of opacity.
- 4. An opacity allowance for fuel feed adjustment. The condition of our fuel is constantly changing. A variety of factors in fuel conditions play a significant role in the combustion efficiency rate at which the fuel is burned. One fuel feed rate may work perfectly for the type of fuel that was fed into the boiler on one day, but then that rate may be too high or too low for the fuel fed into the boiler on the next day. Sometimes the difference can be observed between fuels in consecutive hours.
- 5. A time/temperature allowance for monitoring system performance checks during combustion of treated wood fuel. At least once per month it is necessary to perform internal system checks and tests of the CEM and process control systems. At least once a quarter (conservatively), tests will need to be run on the fuel feed system to ensure its accuracy. The fuel feed system may have to be switched manually from untreated to treated fuel to ensure the effectiveness of the switchover setpoints installed in our computer system. The switchover setpoint is put into the monitoring computer that automatically switches from treated wood fuel to untreated wood fuel in the event of a temperature drop that falls below 1200° Fahrenheit.

6.0 MSDEQ Forms

The remainder of this Section includes the Forms that are required for this Renewal Application. The majority of these Forms are applicable both to the Baseline Scenario and the Alternative Operating Scenario. The exceptions are the Forms for the Wellons Boiler (Emission Point AA-001). There are individual Form C submittals for the two Scenarios. Also, for Form C, individual emission summaries are included for the two Scenarios. Forms B and C are signed by the Plant Manager, who is the Responsible Official for this Renewal Application.

FOR OFFICIAL USE ONLY

APPLICATION RECEIPT DATE:

APPLICATION NO.:

FOR MODIFICATION:
MINOR:
SIGNIFICANT:

STATE OF MISSISSIPPI
DEPARTMENT OF ENVIRONMENTAL QUALITY
OFFICE OF POLLUTION CONTROL
AIR DIVISION
P.O. BOX 10385
JACKSON, MS. 39289-0385
PHONE NO.: (601) 961 - 5171

APPLICATION FOR TITLE V AIR POLLUTION CONTROL PERMIT TO OPERATE AIR EMISSIONS EQUIPMENT

PERMITTIN	NG ACTIVITY:	
	INITIAL APPLICATION	
	MODIFICATION PERMANANCE OF CORPORATION OF CORPORAT	
X	RENEWAL OF OPERATING PERMIT	
NAME:	KOPPERS INDUSTRIES INC.	
CITY:	TIE PLANT	
COUNTY:	GRENADA	
FACILITY No	. (if known): 0960-00012	230

APPLICATION FOR TITLE V PERMIT TO OPERATE AIR EMISSIONS EQUIPMENT

CONTENTS OF THIS RENEWAL APPLICATION

DESCRIPTION	SECTION			
Owners Information	. В			
Emissions Summary / Facility Summary				
Emission Point Data:				
Fuel Burning Equipment	. D			
Manufacturing Processes	E			
Coating, Solvent Usage and/or Degreasing Operations	F			
Tank Summary	Н			
Control Equipment	L			
Compliance Demonstration	M			
Current Emissions Status				
Compliance Certification	0			

Section B Owners Information

1.	Name, Address & Contact for the Owner/Applicant				
	A.	Company Name: KOPPERS INDUSTRIES INC.			
	B.	Mailing Address:			
		1. Street Address or P.O. Box: 436 SEVENTH AVENUE 2. City: PITTSBURGH 3. State: PA 4. Zip Code: 15219-1800 5. Telephone No.: (412) 227-2114			
	C.	Contact:			
		1. Name: TIMOTHY R. BASILONE 2. Title: ENVIRONMENTAL MANAGER			
2.	Name	e, Address, Location and Contact for the Facility:			
	A.	Name: KOPPERS INDUSTRIES INC.			
	B.	Mailing Address: 1. Street Address or P.O. Box: P.O. BOX 160 2. City: TIE PLANT 3. State: MS 4. Zip Code: 38960 5. Telephone No.: (662) 226-4584			
	C.	Site Location: 1. Street: 1 KOPPERS DRIVE 2. City: TIE PLANT 3. State: MS 4. County: GRENADA 5. Zip Code: 38960 6. Telephone No.: (662) 226-4584 Note: If the facility is located outside of the City limits, please attach a sketch or description to this application showing the approximate location of the site.			
	D.	Contact:			
		1. Name: THOMAS L. HENDERSON 2. Title: PLANT MANAGER			
3.	SIC C	ode(s)(including any associated with alternate operating scenarios): 2491			
4.	Numb	er of Employees: 65			
5.	Princip	pal Product(s): UTILITY POLES AND RAILROAD CROSSTIES			

6.	6. Principal Raw Materials: WOOD POLES, CROSSTIES, LUMBER, CREOSOTE, PENTACHLOROPHENOL, DIESEL FUEL					-
7.	Principal Process(es): WOOD PRESERVING					
8.	Maximum amount of principal product produced or raw material consumed per day: 20,000 CUBIC FEET				ned per day:	
9.	Facili	ity Operating Schedule	(Optional):			
	A.	Specify maximum he	ours per day th	e operation w	vill occur:	24 HOURS
	B.	Specify maximum da	ays per week tl	ne operation v	vill occur:	7 DAYS
	C.	Specify maximum w	eeks per year t	he operation	will occur:	52 WEEKS
	D.	Specify the months t	he operation w	ill occur:	ALL	
10.	Is this	s facility a small busine	ess as defined b	y the Small E	Business Act? (C	optional) NO
11.	EAC	H APPLICATION M	UST BE SIGN	NED BY THI	E APPLICANT	•
	The application must be signed by a responsible official as defined in Regulation APC-S-6, Section I.A.26.				ed in Regulation	
	I certify that to the best of my knowledge and belief formed after reasonable inquiry, statements and information in this application are true, complete, and accurate, and the as a responsible official, my signature shall constitute an agreement that the application assumes the responsibility for any alteration, additions, or changes in operation that no be necessary to achieve and maintain compliance with all applicable Rules and Regulations.				ccurate, and that, hat the applicant peration that may	
		. HENDERSON e of Responsible Offic	cial	PLANT M.		
9. Date A	- <u>26 -</u>	<i>O/</i> tion Signed		homeis Signature o	L. Honderself Applicants Res	ponsible Official

SECTION C EMISSIONS SUMMARY for the ENTIRE FACILITY

List below the total emissions for each pollutant from the entire facility in accordance with Operating Permit Application Requirements, pp. 3-5. For stack emissions, use the maximum annual allowable (potential) emissions. For fugitive emissions, use the annual emissions calculated using the maximum operating conditions.

NORMAL OPERATING SCENARIO – USE OF TREATED AND UNTREATED WOOD FUEL

POLLUTANT Foomote 1	ANNUAL	MISSION RATE
Footnote 1	lb/hr	tons/yr
PARTICULATE (LESS FUGITIVE)		54.56
SO2		116.10
NOX		80.32
со		160.57
VOC (LESS FUGITIVE)		72.44
VOC (INCLUDING FUGITIVE)		100.07
HAPS (ORGANICS/VOC)		7.02
NAPHTHALENE		5.64
HAP METALS		0.19
HCL		11.54
TOTAL HAPS		18.74
SEE PTE TABLES (FOLLOWING 5 PAGES)		

All regulated air pollutants, including hazardous air pollutants emitted from the entire facility should be listed.

A list of regulated air pollutants has been provided in Section A.

With the exception of the emissions resulting from insignificant activities and emissions as defined in Regulation APC-S-6, Section VII, the pollutants listed above are all regulated air pollutants reasonably expected to be emitted from the facility.

SIGNATURE (must match signature on page 17)

AA-001-BOILER, WOOD FIRED Sulfur Chlorine tn/yr **Total Wood Burned:** 37,580 0.23% 0.12% Creo Wood Burned: 20,000 0.25% 0.04% Penta Wood Burned: 0.25% 15,000 0.25% **Untreated Wood Burned:** 2,580 0.01% 0.04% Removal Efficiency (1): 70.00% 45.00% (lb/hr): 8580

9/25/01

Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
Particulate	2.47	lb/tn	9/2000 Test	46.41	10.60
SO2	2.80	lb/tn	Mass Calc	52.65	12.02
NOX (3)	3.3	lb/tn	2/96 test	62.01	14.16
CO (2)	8.3	lb/tn	CEM	155.96	35.61
VOC	0.18	lb/tn	AP-42	3.38	0.77
HCI	1.538	ib/tn PCP fuel	2/96 Test	11.54	6.60
Arsenic	8.8E-05	lb/tn	AP-42	0.0017	0.000
Cadmium	1.7E-05	lb/tn	AP-42	0.0003	0.000
Chromium	1.3E-04	lb/tn	AP-42	0.0024	0.001
Lead	3.1E-04	lb/tn	AP-42	0.0058	0.001
Manganese	8.9E-03	lb/tn	AP-42	0.1672	0.038
Nickel	5.6E-04	lb/tn	AP-42	0.0105	0.002
Selenium	1.8E-05	lb/tn	AP-42	0.0003	0.000
Mercury	6.5E-06	lb/tn	AP-42	0.0001	0.000
Total HAP Metals			1	0.19	0.043

- (1) Removal efficiencies based on 2/96 stack test.
- (2) CO factor is 8.3 for 600 ppm fired on untreated fuel, 2.1 for 150 ppm fired on treated fuel.
- (3) NOX factor is 3.3 for high fire, treated wood. Use 1.6 for untreated wood.

AA-002 BOILER, FUEL OIL			Fuel Use R	tate(MGal/hr):	0.204	
Oil Burned(MGal/yr):	1787 Sulfur Content:		0.500	%		
Pollutant	Emission Factor	Units Basis		Estimated (tn/yr)	Emissions (lb/hr)	
Particulate	2	lb/MGal	AP-42	1.79	0.41	
SO2	71	lb/MGal	AP-42	63.44	14.48	
NOX	20	lb/MGal	AP-42	17.87	4.08	
CO	5	lb/MGal	AP-42	4.47	1.02	
VOC	0.2	lb/MGal	AP-42	0.18	0.04	
Number of days boiler assumed to o	perate Is	365			<u> </u>	

e 1

Page 1

AA-003-WOOD PRESERVING PROCESSES

.1

 Creosote Ties
 2,000,000
 C. F.

 Creosote Poles
 1,500,000
 C. F.

 Total Creosote Wood
 3,500,000
 C. F.

 Oil/Penta Poles
 3,500,000
 C. F.

Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
Creosote (VOC)	1.96E-03	lb/cf	Form R	3.43	0.78
HAPs contained in creosote:					
Biphenyl	1.72	% in vapor	Calculation	0.06	0.01
Dibenzofurans	4.43	% in vapor	Calculation	0.15	0.03
Naphthalene	51.62	% in vapor	Calculation	1.77	0.40
Quinoline	2.32	% in vapor	Calculation	0.08	0.02
TOTAL CREO. HAP	60.09	% in vapor		2.06	0.47
Pentachlorophenol (VOC)	3.73E-06	lb/cf	Form R	0.01	0.00
#6 Oil (VOC)	1.4E-02	lb/cf	Engr. Est.	24.75	5.65
TOTAL VOC				28.18	6.43

AA-008-PRESERVATIVE TREATED WOOD STORAGE FUGITIVES

designation and property of the second	Emission	Nath Sales	Manufacture (Sec.	Estimated	Emissions
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr)
Creosote Ties					
Creosote (VOC)	2.65E-03	lb/cf	FR Test & Creo Data	2.65	0.61
Naphthalene	1.37E-03	lb/cf	FR Test & Creo Data	1.37	0.31
Quinoline	6.15E-05	lb/cf	FR Test & Creo Data	0.06	0.01
Biphenyl	4.56E-04	lb/cf	FR Test & Creo Data	0.46	0.10
Dibenzofuran	1.18E-04	lb/cf	FR Test & Creo Data	0.12	0.03
Creosote Poles					
Creosote (VOC)	6.47E-03	lb/cf	FR Test & Creo Data	4.85	1.11
Naphthalene	3.34E-03	lb/cf	FR Test & Creo Data	2.51	0.57
Quinoline	1.50E-04	lb/cf	FR Test & Creo Data	0.11	0.03
Biphenyl_	1.11E-04	lb/cf	FR Test & Creo Data	0.11	0.03
Dibenzofuran	2.87E-04	lb/cf	FR Test & Creo Data	0.21	0.05
Penta Poles					
Oil (VOC, est. as creo)	1.15E-02	lb/cf	FR Test	20.13	4.59
Pentachlorophenol	1.9E-06	lb/cf	Engr. Est.	0.00	0.00
Totals					
VOC				27.63	6.30
Naphthalene		-		3.88	0.88
Quinoline				0.17	0.04
Biphenyl				0.57	0.13
Dibenzofuran				0.33	0.08
Pentachlorophenol				0.00	0.00
HAP Organics (Total)	200 110			4.95	1.13

Page 2 9/25/01

AA-009-DRY KILNS			Batch size (d	of):	13000
Poles Dried	1,600,000	C. F.	Batch time (I	nrs):	72
	Emission	数据的数	有关数据表示的	Estimated	Emissions
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr)
VOC	0.05	lb/cf	Alabama	40.00	9.03

AA-004-CYCLONES FOR WOOD MILLING

 Number of Cyclones:
 1

 Ave. Hours/Day:
 8

 Ave Days/Yr Each:
 300

 Total Hours:
 2400

	Emission			Estimated	Emissions
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr)
Particulate		2 lb/hr	AP-42	2.40	0

AA-010-POLE PEELER

 Poles Peeled=
 1,000,000
 CF/yr
 440
 CF/hr

 Pole Density=
 45
 lb/CF

 Pole Amount Peeled=
 22,500
 tn/yr
 9.9
 tn/hr

Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
Particulate	0.350	lb/ton	AP-42	3.94	3.465

SPACE HEATERS, NATURAL GAS

Location
AA-005-Boiler House
AA-015-Standby Boiler Room
AA-016-Fire Pump Building
TOTAL

BTU/Hr	BTU/CF	CF/Hr	Hr/Yr	MMCF/Yr
600000	1000	600	8760	5.256
100000	1000	100	8760	0.876
No longer exis	sts			
700000		700		6.132

Page 3

EMISSION INVENTORY CALCULATION KOPPERS INDUSTRIES, INC. - GRENADA, MS

Potential To Emit Basis for Title V Application

Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
Particulate	0.18	Ib/MMCF	AP-42	0.00	0.00
SO2	0.6	lb/MMCF	AP-42	0.00	0.00
NOX	94	Ib/MMCF	AP-42	0.29	0.07
CO	40	Ib/MMCF	AP-42	0.12	0.03
VOC	11	lb/MMCF	AP-42	0.03	0.01

AA-011-WOOD FUEL PREPARATION & HANDLING (Fugitive)

Wood Fuel Processed	37,580	Tn/Yr	12	tn/hr	
Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (ib/hr)
Particulate	0.25	lb/tn	Engr. Est.	4.70	3.00

AA-006-STEAM CLEANER	Fuel Use Rate				
Annual Usage	8760	8760 hours/yr			CF/hr
Pollutant	Emission Factor	Units	Basis	Estimated R E	missions (lb/hr)
Particulate	12	Ib/MMCF	AP-42	0.02	0.01
SO2	0.6	Ib/MMCF	AP-42	0.00	0.00
NOX	100	Ib/MMCF	AP-42	0.19	0.04
CO	21	Ib/MMCF	AP-42	0.04	0.01
VOC	5.8	lb/MMCF	AP-42	0.01	0.00

AA-007-WOOD STOVE HEATER, SHOP NO LONGER EXIST				Fuel Use Rate	8
Annual Usage	0	tn/yr		0	tn/hr
Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
Particulate	30.6	lb/tn	AP-42	0.00	0.00
SO2	0.4	ib/tn	AP-42	0.00	0.00
NOX	2.8	lb/tn	AP-42	0.00	0.00
CO	230.8	ib/tn	AP-42	0.00	0.00
VOC	43.8	lb/tn	AP-42	0.00	0.00

AA-012-PARTS CLEANERS, DEGREASERS

Number of units operating:	2			
新发生。 在1000年1000年1000年1000年1000年100日	Emission		Estimated E	nissions
Pollutant	Factor Units	Basis	(tn/yr)	(ib/hr)
VOC	0.33 tn/unit/yr	AP-42	0.66	0.00

Page 4

TOTAL PLANT EMISSIONS

.1

Pollutant	Estimated (tn/yr)	Emissions(1) (lb/hr)
Particulate (less fugitive)	 54.56	12.46
SO2 (2)	 116.10	26.51
NOX	 80.36	18.35
ĊO	 160.59	36.66
VOC(less fugitive)	 72.45	16.54
VOC(including fugitive)	100.08	22.85
HAPs(Organics/VOC)	 7.02	1.60
Naphthalene	 5.64	1.29
HAP Metals	 0.19	0.04
HCI	 11.54	2.63
Total HAPs	 18.74	4.28

⁽¹⁾ Average hourly emission rate; not instantaneous maximum emission rate.

Page 5 9/25/01

SECTION C EMISSIONS SUMMARY for the ENTIRE FACILITY

List below the total emissions for each pollutant from the entire facility in accordance with Operating Permit Application Requirements, pp. 3-5. For stack emissions, use the maximum annual allowable (potential) emissions. For fugitive emissions, use the annual emissions calculated using the maximum operating conditions.

ALTERNATIVE OPERATING SCENARIO – USE OF UNTREATED WOOD FUEL ONLY

POLLUTANT	ANNUAL EMISSION RATE			
Footnote 1	lb/hr	tons/yr		
PARTICULATE (LESS FUGITIVE)		130.79		
SO2		65.63		
NOX		65.04		
со		197.35		
VOC (LESS FUGITIVE)		74.32		
VOC (INCLUDING FUGITIVE)	3 3 3 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	101.95		
HAPS (ORGANICS/VOC)		7.02		
NAPHTHALENE		5.64		
HAP METALS		0.29		
HCL		0.00		
TOTAL HAPS		7.31		
SEE PTE TABLES (FOLLOWING 5 PAGES)				
3111				

All regulated air pollutants, including hazardous air pollutants emitted from the entire facility should be listed.

A list of regulated air pollutants has been provided in Section A.

With the exception of the emissions resulting from insignificant activities and emissions as defined in Regulation APC-S-6, Section VII, the pollutants listed above are all regulated air pollutants reasonably expected to be emitted from the facility.

SIGNATURE (must match signature on page 17)

AA-001-BOILER, WOOD FIRED tn/yr Sulfur Chlorine 0.01% **Total Wood Burned:** 58,403 0.04% Creo Wood Burned: 0 0.25% 0.04% Penta Wood Burned: 0.25% 0.25% **Untreated Wood Burned:** 58,403 0.01% 0.04% Removal Efficiency (1): 70.00% 45.00% (lb/hr): 13333

Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
Particulate	4.2	lb/tn	AP-42	122.65	28.00
SO2	0.08	lb/tn	AP-42	2.19	0.50
NOX	1.6	lb/tn	1994 Test	46.72	10.67
CO	6.6	lb/tn	AP-42	192.73	44.00
VOC	0.18	lb/tn	AP-42	5.26	1.20
HCI	1.538	lb/tn PCP fuel	2/96 Test	0.00	0.00
Arsenic	8.8E-05	lb/tn	AP-42	0.0026	0.001
Cadmium	1.7E-05	lb/tn	AP-42	0.0005	0.000
Chromium	1.3E-04	lb/tn	AP-42	0.0038	0.001
Lead	3.1E-04	lb/tn	AP-42	0.0091	0.002
Manganese	8.9E-03	lb/tn	AP-42	0.2599	0.059
Nickel	5.6E-04	lb/tn	AP-42	0.0164	0.004
Selenium	1.8E-05	lb/tn	AP-42	0.0005	0.000
Mercury	6.5E-06	lb/tn	AP-42	0.0002	0.000
Total HAP Metals				0.29	0.067

⁽¹⁾ Removal efficiencies based on 2/96 stack test.

1.

AA-002-BOILER, FUEL OIL			Fuel Use R	late(MGal/hr):	0.204
Oil Burned(MGal/yr):	1787	Sulfur Co	ntent:	0.500	%
	Emission			Estimated	
Pollutant	Factor	Units	Basis	(In/yr)缩数	(lb/hr)
Particulate Particulate	2	lb/MGal	AP-42	1.79	0.41
SO2	71	lb/MGal	AP-42	63.44	14.48
NOX	20	lb/MGai	AP-42	17.87	4.08
CO	5	lb/MGal	AP-42	4.47	1.02
VOC	0.2	lb/MGai	AP-42	0.18	0.04
Number of days boiler assumed to or	perate is	36	5		

Page 6

9/25/01

AA-003-WOOD PRESERVING PROCESSES

1.

 Creosote Ties
 2,000,000
 C. F.

 Creosote Poles
 1,500,000
 C. F.

 Total Creosote Wood
 3,500,000
 C. F.

 Oil/Penta Poles
 3,500,000
 C. F.

	0,000,000				
Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
Creosote (VOC)	1.96E-03	lb/cf	Form R	3.43	0.78
HAPs contained in creosote:					
Biphenyl	1.72	% in vapor	Calculation	0.06	0.01
Dibenzofurans	4.43	% in vapor	Calculation	0.15	0.03
Naphthalene	51.62	% in vapor	Calculation	1.77	0.40
Quinoline	2.32	% in vapor	Calculation	0.08	0.02
TOTAL CREO. HAP	60.09	% in vapor		2.06	0.47
Pentachlorophenol (VOC)	3.73E-06	lb/cf	Form R	0.01	0.00
#6 Oil (VOC)	1.4E-02	lb/cf	Engr. Est.	24.75	5.65
TOTAL VOC				28.18	6.43

AA-008-PRESERVATIVE TREATED WOOD STORAGE FUGITIVES

	Emission		TOTAL DIE	Estimated	Emissions
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr)
Creosote Ties					
Creosote (VOC)	2.65E-03	lb/cf	FR Test & Creo Data	2.65	0.61
Naphthalene	1.37E-03	lb/cf	FR Test & Creo Data	1.37	0.31
Quinoline	6.15E-05	lb/cf	FR Test & Creo Data	0.06	
Biphenyl	4.56E-04	lb/cf	FR Test & Creo Data	0.46	0.10
Dibenzofuran	1.18E-04	lb/cf	FR Test & Creo Data	0.12	0.03
Creosote Poles					
Creosote (VOC)	6.47E-03	lb/cf	FR Test & Creo Data	4.85	1.11
Naphthalene	3.34E-03	lb/cf	FR Test & Creo Data	2.51	0.57
Quinoline	1.50E-04	lb/cf	FR Test & Creo Data	0.11	0.03
Biphenyl	1.11E-04	lb/cf	FR Test & Creo Data	0.11	0.03
Dibenzofuran	2.87E-04	lb/cf	FR Test & Creo Data	0.21	0.05
Penta Poles					
Oil (VOC, est. as creo)	1.15E-02	lb/cf	FR Test	20.13	4.59
Pentachlorophenol	1.9E-06	lb/cf	Engr. Est.	0.00	0.00
Totals					
VOC				27.63	6.30
Naphthalene				3.88	0.88
Quinoline				0.17	0.04
Biphenyl				0.57	0.13
Dibenzofuran				0.33	0.08
Pentachlorophenol				0.00	0.00
HAP Organics (Total)				4.95	1.13

Page 7 9/25/01

AA-009-DRY KILNS		Batch size (cf):				
Poles Dried	1,600,000	C. F.	Batch time (hrs):	72	
Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)	
VOC	0.05	lb/cf	Alabama	40.00	9.03	

AA-004-CYCLONES FOR WOOD MILLING

 Number of Cyclones:
 1

 Ave. Hours/Day:
 8

 Ave Days/Yr Each:
 300

 Total Hours:
 2400

。我是他是在沙里的是的使用的自己的。 1988年在1988年代的中国中国的中国的特殊的中国中国的特别的企业的企业的企业的企业的企业的企业的企业的企业的企业的企业的企业的企业的企业的	Emission Factor Units	Basis	Estimated Emissions (tn/yr) (lb/hr)
Pollutant Particulate	Factor Units 2 lb/hr	AP-42	2.40 2

AA-010-POLE PEELER

 Poles Peeled=
 1,000,000
 CF/yr
 440
 CF/hr

 Pole Density=
 45
 lb/CF

 Pole Amount Peeled=
 22,500
 tn/yr
 9.9
 tn/hr

Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emissions (lb/hr)
Particulate	0.350	lb/ton	AP-42	3.94	3.465

SPACE HEATERS, NATURAL GAS

Location
AA-005-Boiler House
AA-015-Standby Boiler Room
AA-016-Fire Pump Building
TOTAL

.

U AU					
BTU/Hr	BTU/CF	CF/Hr	Hr/Yr		MMCF/Yr
600000	1000	60	0 8	3,760	5.256
100000	1000	10	0 0	3,760	0.876
No longer exis	sts.				
700000		70	0		6.132

Page 8 9/25/01

EMISSION INVENTORY CALCULATION KOPPERS INDUSTRIES, INC. - GRENADA, MS

Potential To Emit Basis for Title V Application

	Emission			Estimated	issio s
Pollutant	Factor	Units	Basis	(tn/yr)	(lb/hr)
Particulate	0.18	Ib/MMCF	AP-42	0.00	0.00
SO2	0.6	lb/MMCF	AP-42	0.00	0.00
NOX	94	lb/MMCF	AP-42	0.29	0.07
CO	40	lb/MMCF	AP-42	0.12	0.03
VOC	11	lb/MMCF	AP-42	0.03	0.01

AA-011-WOOD FUEL PREPARATION & HANDLING (Fugitive)

Wood Fuel Processed	58,403 Tn/Yr	1	2 tn/hr	200200000
	Emission		Estimated	Emissions
Pollutant	Factor Units	Basis	(tn/yr)	(ib/hr)
Particulate	0.25 lb/tn	Engr. Est.	7.30	3.00

AA-006-STEAM CLEANER,	NATURAL GAS	FIRED		Fuel Use Rat	te
Annual Usage	8760	hours/yr		440	CF/hr
Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emiss ons (lb/hr)
Particulate	12	Ib/MMCF	AP-42	0.02	0.01
SO2	0.6	lb/MMCF	AP-42	0.00	0.00
NOX	100	Ib/MMCF	AP-42	0.19	0.04
СО	21	Ib/MMCF	AP-42	0.04	0.01
VOC	5.8	Ib/MMCF	AP-42	0.01	0.00

AA-007-WOOD STOVE HE	ATER, SHOP	NO LON	GER EXISTS	Fuel Use Rat	е
Annual Usage	0	tn/yr		0	tn/hr
Pollutant	Emission Factor	Units	Basis	Estimated (tn/yr)	Emiss ons (lb/hr)
Particulate	30.6	lb/tn	AP-42	0.00	0.00
SO2	0.4	lb/tn	AP-42	0.00	0.00
NOX	2.8	lb/tn	AP-42	0.00	0.00
СО	230.8	lb/tn	AP-42	0.00	0.00
VOC	43.8	lb/tn	AP-42	0.00	0.00

AA-012-PARTS CLEANERS, DEGREASERS

. 2

Number of units operating:	2			
Pollutant	Emission Factor Units	Basis &	Estimated (tn/yr)	Emissions (lb/hr)
VOC	0.33 tn/unit/vr	AP-42	0.66	0.00

Page 9 9/25/01

TOTAL PLANT EMISSIONS

Pollutant	Estimated (tn/yr)	Emissions (1) (lb/hr)
Particulate (less fugitive)	 130.79	29.86
SO2 (2)	 65.63	14.98
NOX	 65.07	14.86
CO	 197.36	45.06
VOC(less fugitive)	 74.32	16.97
VOC(including fugitive)	101.95	23.28
HAPs(Organics/VOC)	 7.02	1.60
Naphthalene	5.64	1.29
HAP Metals	 0.29	0.07
HCI	 0.00	0.00
Total HAPs	 7.31	1.67

⁽¹⁾ Average hourly emission rate; not instantaneous maximum emission rate.

Page 10 9/25/01

⁽²⁾ Assumes backup boiler operating at same time as primary for number of days shown.

SECTION C

For the sections listed below indica	ite the number that have be	en completed for each section as part of this application
Section B 1	Section L1	Section M1 1
Section C 2	Section L2 2	Section M2
Section D 6	Section L3	Section M35_
Section E 6	Section L4	Section M4
Section F 1	Section L5	Section M5 1
Section G	Section L6	Section M64
Section H 1	Section L7	Section M7
Section I		Section M8
Section J		Section N 1
Section K		Section O2_
As a minimum, sections B, C, M,	N and O must be comple	eted for the application to be considered complete.
Please list below all insignificant ac	ctivities required by APC-S	S-6, Section VII.B that apply to your facility.
(1) EMISSION POINT AA-0 PER APC-S.VI.B.27	03, REF. NOS. 21 AN	D 22, COMPRESSED AIR RECEIVERS,
		AS SPACE HEATERS (3), RATED AT
0.2 MMBTU/HR, 1		
• •		FIRED STEAM CLEANER,
PER APC-S-6.IV.B.2		
		RAGE TANK, PER APC-S-6.IV.B.7
		E TANK, PER APC-S-6.IV.B.7
(6) EMISSION POINT AA MMBTU/HR, PER A		AS SPACE HEATER (1), RATED AT 0.1
(7) OUTDOOR KEROSENE), PER APC-S-6.IV.A.17
(8) EMERGENCY POWER		T 11 HP AND 6,000 WATTS, AND (3) AT

SECTION C RISK MANAGEMENT PLANS

If the source is required to develop and register a risk management plan pursuant to Section 112(r) of the Title III of the Clean Air Act, the permittee need only specify that it will comply with the requirement to register such a plan. The content of the risk management plan need not itself be incorporated as a permit term.

Please answer the following questions:

I.	Are you required to develop and register a risk management plan pursuant to Section 112(r)?
	Yes <u>X</u> No
Only if "yes",	answer questions II., III., and/or IV.
П.	Have you submitted the risk management plan to the appropriate agency (i.e. Mississippi Emergency Management Agency (MEMA), Federal Emergency Management Agency (FEMA), etc.)?
	Yes No
III.	If yes, give agency name and date submitted.
IV.	If no, provide a schedule for developing and submitting the risk management plan to the appropriate agency and providing our agency with certification that this submittal was made.

FUE	L BURNI	NG EQUIPM	IENT (page	e 1 of 2)		SECTION I
Ι.	Emission Poi	nt No. / Name:			UNTREATED WOOD FIRED BOILE	
!	Equipment D COGENERA	escription: ATION POWER U		2 CELL COM	BUSTION SYSTEM	I, BOILER, AND
÷		constructed or mo		ıst 7, 1977?	Y	es <u>X</u> No
	Capacity:	60.0	MMBTU/hr	5. Type o	f burner:	FUEL CELL
•	Usage Type (i.e. Space Heat, Pro	ocess, etc.):	PROCES	S	
and anything	content, hourl	following table, id y usage, and yearl		ype of fuel and	the amount used. S	pecify the units for he
F	UEL TYPE	HEAT CONTENT	% SULFUR	% ASH	MAXIMUM HOUREY USAGE	ACTUAL YEARLY USAGE
TREA RESI	ATED WOOD DUE	4,000-6,000 BTU/LB	0.25	5.0	8,760 HRS/YR	8,424 HRS/YR
	757					
•	Please list any	fuel components t	hat are hazardou 1% PENTACHI	s air pollutants .OROPHENO	and the percentage in L: 15% CREOSOTE	in the fuel. ; 2% NAPHTHALEN
	Operating Sch	edule: (Optional)	24 hou	ırs/day 7	days/week	weeks/ye
0.	Stack Data: A. Heigh B. Inside	nt: e diameter:	80 FT 3 FT		Exit gas velocity: Exit gas temperature:	60 FT/SEC 471° F
1.	UTM Coordin A. Zone	ates:	B. Nort	h	C. Eas	t <u></u>

FUEL BURNING EQUIPMENT (page 2 of 2)

12. POLLUTANT EMISSIONS:

USE OF TREATED AND UNTREATED WOOD FUEL

Example emission rate calculations, monitoring data, or stack test data must be attached in accordance with Operating Permit Application Requirements, pp. 3-5.

The state of the s	C. C. C. C. C. C. C. C. C. C. C. C. C. C	a de la companya de l		AND THE PROPERTY OF STREET		9	Thomas de la company	OH TACHMINE.	maries, pp. 2-2.
EMISSION POINT NO.	POLLUTANT (note 1)	CON	CONTROL	AGTUA (in accorda Applicatio	ACTUAL EMISSION RATE in accordance with Operating Permit Application Requirements, pp. 3-5)	v R.A4TE ing Permit pp:3-5)	PROPOS EMISSIO	PROPOSED ALLOWABLE EMISSION RATE (Optional)	WABLE" Optional)
		* x	effic.	note 2	lb/hr	m/yr	note 2	lb/hr	m/yr
AA-001	PARTICULATE	YES					0.3 GR/DSCF	10.60	46.41
	SO2	ON						12.02	52.65
	NOX	ON						14.16	62.01
	00	ON						35.61	155.96
	voc	ON						7.70	3.38
	HCL	ON						9.90	11.54
	TOTAL HAP METALS	NO						0.043	0.19

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed. A list of regulated air pollutants has been provided in Section A.

Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point.

If yes, attach appropriate Air Pollution Control Data Sheet from Section L or manufacturers specifications if other.

FUI		ING EQUIPM					SECTION 1
	_	TERNATIVE OPI				OF UNTREATED OOD FIRED BOILE	WOOD FUEL ONL
	Equipment :	Description: LATION POWER U	WELI			BUSTION SYSTEM	
	COGENER	CATION POWER U	INI I				
		it constructed or mo		r August	t 7, 1977?	Y	es X No
	Capacity:	60.0	MMB	ΓU/hr	5. Type o	f burner:	FUEL CELL
,	Usage Type	(i.e. Space Heat, Pro	ocess, etc.)): <u> </u>		PROCESS	
		e following table, id rly usage, and yearl		each typ	e of fuel and	the amount used. Sp	pecify the units for he
I	TUEL TYPE	HEAT CONTENT	% SUL	FUR.	% ASH	MAXIMUM HOURLY USAGE	ACTUAL YEARLY USAGE
wo	TREATED OD AND RK RESIDUE	4,000 BTU/LB	0.01		0.5	8,760 HRS/YR	
	1997	200					
	Please list ar	y fuel components t	that are ha	zardous	air pollutants	s and the percentage i	n the fuel.
							50 1/
	Operating So	chedule: (Optional)	24	hour	s/day 7	days/week	_52weeks/ye
).		ght: de diameter:	80 FT 3 FT			Exit gas velocity: Exit gas temperature:	70 FT/SEC 471° F
l.	UTM Coord A. Zor		В.	North		C. Eas	t

FUEL BURNING EQUIPMENT (page 2 of 2)

12. POLLUTANT EMISSIONS:

ALTERNATIVE OPERATING SCENARIO - BURNING UNTREATED WOOD ONLY

Example emission rate calculations, monitoring data, or stack test data must be attached in accordance with Operating Permit Application Requirements, pp. 3-5.

EMISSION POINT NO.	POLLUTANT (note 1)	CONTROL	ROL	ACTUA (in accorda Amlicatio	ACTUAL EMISSION RATE (in accordance with Operating Permit Application Requirements, no. 3-5)	N RATE ing Permit in: 3-5)	PROPOS EMIŜSIO	PROPOSED ALLOWABLE EMISSION RATE (Optional)	OPOSED ALLOWABLE ISSION RATE (Optional)
		* yes/no	effic	note 2	lb/hr	m/yr	note 2	1b/hr	twyr
AA-001	PARTICULATE	YES					0.3 GR/DSCF	28.0	122.65
	SO2	ON						0.50	2.19
	NOX	ON						10.67	46.72
	00	ON						44.0	192.73
	voc	ON	:					1.20	5.26
	нсг	NO						0.00	0.00
	TOTAL HAP METALS	NO						0.067	0.29

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed. A list of regulated air pollutants has been provided in Section

Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point.

If yes, attach appropriate Air Pollution Control Data Sheet from Section L or manufacturers specifications if other.

FUI	TEL BURNING EQUIPMENT (page 1 of 2)					SECTION D	
l .	Emission Point No. / Name: AA-002, F				EF. NO. 41, OIL FIRED BOILER		
	Equipment Description:		BACKUP SERVICE BOILER				
•	Was this unit constructed or modified after August 7, 1977? Yes X No If yes please give date and explain.						
	Capacity:	28.5	MMBTU/hr	5. Type o	f burner:	ATOMIZING OIL	
,	Usage Type (i.e. Space Heat, Process, etc.): PROCESS						
117.12.20		following table, ly usage, and year		ype of fuel an	ad the amount used.	Specify the units for he	
F	TUEL TYPE	HEAT CONTENT	% SULFUR	% ASH	MAXIMUM HOURLY USAGE	ACTUAL YEARLY USAGE	
#2 C	DIL	140,000 BTU/GAL	0.50	1.6	204 GAL/HR	100,000 GAL	
-				_			
72			9.00				
	Please list any	fuel components NONE	that are hazardous	air pollutants	and the percentage in	n the fuel.	
	Operating Sch	nedule: (Optional)	24 hou	rs/day 7	days/week	weeks/year	
).	Stack Data: A. Heigi B. Insid	ht: e diameter:	36 FT 2.5 FT		Exit gas velocity: Exit gas temperature:	32 FT/SEC 570° F	
•	UTM Coordin A. Zone	ates:	B. North		C. East		

FUEL BURNING EQUIPMENT (page 2 of 2)

12. POLLUTANT EMISSIONS:

Example emission rate calculations, monitoring data, or stack test data must be attached in accordance with Operating Permit Application Requirements, pp. 3-5.

To be the state of			THE PERSON NAMED IN COLUMN NAM	C-C. () (Supplementation of the Committee of the Committe		9	Attack Applicat	Jon Nedune	.сс. дд сыты
EMISSION POINT NO.	POLLUTANH (note 1)	CONTROL	CONTROL	ACTUA in accorda Applicatio	ACTUAL#EMISSION RATE in accordance with Operating Permit Application Requirements, pp. 3-5)	I RATE ng.Permit .pp. 3-5)	PROPO	PROPOSED ALLOWABLE EMISSION RATE (Optional)	WABLE Optional)
		* yes/no	effic.	note 2	11:/ br	ш/ут	note-2	Ib/hr	w/yr
AA-002 (SEE NOTE BELOW)	PARTICULATE	ON						0.41	1.79
	802	ON						14.48	63.44
	NOX	ON						4.08	17.87
	СО	NO						1.02	4.47
	voc	NO						0.04	0.18
ALOUR MANAGER	THE TOTAL STATE OF STATE OF STATE								

NOTE: THIS BOILER WILL NOT OPERATE AT THE SAME TIME AS SOURCE AA-001 (WOOD FIRED BOILER). THIS BOILER IS FOR BACKUP SERVICE ONLY.

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed. A list of regulated air pollutants has been provided in Section A.

Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point.

FUI	EL BURNII	NG EQUIPM	ENT (pag	e 1 of 2)		SECTION	<u>DN D</u>
1.	Emission Poi	nt No. / Name:	AA	-005, REF	. NO. 4	43, NATURAL GA	S SPACE HEA	ATER
2.	Equipment Do	escription: N BOILER HOUSI	_	EATERS U	JSED	IN PLANT BUIL	DINGS. (3)	UNITS
3.		constructed or mod give date and explai		ust 7, 1977	?	Ye	s <u>X</u>	No
4.	Capacity:	0.20	MMBTU/hr	5. Ty	pe of t	ourner:	NATURA	L GAS
6.	Usage Type (i	i.e. Space Heat, Pro	cess, etc.):			SPACE HEA	Т	
7.		following table, ide y usage, and yearly		ype of fuel	l and th	e amount used. Sp	ecify the units	for heat
P	UEL TYPE	HEAT CONTENT	% SULFUR	**************************************	SH.	MAXIMUM HOURLY USAGE	AGTUA YEARL USAGI	Y
NAT	TURAL GAS	1,000 BTU/CF				320 CF/HR	645 MCF	
							-	
								111
8.	Please list any NON		hat are hazardor	ıs air pollu	tants a	nd the percentage in	the fuel.	
9.	Operating Sch	edule: (Optional)	24 ho	urs/day	7	days/week		veeks/year
10.	Stack Data: A. Heigh	nt: e diameter:	NA NA	C. D.		it gas velocity: it gas temperature:	NA NA	
11.	B. Inside UTM Coordin A. Zone		B. Nor		CAI	C. East	NA	

FUEL BURNING EQUIPMENT (page 2 of 2)

12. POLLUTANT EMISSIONS:

Example emission rate calculations, monitoring data, or stack test data must be attached in accordance with Operating Permit Application Require

Crossing order	the second and the second and the second and the second and the second and se	I SIGUE ICSI	data must oc	מוומכחבח חו מו	Coldance with	1 Operating Pe	mil Applican	on Kequire	ments, pp. 3-5.
EMISSION POINT NO.	POLLUTANT (note 1)	CON	CONTROL	ACTUA (in accorda Application	ACTUAL EMISSION RATE (in accordance with Operating Permit Application Requirements, pp. 3-5)	RATE ng Permit pp: 3-5)	PROPOS EMISSIC	PROPOSED AÏĞLOWABLE EMISSION RATE (Optional)	WABLE Optional)
		* yes/no	effic.	ote 2	Ib/hr	ta/yr	note 2	Jibhir	- 17(f(t)
AA-005	PM			JH G				0.00	0.00
	SO2							0.00	0.00
	NOX							90.0	0.25
	00							0.02	0.10
	voc							0.01	0.03
								1	

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed. A list of regulated air pollutants has been provided in Section A.

Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point.

FUEL BURNING EQUIPMENT (page 1 of 2)

1.	Emission Poi	nt No. / Name:	AA-006, RE	F. NO. 44, NA	TURAL GAS FIRE	D STEAM CLEANER
2.	Equipment D	escription: WAT	TER HEATER	FOR STEAM	I CLEANER USE	D FOR EQUIPMEN
3.		constructed or mo			X Y	es No
4.	Capacity:	0.44	MMBTU/hr	5. Type o	f burner:	NATURAL GAS
6.	Usage Type (i.e. Space Heat, Pr	ocess, etc.):	PROCES	S	
7.	content, hour	ly usage, and yearl	y usage.	Para salah	To a construction	pecify the units for hea
	FUEL TYPE	HEAT CONTENT	% SULFUR	% ASH	MAXIMUM HOURLY USAGE	YEARLY USAGE
NA.	TURAL GAS	1,000 BTU/CF	0.0	0.0	8,760 HR/YR	2,000 HR/YR
100	2/4/					
3.	Please list any	•	hat are hazardou	s air pollutants	and the percentage	in the fuel.
).	Operating Sch	nedule: (Optional)	8 hou	rs/day 5	days/week	50 weeks/yea
10.	Stack Data: A. Heig. B. Insid	ht: e diameter:	NA NA		Exit gas velocity: Exit gas temperature:	NA NA
1.	UTM Coordin A. Zone		B. Norti	h	C. Eas	t

FUEL BURNING EQUIPMENT (page 2 of 2)

12. POLLUTANT EMISSIONS:

Example emission rate calculations, monitoring data, or stack test data must be attached in accordance with Operating Permit Application Requirements, pp. 3-5.

Lagrangia and Joseph Committee to the Committee of the Co	THE REPORT OF THE PARTY OF THE	ASSAULT SERVICE STREET, SALES	AND DESCRIPTION OF STREET	TANKS IN SECTION AND ASSESSED.	P.C. of the Control o	STANDARY CONTRACTOR CONTRACTOR	Assistance of the second of	200	A CONTRACTOR OF THE PROPERTY O
EMISSION POINT NO.	POLLUTANT (note 1)	CONTROL	TROL MENT	ACTUA (in accorda Applicatio	ACTUAL EMISSION/RATE (in accordance with Operating erruit Application Requirements, pp. 3-5)	(RRATE ng errat	PROPO	PROPOSED ALLOWABLE EMISSION RATE Optional)	WABLË Optional)
		* yes/no	effic.	.oe2	lb/hr	th/yr	note 2	lb/fir	m/yr
AA-006	PM			S TOR				0.01	0.02
	SO2							0.00	0.00
	NOX							0.04	0.19
	00							0.01	0.04
	voc							0.00	0.01

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed. A list of regulated air pollutants has been provided in Section A. 7

Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point.

FU	<u>EL BURNI</u>	NG EQUIPM	IENT (page	e 1 of 2)		SECTION D
1.	Emission Po	int No. / Name:	AA	-015, REF. N	O. 53, NATURAL GA	AS SPACE HEATER
2.	Equipment I	Description:	SPACE HEA	TER USED	IN PLANT BUILDIN	IGS (1) UNIT
3.		t constructed or mo give date and expl		ıst 7, 1977?		es X No
4.	Capacity:	0.1	MMBTU/hr	5. Type	of burner:	NATURAL GAS
6.	Usage Type	(i.e. Space Heat, Pr	ocess, etc.):		SPACE HEAT	
7.		e following table, ic		pe of fuel and	d the amount used. S	pecify the units for hea
	FUEL TYPE	HEAT CONTENT	% SULFUR	% ASH	MAXIMUM HOURLY USAGE	ACTUAL YEARLY USAGE
NA'	TURAL GAS	1,000 BTU/CF	0.0	0.0	107 CF/HR	215 MCF
						_
						10.0
3.	Please list an		that are hazardou	s air pollutant	s and the percentage i	in the fuel.
9.	Operating Sci	hedule: (Optional)	24 hou	nrs/day	7 days/week	
١٥.	Stack Data:	L.	NTA	C	Evit oog volgsitu	NIA
	A. Heig B. Insid	gnt: le diameter:	NA NA		Exit gas velocity: Exit gas temperature:	NA NA
1.	UTM Coordin		B. Nort	h	C. Eas	t

FUEL BURNING EQUIPMENT (page 2 of 2)

12. POLLUTANT EMISSIONS:

Example emission rate calculations, monitoring data, or stack test data must be attached in accordance with Operating Permit Application Requirem

	The state of the s	J. Stack Itself	Jala Illust OK	מוושרווכח זוו ש	ccoluance wil	o Operating P	ermit Applica	non Kequire	ments, pp. 3-5.
EMISSION POINT NO.	POLLUTANT (note 1)	CONTROL	ROL MENT	ACTUA (in a con Applica	ACTUAL EMISSION RATE in accordance with Open the Permit Application Requirements, pp. 3-5)	VIRATE IngPermit pp. 3-5)	PROPO	PROPOSED ALLOWABLE EMISSION RATE (Optional)	WABLE Optional)
		* yes/no	effic.	note 2	lb/hr	tuĺyr	note 2	Ъ/ш	TAVIII.
AA-015	PM							0.00	0.00
	SO2							00:00	0.00
	NOX							0.00	0.01
	00							0.00	0.01
	voc							0.00	0.00
50.00									

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed. A list of regulated air pollutants has been provided in Section A.

Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every

pollutant from an emission point.

MA	NUFACTURI	NG PROCESSES (page 1 of 2)	SECTION E
	Emission Point No	o./ Name: A	A-003, WOOD PRESERVING	G PROCESS
•	Process Description PENTACHLORO		EATMENT OF UTILI'	
•	Was this unit cons		yust 7, 1977? yes	Xno
	Capacity (tons/hr)	: 7,000,000 C	CF WOOD PRODUCTS PER	YEAR
	Raw Material Inpu	t:		
	MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
WO	OD	342 CF	800CF	UP TO 7,000,000 CF
	Product Output:			
	PRODUCT or BY-PRODUCT	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
TRE	EATED WOOD	342 CF	800 CF	UP TO 7,000,000 CF
K	Stack Data: A. Height: B. Inside dian	NA meter: NA	C. Exit gas veloci D. Exit gas tempe	
	UTM Coordinates: A. Zone	B. North	C. E	ast

13. POLLUTANT EMISSIONS:

Example emission rate calculations, monitoring data, or stack test data must be attached in accordance with Operating Permit Application Requirements, pp. 3-5.

EMISSION POINT NO.	POLIUTANT CONTROL ACTUAL EMISSION RATE PROPOSED ALLOWABLE (in accordance with Operating Permit EMISSION RATE (Optional)	CON	CONTROL	ACTUA (in accord	ACTUAL EMISSION RATE (in accordance with Operating Permit Amilication Remiteration 3-5)	N RATE ting Permit	PROPO	PROPOSED ALLOWABLE EMISSION RATE (Optional)	WABLE Optional)
		* yes/no	effic.	note 2	Ъ/ш	th/yr	note 2	15/br	m/n.
AA-003	NOC	ON						6.58	28.18
	NAPHTHALENE	ON						0.40	1.77
	QUINOLINE	ON	i					0.02	0.08
	BIPHENYL	ON						0.01	90.0
	DIBENZOFURAN	ON						0.03	0.15
	PENTACHLOROPHENOL	ON						0.00	0.01
1 All reon	All remilated air nollutants including hazardo	ne oir noll.	***************************************	hazardana via mall tranta attitud Little	131-131-1	1. 1. 1.			

Requirements, pp. 3-5. A list of regulated air pollutants has been provided in Section A.

Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every All regulated air pollutants including hazardous air pollutants emitted from this source should be listed in accordance with Operating Permit Application

pollutant from an emission point.

Emission Point No./	Name: A	A-004, REF. NO. 42, CY	CLONES FOR WOOD
Process Description:	DUST COLLECTION	ON FROM UNTREATED	WOOD MILLING AND
Was this unit constru If yes please give dat		gust 7, 1977? yes	
Capacity (tons/hr):			
Raw Material Input:			
MATERIAL	QUANTURY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
OUGH CUT WOOD RODUCTS			2,000,000 CF
Product Output:			
PRODUCT or BY-PRODUCT	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
RIMMED AND IAPED UNTREATED OOD PRODUCTS			2,000,000 CF
Stack Data: A. Height: B. Inside diame	NA ter: NA	C. Exit gas veloc D. Exit gas temp	
UTM Coordinates: A. Zone	B. North	C. I	

13. POLLUTANT EMISSIONS:

3-5 Example emission rate calculations, monitoring data, or stack test data must be attached in accordance with Oneraring Permit

dii Y	Stonenesari	SHARR WANTE	11				T	T	T	ī	ı
ulrements, p	WABLE Optional)	tn/yr	2.40								
псаноп кеф	PROPOSED ALLOWABLE EMISSION RATE (Optional)	Tb/hr	0.55								
remmt App	PROPO	note 2									
un Operaring	RATE	tn/yr									
iccol dallice w	ACTUAL#EMISSION RATE (in accordance with Operating Permit Application Requirements, pp.33-5)	lb/hr									
מוומרוורת זוו מ	ACTUAL (in accordar Applicatio	note 2									
data must oc	ROL	effic.				,					
4000	CONTROL	* yes/no	YES								
The state of the s	POLLUTANT (note 1)		PARTICULATE								
Section of the sectio	EMISSION POINT NO.		AA-004								

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed in accordance with Operating Permit Application Requirements, pp. 3-5. A list of regulated air pollutants has been provided in Section A.

Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an

emission point.

ΜA	NUFACTURING	G PROCESSES (page 1 of 2)	SECTION E
	Emission Point No./ N	Jame: <u>AA-008, R</u> J	EF. NO. 46, TREATED WO	OD STORAGE
•	Process Description: FOLLOWING TREA	STORAGE AND I	HANDLING OF TREATE SHIPMENT	ED WOOD PRODUCTS
•	Was this unit construction of the second sec		ust 7, 1977? ye:	s X no
•	Capacity (tons/hr):	NA		
	Raw Material Input:			
	VATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
	Product Output:			
	PRODUCT or BY-PRODUCT	QUANTITY/HR ÄVERÄGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
TRE	EATED POLES			UP TO 5,000,000 CF
TRE	ATED TIES			2,000,000 CF
TOT WO	AL TREATED			UP TO 7,000,000 CF
	Stack Data: A. Height: B. Inside diamete	NA er: NA	C. Exit gas veloc D. Exit gas temp	
	UTM Coordinates: A. Zone	B. North	C. I	East

13. POLLUTANT EMISSIONS:

Example emission rate calculations, monitoring data, or stack test data must be attached in accordance with Operating Permit Application Requirements, pp. 3-5.

EMISSION (mote.1) EG AA-008 VOC NO AA-008 VOC NO QUINOLINE NO BIPHENYL NO DIBENZOFURAN NO PENTACHLOROPHENOL NO	The state of the s	And The Late Committee to the Committee of the Committee	A Children and an adding a part of the	Committee by the same of the same of	Alm Cont. Bolton Lancing Cont. and	A STATE OF THE PERSON NAMED IN COLUMN NAMED IN	A COMPANY AND A			
VOC NAPHTHALENE QUINOLINE BIPHENYL DIBENZOFURAN PENTACHLOROPHENOL	EMISSION POINT NO.	POLLUTANT (note 1)	CON	CONTROL	ACTUA (in accords Application	ACTUAL EMISSION RATE (in accordance with Operating Permit Application Requirements, pp. 3-5)	NRATE ting Permit 5, pp. 3-5)	PROPO	PROPOSED ALLOWABLE EMISSION RATE (Optional)	WABLE Optional)
VOC NAPHTHALENE QUINOLINE BIPHENYL DIBENZOFURAN PENTACHLOROPHENOL			Yes/no	effic.	note 2	Ib/hr	(ii) yr	note 2	1b/br	m/yr
PHENOL	A-008	VOC	ON						6.30	27.63
		NAPHTHALENE	ON						0.88	3.88
		QUINOLINE	ON						0.04	0.17
		BIPHENYL	NO						0.13	0.57
		DIBENZOFURAN	NO						0.08	0.33
		PENTACHLOROPHENOL	ON						0.00	0.00

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed in accordance with Operating Permit Application

Requirements, pp. 3-5. A list of regulated air pollutants has been provided in Section A. Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an emission point. ri

MA	NUFACTURING	G PROCESSES (page 1 of 2)	SECTION E
•	Emission Point No./	Name: AA	-009, REF. NO. 47, POLE	KILN
•	Process Description:	DRY WOOD POLES	PRIOR TO TREATMENT	
•	Was this unit construction of the second sec		ust 7, 1977? yes	sXno
ı	Capacity (tons/hr):	13,000 CF P	ER BATCH	
•	Raw Material Input:			
	MATERIAL	QUANTITY/HR AVERAĞE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
GRE	EN WOOD POLES			1,600,000 CF
	Product Output:			
	PRODUCT or BY-PRODUCT	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
DRY	WOOD POLES			1,600,000 CF
	Stack Data: A. Height: B. Inside diame	NA ter: NA	C. Exit gas veloc D. Exit gas temp	

SECTION E

MANUFACTURING PROCESSES (page 2 of 2)

13. POLLUTANT EMISSIONS:

3-5. Example emission rate calculations, monitoring data, or stack test data must be attached in accordance with Operating Permit Application Remit

ก่ เมื่อและเ	or testisate	SE Na Negori d'Issue au d' a c	Nr .	T		 <u> </u>	_	T	· · · · ·
WARIE	Optional)	m/yr	40.00		e e e e e e e e e e e e e e e e e e e				
PROPOSED ALTOWARTE	EMISSION RATE (Optional)	1b/hr	9.03						
PROPOS	EMISSIC	note 2							
RATE	ig Permit pp. 3-5)	tu/yr							
EMISSION	ce, with Operation Requirements,	Ib/hr							
ACTUAL	ACTUAL EMISSION RATE (in accordance with Operating Permit Application Requirements, pp. 3-5)	note 2						-	
ROL	CONTROL	effic.							
CONT		* yes/no	ON						
EMISSION PROPOSED ACTUAL EMISSION RATE PROPOSED ALTOWARTE	(note 1)		OOV						
EMISSION	POINT NO.		AA-009						

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed in accordance with Operating Permit Application Requirements, pp. 3-5. A list of regulated air pollutants has been provided in Section A. Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an

emission point.

IANUFACTURI	NG PROCESSES (page 1 01 2)	SECTION E	
Emission Point No	o./ Name: A	A-010, REF. NO. 48, POLE	PEELER	
Process Description PRODUCE WHITE		AND CAMBIUM LAYER	FROM PINE LOGS TO	
Was this unit cons		gust 7, 1977? yes	s X no	
Capacity (tons/hr)): 9.9			
Raw Material Inpu	ıt:			
MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MÄXIMUM	QUANTITY/YEAR	
ARKED LOGS	22 PIECES	22 PIECES	22,500 PIECES	
Product Output:				
PRODUCT or BY-PRODUCT	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR	
HITE POLES	22 PIECES	22 PIECES	22,500 PIECES	
ARKED AND WOOD HIPS	5.5 TONS/HR	5.5 TONS/HR	5,000 TONS/YR	
Stack Data: A. Height: B. Inside dia UTM Coordinates: A. Zone		C. Exit gas veloc D. Exit gas temp	erature: <u>NA</u>	

13. POLLUTANT EMISSIONS:

3-5. è Example emission rate calculations monitoring data or stack tast data

ALLOWABLE ATE (Optional)	/hrg: th/yr	
PROPOSED ALLOWABLE EMISSION RATE (Optional)	note 2 Ib/hr.	3.47
	tn/yr nc	
ACTUAL EMISSION & TE (in accordance with Operating Permit Application Requirements, pp. 3-5)	Ib/hr	
ACTUNE E (in accordance Application R	note 2	
CONTROL	effic	
EQUI	yes/no	ON
POLLUTANT (note 1)		PARTICULATE
EMISSION POINT NO.	The second secon	AA-010

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed in accordance with Operating Permit Application Requirements, pp. 3-5. A list of regulated air pollutants has been provided in Section A. Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dsef, etc. This may not apply to every emission point or every pollutant from an

emission point.

7

SECTION E

		, , , , , , , , , , , , , , , , , , , ,		
1.	Emission Point No AND HANDLING		A-011, REF. NO. 49, WOOD	FUEL PREPARATION
2.	Process Description GRINDING, HAN	n: PREPARATION C DLING, AND LOADING II	OF WOOD FUEL FOR INTO SILO ON CONVEYOR	BOILER, INCLUDING
3.	Was this unit const		gust 7, 1977? yes	Xno
4.	Capacity (tons/hr):	12		
5.	Raw Material Input	:		
	MATERIAL	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
wo	OD RESIDUE	8 TONS	12 TONS	58,403 TONS
5.	Product Output:			
	RODUCT or Y-PRODUCT	QUANTITY/HR AVERAGE	QUANTITY/HR MAXIMUM	QUANTITY/YEAR
	OD CHIPS AND VDUST	8 TONS	12 TONS	58,403 TONS
7.	Stack Data: A. Height: B. Inside diar	NA neter: NA	C. Exit gas veloci D. Exit gas tempe	
3.	UTM Coordinates: A. Zone	B. North	C. E	ast

SECTION E

MANUFACTURING PROCESSES (page 2 of 2)

13. POLLUTANT EMISSIONS:

Example emission rate calculations, monitoring data, or stack test data must be attached in accordance with Operating Permit Application Requirements, pp. 3-5.

EMISSION POINT NO.	POLLUTANT (note 1)	CON	CONTROL	ACTUA (in accord Applicate	ACTUAL EMISSION/RATE (in accordance with Operating Permit Application Requirements, pp. 3-5)	CONTROL ACTUAL EMISSION/RATE PROPOSED ALILOWABLE (in accordance with Operating Permit EMISSION RATE (Optional)	PROPO	PROPOSED ALLOWABLE EMISSION RATE (Optional)	WABLE Optional)
		* yes/no	effic.	note 2	Ib/hr	tn/yr	note 2	lb/hr	tn/yr
AA-011	PARTICULATE	ON						3.00	7.30

All regulated air pollutants including hazardous air pollutants emitted from this source should be listed in accordance with Operating Permit Application Requirements, pp. 3-5. A list of regulated air pollutants has been provided in Section A.

Provide emission rate in units of applicable emission standard, e.g. lb/MMbtu, gr/dscf, etc. This may not apply to every emission point or every pollutant from an

emission point.

SECTION F COATING, SOLVENT USAGE, and/or DEGREASING (page 1 of 5)

NOTE: For emission sources of volatile organic compounds (VOC's) including spray booths, painting, degreasing, finishing, gluing and solvent usage. COMPLETE AND ATTACH THE APPROPRIATE AIR POLLUTION CONTROL DEVICE FORM. Emission Point No./ Name: AA-012, REF. NO. 50, (2) PARTS CLEANER/DEGREASER'S 1. Process Description (INDICATE NO. OF IDENTICAL PROCESSES-BOOTHS, DIP TANKS, DEGREASING 2. TANKS, FINISHING LINES, ETC.): 2 EACH, SAFETY KLEEN INC. PARTS CLEANERS Were any of these units constructed or modified after August 7, 1977? ______ yes ____ 3. If yes please give date and explain. COATING: NA A. Describe Articles Coated: _ B. Operating Schedule (Optional) Days/Week Weeks/Year Hours/Day Maximum: Hours/Day Days/Week Weeks/Year 2. Average: For direct fired ovens: C. Type of oven: Bake ovens: Number of () Steam () direct fired Heat input MMBTU/hr Fuel type () Electric () Other____ SPRAY BOOTHS: NA 5. (ft) (ft) Height A. Width (ft) No. Open Sides Depth B. Operating Schedule Hours/Day Days/Week Weeks/Year Maximum: 1. Hours/Day Days/Week Weeks/Year 2. Average: C. Method of Spray: () Airless () Electrostatic () Other: () Air Atomize Overspray D. Exhaust Fan Data:

Total Horsepower

Total Volume (cfm)

No. of Fans

SECTION F COATING, SOLVENT USAGE, and/or DEGREASING (page 2 of 5)

E.	Exhaus	t Control:	Contr	ol Efficiency	:	Exhau	st Stack Dat	a:	
	() Ad	nterwash sorption ineration ffles y Filter	Particulate Hydrocart		% %	Diameter Height Flow	(FT) (FT) (CFM))	_
5. DEGI	REASING:								
Α.	Describ	e articles degrease feet per year (ft²/	ed. Include su	rface area of	parts degr	eased in square feet p	er hour (ft²/1	hr) and	
	-	TENANCE PART	•	G. ONLY PE	RIODIC U	SE			
=				- W10-		77			_
_	<u>.</u>								_
В.	Type of	degreasing:							
	1.	Cold Solvent	x		No. of	Units2			
	2.	Vapor	_						
		1. Ove	en top convey	or		No. of Units			
			veyorized no veyorized va			No. of Units No. of Units			
		4. Oth		-					_
C.	Tank D	imensions (ft):							
	Width	2 (ft)	Height		1 (ft)	Length	_3	(ft)
D.	Operation	ng Schedule (Opti	onal)						
Vools (Voor	1.	Maximum:	Hour	s/Day	2	7 Days/Week		52	
Veeks/Year	2.	Average:	1 Hou	rs/Day		4 Days/Week	40	Weel	cs/Year
		·				·- · · · · · · · · · · · · · · · · · ·			_
. UTM Coordin	ates:								
Α.	Zone		B.	North		C.	East		

SECTION F COATING, SOLVENT USAGE, and/or DEGREASING (page 3 of 5)

List all Volatile Organic Compounds (coatings, thinners, lacquers, solvents, degreasers, etc.) as used in accordance with Operating Permit Application Requirements, pp. 3-5: 12.

22 1		·	 	 	 	 	_
MAXIMUM VOC EMISSION RATES	(tons/yr)	99.0					
MAXIN	(lbs/hr)	0.20					
r USAGE	MAX	50 GAL/YR					
PRODUCT USAGE	AVG.	24 GAL/YR					
AMOUNT RECLAIMED/	RETURNED* (gallons/yr)						
	PERCENT	100					
DENSITY	(lbs/gallon)	9.9					
	PRODUCT NAME	SAFETY KLEEN INC SOLVENT	,				
	LINE	90					

USE SEPARATE SHEET(S) IF NEEDED.

* SEE ITEM 15 ON PAGE 5 OF THIS SECTION FOR RECLAMATION CREDIT AND DOCUMENTATION REQUIRED. ** PRODUCT USAGE SHOULD NOT INCLUDE THOSE AMOUNTS RETURNED TO THE SUPPLIER, RECYCLED, OR REUSED.

SECTION F COATING, SOLVENT USAGE, and/or DEGREASING (page 4 of 5)

13. List all Hazardous Air Pollutants (HAP'S) found in each product:

PRODUCT	HAZARDOUS	4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	CAS	MAXIMUM PRODUCT USAGE **	PERCENT	MAXI EMISS] (in accordance v	MAXIMUM HAP EMISSION RATES (in accordance with Operating Permit Application Requirements, pp. 3-5)
NAME	AIR POLLUTANT		NUMBER	(LBS/HR)	HAP	(LBS/HR)	(TONS/YR)
SAFETY KLEEN PETROLEUM	voc		644742-47-8	0.20	100	0.00	99.0
SOLVENT							

USE SEPARATE SHEET(S) IF NEEDED.

^{**} PRODUCT USAGE SHOULD NOT INCLUDE THOSE AMOUNTS RETURNED TO THE SUPPLIER, RECYCLED, OR REUSED.

SECTION F COATING, SOLVENT USAGE, and/or DEGREASING (page 5 of 5)

14.	Describe the storage and handling methods used in employing products listed in tables No. 12 &13. Include disposal methods of the collected waste.							
	SOLVENT RECEIVED IN CLOSED C BACK TO MANUFACTURER	CONTAINERS, USED IN CL	EANERS, AND RECYCLED					
15.	List reclaimed material: MATERIAL T DEGREASERS, LACQUERS, ETC.	YPES INCLUDE COATING	S, THINNERS, SOLVENTS, QUANTITY					
PRO	ODUCT/MATERIAL TYPE NO ON SITE RECLAMATION	USED (GAL/YR)	RECLAIMED (GAL/YR)					
Descri	be methods that the products listed above a	are reclaimed, including how	they are captured and reused or					
eturne								
<u></u>								
Air .								
-								
*	PLEASE NOTE THAT MATERIAL R	ECLAIMED WILL ONLY B	E CREDITED IF PROPERLY					

SECTION H TANK SUMMARY (page 1 of 2)

2.		his tank constructed or modified after Aug please give date and explain.	ust 7, 1977?		_no
— В.	Produ	ct Stored:			
	If mo	re than one product is stored, provide the in	nformation in 4.A-E for e	ach product.	
١.	Tank	Data:			
	Α.	True Vapor Pressure at storage tempera	ture:		psia/°F
	B.	Reid Vapor Pressure at storage tempera			psia/°F
	C.	Density of product at storage temperatu	re:		lb/gal
	D.	Molecular Weight of product vapor at s	torage temperature:		lb/lbmo
	E.	Throughput for most recent calendar ye	ar:		gal/yr
	F.	Tank Capacity:			gal
	G.	Tank Diameter:			feet
	H.	Tank Height / Length:			feet
	I.	Average Vapor Space Height:			feet
	J.	Tank Orientation:		or Horizontal	
	K.	Type of Roof:		Dome or Cone	;
	L.	Is the Tank Equipped with a Vapor Rec If Yes, describe on separate sh	overy System?	Yes_ Indicate effic	iency
	M.	Check the Type of Tank:	icet of paper and attach.	Indicate ciric	ionoy.
	141.	Fixed Roof	External Floating	Roof	
		Pressure	Internal Floating F		
		Variable Vapor Space			
		Other, describe:			
	N.	Check the Closest City:			
		Jackson, MS	Birmingham, AL		
		Memphis, TN	Montgomery, AL		
		New Orleans, LA	Baton Rouge, LA		
	0	Check the Tank Paint Color:			
		Aluminum Specular	Gray Light		
		Aluminum Diffuse	Gray Medium		
		Red	White		
		Other, describe:			
	Ρ.	Tank Paint Condition:	Good or Poor		
	Q.	Check Type of Tank Loading			
		1. Trucks and Rail Cars			
		Submerged Loading		•	
			: Dedicated Normal Ser		
			: Dedicated Vapor Bala	nce Service	
		Splash Loading of cl			
			edicated Normal Service	lanuica	
		• .	edicated Vapor Balance S)CI VICE	
		2. Marine Vessels Submerged Loading:	: Ships		

SECTION H TANK SUMMARY (page 2 of 2)

5.

6.

1. Check the Type of Tank Seal: Mechanical Shoe Primary Seal Only With Shoe-Mounted Secondary Seal With Rim-Mounted Secondary Seal Liquid Mounted Resilient Seal Primary Seal Only With Shoe-Mounted Secondary Seal	
Mechanical Shoe Primary Seal Only With Shoe-Mounted Secondary Seal With Rim-Mounted Secondary Seal Liquid Mounted Resilient Seal Primary Seal Only	
With Shoe-Mounted Secondary Seal With Rim-Mounted Secondary Seal Liquid Mounted Resilient Seal Primary Seal Only	
With Rim-Mounted Secondary Seal Liquid Mounted Resilient Seal Primary Seal Only	
Liquid Mounted Resilient Seal Primary Seal Only	
Primary Seal Only	
With Shoe-Mounted Secondary Seal	
With Rim-Mounted Secondary Seal	
Vapor Mounted Resilient Seal	
Primary Seal Only	
With Shoe-Mounted Secondary Seal	
With Rim-Mounted Secondary Seal	
2. Type of External Floating Roof: Pontoon	
Double-Deck	
S. For Internal Floating Roof Tanks	
1. Check the Type of Tank Seal:	
Liquid Mounted Resilient Seal	
Primary Seal Only	
With Rim-Mounted Secondary Seal	
Vapor Mounted Resilient Seal	
Primary Seal Only With Rim-Mounted Secondary Seal	
2. Number of Roof Columns:	
3. Length of Deck Seam feet:	
5. Length of Deck Seam	
4. Area of Deck: feet ²	
5. Effective Column Diameter: feet	
6. Check the Type of Tank:	
Bolted with Column Supported Roof	
Welded with Column Supported Roof	
Bolted with Self-Supported Roof	
Welded with Self-Supported Roof	
 "	
Emissions Summary	
	ГРҮ
	ГРҮ
3. Total Emissions: lb/hr 1	ΓPY
UTM Coordinates:	
A. Zone B. North C. East	

		-										
Item	Z Z											
Plant Reference Number		GRN-D6	GRN-67	- NO.								
Emission Point Number		AA-003	AAAM	200	SKN-99	GRN-10	GRN-33	GRN-12	GRN-49	SP NGS		
Keterence No. (Table 2.1)				300	AP-OE	AA-003	AA-003	AA-003	AA-Om	44 003	500	GRN-16
					2	٥	Ŧ	12	13	14	2 t	AA-003
Name		#1 Work Tank	#2 Whole Tone	1			Creosote	#1 Creosola			2	2
Construction Date		1903	1903	1979	#4 Work Tank	#5 Work Tank	Measuring Tank	Storage Tank	#2 Surge Tank	#5 Storage Tank	#8 Storage Tank	#10 Come Tent
					3	0081	1880	1903	1903	1903	₽	1903
Material Stored		Oil / Pentachionopenoi	Commenda									
Temperature	88			Capacia	Creosote	Pentachlorophenol	Creosofe	Creosote	Process Water	#2 Diseas From	,	
Temperature	Sela					ð					CHEOSORE	Process Water
Sibrage Temperature	Degrees F		200	٤	996							
Density (g Storage Temperature	lb/gal	7.75	9.25	9.25	200	150	200	200	8	8	150	S
Thrumbar	Mbmole					27	Q.	98.89	8.34	7.1	9.25	2
Tank Capacity	Dallons	_	8,200,000	8,200,000	6,500,000	8,500,000	740 000	740,000	1000			
Tank Dlameter		80,50	28,786	29 786	22,419	29.786	4.200	200	1,600,000	127,500	960,000	1,400,000
Tank Height / Length	38	2 8	5 6	13	9	13	9	20,000	28,000	100,000	105,000	300,000
Average Vapor Space Height	feet	-	3	3	2	30	8	24	77		3 8	9
Tank Orientation (Horizontal or Vertical)		Vertical	Vertical	Validadi	-	-	1	-	-	•	R	27
Type of Roof (Dome or Cone)		Dome	Dome	ACT BOTH	Horizontal	Vertical	Vertical	Vertical	Vertical	Vertinal		
Vapor Recovery System?	yes or no	£	S.			Dome	Ооте	Cone	S	3	Vertical	Verboa
ype of Lank?		Fixed Roof	Fixed Boof	Bred Bres	2	2	Š	S.	2	Ž	3 4	5
Closest City	Memphis	Memorits	Memohis	Medwhie	TIMED KOO!	Fixed Roof	Fixed Roof	Fixed Roof	Fixed Roof	Fixed Roof	Fived Doof	2
Lank Paint Color		Black	Black	Rinch	ALTERIOR	Memohis	Memorhis	Memphis	Memoritis	Memohis	Memobie	Marrott L
Paint Condition (Good or Poor)		ğ	Poor	A 100	WILLIAM STATE	Back	Black	Black	Black	Black	MCI INTE	Membras
Tank Loading (Splash Loading - Dedicated			3	8	1001	Poor	Poor	Poor	Po	500	S S	RISCK
Normal Service; Splash Loading - Dedicated Vacor Balance Service: Bottom)			:									200
Not Applicable To Any Tanks		EL COLOR	Bottom	Вофон	Вофот	Bottom	Bottom	Rotter	1	į	:	
Not Applicable To Any Tanks									COMPANY	Ecitos	Bottom	Bottom
Breathing Loss (See Note)	ξ											
	ΤPY											
Working Loss (See Note)	P/V											
	ΤPY											
I otal Emissions (See Note)	lbfr											
	ΤPY											
NOTE: All tank emissions are included in Plant Stammary Table of Section Control												
Application.												
	1											
		_										

Units												
	11	GRN-17	GRN-18	GRN-18	GRN-20	C DOL 33	78 1900					
	ŀ	A-003	AA-003	AA-003	AAOGS	AAAm	GRN-24	GRN-25	GRN-26	GRN-27	GRN-28	GRN-29
		-	18	19	R	Ę	200	41014	A408	AA-003	AA-003	A-003
							5	8	R	22	28	82
		Slorm Surge Water		December	Creosote	Pentachlorophenol	;					Cracelle
		1989	1987	1989	1980	DOWGOWN 1	Gasoline	Diesel	Aeration	Clarifler	Discharge	Dehydrator
	_					Water	C/AL	1830	1986	1986	1986	1963
		Shorm Water	Committee Both	Š		Pentachiorophenol			Process Waste	Process Wineto	,	
alsa		Т	CHILD L WARREN	Water	Creosote / Water	ō	Gasoline	#2 Diesel	Water	Water	Menter Manue	
E 25											CONS.	CHECKORE / WATER
Degrees F		8	8	g	1							
P/daq		8.34	8.67	75	82.8	8	8	99	98	88	88	220
lb/lbmole					80.3	7.0	6.5	7	8.34	8.34	8.34	9
gallons/yr		2,272,000	000'6	230,000	532.000	493 000	40.000	000				
gallons		250,000	1,500	2500	900	8 mm	4 260	2000	000,000,0	5,000,000	5,000,000	200,000
Į.	- 1	8	8	80	2	ę	3	A)UM	000,051	25,000	15,000	8,000
<u>.</u>		25	₽	1.5	=	2		٤	2	2	15	10
		-		-				*	S	9		24
		Vertical	Vertical	Vertical	Verifical	Vention	1,000	-	-	-	-	-
	1	None	Dome	Dome		Police Control	TOTIZONIZE	Horizonta	Vertical	Vertical	Vertical	Horizontal
yes or no	- 1		2	9	ž				None	None	None	None
		Open	Fixed Roof	Fired Roof	Flyad Dong	2	2	£	Š	No	2	2
Memorits	Н	Memphis	Memohis	Memohis	Merrobie	LACED POOL	Fixed Koof	Fixed Roof	Open	Open	Open	Land O
	Н	Blace	Bebe	100	Part Part	MCHOUS	Memories	Memphis	Memphis	Memphis	Memohis	Memohis
	\vdash	8	5		Y S	X a	Auminum	Aluminum	White	Blue		150
	-	Solash Loading		Colored Location	100	100	, 0,0	Good	Cood	9	000	Poor
		Dedicated Normal	Ī	Dedicated Normal	Dedicated Normal	Splash Loading Dedicated Normal			Splash Loading	Splash Loading		
		SELVICE	Service	Service	Service	Service	Bottom	Bottom	Service	Service	Cendon	- Nack
	4										200	mana
Ā	╀											
Ā	٠											
Š	╁											
Ā	۰											
Š	۰											
À	٠											
1	+											
	_											
						-						
	+											
	+											
l	+											
	+											
	+											
	\vdash											
	H											
	_											

Section H Reference	E 2	<u></u>						
			CRW-10	NO.				
•	Emission Point Number		200	SANS	GRN-32	GRN-33	GRN-34	GRN-35
	Reference No. (Table 2.1)		3	ANOUS	AAOG3	AA-003	AA-003	AAAm
			3	3	32	33	7	2
	;		North Pentachlorophenol	South Pentachinmahena	Dentroch			3
	Name		Equalization				Ē	Slormwater
~	Construction Date		1962	1083	4670	MA.	Concentrate	Process
				3	0/81	1970	1960	1970
3	Material Stored		Worker / Daneto / Ou				Pentachlorophenol	Creosote / Penta
4	Temperature	2	weed / rener / Ca	Wells / Peris / Oil Water / Peris / Oil	Oil / Penta	Oil / Penta	Concentrate	
48	Temperature	ž ž						
	Slorage Temperature	Degrees F						
Ş	Density @ Storage Temperature	P P		3	8	99	8	98
40	Molecular Weight @ Storage Temperature	Manage	•	0	7.75	7.75	9.55	8.34
1EP	Throughput	CalloneAr	85 000	900				
45	Tank Capacity	anilone		200	820000	850,000	120,000	400.000
ş	Tank Diameter	gray,		14,000	9,400	5,000	10,500	100,000
ŧ	Tank Height / Length			2	•	10	13	S
4	Average Varor Spans Helph	5	*	72	*	ŧ	90	۶
4	Tank Orientation (Hodgestall or Vesting)	2	-	-		-	-	-
¥	Tone of Real Course or Cours		Vertical	Vertical	Vertical	Hortzontal	Vertical	Voortional
	Wast Barre Core		Š	Cone	Ē		100	ACIONA
	Time of Tarks	VES OF NO	8	Š	2	Ž		i i
1	Chemical Communication		Fbred Roof	Fixed Roof	Fixed Roof	Fixed Roof	Flyad Doof	2
Ş	Tonk Boles Cales	Memoris	Memorits	Memphis	Memohis	Memobis	Moreobie	TOO ROOT
	Date County		Black	Black	TO SEE	Rist	Alimina	Memoris
	Carrieron (GOOD OF POOL)		Poor	Poor	No.	Pow	The same	Concrete
	l ank Loading (Splash Loading - Dedicated		Splash Loading	Splash Loading		Splach Loading	3	
9	Veror Balance Service: Bottom)		Dedicated Normal	Dedicated Normal		Dedicated Normal		Deficated Normal
£	Not Anglicable To Any Tanke		SOMOS	Service	Bottom	Service	Bottom	Servine
\$\$	Not Applicable To Any Tanks							
5.1	Breathing Loss (See Note)	2						
		3						
5.2	Working Loss (See Note)	ş						
		À						
5.3	Total Emissions (See Note)	M						
		ΤPY						
	NOTE: All tank emissions are included in							
	Plant Summary Table of Section C of the							
	Application.							
				i		•		

SECTION L2 CYCLONES

1	Emission Point No. / Name: AA-001, REF. NO. 40, MULTICLONE	
2.	Manufacturers Name and Model No.: WELLONS MULTICLONE COLLECTOR	_
3.	Date of construction for existing sources or date of anticipated start-up for new sources: 1972	
4.	Cyclone Data: a) Cyclone type (if more than 1, put total number): Simple Potbellied High Efficiency Multiclone X	
	b) Efficiency:90 %	
	c) Pollutant viscosity: poise	
	d) Flow Rate: <u>25,450</u> acfm	
	e) Pollutant size entering cyclone: microns	
	f) Pressure drop: inches H ₂ O	
	g) Baffles or Louvers (specify):	
	h) Cyclone dimensions: Inlet: 2.0 ft Outlet: 0.5 ft Body diameter: 6.0 ft Body height: 15.0 ft Cone height: 8.0 ft	
	i) Wet spray: Yes X No 1. No. of Nozzles:	
	2. Type of liquid used: 3. Flow rate: gpm 4. Make-up rate: gpm 5. % recycled: %	
	j) Fan location: 1. Downstream: Direct emission Auxiliary Stack 2. Upstream: X No cap (vertical emissions) Fixed cap (diffuse emissions) Wind respondent cap (horizontal emissions)	l
5	Which process(es) does the cyclone(s) control emissions from? BOILER SOURCE AA-001, REF. NO. 40	FIRED

SECTION L2 CYCLONES

	UNKNOWN		
Cyclor a)	X Simpl	(if more than 1, put to le Efficiency	otal number) : Potbellied Multiclone
b)	Efficiency:		%
c)	Pollutant viscos	ity:	poise
d)	Flow Rate:		acfm
e)	Pollutant size en	tering cyclone:	microns
f)	Pressure drop:		inches H ₂ O
g)	Baffles or Louv	vers (specify):	
h)	Cyclone dimens	ions: Inlet: Outlet: Body diame Body heigh Cone heigh	at: 3.0 ft
i)	Wet spray:	Yes No. of Nozzles:	X No
	2. 3. 4. 5.	Type of liquid used: Flow rate: Make-up rate: % recycled:	gpm gpm %
i)	Fan location: 1.	Downstream:	Direct emission Auxiliary Stack
	2.	Upstream:	No cap (vertical emissions) Fixed cap (diffuse emissions) Wind respondent cap (horizontal emissions)

SECTION M COMPLIANCE DEMONSTRATION (page 1 of 2)

Completion of Section M is not required for a complete application. It is presented to merely reflect what may be required by the Enhanced Monitoring and/or the Periodic Monitoring Regulations. Upon promulgation of those regulations, this section will be revised to reflect the actual requirements. Until then, the information in this section should be utilized for planning purposes.

Choose the type of monitoring that is suggested for your source in the "Enhanced Monitoring Guideline". Fill out the appropriate form and attach to the corresponding emission point description pages.

A. Compliance Demonstration by Continuous Emissions Monitoring (CEM).

B. Compliance Demonstration by Periodic Emission Monitoring using Portable Monitors.

SO₂ NO_x O₂ CO₂ CO HCl H₂S VOC Flow Moisture Combustibles Combustion Efficiency

C. Compliance Demonstration by Monitoring Control System Parameters or Operating Parameters of a Process.

Baghouse Pressure drop across baghouse, Broken bag detector, Opacity. Mechanical Collectors Pressure drop across collector, Hopper full detector, Opacity. Primary and secondary voltage, Primary and secondary **Electrostatic Precipitators** currents, Spark Rate, Broken wire detector, Rap cycle frequency, Resistivity measurement, Inlet water flow, Total solids, Opacity. Thermal Incinerator Firebox temperature. Catalytic Incinerator Catalyst bed temperature. Pilot light detector, Temperature after flame zone. Flare Pressure drop across scrubber and demister, Scrubber fluid Particulate Scrubber recirculation rate, Pump discharge pressure, Pump motor current. pH of fluid, Fluid recirculation rate, Air flow, Pressure Absorber for Gases drop across absorber and demister, Fluid temperature. Steam mass flow rate per regeneration cycle, Carbon bed Carbon Absorber temperature. Condenser Condenser exit temperature, Amount of solvent recovered daily. Charging rate, Production rate, Hours of operation, Secondary chamber temperature, Kiln or dryer exit temperature, Burner combustion efficiency, Power consumption, Static pressure, Fuel usage rate, Water

injection rate.

COMPLIANCE DEMONSTRATION (page 2 of 2) SECTION M

Compliance Demonstration by Monitoring Maintenance Procedures. D.

Water quality testing

Sludge solids testing

Electrostatic precipitator cleaning frequency

Blacklight inspection of baghouses

Sludge mercury testing

Periodic inspection of process operating parameters

VOC leak testing Soot blowing frequency Fugitive dust control measures

Control equipment inspection frequency

Reid vapor pressure testing

Compliance Demonstration by Stack Testing. E.

EPA Method 1 & 2:

Flow (S-type pilot tubes, Hot-wire anemometer)

EPA Method 3:

CO₂, O₂, CO (Orsat, Fyrite)

EPA Method 3A:

CO₂, O₂, (Analyzers)

EPA Method 4:

Moisture (Wet bulb-Dry bulb, Impingers)

EPA Method 5:

EPA Method 6: EPA Method 6B:

SO₂ (Impingers) SO₂ (24 hour average)

EPA Method 6C:

EPA Method 7E:NO, (Analyzer)

SO₂ (Analyzer)

EPA Method 9:

Opacity (Visible emissions reader)

EPA Method 10: CO (Analyzer)

EPA Method 16: TRS (Gas Chromatograph)

TRS (Impingers)

EPA Method 16A: EPA Method 16B:

TRS (Gas Chromatograph)

EPA Method 18: VOC (Gas Chromatograph)

EPA Method 21: VOC Leaks (Analyzer)

EPA Method 25A:

VOC (Analyzer with FID)

EPA Method 25B:

VOC (NDIR Analyzer)

Compliance Demonstration by Fuel Sampling and Analysis (FSA). F

Coal Sampling

Coke sampling

Tire derived fuel sampling

Waste oil sampling Refuse derived fuel sampling Sewage sludge sampling Paper sludge sampling

Landfill gas sampling

G. Compliance Demonstration by Recordkeeping.

Testing and monitoring records Compliance schedule records

Process hours of operation records

Fuel usage records

As-applied coating & ink composition records

Records of malfunction

As-applied coating & ink records,

Transfer efficiency records

Production records

SECTION M1 COMPLIANCE DEMONSTRATION BY CONTINUOUS EMISSIONS MONITORING (CEM)

An installation plan for each new (i.e. proposed) Continuous Emission Monitoring (CEM) System shall be submitted with the permit application for approval. Fill out one (1) sheet per analyzer.

1.	Emissi	ion Point No./Name: AA-001 WOOD FIRED BOILER
2.	Contin	uous Emission Monitoring Data:
	A.	Name of Manufacturer: HORIBA
	B.	Model number: CMA-321
	C.	Serial Number: 566220011
	D.	Date of installation of CEM: 1992
	E.	Which does the CEM monitor: X Pollutant Dilutent Flow X Opacity
	F.	Pollutant / Dilutent / Flow being monitored: CO, OPACITY
	G.	Type of analyzer: In situ Dilution CO ₂ Thermal Differential Pressure Other (specify):
	H.	Type of analyzer description: MAGNETOPNEUMATIC
	I.	Backup system (attach other compliance demonstration forms if needed):
	J.	Opacity CEM: How measured: X Monitor Visible Emission Evaluation
	K.	If CEM is not previously certified, then it shall be submitted for certification within 60 days of startup of the CEM system.
	L.	State the operating principles of the analyzer: SEE FOLLOWING PAGE

M. Attach a schematic of the CEM system showing the sample acquisition point and location of the monitor and explain any deviations from the siting criteria in Performance Specifications 1, 2, 3, 4, 5, 6 and 7 in 40 CFR Part 60, Appendix B.

DEM Operating Princip

1 OVERVIEW

11. THEORY OF OPERATION

The SNIFFER system is designed to measure the concentration of CO, CO₂, and O₂ components in stack gas emitted from a stationary source. The system uses a magnetopneumatic analyzer to measure O₂ and infra-red analyzers (NDIR method) to measure CO and CO₂. During the operation of the magnetopneumatic analyzer, oxygen molecules are drawn into a non-homogenous magnetic field and attracted to a higher magnetic field, resulting in a pressure increase. A pressure increase is produced outside of the magnetic field using nitrogen gas. This differential pressure is measured using a condenser type microphone, which produces an electrical signal. A stable signal is then produced and transmitted by exciting the magnet intermittently and processing the alternating signal. The output signal is directly linear to the oxygen concentration.

The principle of the non-dispersive infra-red analyzer involves a dual beam method with an opto-pneumatic double layer detector. The infra-red source emits infra-red radiation, which is modulated by a rotating chopper wheel. After passing through the sample cell, the radiation is detected by the double layer detector. A window that is permeable to the infra-red radiation divides the detector chamber into two gas chambers or layers, which are linked together by a capillary that contains a microflow sensor. The center part of the absorption curve is absorbed by the first detector level while the edges are absorbed by the second detector level, resulting in a pressure differential between the two detector levels. The gas flow that results from the pressure differential is detected by the microflow sensor. This detected output signal is then processed by the microprocessor into a linear output signal.

The SNIFFER system also incorporates other components that allow the Analyzers to be calibrated, and the data from them to be recorded.


1.2 COMPONENTS

The SNIFFER system incorporates a Sample Conditioner, Analyzer, Calibration Unit, Opacity Monitors, and Strip Chart Recorder. Figure 1-1 shows how the components are configured in the system cabinet.

1.2.1 Sample Conditioner

The Sample Conditioner takes sample gas from the stack port and supplies a steady flow of clean sample gas to the Analyzer.

1

The monitoring of a control system parameter or a process parameter may be acceptable provided that a correlation between the parameter value and the emission rate of a particular pollutant is established in the form of a curve of emission rate versus parameter values. At least three sets of stack test data, that bracket the emission limit if possible, shall be used to define the emission curve. This data shall constitute the certification of the system and must be attached for approval. If it is not attached, it shall be submitted within 60 days from the date of startup of the system or the date of application, which ever is later.

1.	Emission Point No./Name: AA-002, REF. NO. 41, OIL FIRED BOILER				
2.	Method of monitoring description: MONITORING BY MEASUREMENT OF FUEL OIL CONSUMPTION FOR TOTAL TIME IN OPERATION				
Attac	h separate sheets if needed.				
3.	Backup system (attach other compliance demonstration forms if needed):				
4.	The monitoring system shall be subject to appropriate performance specifications,				

calibration requirements, and quality assurance procedures.

The monitoring of a control system parameter or a process parameter may be acceptable provided that a correlation between the parameter value and the emission rate of a particular pollutant is established in the form of a curve of emission rate versus parameter values. At least three sets of stack test data, that bracket the emission limit if possible, shall be used to define the emission curve. This data shall constitute the certification of the system and must be attached for approval. If it is not attached, it shall be submitted within 60 days from the date of startup of the system or the date of application, which ever is later.

1.	Emission Point No./Name: AA-003 WOOD PRESERVING PROCE					
2. 	Method of monitoring description: MONITORING BY MEASUREMENT OF CUBIC FEET OF PRODUCTS PRODUCED					
_ _ _						
Atta	ch separate sheets if needed.					
3	Backup system (attach other compliance demonstration forms if needed):					
4.	The monitoring system shall be subject to appropriate performance specifications,					

calibration requirements, and quality assurance procedures.

The monitoring of a control system parameter or a process parameter may be acceptable provided that a correlation between the parameter value and the emission rate of a particular pollutant is established in the form of a curve of emission rate versus parameter values. At least three sets of stack test data, that bracket the emission limit if possible, shall be used to define the emission curve. This data shall constitute the certification of the system and must be attached for approval. If it is not attached, it shall be submitted within 60 days from the date of startup of the system or the date of application, which ever is later.

1.	Emission Point No./Name: AA-005, REF. NO. 43, NATURAL GAS SPACE HEATERS, (3) UNITS
2.	Method of monitoring description: MONITORING BY MEASUREMENT OF NATURAL GAS CONSUMPTION
A 44	1t- deata if moded
Auac	ch separate sheets if needed.
3.	Backup system (attach other compliance demonstration forms if needed):
4.	The monitoring system shall be subject to appropriate performance specifications,

5. If a quality assurance / quality control plan is not attached with the application for approval, it shall be submitted within 60 days from the date of startup of the monitoring program or the date of application, which ever is later.

calibration requirements, and quality assurance procedures.

.

The monitoring of a control system parameter or a process parameter may be acceptable provided that a correlation between the parameter value and the emission rate of a particular pollutant is established in the form of a curve of emission rate versus parameter values. At least three sets of stack test data, that bracket the emission limit if possible, shall be used to define the emission curve. This data shall constitute the certification of the system and must be attached for approval. If it is not attached, it shall be submitted within 60 days from the date of startup of the system or the date of application, which ever is later.

1	Emission Point No./Name: AA-006, REF. NO. 44, NATURAL GAS FIREI STEAM CLEANER
2. 	Method of monitoring description: MONITORING BY MEASUREMENT OF NATURAL GAS CONSUMPTION
a	
-	
Atta	separate sheets if needed.
3. —	Backup system (attach other compliance demonstration forms if needed):
4.	The monitoring system shall be subject to appropriate performance specifications calibration requirements, and quality assurance procedures.

If a quality assurance / quality control plan is not attached with the application for

approval, it shall be submitted within 60 days from the date of startup of the monitoring

program or the date of application, which ever is later.

5.

The monitoring of a control system parameter or a process parameter may be acceptable provided that a correlation between the parameter value and the emission rate of a particular pollutant is established in the form of a curve of emission rate versus parameter values. At least three sets of stack test data, that bracket the emission limit if possible, shall be used to define the emission curve. This data shall constitute the certification of the system and must be attached for approval. If it is not attached, it shall be submitted within 60 days from the date of startup of the system or the date of application, which ever is later.

1.	Emission Point No./Name: AA-015, REF. NO. 53, NATURAL GAS FIRED SPACE HEATER, (1) UNIT
2.	Method of monitoring description: MONITORING BY MEASUREMENT OF NATURAL GAS CONSUMPTION
Attac	h separate sheets if needed.
3.	Backup system (attach other compliance demonstration forms if needed):
4.	The monitoring system shall be subject to appropriate performance specifications,

If a quality assurance / quality control plan is not attached with the application for 5.

calibration requirements, and quality assurance procedures.

approval, it shall be submitted within 60 days from the date of startup of the monitoring program or the date of application, which ever is later.

SECTION M5 COMPLIANCE DEMONSTRATION BY STACK TESTING

Compliance demonstration by stack testing will be carried out in accordance with EPA

appro	ved reference methods and the stack test report must be attached.
1.	Emission Point No./Name: AA-001, REF. NO. 40, WOOD FIRED BOILER
2.	Pollutant being tested for: PARTICULATE AND VISIBLE EMISSIONS
3.	Test Method: SEE STACK TEST REPORT (FOLLOWING PAGES)
4.	Compliance shall be demonstrated:
	Daily Weekly Monthly Other (specify): BIENNIAL (ONCE EVERY 2 YEARS)
5.	Any measured emission rate that exceeds an emission limit established by the permit must be reported as an excess emission.
5.	Is this an existing method of demonstrating compliance: X Yes No
7.	Backup system (attach other compliance demonstration forms if needed):

NVIRONMENTAL NONITORING LABOR TORIES, INC.

). Box 655 O 624 Ridgewood Road Igeland, Mississippi 39158

phone: 601/856-3092 fax : 601/853-2151

September 29, 2000

Section M5 Stack Test

Subject:

Koppers Industries - Grenada, Mississippi

Wood Waste Boiler - Stack Emissions Test

Facility No. 0960-00012

On September 22, 2000, Environmental Monitoring Laboratories performed air emissions testing for Koppers Industries in the Tie Plant community near Grenada, Mississippi. Testing was done to measure particulate and visible emissions from the wood waste boiler in accordance with requirements of the Mississippi Department of Environmental Quality.

Results of emissions testing are shown below.

PÄRI	TICULATE EMISS	VISIBLE EMISSIONS	
#/hr	gr/dscf	#/MM Btu	High SMA, % opacity
8.75	0.076	0.192	31.88

Mr. Anthony Mahan of Koppers coordinated the testing project. Danny Russell of Environmental Monitoring Laboratories was responsible for sample collection and analysis of particulate samples. Sample custody was limited to Mr. Russell.

Following is a report of the test.

REPORT OF AIR EMISSIONS TESTS FOR KOPPERS INDUSTRIES, INC. GRENADA PLANT WOOD WASTE BOILER

Section M5

Grenada, Mississippi September 22, 2000 Stack Test

CONTENTS

1.0	TEST RESULTS			1	
2.0	SOU		2		
3.0	TES'		2		
.4.0	DAT	A REDUCTION		3	
5.0	NOM	IENCLATURE		6	20
6.0	CALIBRATION			7	
7.0	APP	ENDICES:		8	
	A.	Field and Laboratory Data			
	В.	Calibrations			
	C.	Visible Emissions Record —			
	D.	Boiler Steam Chart (Koppers)			

REPORT CERTIFICATION

I certify that I have examined the information submitted herein, and based upon inquires of those responsible for obtaining the data or upon my direct acquisition of data, I believe the submitted information is true, accurate and complete.

Signed

11

Daniel G. Russell

2.0 SOURCE DESCRIPTION:.

Section M5 Stack Test

Koppers Industries, Inc. operates a 30,000 pound per hour Wellons wood waste boiler at their wood preserving facility in Grenada, Mississippi. The boiler provides steam for the timber treating processes and a turbine generator. Fuel is typically wood waste generated from the manufacture of treated wood products.

Heat input as calculated from the test data and an F-Factor was an average 45.16 MM Btu/hr.

The boiler exhausts to the atmosphere by way of a 34.5 inch diameter vertical stack. Two sample ports at 90° are provided at a location that is 432 inches (12.5 diameters) below the stack exit and 356 inches (10.3 diameters) above an upstream stack tapered section.

3.0 TEST PROCEDURES:

Test procedures used are those described in the Code of Federal Regulations, Title 40, Part 60, Appendix A. Specifically, Method 1 was used to determine the number of sample points and Method 5 to determine flow rates, moisture content, and particulate emissions. The sampling train was identical to that described in Method 5 except that the cyclone was omitted. Visible emissions were read in accordance with Method 9 concurrently with the emissions test

Heat input to the boilers was determined by continuously monitoring oxygen content of the flue gas as described in Method 3A and calculating heat input using an F-factor of 9280 scf per million Btu of heat input for the wood waste fuel.

Filters were recovered by rinsing the front half of the filter holder into the probe wash and securing the filters in glass petri dishes. Part of the sample filter normally adheres to the filter gasket, and some of the adhering material is recovered into the probe wash. Therefore some of the filter weight is attributed to the probe wash weight.

Filters were heated in an oven for 2 hours at 105° C, desiccated at least 24 hours and weighed to constant weight. Probe wash samples in acetone were evaporated to dryness over low heat in tared beakers, desiccated for at least 24 hours and weighed to constant weight. Weighings are made at 6 hour or greater intervals (samples stored in desiccator). Final weights were considered valid and were recorded if there was no more than 0.5 milligrams difference from the previous weighing.

Section M5 Stack Test

1.0 Test Results:

Wellons Wood Waste Boiler

Run No. Date	•••••	9/22/00	9/22/00	3 9/22/00	AVG.
Time Start Time End		0955 1059	0116 1220	1235 1339	
PARTICULATE EMISSIONS	#/hr	12.69	5.10	8.46	8.75
PARTICULATE EMISSIONS	gr/dscf	0.109	0.044	0.075	0.076
PARTICULATE EMISSIONS	#/MM Btu	0.265	0.113	0.199	0.192
VISIBLE EMISSIONS	high SMA, %	31.88	15.00	10.42	31.88
HEAT INPUT	MM Btu/hr	47.92	45.12	42.43	45,16
VOLUMETRIC FLOWRATE	acfm	27884	26664	26376	26975
VOLÜMETRIC FLOWRATE	dscfm	13593	13454	13149	13399
VELOCITY	ft./sec.	71.6	68.5	67.7	69.3
STACK TEMPERATURE	°F	481	470	462	471
MOISTURE	%	12.9	10.9	12.8	12.2
SAMPLE RATE	% isokinetic	100	101	97	99

An installation plan for each Fuel Sampling Analysis (FSA) System must be submitted with the permit application for approval. Fill out one (1) sheet per analyzer.

Emis	ssion Point No./Name:	AA-002, REF. NO. 4	1, OIL FIRED	BOILER				
Date	of construction if for existing source BEFORE AUGUST 7, 1977	construction if for existing sources or date of anticipated start-up for new sources: BEFORE AUGUST 7, 1977						
List t	the ASTM fuel sample collecting and EMISSION ESTIMATE BASIS	– AP-42						
Fuel	being sampled:							
How	will samples be taken:	Automated	Manual					
Fuel	Sampling Data:							
A.	Name of Manufacturer:							
B.	Model number:							
C.	Serial Number:	20						
D.	Is this an existing FSA system:	YES	No					
E.	How will samples be taken:	Automated	-	Manual				
F.	Backup system (attach other con	Backup system (attach other compliance demonstration forms if needed):						
G.	-	State the method of operating of the sampler:						
H.		Attach a schematic of the FSA system showing the sample acquisition point and location of the						
I.	Compliance shall be demonstrate	ed:						
				Quarterly				

- 7. Any composite sample over the emission rate will be reported as an excess emission.
- 8. If the FSA system certification is not attached for approval, it must be submitted within 60 days from startup of the FSA system or the date of application, which ever is later.

An installation plan for each Fuel Sampling Analysis (FSA) System must be submitted with the permit application for approval. Fill out one (1) sheet per analyzer.

1.		sion Point No./Name : TERS	AA-005,	REF. NO	. 43, NAT	JRAL GAS	SPACE	
-	(3) U	NIIS						
2.	Date	of construction if for existin BEFORE AUGUST 7, 1		anticipated s	tart-up for ne	w sources:		
3. 	List t	he ASTM fuel sample collec EMISSION ESTIMATE	BASIS – AP-42					
- 4.	Fuel	being sampled:				<u> </u>		
5.	How	will samples be taken:	Automa	ated	Manua	1		
6.	Fuel	Sampling Data:						
	A.	Name of Manufacturer:	<u> </u>					
	B.	Model number:						
	C.	Serial Number:						
	D.	Is this an existing FSA s	ystem:	YES	No			
	E.	How will samples be tak	en:	Automated		Manual		
	F.	Backup system (attach other compliance demonstration forms if needed):						
	G	State the method of oper	ating of the sampler					
	H. _;	H. Attach a schematic of the FSA system showing the sample acquisition point and location of the machine.						
	I.	Compliance shall be den	nonstrated:					
		Daily	Weekly	M	onthly	(uarterly	
_		117 170 410 -			n avaass amis	cion		

- 7. Any composite sample over the emission rate will be reported as an excess emission.
- 8. If the FSA system certification is not attached for approval, it must be submitted within 60 days from startup of the FSA system or the date of application, which ever is later.

An installation plan for each Fuel Sampling Analysis (FSA) System must be submitted with the permit application for approval. Fill out one (1) sheet per analyzer.

Emission Point No./Name: AA-006, REF. NO. 44, NATURAL GAS FIRED S CLEANER				L GAS FIRED STEAM			
Date	Date of construction if for existing sources or date of anticipated start-up for new sources: 1992						
	EMISSION ESTIMATE	E BASIS – AP-4	2				
Fuel b							
How	will samples be taken:	Au	tomated	Manua	al		
Fuel S	Sampling Data:						
A.	Name of Manufacturer:						
B.	Model number:			. <u> </u>			
C.	Serial Number:						
D.	Is this an existing FSA s	ystem:	YES	No			
E.	How will samples be tak	cen:	Automated		_ Manual		
F.	Backup system (attach	other compliance	e demonstration for	ms if neede	ed):		
G.	State the method of operating of the sampler:						
H.	Attach a schematic of the FSA system showing the sample acquisition point and location of the machine.						
I.	Compliance shall be der	nonstrated:					
	Daily	Weekly	Mon	thly	Quarterly		
	Fuel 1 How Fuel 2 A. B. C. D. E. F.	CLEANER Date of construction if for existing 1992 List the ASTM fuel sample colleman EMISSION ESTIMATE Fuel being sampled: How will samples be taken: Fuel Sampling Data: A. Name of Manufacturer: B. Model number: C. Serial Number: D. Is this an existing FSA see. How will samples be taken: F. Backup system (attach of the machine.) H. Attach a schematic of the machine. I. Compliance shall be derived.	Date of construction if for existing sources or dat 1992 List the ASTM fuel sample collecting and analyz EMISSION ESTIMATE BASIS – AP-4 Fuel being sampled: How will samples be taken: A. Name of Manufacturer: B. Model number: C. Serial Number: D. Is this an existing FSA system: E. How will samples be taken: F. Backup system (attach other compliance) G. State the method of operating of the same H. Attach a schematic of the FSA system she machine. I. Compliance shall be demonstrated:	CLEANER Date of construction if for existing sources or date of anticipated sta 1992 List the ASTM fuel sample collecting and analyzing methods used: EMISSION ESTIMATE BASIS – AP-42 Fuel being sampled: How will samples be taken: Automated Fuel Sampling Data: A. Name of Manufacturer: B. Model number: C. Serial Number: D. Is this an existing FSA system: YES E. How will samples be taken: Automated F. Backup system (attach other compliance demonstration for G. State the method of operating of the sampler: H. Attach a schematic of the FSA system showing the sample at machine. I. Compliance shall be demonstrated:	Date of construction if for existing sources or date of anticipated start-up for ne 1992 List the ASTM fuel sample collecting and analyzing methods used: EMISSION ESTIMATE BASIS – AP-42 Fuel being sampled: How will samples be taken: A Name of Manufacturer: B. Model number: C. Serial Number: D. Is this an existing FSA system: E. How will samples be taken: Automated F. Backup system (attach other compliance demonstration forms if needed) G. State the method of operating of the sampler: H. Attach a schematic of the FSA system showing the sample acquisition promachine. I. Compliance shall be demonstrated:		

- 7. Any composite sample over the emission rate will be reported as an excess emission.
- 8. If the FSA system certification is not attached for approval, it must be submitted within 60 days from startup of the FSA system or the date of application, which ever is later.

An installation plan for each Fuel Sampling Analysis (FSA) System must be submitted with the permit application for approval. Fill out one (1) sheet per analyzer.

1.		sion Point No./Name : TER, (1) UNIT	AA-	015, REF. NO. 53,	NATURAL GAS	FIRED SPACE
2	Date	of construction if for existing BEFORE AUGUST 7, 19		e of anticipated sta	rt-up for new sour	ces:
3.	List the	he ASTM fuel sample collec EMISSION ESTIMATE	ting and analyzi BASIS – AP-42	ing methods used:		
4.	Fuel	peing sampled:				
5.	How	will samples be taken:	Aut	omated	Manual	
6.	Fuel S	Sampling Data:				
	A.	Name of Manufacturer:				
	В.	Model number:				
	C.	Serial Number:				
	D.	Is this an existing FSA sy	stem:	YES	No	
	E.	How will samples be take	en:	Automated_	Man	ual
	F.	Backup system (attach o	ther compliance	demonstration for	rms if needed):	
	G	State the method of opera	ating of the sam	pler:		
	Н.	Attach a schematic of the machine.	FSA system sho	owing the sample a	equisition point and	d location of the
	I.	Compliance shall be dem	onstrated:			
		Daily	Weekly	Mor	nthly	Quarterly
7.	Any c	composite sample over the en	nission rate will	be reported as an	excess emission.	
8.	If the	FSA system certification is:	not attached for	approval, it must	be submitted withi	n 60 days from

startup of the FSA system or the date of application, which ever is later.

.1

Current Applicable Requirements and Status (page 1 of 2) SECTION N

List applicable state and federal regulations and applicable test methods for determining compliance with each applicable requirement. Clearly identify federal regulations from state requirements. Provide the compliance status as of the day the application is signed.

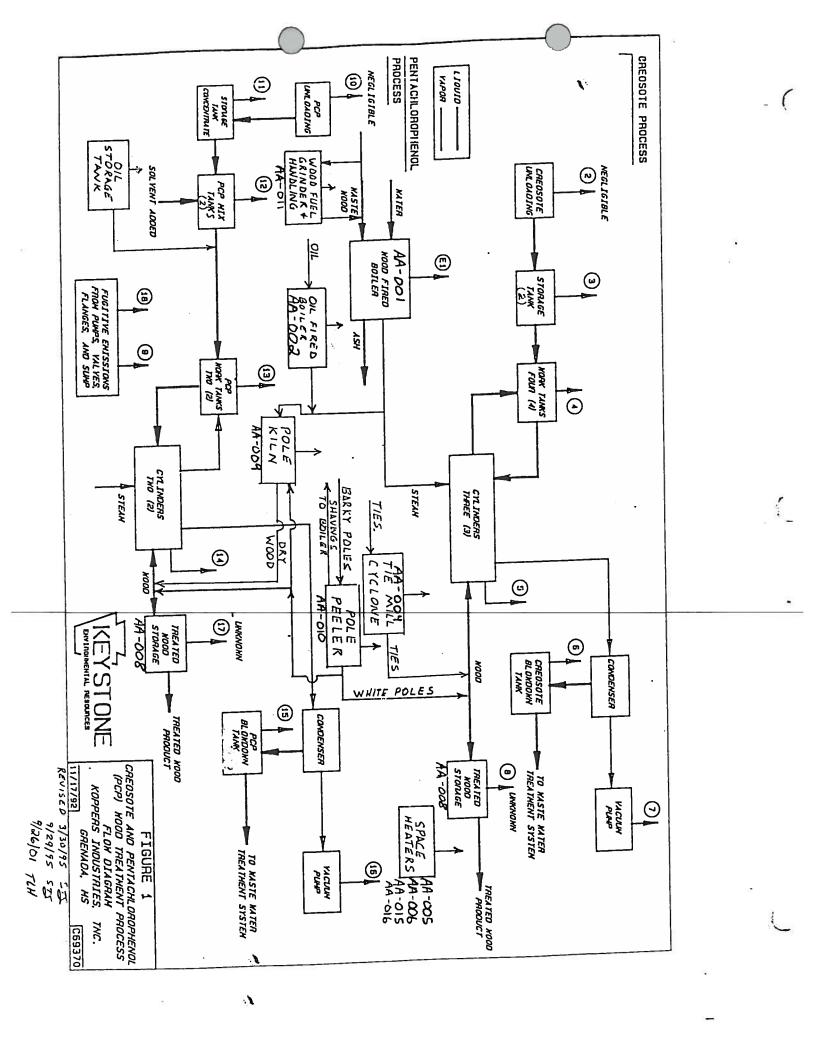
1	Compliance Status IN / OUT	Z	Z	Z		Z		ZI	Z	呂		呂	Z	Z	
	Limits	0.3 GR/DSCF	40%	2.4 LB/MMBTU		E=0.88081-0.1667	=14.30 LB/HK	40%	2.4 LB/MMBTU	E=4.1P 0.67	27 LB/HR	4.78 LB/HR	4.84 LB/HR	28.4 LB/HR	
	Test Method	METHOD 5	CEM	STACK TEST & FNGINEEP	CALCS.	AP-42			AP-42	AP-42		AP-42	AP-42	VARIOUS	
	Pollutant		OPACITY	2			35	OPACITY	2]			
		PM	OP.	S02		PM		g	S02	PM		PM	PM	PM	
	Applicable Requirement	APC-S-1, SEC. 3.4(B)	APC-S-1, SEC. 3.1	APC-S-1, SEC. 4.1(C)		APC-S-1, SEC. 3.4(A)		APC-S-1, SEC. 3.1	APC-S-1, SEC. 4.1(C)	APC-S-1, SEC. 6		APC-S-1, SEC. 6	APC-S-1, SEC. 6	APC-S-1, SEC. 6	
	Emission Point No.	AA-001	AA-001	AA-001		AA-002		AA-002	AA-002	AA-004		AA-010	AA-011	PLANT - WIDE	

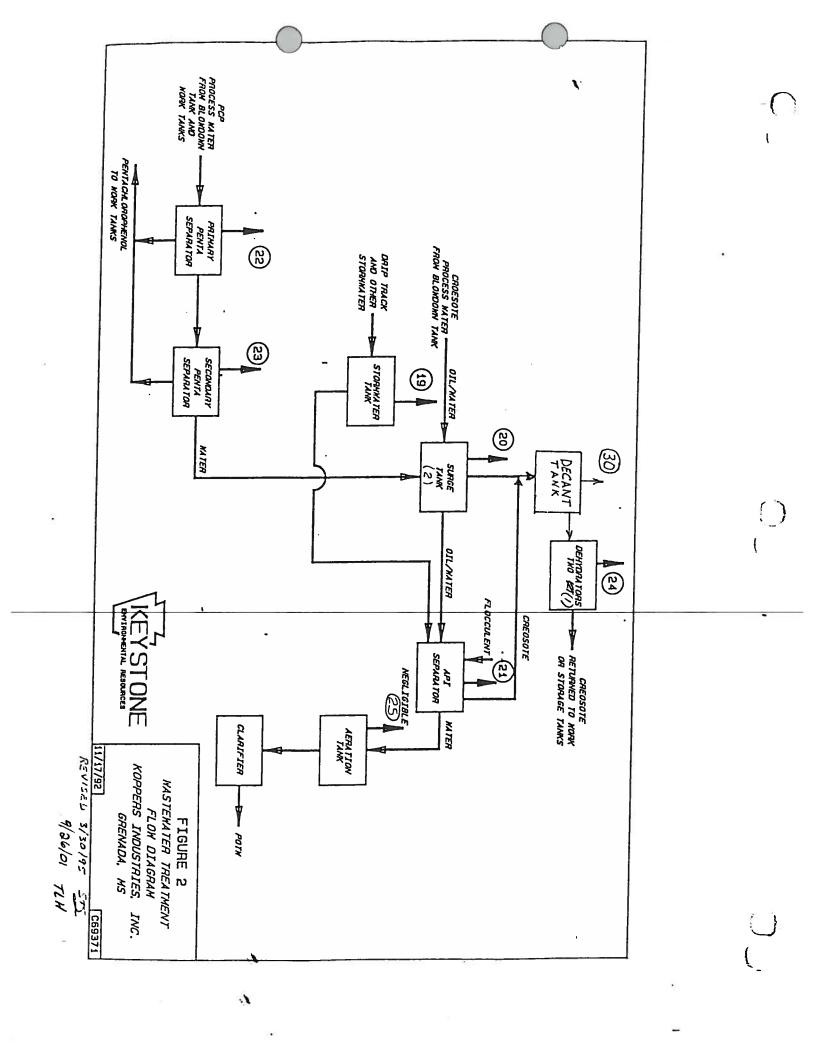
Future Applicable Requirements and Status (page 2 of 2) **SECTION N**

List applicabl Clearly iden	List applicable state and federal regulations and applicable test methods for determining compliance with each applicable requirement. Clearly identify federal regulations from state requirements. Provide the compliance status as of the day the application is signed.	pplicable test methods for dete	rmining compliance	e with each applic f the day the appl	able requirement. lication is signed.
Emission Point No.	Applicable Requirement	Pollutant	Test Method	Limits	Compliance Status IN / OUT
	NONE				

COMPLIANCE CERTIFICATION SECTION O AA-001, REF. NO. 40, WOOD FIRED BOILER 1. Emission Point No./Name: 2. Indicate the source compliance status: Where this source is currently in compliance, we will continue to operate and maintain X A. this source to assure compliance for the duration of the permit. The Current Emissions Requirements and Status form (previous page) includes new В. requirements that apply or will apply to this source during the term of the permit. We will meet such requirements on a timely basis. This source is not in compliance. The following statement of corrective action is C. submitted to describe action which we will take to achieve compliance. Attached is a brief description of the problem and the proposed solution. 2. We will achieve compliance according to the following schedule. Progress reports will be submitted:

and every six (6) months thereafter


Problem	Action	Deadline
,		


Starting date:

SECTION O COMPLIANCE CERTIFICATION

1.	Emission Point No./Name: ALL POINTS EXCEPT AA-001								
2.	Indicate the source compliance status:								
	A. X	Where this source is currently in this source to assure compliance	n compliance, we will continue to operate and maintain e for the duration of the permit.						
		The Current Emissions Require requirements that apply or will will meet such requirements or	ements and Status form (previous page) includes new apply to this source during the term of the permit. We a timely basis.						
	C.	This source is not in complian submitted to describe action when	ce. The following statement of corrective action is nich we will take to achieve compliance.						
	1Attacl	ned is a brief description of the	problem and the proposed solution.						
	2We w	ill achieve compliance according	ng to the following schedule.						
Progre	ess reports will Starting date:	be submitted:	and every six (6) months thereafter						

Problem	Action	Deadline

