(360) 636-1068 fax

November 11, 2008

Analytical Report for Service Request No: K0808751

Joe Kabale Environmental Chemistry Consulting Services, Inc. 2525 Advance Rd. Madison, WI 53718

RE: Kuhlman Electric

Dear Joe:

Enclosed is the revised report for the sample submitted to our laboratory on September 11, 2008. For your reference, these analyses have been assigned our service request number K0808751.

As requested, the sample names have been updated to accurately reflect the site identifications noted on the chain of custody received with these samples.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

We apologize for any inconvenience this may have created.

Please call if you have any questions. My extension is 3376. You may also contact me via Email at GSalata@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Gregory Salata, Ph.D. Project Chemist

GS/lb

Page 1 of _____

Acronyms

A2LAAmerican Association for Laboratory AccreditationCARBCalifornia Air Resources BoardCAR NumberChemical Abstract Service registry NumberCFCChlorofuorocarbonCFUColony-Forning UnitDECDepartment of Environmental ConservationDEQDepartment of Environmental QualityDHSDepartment of Environmental QualityDHSDepartment of Environmental QualityDHSDepartment of EcologyDOHDepartment of HealthEPAU. S. Environmental Protection AgencyELAPEnvironmental Irotection AgencyELAPGas ChromatographyGC/MSGas Chromatography/Mass SpectrometryLUFTLeaking Underground Fuel TankMLModifiedMDLMethod Detection LimitMPAMotorealieleMRLMethod Reporting LimitMRLMethod Reporting LimitNANot ApplicableNCASINational Council of the Paper Industry for Air and Stream ImprovementNDNot DetectedNOSHNational Institute for Occupational Safety and HealthPQLPractical Quantitation LimitRCRAResource Conservation and Recovery ActSIMSelected Ion MonitoringTHSelected Ion MonitoringTHTotal Petroleum HydrocarbonsthTotal Petroleum HydrocarbonsthTotal Petroleum HydrocarbonsthTotal Petroleum HydrocarbonsthTotal Petroleum HydrocarbonsthTotal Petro	ASTM	American Society for Testing and Materials
CAS NumberChemical Abstract Service registry NumberCFCChlorofluorocarbonCFUColony-Forming UnitDECDepartment of Environmental ConservationDEQDepartment of Environmental QualityDHSDepartment of Health ServicesDOEDepartment of EcologyDOHDepartment of FeologyDOHDepartment of HealthEPAU. S. Environmental Protection AgencyELAPEnvironmental Laboratory Accreditation ProgramGCGas Chromatography/Mass SpectrometryLUFTLeaking Underground Fuel TankMModifiedMCLMaximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.MRLMethod Detection LimitMRLNot ApplicableNGASHNot CalculatedNGSHNational Council of the Paper Industry for Air and Stream ImprovementNDSHNational Institute for Occupational Safety and HealthPQLPractical Quantiation LimitRCRAResource Conservation and Recovery ActSIMSelected In MonitoringTHTatel level is the concentration of an analyte that is less than the PQL but greater	A2LA	American Association for Laboratory Accreditation
CFCChlorofluorocarbonCFUColony-Forming UnitDECDepartment of Environmental ConservationDEQDepartment of Environmental QualityDHSDepartment of Health ServicesDOEDepartment of Health ServicesDOEDepartment of HealthEPAU. S. Environmental Protection AgencyELAPEnvironmental Laboratory Accreditation ProgramGCGas ChromatographyGC/MSGas Chromatography/Mass SpectrometryLUFTLeaking Underground Fuel TankMModifiedMCLMaximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.MDLMethod Detection LimitMPNMost Probable NumberMRLMethod Reporting LimitNANot ApplicableNCASINational Institute for Occupational Safety and HealthPQLPractical Quantitation LimitRCRAResource Conservation and Recovery ActSIMSelected Ion MonitoringTPHTotal Petroleum HydrocarbonstrTrace level is the concentration of an analyte that is less than the PQL but greater	CARB	California Air Resources Board
CFUColony-Forming UnitDECDepartment of Environmental ConservationDEQDepartment of Environmental QualityDHSDepartment of Health ServicesDOEDepartment of EcologyDOHDepartment of HealthEPAU. S. Environmental Protection AgencyELAPEnvironmental Laboratory Accreditation ProgramGCGas ChromatographyGS/MSGas Chromatography/Mass SpectrometryLUFTLeaking Underground Fuel TankMModifiedMCLMaximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.MDLMethod Detection LimitMPNMost Probable NumberMRLMethod Reporting LimitNANot ApplicableNCASINot CalculatedNOSHNot DetectedNIOSHAitonal Institute for Occupational Safety and HealthPQLPractical Quantitation LimitRCRAResource Conservation and Recovery ActSIMSelected Ion MonitoringTPHTarce level is the concentration of an analyte that is less than the PQL but greater	CAS Number	Chemical Abstract Service registry Number
DECDepartment of Environmental ConservationDEQDepartment of Environmental QualityDHSDepartment of Health ServicesDOEDepartment of EcologyDOHDepartment of HealthEPAU. S. Environmental Protection AgencyELAPEnvironmental Laboratory Accreditation ProgramGCGas ChromatographyGC/MSGas Chromatography/Mass SpectrometryLUFTLeaking Underground Fuel TankMModifiedMCLMaximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.MDLMethod Detection LimitMPNMost Probable NumberMRLMot CalculatedNCASINot CalculatedNCASINational Council of the Paper Industry for Air and Stream ImprovementNDNot DetectedNIOSHNational Institute for Occupational Safety and HealthPQLPractical Quantitation LimitRCRAResource Conservation and Recovery ActSIMSelected Ion MonitoringTPHTotal Petroleum HydrocarbonstrTrace level is the concentration of an analyte that is less than the PQL but greater	CFC	Chlorofluorocarbon
DEQDepartment of Environmental QualityDHSDepartment of Health ServicesDOEDepartment of EcologyDOHDepartment of HealthEPAU.S. Environmental Protection AgencyELAPEnvironmental Laboratory Accreditation ProgramGCGas ChromatographyGC/MSGas Chromatography/Mass SpectrometryLUFTLeaking Underground Fuel TankMModifiedMCLMaximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.MDLMethod Detection LimitMPNMost Probable NumberMRLMethod Reporting LimitNANot ApplicableNCASINational Council of the Paper Industry for Air and Stream ImprovementNDNot DetectedNOSHNational Institute for Occupational Safety and HealthPQLPractical Quantitation LimitRCRAResource Conservation and Recovery ActSIMSelected Ion MonitoringTPHTotal Petroleum HydrocarbonstrTrace level is the concentration of an analyte that is less than the PQL but greater	CFU	Colony-Forming Unit
DHSDepartment of Health ServicesDOEDepartment of EcologyDOHDepartment of HealthEPAU. S. Environmental Protection AgencyELAPEnvironmental Laboratory Accreditation ProgramGCGas ChromatographyGC/MSGas Chromatography/Mass SpectrometryLUFTLeaking Underground Fuel TankMModifiedMCLMaximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.MDLMethod Detection LimitMPNMost Probable NumberMRLMethod Reporting LimitNANot ApplicableNCASINot CalculatedNCASINational Council of the Paper Industry for Air and Stream ImprovementNDNot DetectedNIOSHNational Institute for Occupational Safety and HealthPQLPractical Quantitation LimitRCRAResource Conservation and Recovery ActSIMSelected Ion MonitoringTPHTotal Petroleum HydrocarbonstrTace level is the concentration of an analyte that is less than the PQL but greater	DEC	Department of Environmental Conservation
DOEDepartment of EcologyDOHDepartment of HealthEPAU. S. Environmental Protection AgencyELAPEnvironmental Laboratory Accreditation ProgramGCGas ChromatographyGC/MSGas Chromatography/Mass SpectrometryLUFTLeaking Underground Fuel TankMModifiedMCLMaximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.MDLMethod Detection LimitMPNMoto Probable NumberMRLMoto CalculatedNCASINot ApplicableNCASINot CalculatedNDSHNot DetectedNDSHNational Council of the Paper Industry for Air and Stream ImprovementNDNot DetectedNOSHNational Institute for Occupational Safety and HealthPQLPractical Quantitation LimitRCRAResource Conservation and Recovery ActSIMSelected Ion MonitoringTPHTotal Petroleum HydrocarbonstrTace level is the concentration of an analyte that is less than the PQL but greater	DEQ	Department of Environmental Quality
DOHDepartment of HealthEPAU. S. Environmental Protection AgencyELAPEnvironmental Laboratory Accreditation ProgramGCGas ChromatographyGC/MSGas Chromatography/Mass SpectrometryLUFTLeaking Underground Fuel TankMModifiedMCLMaximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.MDLMethod Detection LimitMPNMost Probable NumberMRLMethod Reporting LimitNANot ApplicableNCASINational Council of the Paper Industry for Air and Stream ImprovementNDNot DetectedNIOSHNational Institute for Occupational Safety and HealthPQLPractical Quantitation LimitRCRAResource Conservation and Recovery ActSIMSelected Ion MonitoringTPHTotal Petroleum HydrocarbonstrTrace level is the concentration of an analyte that is less than the PQL but greater	DHS	Department of Health Services
EPAU. S. Environmental Protection AgencyELAPEnvironmental Laboratory Accreditation ProgramGCGas ChromatographyGC/MSGas Chromatography/Mass SpectrometryLUFTLeaking Underground Fuel TankMModifiedMCLMaximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.MDLMethod Detection LimitMPNMost Probable NumberMRLMot ApplicableNCASINot ApplicableNCASINot CalculatedNDSHNational Council of the Paper Industry for Air and Stream ImprovementNDNot DetectedNOSHNational Institute for Occupational Safety and HealthPQLPractical Quantitation LimitRCRAResource Conservation and Recovery ActSIMSelected Ion MonitoringTPHTotal Petroleum HydrocarbonstrTace level is the concentration of an analyte that is less than the PQL but greater	DOE	Department of Ecology
ELAPEnvironmental Laboratory Accreditation ProgramGCGas ChromatographyGC/MSGas Chromatography/Mass SpectrometryLUFTLeaking Underground Fuel TankMModifiedMCLMaximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.MDLMethod Detection LimitMPNMost Probable NumberMRLMethod Reporting LimitNANot ApplicableNCASINot CalculatedNDSHNot DetectedNIOSHNational Institute for Occupational Safety and HealthPQLPractical Quantitation LimitRCRAResource Conservation and Recovery ActSIMSelected Ion MonitoringTPHTate level is the concentration of an analyte that is less than the PQL but greater	DOH	Department of Health
GCGas ChromatographyGC/MSGas Chromatography/Mass SpectrometryLUFTLeaking Underground Fuel TankMModifiedMCLMaximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.MDLMethod Detection LimitMPNMost Probable NumberMRLMethod Reporting LimitNANot ApplicableNCASINot CalculatedNDSHNot DetectedNIOSHNational Institute for Occupational Safety and HealthPQLPractical Quantitation LimitRCRAResource Conservation and Recovery ActSIMSelected Ion MonitoringTPHTotal Petroleum HydrocarbonstrTrace level is the concentration of an analyte that is less than the PQL but greater	EPA	U. S. Environmental Protection Agency
GC/MSGas Chromatography/Mass SpectrometryLUFTLeaking Underground Fuel TankMModifiedMCLMaximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.MDLMethod Detection LimitMPNMost Probable NumberMRLMethod Reporting LimitNANot ApplicableNCNot CalculatedNCASINational Council of the Paper Industry for Air and Stream ImprovementNDNot DetectedNOSHNational Institute for Occupational Safety and HealthPQLPractical Quantitation LimitRCRAResource Conservation and Recovery ActSIMSelected Ion MonitoringTPHTotal Petroleum HydrocarbonstrTrace level is the concentration of an analyte that is less than the PQL but greater	ELAP	Environmental Laboratory Accreditation Program
LUFTLeaking Underground Fuel TankMModifiedMCLMaximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.MDLMethod Detection LimitMPNMost Probable NumberMRLMethod Reporting LimitNAMot ApplicableNCNot ApplicableNCASINot CalculatedNDSHNot DetectedNOSHNot DetectedNOSHNational Institute for Occupational Safety and HealthPQLPractical Quantitation LimitRCRAResource Conservation and Recovery ActSIMSelected Ion MonitoringTPHTatel Petroleum HydrocarbonstrTrace level is the concentration of an analyte that is less than the PQL but greater	GC	Gas Chromatography
MModifiedMCLMaximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.MDLMethod Detection LimitMPNMost Probable NumberMRLMethod Reporting LimitNAMot ApplicableNCNot ApplicableNCASINational Council of the Paper Industry for Air and Stream ImprovementNDNot DetectedNIOSHNational Institute for Occupational Safety and HealthPQLPractical Quantitation LimitRCRAResource Conservation and Recovery ActSIMSelected Ion MonitoringTPHTotal Petroleum HydrocarbonstrTrace level is the concentration of an analyte that is less than the PQL but greater	GC/MS	Gas Chromatography/Mass Spectrometry
MCLMaximum Contaminant Level is the highest permissible concentration of a substance allowed in drinking water as established by the USEPA.MDLMethod Detection LimitMPNMost Probable NumberMRLMethod Reporting LimitNAMot ApplicableNCNot CalculatedNCASINot DetectedNIOSHNot DetectedNIOSHNational Institute for Occupational Safety and HealthPQLPractical Quantitation LimitRCRASelected Ion MonitoringTPHTotal Petroleum HydrocarbonstrTrace level is the concentration of an analyte that is less than the PQL but greater	LUFT	Leaking Underground Fuel Tank
NDLMethod Detection LimitMPNMost Probable NumberMRLMethod Reporting LimitNAMot ApplicableNCNot CalculatedNCASINational Council of the Paper Industry for Air and Stream ImprovementNDSHNational Institute for Occupational Safety and HealthPQLPractical Quantitation LimitRCRAResource Conservation and Recovery ActSIMSelected Ion MonitoringTPHTotal Petroleum HydrocarbonstrTrace level is the concentration of an analyte that is less than the PQL but greater	М	Modified
MDLMethod Detection LimitMPNMost Probable NumberMRLMethod Reporting LimitNAMot ApplicableNCNot ApplicableNCANot CalculatedNCASINot DetectedNIOSHNational Institute for Occupational Safety and HealthPQLPractical Quantitation LimitRCRAResource Conservation and Recovery ActSIMSelected Ion MonitoringTPHTotal Petroleum HydrocarbonstrTace level is the concentration of an analyte that is less than the PQL but greater	MCL	Maximum Contaminant Level is the highest permissible concentration of a
MPNMost Probable NumberMRLMethod Reporting LimitNANot ApplicableNCNot CalculatedNCASINational Council of the Paper Industry for Air and Stream ImprovementNDNot DetectedNIOSHNational Institute for Occupational Safety and HealthPQLPractical Quantitation LimitRCRAResource Conservation and Recovery ActSIMSelected Ion MonitoringTPHTate Peroleum HydrocarbonstrTace level is the concentration of an analyte that is less than the PQL but greater		substance allowed in drinking water as established by the USEPA.
MRLMethod Reporting LimitNANot ApplicableNCNot CalculatedNCASINational Council of the Paper Industry for Air and Stream ImprovementNDNot DetectedNIOSHNational Institute for Occupational Safety and HealthPQLPractical Quantitation LimitRCRAResource Conservation and Recovery ActSIMSelected Ion MonitoringTPHTotal Petroleum HydrocarbonstrTace level is the concentration of an analyte that is less than the PQL but greater	MDL	Method Detection Limit
NANot ApplicableNCNot CalculatedNCASINational Council of the Paper Industry for Air and Stream ImprovementNDNot DetectedNIOSHNational Institute for Occupational Safety and HealthPQLPractical Quantitation LimitRCRAResource Conservation and Recovery ActSIMSelected Ion MonitoringTPHTotal Petroleum HydrocarbonstrTrace level is the concentration of an analyte that is less than the PQL but greater	MPN	Most Probable Number
NCNot CalculatedNCASINational Council of the Paper Industry for Air and Stream ImprovementNDNot DetectedNIOSHNational Institute for Occupational Safety and HealthPQLPractical Quantitation LimitRCRAResource Conservation and Recovery ActSIMSelected Ion MonitoringTPHTotal Petroleum HydrocarbonstrTrace level is the concentration of an analyte that is less than the PQL but greater	MRL	Method Reporting Limit
NCASINational Council of the Paper Industry for Air and Stream ImprovementNDNot DetectedNIOSHNational Institute for Occupational Safety and HealthPQLPractical Quantitation LimitRCRAResource Conservation and Recovery ActSIMSelected Ion MonitoringTPHTotal Petroleum HydrocarbonstrTrace level is the concentration of an analyte that is less than the PQL but greater	NA	Not Applicable
NDNot DetectedNIOSHNational Institute for Occupational Safety and HealthPQLPractical Quantitation LimitRCRAResource Conservation and Recovery ActSIMSelected Ion MonitoringTPHTotal Petroleum HydrocarbonstrTrace level is the concentration of an analyte that is less than the PQL but greater	NC	Not Calculated
NIOSHNational Institute for Occupational Safety and HealthPQLPractical Quantitation LimitRCRAResource Conservation and Recovery ActSIMSelected Ion MonitoringTPHTotal Petroleum HydrocarbonstrTrace level is the concentration of an analyte that is less than the PQL but greater	NCASI	National Council of the Paper Industry for Air and Stream Improvement
PQLPractical Quantitation LimitRCRAResource Conservation and Recovery ActSIMSelected Ion MonitoringTPHTotal Petroleum HydrocarbonstrTrace level is the concentration of an analyte that is less than the PQL but greater	ND	Not Detected
RCRAResource Conservation and Recovery ActSIMSelected Ion MonitoringTPHTotal Petroleum HydrocarbonstrTrace level is the concentration of an analyte that is less than the PQL but greater	NIOSH	National Institute for Occupational Safety and Health
SIMSelected Ion MonitoringTPHTotal Petroleum HydrocarbonstrTrace level is the concentration of an analyte that is less than the PQL but greater	PQL	Practical Quantitation Limit
TPHTotal Petroleum HydrocarbonstrTrace level is the concentration of an analyte that is less than the PQL but greater	RCRA	Resource Conservation and Recovery Act
tr Trace level is the concentration of an analyte that is less than the PQL but greater	SIM	Selected Ion Monitoring
	TPH	Total Petroleum Hydrocarbons
than or equal to the MDL.	tr	Trace level is the concentration of an analyte that is less than the PQL but greater
		than or equal to the MDL.

Inorganic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Colorado DPHE	-
Florida DOH	E87412
Hawaii DOH	-
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	-
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Utah DOH	COLU
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-

4

Case Narrative

5_

Client:Environmental Chemistry Consulting Services, Inc. Service Request No.:K0808751Project:Kuhlman ElectricDate Received:09/11/08Sample Matrix:Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS), and Laboratory/Duplicate Laboratory Control Sample (LCS/DLCS).

Sample Receipt

Three water samples were received for analysis at Columbia Analytical Services on 09/11/08. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Volatile Organic Compounds by EPA Method 8260B

Matrix Spike Recovery Exceptions:

The control criteria for matrix spike recovery of Naphthalene for sample Batch QC is not applicable. The analyte concentration in the sample was significantly higher than the added spike concentration, preventing accurate evaluation of the spike recovery.

No other anomalies associated with the analysis of these samples were observed.

1,4-Dioxane by EPA Method 8270C

No anomalies associated with the analysis of these samples were observed.

Approved by	Augua	1 a lata	Date 10/2/08
		pullet d	

Chain of Custody Documentation

Columbia Analvitical		•	CHA	Z	N O N	ŝ	CUSTODY	X			*.ane	SR#:	1	ND&D&751	751
ح	1317 South 13th Ave.	 Kelso, WA 98626 	526 • (:	 (360) 57 	577-7222 • ((800) 695-7222×07	8	FAX (360) 636-1068	1068	PAGE	*****	OF /	COC #	#	
PROJECT NAME CULTURE	erermic	And and a second se		\vdash					OVI			-	0 2		
PROJECT MANAGER RUSERT M	MARTIN	or an experiment of the second s		7-		BIE		155	918			· ^ _	5 af		<u> </u>
5	LAGUE	and a second	SH3N	SHERS		\Box		12 SJ	DAN	Pa.		8	55		<u> </u>
				VIAT	y sou	1500	- H Ue	dener gener	Dd 1918 1418	NIOSS D NUC	201 10 10 10 10 10 10 10 10 10 10 10 10 1	Contraction of the local division of the loc	ty		
DUNCO	MOUNTAIN	<u>~</u> [\mathbf{T}	V00		³ S _≠) s	TRP	Con	2/52/C		102 100 100 100		2		~
PHONE #	FAX#		H OF		(28 91/16	Sugan	HE HE	71808 9H/S9	8310 Lefra henon	NOI90	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	51 n			
SAMPLET'S SIGNATURE			' <i>BBE</i> '		SSE C	D's	1991	B's Sticial Sticial	SH	ISIJ a	2007	7.		<u> </u>	
SAMPLE I.D. DATE	TIME LABI.D.	MATRIX /	∩ _N	10	°∕ ∕ 9	2/2	Dq/	40/99 809/14	TH PA	Che Che	l v	Concession of the local division of the loca		-	REMARKS
KEP-6W-020A-05 9/9/08	1522	3	5							 		×			
		3	5		X							\times			
KEP-6W-0208-005 9/9/09	1715	3	5		\times							X			
		3		- 19 19											
X															
REPORT REQUIREMENTS		INVOICE INFORMATION		Circle w	Circle which metals	are to be analyzed:	nalyzed:			ł			-	-	
1. Routine Report: Method	P.O. # Bill To: β θ β 6	6 WARNER	1	Total	Total Metals: Al	As Sb	Ba Be B (Ca Cd Co	Cr Cu	Fe Pb Mg	Mn Mo	Ni K Ag N	Na Se Sr	TI Sn	v Zn Hg
Blank, Surrogate, as				Dissolved Metals:	I Metals: AI	As Sb	Ba Be B	Ca Cd Co	Cr Cu	Fe Pb Mg	Mn Mo	Ni K Ag N	Na Se Sr	r TI Sn	V Zn Hg
			_*	*INDICAT	E ST	Е НУDRO	ATE HYDROCARBON PROCEDURE	PROCEDUR	RE: AK	CA WI	NORTHWEST	EST OTHER		(CIRCLE ONE	ONE)
A II. Report Dup., MS, MSD as required	TURNAROUND REQUIREMENTS	REQUIREMEN	Į	SPECI	AL INSTRI	JCTIONS,	SPECIAL INSTRUCTIONS/COMMENTS	S:							
III. Data Validation Report	24 hr.	48 hr.		8260	08 -	Kal	hlwan	Lit.							
	$\overline{\mathbf{X}}$ Standard (Standard (10-15 working days)	ys)	1, ۲	Dinca	1	- mul	10:0	1-4	yard	ling	~			
V. CLP Deliverable Report	Provide FAX Results	x Results	****						•	~					
	Requested	Requested Report Date													
RELINQUISHED		H C	REGENED	/ED BY	1.12	n Oh	G	RELINC	RELINQUISHED BY	۶۲: ۱			RECEIVED BY:	ED BY:	
	11 miles	Signature ///	Y	Date			Signature	le	Date/Time	Time		Signature		Date/Time	(h)
Vame		Printed Name	an an		D.		Printed Name	Name	Eim			Printed Name		Fim	
								And a subscription database and a subscription of	The second s	The state provide strategic contractions of the state	antinent for the second se			COCIE	0.0 #1 06/03

	Columbia Analytical Services, Inc. Cooler Receipt and Preservation Form	PC_	<u>G. 5</u>	<u>)</u>
Cli	ent / Project: ECC Service Request $K08_0 \neq 751$			
Rec	ceived: 911108 Opened: 911108 By: BT			
1. 2. 3.	Samples were received via? US Mail Fed Ex UPS DHL GH GS PDX Couries Samples were received in: (circle) Coole Box Envelope Other Were custody seals on coolers? NA Y N If yes, how many and where?		und Deliv NA	vered
5.	If present, were custody seals intact? Y N If present, were they signed and dated?		Y	N
4.	Is shipper's air-bill filed? If not, record air-bill number:	NA	\bigcirc	Ν
5.	Temperature of cooler(s) upon receipt (°C): 5.7 Temperature Blank (°C): 7.6			
6.	If applicable, list Chain of Custody Numbers:			-
7.	Packing material used. Inserts Baggies Babble Wyap Gel Packs Wet Tee Sleeves Other			
8.	Were custody papers properly filled out (ink, signed, etc.)?	NA	B	Ν
9.	Did all bottles arrive in good condition (unbroken)? Indicate in the table below.	NA	Ò	Ν
10.	Were all sample labels complete (i.e analysis, preservation, etc.)?	NA	Ø	Ν
11.	Did all sample labels and tags agree with custody papers? Indicate in the table below	NA	(\mathbb{Y})	Ν
12.	Were appropriate bottles/containers and volumes received for the tests indicated?	NA	ð	N
13.	Were the pH-preserved bottles tested* received at the appropriate pH? Indicate in the table below	(NA)	Ý	N
14.	Were VOA vials and 1631 Mercury bottles received without headspace? Indicate in the table below.	NA	Ì	Ν
15.	Are CWA Microbiology samples received with >1/2 the 24hr. hold time remaining from collection?	XA)	Ý	N
16.	Was C12/Res negative?	Š	Y	N

Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC

Sample ID	Bottle Count	Bottle Type	Out of Temp	Head- space	Broken	рН	Reagent	Volume added	Reagent Lot Number	Initials

*Does not include all pH preserved sample aliquots received. See sample receiving SOP (SMO-GEN). Additional Notes, Discrepancies, & Resolutions:

Volatile Organic Compounds EPA Method 8260B

Analytical Results

Client:	Environmental Chemistry Consulting Servi
Project:	Kuhlman Electric
Sample Matrix:	Water

 Service Request:
 K0808751

 Date Collected:
 09/09/2008

 Date Received:
 09/11/2008

Volatile Organic Compounds

Sample Name:	KEP-GW-020A-005	Units:	U
Lab Code:	K0808751-001	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Chloromethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Vinyl Chloride	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Bromomethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Chloroethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Trichlorofluoromethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Acetone	ND U	20	1	09/22/08	09/22/08	KWG0809796	
1,1-Dichloroethene	4.4	0.50	1	09/22/08	09/22/08	KWG0809796	
Carbon Disulfide	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Methylene Chloride	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
trans-1,2-Dichloroethene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1-Dichloroethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
2-Butanone (MEK)	ND U	20	1	09/22/08	09/22/08	KWG0809796	
2,2-Dichloropropane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
cis-1,2-Dichloroethene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Chloroform	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Bromochloromethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1,1-Trichloroethane (TCA)	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1-Dichloropropene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Carbon Tetrachloride	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2-Dichloroethane (EDC)	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Benzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Trichloroethene (TCE)	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2-Dichloropropane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Bromodichloromethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Dibromomethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
2-Hexanone	ND U	20	1	09/22/08	09/22/08	KWG0809796	
cis-1,3-Dichloropropene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Toluene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
trans-1,3-Dichloropropene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1,2-Trichloroethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
4-Methyl-2-pentanone (MIBK)	ND U	20	1	09/22/08	09/22/08	KWG0809796	
1,3-Dichloropropane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Tetrachloroethene (PCE)	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	

Comments:

Merged

Analytical Results

Client:	Environmental Chemistry Consulting Servi	Service Request: K0808751	l
Project:	Kuhlman Electric	Date Collected: 09/09/200	18
Sample Matrix:	Water	Date Received: 09/11/200	8

Volatile Organic Compounds

Sample Name:	KEP-GW-020A-005	Units:	U
Lab Code:	K0808751-001	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Dibromochloromethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2-Dibromoethane (EDB)	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Chlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Ethylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
m,p-Xylenes	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
o-Xylene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Styrene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Bromoform	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Isopropylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1,2,2-Tetrachloroethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2,3-Trichloropropane	ND U	0.50	I	09/22/08	09/22/08	KWG0809796	<u></u>
Bromobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
n-Propylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
2-Chlorotoluene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
4-Chlorotoluene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,3,5-Trimethylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
tert-Butylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2,4-Trimethylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
sec-Butylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,3-Dichlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
4-Isopropyltoluene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,4-Dichlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
n-Butylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2-Dichlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2-Dibromo-3-chloropropane	ND U	2.0	1	09/22/08	09/22/08	KWG0809796	
1,2,4-Trichlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2,3-Trichlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Naphthalene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	*
Hexachlorobutadiene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,3,5-Trichlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	

* See Case Narrative

Analytical Results

Client:	Environmental Chemistry Consulting Servi
Project:	Kuhlman Electric
Sample Matrix:	Water

 Service Request:
 K0808751

 Date Collected:
 09/09/2008

 Date Received:
 09/11/2008

Volatile Organic Compounds

Sample Name: Lab Code:	KEP-GW-020A-005 K0808751-001				Units: ug/L Basis: NA
Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethar	ne 96	75-120	09/22/08	Acceptable	
Toluene-d8	102	80-128	09/22/08	Acceptable	
4-Bromofluorobenzen	e 99	75-117	09/22/08	Acceptable	

Analytical Results

Client:	Environmental Chemistry Consulting Servi
Project:	Kuhlman Electric
Sample Matrix:	Water

 Service Request:
 K0808751

 Date Collected:
 09/09/2008

 Date Received:
 09/11/2008

Volatile Organic Compounds

Sample Name:	KEP-Duplicate 2	Units:	U
Lab Code:	K0808751-002	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Chloromethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Vinyl Chloride	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Bromomethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	·····
Chloroethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Trichlorofluoromethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Acetone	ND U	20	1	09/22/08	09/22/08	KWG0809796	
1,1-Dichloroethene	4.0	0.50	1	09/22/08	09/22/08	KWG0809796	
Carbon Disulfide	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Methylene Chloride	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
trans-1,2-Dichloroethene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1-Dichloroethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
2-Butanone (MEK)	ND U	20	1	09/22/08	09/22/08	KWG0809796	
2,2-Dichloropropane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
cis-1,2-Dichloroethene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Chloroform	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Bromochloromethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1,1-Trichloroethane (TCA)	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1-Dichloropropene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Carbon Tetrachloride	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2-Dichloroethane (EDC)	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Benzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Trichloroethene (TCE)	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2-Dichloropropane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Bromodichloromethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Dibromomethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
2-Hexanone	ND U	20	1	09/22/08	09/22/08	KWG0809796	
cis-1,3-Dichloropropene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Toluene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
trans-1,3-Dichloropropene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1,2-Trichloroethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
4-Methyl-2-pentanone (MIBK)	ND U	20	1	09/22/08	09/22/08	KWG0809796	
1,3-Dichloropropane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Tetrachloroethene (PCE)	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	

Analytical Results

Client:	Environmental Chemistry Consulting Servi
Project:	Kuhlman Electric
Sample Matrix:	Water

Service Request: K0808751 **Date Collected: 09/09/2008** Date Received: 09/11/2008

Volatile Organic Compounds

Sample Name:	KEP-Duplicate 2	Units:	Ų
Lab Code:	K0808751-002	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dibromochloromethane	ND		0.50	1	09/22/08	09/22/08	KWG0809796	
1,2-Dibromoethane (EDB)	ND		0.50	1	09/22/08	09/22/08	KWG0809796	
Chlorobenzene	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
Ethylbenzene	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
m,p-Xylenes	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
o-Xylene	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
Styrene	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
Bromoform	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
Isopropylbenzene	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1,2,2-Tetrachloroethane	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2,3-Trichloropropane	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
Bromobenzene	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
n-Propylbenzene	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
2-Chlorotoluene	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
4-Chlorotoluene	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,3,5-Trimethylbenzene	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
tert-Butylbenzene	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2,4-Trimethylbenzene	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
sec-Butylbenzene	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,3-Dichlorobenzene	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
4-Isopropyltoluene	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,4-Dichlorobenzene	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
n-Butylbenzene	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2-Dichlorobenzene	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2-Dibromo-3-chloropropane	ND	U	2.0	1	09/22/08	09/22/08	KWG0809796	
1,2,4-Trichlorobenzene	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2,3-Trichlorobenzene	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
Naphthalene	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	*
Hexachlorobutadiene	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,3,5-Trichlorobenzene	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	

* See Case Narrative

Form 1A - Organic 15

Analytical Results

Client:	Environmental Chemistry Consulting Servi
Project:	Kuhlman Electric
Sample Matrix:	Water

101

99

80-128

75-117

 Service Request:
 K0808751

 Date Collected:
 09/09/2008

 Date Received:
 09/11/2008

Volatile Organic Compounds

Sample Name: Lab Code:	KEP-Duplicate 2 K0808751-002				Units: ug/L Basis: NA
Surrogate Name	%Re	c Control c Limits	Date Analyzed	Note	
Dibromofluorometha	ne 95	75-120	09/22/08	Acceptable	

09/22/08

09/22/08

Acceptable

Acceptable

Comments:

Toluene-d8

4-Bromofluorobenzene

Analytical Results

Client:	Environmental Chemistry Consulting Servi
Project:	Kuhlman Electric
Sample Matrix:	Water

 Service Request:
 K0808751

 Date Collected:
 09/09/2008

 Date Received:
 09/11/2008

Volatile Organic Compounds

Sample Name:	KEP-GW-020B-005	Units:	Ų
Lab Code:	K0808751-003	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
Chloromethane	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
Vinyl Chloride	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
Bromomethane	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
Chloroethane	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
Trichlorofluoromethane	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
Acetone	ND	U	20	1	09/22/08	09/22/08	KWG0809796	
1,1-Dichloroethene	5.9		0.50	1	09/22/08	09/22/08	KWG0809796	
Carbon Disulfide	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
Methylene Chloride	ND		0.50	1	09/22/08	09/22/08	KWG0809796	
trans-1,2-Dichloroethene	ND		0.50	1	09/22/08	09/22/08	KWG0809796	
1,1-Dichloroethane	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
2-Butanone (MEK)	ND		20	1	09/22/08	09/22/08	KWG0809796	
2,2-Dichloropropane	ND		0.50	1	09/22/08	09/22/08	KWG0809796	
cis-1,2-Dichloroethene	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
Chloroform	ND		0.50	1	09/22/08	09/22/08	KWG0809796	
Bromochloromethane	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1,1-Trichloroethane (TCA)	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1-Dichloropropene	ND		0.50	1	09/22/08	09/22/08	KWG0809796	
Carbon Tetrachloride	ND		0.50	1	09/22/08	09/22/08	KWG0809796	
1,2-Dichloroethane (EDC)	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
Benzene	ND		0.50	1	09/22/08	09/22/08	KWG0809796	
Trichloroethene (TCE)	ND		0.50	1	09/22/08	09/22/08	KWG0809796	
1,2-Dichloropropane	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
Bromodichloromethane	ND		0.50	1	09/22/08	09/22/08	KWG0809796	
Dibromomethane	ND		0.50	1	09/22/08	09/22/08	KWG0809796	
2-Hexanone	ND	U	20	1	09/22/08	09/22/08	KWG0809796	
cis-1,3-Dichloropropene	ND		0.50	1	09/22/08	09/22/08	KWG0809796	
Toluene	ND		0.50	1	09/22/08	09/22/08	KWG0809796	
trans-1,3-Dichloropropene	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1,2-Trichloroethane	ND		0.50	1	09/22/08	09/22/08	KWG0809796	
4-Methyl-2-pentanone (MIBK)	ND		20	1	09/22/08	09/22/08	KWG0809796	
1,3-Dichloropropane	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	
Tetrachloroethene (PCE)	ND	U	0.50	1	09/22/08	09/22/08	KWG0809796	

Comments:

Merged

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

 Service Request:
 K0808751

 Date Collected:
 09/09/2008

 Date Received:
 09/11/2008

Volatile Organic Compounds

Sample Name:	KEP-GW-020B-005	Units:	U
Lab Code:	K0808751-003	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Dibromochloromethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2-Dibromoethane (EDB)	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Chlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Ethylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
m,p-Xylenes	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
o-Xylene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Styrene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Bromoform	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Isopropylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1,2,2-Tetrachloroethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2,3-Trichloropropane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Bromobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
n-Propylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
2-Chlorotoluene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
4-Chlorotoluene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,3,5-Trimethylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
tert-Butylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2,4-Trimethylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
sec-Butylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,3-Dichlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
4-Isopropyltoluene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,4-Dichlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
n-Butylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2-Dichlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2-Dibromo-3-chloropropane	ND U	2.0	1	09/22/08	09/22/08	KWG0809796	
1,2,4-Trichlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2,3-Trichlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Naphthalene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	*
Hexachlorobutadiene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,3,5-Trichlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	

* See Case Narrative

Comments:

2 of 3

Analytical Results

Client:	Environmental Chemistry Consulting Servi
Project:	Kuhlman Electric
Sample Matrix:	Water

 Service Request:
 K0808751

 Date Collected:
 09/09/2008

 Date Received:
 09/11/2008

Volatile Organic Compounds

Sample Name: Lab Code:	KEP-GW-020B-005 K0808751-003				Units: ug/L Basis: NA
Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluorometha	ne 96	75-120	09/22/08	Acceptable	
Toluene-d8	101	80-128	09/22/08	Acceptable	
4-Bromofluorobenzer	ne 99	75-117	09/22/08	Acceptable	

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

 Service Request:
 K0808751

 Date Collected:
 09/09/2008

 Date Received:
 09/11/2008

Volatile Organic Compounds

Sample Name:	Trip Blank	Units:	U
Lab Code:	K0808751-004	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q		Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Chloromethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Vinyl Chloride	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Bromomethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Chloroethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Trichlorofluoromethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Acetone	ND U	20	1	09/22/08	09/22/08	KWG0809796	
1,1-Dichloroethene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Carbon Disulfide	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Methylene Chloride	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
trans-1,2-Dichloroethene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1-Dichloroethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
2-Butanone (MEK)	ND U	20	1	09/22/08	09/22/08	KWG0809796	
2,2-Dichloropropane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
cis-1,2-Dichloroethene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Chloroform	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Bromochloromethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1,1-Trichloroethane (TCA)	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1-Dichloropropene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Carbon Tetrachloride	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2-Dichloroethane (EDC)	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Benzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Trichloroethene (TCE)	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2-Dichloropropane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Bromodichloromethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Dibromomethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
2-Hexanone	ND U	20	1	09/22/08	09/22/08	KWG0809796	
cis-1,3-Dichloropropene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Toluene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
trans-1,3-Dichloropropene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1,2-Trichloroethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
4-Methyl-2-pentanone (MIBK)	ND U	20	1	09/22/08	09/22/08	KWG0809796	
1,3-Dichloropropane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Tetrachloroethene (PCE)	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	

Analytical Results

Client:	Environmental Chemistry Consulting Servi
Project:	Kuhlman Electric
Sample Matrix:	Water

 Service Request:
 K0808751

 Date Collected:
 09/09/2008

 Date Received:
 09/11/2008

Volatile Organic Compounds

Sample Name:	Trip Blank	Units:	Ų
Lab Code:	K0808751-004	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Dibromochloromethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2-Dibromoethane (EDB)	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Chlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Ethylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
m,p-Xylenes	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
o-Xylene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Styrene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Bromoform	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Isopropylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1,2,2-Tetrachloroethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2,3-Trichloropropane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Bromobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
n-Propylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
2-Chlorotoluene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
4-Chlorotoluene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,3,5-Trimethylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
tert-Butylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2,4-Trimethylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
sec-Butylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,3-Dichlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
4-Isopropyltoluene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,4-Dichlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
n-Butylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2-Dichlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2-Dibromo-3-chloropropane	ND U	2.0	1	09/22/08	09/22/08	KWG0809796	
1,2,4-Trichlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2,3-Trichlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Naphthalene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	*
Hexachlorobutadiene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,3,5-Trichlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	

* See Case Narrative

Analytical Results

Client:	Environmental Chemistry Consulting Servi
Project:	Kuhlman Electric
Sample Matrix:	Water

101

98

80-128

75-117

 Service Request:
 K0808751

 Date Collected:
 09/09/2008

 Date Received:
 09/11/2008

Volatile Organic Compounds

Sample Name: Lab Code:	Trip Blank K0808751-004					Units: ug/L Basis: NA
Surrogate Name	70	Rec	Control Limits	Date Analyzed	Note	
Dibromofluorometha	ne	94	75-120	09/22/08	Acceptable	

09/22/08

09/22/08

Acceptable

Acceptable

Comments:

Toluene-d8

4-Bromofluorobenzene

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Service Request: K0808751 Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name:	Method Blank	Units:	C
Lab Code:	KWG0809796-4	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Chloromethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Vinyl Chloride	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Bromomethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Chloroethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Trichlorofluoromethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Acetone	ND U	20	1	09/22/08	09/22/08	KWG0809796	
1,1-Dichloroethene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Carbon Disulfide	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Methylene Chloride	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
trans-1,2-Dichloroethene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1-Dichloroethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
2-Butanone (MEK)	ND U	20	1	09/22/08	09/22/08	KWG0809796	
2,2-Dichloropropane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
cis-1,2-Dichloroethene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Chloroform	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Bromochloromethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1,1-Trichloroethane (TCA)	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1-Dichloropropene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Carbon Tetrachloride	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2-Dichloroethane (EDC)	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Benzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Trichloroethene (TCE)	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2-Dichloropropane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Bromodichloromethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Dibromomethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
2-Hexanone	ND U	20	1	09/22/08	09/22/08	KWG0809796	
cis-1,3-Dichloropropene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Toluene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
trans-1,3-Dichloropropene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1,2-Trichloroethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
4-Methyl-2-pentanone (MIBK)	ND U	20	1	09/22/08	09/22/08	KWG0809796	
1,3-Dichloropropane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Tetrachloroethene (PCE)	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	

Comments:

Merged

1 of 3

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Service Request: K0808751 Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name:	Method Blank	Units:	U
Lab Code:	KWG0809796-4	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Dibromochloromethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2-Dibromoethane (EDB)	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Chlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Ethylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
m,p-Xylenes	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
o-Xylene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Styrene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Bromoform	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Isopropylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,1,2,2-Tetrachloroethane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2,3-Trichloropropane	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Bromobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
n-Propylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
2-Chlorotoluene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
4-Chlorotoluene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,3,5-Trimethylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
tert-Butylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2,4-Trimethylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
sec-Butylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,3-Dichlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
4-Isopropyltoluene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,4-Dichlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
n-Butylbenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2-Dichlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2-Dibromo-3-chloropropane	ND U	2.0	1	09/22/08	09/22/08	KWG0809796	
1,2,4-Trichlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,2,3-Trichlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
Naphthalene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	*
Hexachlorobutadiene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	
1,3,5-Trichlorobenzene	ND U	0.50	1	09/22/08	09/22/08	KWG0809796	

* See Case Narrative

Analytical Results

Client:	Environmental Chemistry Consulting Servi
Project:	Kuhlman Electric
Sample Matrix:	Water

Service Request: K0808751 Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:	Method Blank KWG0809796-4				
Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluorometha	ne 93	75-120	09/22/08	Acceptable	
Toluene-d8	101	80-128	09/22/08	Acceptable	

100 75-117 09/22/08 Acceptable

Comments:

4-Bromofluorobenzene

QA/QC Report

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method:	EPA 5030B
Analysis Method:	8260B

Units: PERCENT Level: Low

Sample Name	Lab Code	<u>Sur1</u>	<u>Sur2</u>	<u>Sur3</u>
KEP-GW-020A-005	K0808751-001	96	102	99
KEP-Duplicate 2	K0808751-002	95	101	99
KEP-GW-020B-005	K0808751-003	96	101	99
Trip Blank	K0808751-004	94	101	98
Method Blank	KWG0809796-4	93	101	100
Batch QC	K0808718-004	94	100	89
Batch QCMS	KWG0809796-1	98	103	99
Batch QCDMS	KWG0809796-2	100	103	99
Lab Control Sample	KWG0809796-3	99	102	100

Surrogate Recovery Control Limits (%)

Sur1 = Dibromofluoromethane	75-120	
Sur2 = Toluene-d8	80-128	
Sur3 = 4-Bromofluorobenzene	75-117	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Service Request: K0808751

QA/QC Report

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:	Batch QC	Units:	C
Lab Code:	K0808718-004	Basis:	
Extraction Method:	EPA 5030B	Level:	
Analysis Method:	8260B	Extraction Lot:	

	Sample	Batch QCMS KWG0809796-1 Matrix Spike		Batch QCDMS KWG0809796-2 Duplicate Matrix Spike			%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	ND	222	200	111	219	200	110	67-147	1	30
Benzene	34	234	200	100	231	200	98	69-126	1	30
Trichloroethene (TCE)	ND	210	200	105	209	200	105	56-137	0	30
Toluene	18	216	200	99	215	200	99	66-128	0	30
Chlorobenzene	ND	196	200	98	192	200	96	68-120	2	30
1,2-Dichlorobenzene	ND	196	200	98	189	200	94	67-116	4	30
Naphthalene	440	437	200	-2 *	470	200	14 *	61-137	7	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Service Request: K0808751

Date Extracted: 09/22/2008

Date Analyzed: 09/22/2008

QA/QC Report

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:	EPA 5030B
Analysis Method:	8260B

Units: ug/L Basis: NA Level: Low Extraction Lot: KWG0809796

Service Request: K0808751

Date Extracted: 09/22/2008

Date Analyzed: 09/22/2008

	Lab Control Sample KWG0809796-3 Lab Control Spike		%Rec	
Analyte Name	Result	Expected	%Rec	Limits
Dichlorodifluoromethane	10.2	10.0	102	21-156
Chloromethane	9.98	10.0	100	45-135
Vinyl Chloride	10.2	10.0	102	59-135
Bromomethane	14.0	10.0	140	24-144
Chloroethane	9.87	10.0	99	60-128
Trichlorofluoromethane	9.97	10.0	100	54-129
Acetone	44.1	50.0	88	53-129
1,1-Dichloroethene	10.7	10.0	107	70-136
Carbon Disulfide	18.7	20.0	93	64-129
Methylene Chloride	10.1	10.0	101	64-137
trans-1,2-Dichloroethene	10.0	10.0	100	70-121
1,1-Dichloroethane	10.2	10.0	102	72-122
2-Butanone (MEK)	42.7	50.0	85	56-137
2,2-Dichloropropane	11.0	10.0	110	48-133
cis-1,2-Dichloroethene	9.68	10.0	97	76-125
Chloroform	9.83	10.0	98	71-118
Bromochloromethane	9.83	10.0	98	72-123
1,1,1-Trichloroethane (TCA)	10.5	10.0	105	65-126
1,1-Dichloropropene	10.2	10.0	102	71-119
Carbon Tetrachloride	9.86	10.0	99	58-133
1,2-Dichloroethane (EDC)	10.2	10.0	102	69-125
Benzene	9.71	10.0	97	74-118
Trichloroethene (TCE)	10.1	10.0	101	71-122
1,2-Dichloropropane	9.69	10.0	97	73-123
Bromodichloromethane	9.65	10.0	97	72-127
Dibromomethane	9.36	10.0	94	71-124
2-Hexanone	41.4	50.0	83	44-135
cis-1,3-Dichloropropene	9.26	10.0	93	71-125
Toluene	9.61	10.0	96	74-117
trans-1,3-Dichloropropene	8.13	10.0	81	56-121
1,1,2-Trichloroethane	9.19	10.0	92	73-122
4-Methyl-2-pentanone (MIBK)	42.8	50.0	86	57-129
1,3-Dichloropropane	9.25	10.0	93	74-120
Tetrachloroethene (PCE)	9.93	10.0	99	65-121
Dibromochloromethane	8.53	10.0	85	67-124
1,2-Dibromoethane (EDB)	8.79	10.0	88	71-120

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:	EPA 5030B
Analysis Method:	8260B

Units: ug/L Basis: NA Level: Low Extraction Lot: KWG0809796

Service Request: K0808751

Date Extracted: 09/22/2008

Date Analyzed: 09/22/2008

	Lab Control Sample KWG0809796-3 Lab Control Spike		%Rec	
Analyte Name	Result	Expected	%Rec	Limits
Chlorobenzene	9.65	10.0	97	74-115
1,1,1,2-Tetrachloroethane	9.02	10.0	90	71-118
Ethylbenzene	9.58	10.0	96	71-118
m,p-Xylenes	19.4	20.0	97	73-119
o-Xylene	9.76	10.0	98	74-120
Styrene	9.31	10.0	93	75-123
Bromoform	7.68	10.0	77	57-135
Isopropylbenzene	9.11	10.0	91	65-110
1,1,2,2-Tetrachloroethane	9.16	10.0	92	63-126
1,2,3-Trichloropropane	9.48	10.0	95	67-123
Bromobenzene	9.41	10.0	94	76-111
n-Propylbenzene	10.1	10.0	101	69-122
2-Chlorotoluene	10.2	10.0	102	72-120
4-Chlorotoluene	9.89	10.0	99	70-118
1,3,5-Trimethylbenzene	9.67	10.0	97	70-120
tert-Butylbenzene	10.2	10.0	102	72-118
1,2,4-Trimethylbenzene	9.37	10.0	94	72-121
sec-Butylbenzene	10.3	10.0	103	73-130
1,3-Dichlorobenzene	9.62	10.0	96	76-110
4-Isopropyltoluene	9.51	10.0	95	67-115
1,4-Dichlorobenzene	9.41	10.0	94	74-112
n-Butylbenzene	9.07	10.0	91	62-123
1,2-Dichlorobenzene	9.42	10.0	94	75-110
1,2-Dibromo-3-chloropropane	7.54	10.0	75	49-124
1,2,4-Trichlorobenzene	8.50	10.0	85	66-115
1,2,3-Trichlorobenzene	8.38	10.0	84	64-120
Naphthalene	7.20	10.0	72	58-132
Hexachlorobutadiene	10.2	10.0	102	61-124
1,3,5-Trichlorobenzene	37.1	40.0	93	46-133

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

1,4-Dioxane by GC/MS

Analytical Results

Client:	Environmental Chemistry Consulting Servi	Service Request:	K0808751
Project:	Kuhlman Electric	Date Collected:	09/09/2008
Sample Matrix:	Water	Date Received:	09/11/2008

1,4-Dioxane by GC/MS

Sample Name: Lab Code:	KEP-GW-020A-005 K0808751-001					Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 3510C 8270C SIM]	Level: Low	
Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,4-Dioxane	ND U	0.50	1	09/12/08	09/29/08	KWG0809256	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
1,4-Dioxane-d8	79	55-100	09/29/08	Acceptable

Analytical Results

Client:	Environmental Chemistry Consulting Servi	Service Request:	K0808751
Project:	Kuhlman Electric	Date Collected:	09/09/2008
Sample Matrix:	Water	Date Received:	09/11/2008

1,4-Dioxane by GC/MS

Sample Name: Lab Code:	KEP-Duplicate 2 K0808751-002					Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 3510C 8270C SIM]	Level: Low	
Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,4-Dioxane	ND U	0.50	1	09/12/08	09/30/08	KWG0809256	
		ontrol Data					

Surrogate Name	%Rec	Limits	Analyzed	Note	
1,4-Dioxane-d8	83	55-100	09/30/08	Acceptable	

Analytical Results

Client:	Environmental Chemistry Consulting Servi	Service Request:	K0808751
Project:	Kuhlman Electric	Date Collected:	09/09/2008
Sample Matrix:	Water	Date Received:	09/11/2008

1,4-Dioxane by GC/MS

Sample Name: Lab Code:	KEP-GW-020B-005 K0808751-003						Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 3510C 8270C SIM]	Level: Low	
Analyte Name	Result (Q 1	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,4-Dioxane	0.96		0.50	1	09/12/08	09/30/08	KWG0809256	
Surrogate Name	%Rec	Control Limits	Date Analyzed	Note				

09/30/08

Acceptable

Comments:

1,4-Dioxane-d8

88

55-100

Analytical Results

Client:	Environmental Chemistry Consulting Servi	Service Request:	K0808751
Project:	Kuhlman Electric	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA

1,4-Dioxane by GC/MS

Sample Name: Lab Code:	Method Blank KWG0809256-6						U nits: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 3510C 8270C SIM					I	Level: Low	
Analyte Name	Result Q) N	ARL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,4-Dioxane	ND U	J (0.50	1	09/12/08	09/29/08	KWG0809256	
		Control	Date					

Surrogate Name	%Rec	Limits	Date Analyzed	Note
1,4-Dioxane-d8	89	55-100	09/29/08	Acceptable

QA/QC Report

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Service Request: K0808751

Surrogate Recovery Summary 1,4-Dioxane by GC/MS

Extraction Method:	EPA 3510C
Analysis Method:	8270C SIM

Units: PERCENT **Level:** Low

Sample Name	Lab Code	<u>Sur1</u>
KEP-GW-020A-005	K0808751-001	79
KEP-Duplicate 2	K0808751-002	83
KEP-GW-020B-005	K0808751-003	88
Method Blank	KWG0809256-6	89
Batch QC	K0808709-001	82
Batch QCMS	KWG0809256-3	86
Batch QCDMS	KWG0809256-4	86
Lab Control Sample	KWG0809256-5	84

Surrogate Recovery Control Limits (%)

Sur1 = 1,4-Dioxane-d8

55-100

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:	Environmental Chemistry Consulting Servi
Project:	Kuhlman Electric
Sample Matrix:	Water

 Service Request:
 K0808751

 Date Extracted:
 09/12/2008

 Date Analyzed:
 09/29/2008

Matrix Spike/Duplicate Matrix Spike Summary 1,4-Dioxane by GC/MS

Sample Name: Lab Code:	Batch QC K0808709-001							Units: Basis:	ug/L NA	
Extraction Method: Analysis Method:	EPA 3510C 8270C SIM						Extract	Level: ion Lot:	Low KWG08	09256
	Sample	Batch QCMS KWG0809256-3 Matrix Spike			KV	atch QCDMS VG0809256-4 cate Matrix Sj	4	%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
1,4-Dioxane	0.91	21.2	25.0	81	20.6	25.0	79	53-105	3	30

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

SuperSet Reference:

QA/QC Report

Client:	Environmental Chemistry Consulting Servi
Project:	Kuhlman Electric
Sample Matrix:	Water

Lab Control Spike Summary 1,4-Dioxane by GC/MS

Extraction Method: Analysis Method:	EPA 3510C 8270C SIM					Units: Basis: Level: Extraction Lot:	NA Low
		Lab Control Sample KWG0809256-5 Lab Control Spike			%Rec		
Analyte Name	-	Result	Expected	%Rec	Limits		
1,4-Dioxane		19.9	25.0	80	56-107		

Results flagged with an asterisk (\ast) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 Service Request:
 K0808751

 Date Extracted:
 09/12/2008

 Date Analyzed:
 09/29/2008