(360) 636-1068 fax

October 1, 2008

Analytical Report for Service Request No: K0808698

Joe Kabale Environmental Chemistry Consulting Services, Inc. 2525 Advance Rd. Madison, WI 53718

RE: Kuhlman Electric

Dear Joe:

Enclosed are the results of the samples submitted to our laboratory on September 10, 2008. For your reference, these analyses have been assigned our service request number K0808698.

All analyses were performed according to our laboratory's quality assurance program. Where applicable, the methods cited conform to the Methods Update Rule (effective 4/11/2007), which relates to the use of analytical methods for the drinking water and waste water programs. The test results meet requirements of the NELAC standards. Exceptions are noted in the case narrative report where applicable. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3376. You may also contact me via Email at GSalata@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Gregory Salata, Ph.D. Project Chemist

GS/lb

Page 1 of <u>37</u>

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
Μ	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
TPH	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

Inorganic Data Qualifiers

- The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number	
Alaska DEC UST	UST-040	
Arizona DHS	AZ0339	
Arkansas - DEQ	88-0637	
California DHS	2286	
Colorado DPHE	-	
Florida DOH	E87412	
Hawaii DOH	-	
Idaho DHW	-	
Indiana DOH	C-WA-01	
Louisiana DEQ	3016	
Louisiana DHH	LA050010	
Maine DHS	WA0035	
Michigan DEQ	9949	
Minnesota DOH	053-999-368	
Montana DPHHS	CERT0047	
Nevada DEP	WA35	
New Jersey DEP	WA005	
New Mexico ED	-	
North Carolina DWQ	605	
Oklahoma DEQ	9801	
Oregon - DHS	WA200001	
South Carolina DHEC	61002	
Utah DOH	COLU	
Washington DOE	C1203	
Wisconsin DNR	998386840	
Wyoming (EPA Region 8)	-	

Case Narrative

Client:Environmental Chemistry Consulting Services, Inc. Service Request No.:K0808698Project:Kuhlman ElectricDate Received:09/10/08Sample Matrix:Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS), and Laboratory Control Sample (LCS).

Sample Receipt

Four water samples were received for analysis at Columbia Analytical Services on 09/10/08. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Volatile Organic Compounds by EPA Method 8260B

No anomalies associated with the analysis of these samples were observed.

1,4-Dioxane by EPA Method 8270C

No anomalies associated with the analysis of these samples were observed.

Approved by All All All	Date/1/108

Chain of Custody Documentation

mbia alytical grvices ^{ac} of company	CHA 1317 South 13th Ave. • Kelso, WA 98626 • (360)	IN OF 577-722 • (8)	• FAX (360) 636-1068	PAGE OF	= 1 coc #	8698
PROJECT NUMBER Kuttunt	ELECTRIC					
PHOJECT MANAGER KUR ENT MART	R	SWV 35	518 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		15 AZZ	
		BO21 C	W1518 V1518 Sources	-CPr-	2991 X	
E-MAIL ADDRESS	NC NC	1050 05,) 50 010 020		XƏH	~~ (
PHONE #	FAX#		ELE U ELE ELE ELE ELE ELE ELE ELE ELE		70	
SAMPLER'S SIGNATURE		enj C	PAHS PAHS Children Children Posticio Children Posticio Children Posticio Children Posticio Children Posticio Children Posticio Children Posticio Children Posticio Children Posticio Post	DH'CO	(h) (h) (06 x0	REMARKS
00	1545 Martine					
	th 5t oz.	×			×	
KEP-DUPLICATE 1 9/6/08	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\times			\times	
Y O.Y						
-						
REPORT REQUIREMENTS		Circle which metals are to be analyzed	yzed:			
 I. Routine Report: Method 	Bill TO: BOYLO WARNER	Total Metals: Al As Sb Ba	t Be B Ca Cd Co Cr Cu Fe	Pb Mg Mn Mo Ni	K Ag Na Se Sr TI	Sn V Zn Hg
Blank, Surrogate, as		Dissolved Metals: AI As Sb Ba	a Be B Ca Cd Co Cr Cu Fe	Pb Mg Mn Mo Ni	K Ag Na Se Sr TI	Sn V Zn Hg
		*INDICATE STATE HYDROCARBON PROCEDURE:	ARBON PROCEDURE: AK CA	WI NORTHWEST	OTHER:	(CIRCLE ONE)
report up., Mo, MoJ as required	TURNAROUND REQUIREMENTS 24 hr.	SPECIAL INSTRUCTIONS/	OMMENTS:			
III. Data Validation Report (includes all raw data)	5 Day		week a Such and	A limit		
IV. CLP Deliverable Report	Provide FAX Results	a manager 1	he had a here			
V. EDD	Requested Report Date	+ 1triv-ng	WAD			
LETINONISHED BY:		BY:	RELINQUISHED BY:		RECEIVED BY:	×*
Signature Det My 10%	14co	1	Signature Date/Time		Signature Date	Date/Time
	Printed Nam	Firm	Printed Name Firm	Print	Printed Name Firm	
						0000 ## 0000

8

ROOC #1 08/03

	Columbia Analyti Cooler Receipt and	Preservation Form		PC_	<u>67-l.</u>	4
Client / Project: ECCS		Service Request K08	8698		6)
Received: 9 10 08	Opened: 910 05	By: 118ah				
1. Samples were received via?	US Mail For Ex UPS	DHL GH GS PDX	Courier	Ha	nd Deliv	ered
2. Samples were received in: (circ	le) Cooler Box E	nvelope Other			NA	
3. Were <u>custody seals</u> on coolers?	NA Y NO	If yes, how many and where?				
If present, were custody seals in	tact? Y 🔊	If present, were they signed and	I dated?		Y	D
4. Is shipper's air-bill filed? If not	, record air-bill number:			NA	\bigcirc	N
5. Temperature of cooler(s) upon		· · · · · · · · · · · · · · · · · · ·				and the second second
Temperature Blank (°C):	1. le					
6. If applicable, list Chain of Custo	ody Numbers:					
7. Packing material used. Insert	s Baggies Rubble Wrap Gel	Packs Wet Ice Sleeves Other				
8. Were custody papers properly fi	lled out (ink, signed, etc.)?			NA	\mathfrak{O}	Ν
9. Did all bottles arrive in good c	ondition (unbroken)? Indicate in	n the table below.		NA	\odot	Ν
10. Were all sample labels complet	e (i.e analysis, preservation, etc.)?			NA	Q	Ν
11. Did all sample labels and tags a	gree with custody papers? Indicate	e in the table below		NA	ͺΥ	
12. Were appropriate bottles/con	tainers and volumes received for	the tests indicated?		NA	D	N
13. Were the pH-preserved bottles		(NA)	۰Y	Ν		
14. Were VOA vials and 1631 Mercury bottles received without headspace? Indicate in the table below. NA						
15. Are CWA Microbiology samp	les received with >1/2 the 24hr. h	old time remaining from collectio	n?	NA	Y	Ν
16. Was C12/Res negative?				(NA)	Y	Ν
Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sampl	e ID on	сос	
- KEPGW003010	167-61-003-010					

KEPGW10B005	KEP-GW-ON	013-005		
Dupl	KEP-Dupli	rate t	r .	
1	,			
	Bottle	Out of Head-	Volu	me Reagent Lot

Sample ID	Bottle Count	Bottle Type		Head- space	Broken	рН	Reagent	Volume added	Reagent Lot Number	Initials
					٤.	- N	9			
						_				
									· · · · · · · · · · · · · · · · · · ·	
*Does not include all pH preserved sample aliqu Additio'nal Notes, Discrepancies, &			ceiving S	OP (SM	Э-GEN').					

Volatile Organic Compounds EPA Method 8260B

10

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

 Service Request:
 K0808698

 Date Collected:
 09/06/2008

 Date Received:
 09/10/2008

Volatile Organic Compounds

.

Sample Name: Lab Code:	KEP-GW-003-010 K0808698-001					Units: Basis:	0
Extraction Method: Analysis Method:	EPA 5030B 8260B					Level:	Low
			Dilution	Data	Data	Fytz	action

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Chloromethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Vinyl Chloride	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Bromomethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Chloroethane	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Trichlorofluoromethane	ND	U	0,50	1	09/19/08	09/19/08	KWG0809684	
Acetone	ND	U	20	1	09/19/08	09/19/08	KWG0809684	
1,1-Dichloroethene	37		0.50	1	09/19/08	09/19/08	KWG0809684	
Carbon Disulfide	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Methylene Chloride	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
trans-1,2-Dichloroethene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,1-Dichloroethane	3.3		0.50	1	09/19/08	09/19/08	KWG0809684	
2-Butanone (MEK)	ND	U	20	1	09/19/08	09/19/08	KWG0809684	
2,2-Dichloropropane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
cis-1,2-Dichloroethene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Chloroform	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Bromochloromethane	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
1,1,1-Trichloroethane (TCA)	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,1-Dichloropropene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Carbon Tetrachloride	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2-Dichloroethane (EDC)	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Benzene	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Trichloroethene (TCE)	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2-Dichloropropane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Bromodichloromethane	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Dibromomethane	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
2-Hexanone	ND	U	20	1	09/19/08	09/19/08	KWG0809684	
cis-1,3-Dichloropropene	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Toluene	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
trans-1,3-Dichloropropene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,1,2-Trichloroethane	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
4-Methyl-2-pentanone (MIBK)	ND		20	1	09/19/08	09/19/08	KWG0809684	
1,3-Dichloropropane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	

Comments:

Merged

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

 Service Request:
 K0808698

 Date Collected:
 09/06/2008

 Date Received:
 09/10/2008

Volatile Organic Compounds

Sample Name:	KEP-GW-003-010	Units:	0
Lab Code:	K0808698-001	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

Analyte Name	Dogula	^	RADI	Dilution	Date	Date	Extraction	
	Result	<u>v</u>	MRL	Factor	Extracted	Analyzed	Lot	Note
Tetrachloroethene (PCE)	0.75	* *	0.50	1	09/19/08	09/19/08	KWG0809684	
Dibromochloromethane	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
1,2-Dibromoethane (EDB)	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Chlorobenzene	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
1,1,1,2-Tetrachloroethane	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Ethylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
m,p-Xylenes	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
o-Xylene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Styrene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Bromoform	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Isopropylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,1,2,2-Tetrachloroethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2,3-Trichloropropane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Bromobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
n-Propylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
2-Chlorotoluene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
4-Chlorotoluene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,3,5-Trimethylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
tert-Butylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2,4-Trimethylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
sec-Butylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,3-Dichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
4-Isopropyltoluene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,4-Dichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
n-Butylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2-Dichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2-Dibromo-3-chloropropane	ND	U	2.0	1	09/19/08	09/19/08	KWG0809684	
1,2,4-Trichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2,3-Trichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Naphthalene	ND	U	1.0	1	09/19/08	09/19/08	KWG0809684	
Hexachlorobutadiene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,3,5-Trichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	

Analytical Results

Client:	Environmental Chemistry Consulting Servi
Project:	Kuhlman Electric
Sample Matrix:	Water

 Service Request:
 K0808698

 Date Collected:
 09/06/2008

 Date Received:
 09/10/2008

Volatile Organic Compounds

Sample Name: Lab Code:	KEP-GW-003-010 K0808698-001			Units: ug/L Basis: NA
		Control	Date	

Surrogate Name	%Rec	Limits	Analyzed	Note	
Dibromofluoromethane	103	75-120	09/19/08	Acceptable	
Toluene-d8	109	80-128	09/19/08	Acceptable	
4-Bromofluorobenzene	95	75-117	09/19/08	Acceptable	

Comments:

3 of 3

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

 Service Request:
 K0808698

 Date Collected:
 09/06/2008

 Date Received:
 09/10/2008

Volatile Organic Compounds

Sample Name:	KEP-GW-010B-005	Units:	0
Lab Code:	K0808698-002	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

Analyte Name	Result	0	MRL	Dilution	Date Estructo d	Date	Extraction	Mada
Dichlorodifluoromethane	ND			Factor	Extracted	Analyzed	Lot	Note
Chloromethane	ND ND		0.50 0.50	1	09/19/08	09/19/08	KWG0809684 KWG0809684	
Vinyl Chloride	ND		0.50	1	09/19/08 09/19/08	09/19/08 09/19/08	KWG0809684	
-				1				
Bromomethane Chloroethane	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Trichlorofluoromethane	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Acetone	ND	U	20	1	09/19/08	09/19/08	KWG0809684	
1,1-Dichloroethene	8.2		0.50	1	09/19/08	09/19/08	KWG0809684	
Carbon Disulfide	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Methylene Chloride	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
trans-1,2-Dichloroethene	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
1,1-Dichloroethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
2-Butanone (MEK)	ND	U	20	1	09/19/08	09/19/08	KWG0809684	
2,2-Dichloropropane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
cis-1,2-Dichloroethene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Chloroform	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Bromochloromethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,1,1-Trichloroethane (TCA)	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,1-Dichloropropene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Carbon Tetrachloride	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2-Dichloroethane (EDC)	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Benzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Trichloroethene (TCE)	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2-Dichloropropane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Bromodichloromethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Dibromomethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
2-Hexanone	ND	U	20	1	09/19/08	09/19/08	KWG0809684	
cis-1,3-Dichloropropene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Toluene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
trans-1,3-Dichloropropene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,1,2-Trichloroethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
4-Methyl-2-pentanone (MIBK)	ND	U	20	1	09/19/08	09/19/08	KWG0809684	
1,3-Dichloropropane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
			·····					

Comments:

14

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

 Service Request:
 K0808698

 Date Collected:
 09/06/2008

 Date Received:
 09/10/2008

Volatile Organic Compounds

Sample Name:	KEP-GW-010B-005	Units:	0
Lab Code:	K0808698-002	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

Analyte Name	Docult	0	MRL	Dilution	Date	Date	Extraction	NT.
	Result			Factor	Extracted	Analyzed	Lot	Note
Tetrachloroethene (PCE)	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Dibromochloromethane	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
1,2-Dibromoethane (EDB)	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Chlorobenzene	ND	-	0.50	1	09/19/08	09/19/08	KWG0809684	
1,1,1,2-Tetrachloroethane	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Ethylbenzene	ND	U	0.50	- 1	09/19/08	09/19/08	KWG0809684	
m,p-Xylenes	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
o-Xylene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Styrene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Bromoform	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	*****
Isopropylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,1,2,2-Tetrachloroethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2,3-Trichloropropane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Bromobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
n-Propylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
2-Chlorotoluene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
4-Chlorotoluene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,3,5-Trimethylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
tert-Butylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2,4-Trimethylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
sec-Butylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,3-Dichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
4-Isopropyltoluene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,4-Dichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
n-Butylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2-Dichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2-Dibromo-3-chloropropane	ND	U	2.0	1	09/19/08	09/19/08	KWG0809684	
1,2,4-Trichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2,3-Trichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Naphthalene	ND	U	1.0	1	09/19/08	09/19/08	KWG0809684	
Hexachlorobutadiene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,3,5-Trichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	

Comments:

Merged

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

 Service Request:
 K0808698

 Date Collected:
 09/06/2008

 Date Received:
 09/10/2008

Volatile Organic Compounds

Sample Name: Lab Code:	KEP-GW-010B-005 K0808698-002				Units: Basis:	•
Sumogata Nome	9/ Bog	Control Limite	Date	N T - 4 -		

Surrogate Name	%Rec	Limits	Analyzed	Note	
Dibromofluoromethane	104	75-120	09/19/08	Acceptable	
Toluene-d8	110	80-128	09/19/08	Acceptable	
4-Bromofluorobenzene	96	75-117	09/19/08	Acceptable	

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

 Service Request:
 K0808698

 Date Collected:
 09/06/2008

 Date Received:
 09/10/2008

Volatile Organic Compounds

Sample Name:	KEP-DUPLICATE 1	Units:	0
Lab Code:	K0808698-003	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

Analyte Name	Result	0	MRL	Dilution Factor	Date	Date	Extraction Lot	Noto
Dichlorodifluoromethane	ND		0.50		Extracted	Analyzed	LOI KWG0809684	Note
Chloromethane	ND ND		0.50	1	09/19/08 09/19/08	09/19/08 09/19/08	KWG0809684 KWG0809684	
Vinyl Chloride	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Bromomethane							KWG0809684	
Chloroethane	ND ND		0.50 0.50	1	09/19/08 09/19/08	09/19/08 09/19/08	KWG0809684 KWG0809684	
Trichlorofluoromethane	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Acetone								
1,1-Dichloroethene	ND 34	U	20 0.50	1	09/19/08	09/19/08	KWG0809684 KWG0809684	
Carbon Disulfide	ND	TT	0.50	1	09/19/08 09/19/08	09/19/08 09/19/08	KWG0809684	
				1				
Methylene Chloride	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
trans-1,2-Dichloroethene 1,1-Dichloroethane	ND 3.3	U	0.50	1	09/19/08	09/19/08	KWG0809684 KWG0809684	
			0.50	1	09/19/08	09/19/08		
2-Butanone (MEK)	ND		20	1	09/19/08	09/19/08	KWG0809684	
2,2-Dichloropropane	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
cis-1,2-Dichloroethene	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Chloroform	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Bromochloromethane	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
1,1,1-Trichloroethane (TCA)	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
1,1-Dichloropropene	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Carbon Tetrachloride	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
1,2-Dichloroethane (EDC)	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Benzene	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Trichloroethene (TCE)	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
1,2-Dichloropropane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Bromodichloromethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Dibromomethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
2-Hexanone	ND	U	20	1	09/19/08	09/19/08	KWG0809684	
cis-1,3-Dichloropropene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Toluene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
trans-1,3-Dichloropropene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,1,2-Trichloroethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
4-Methyl-2-pentanone (MIBK)	ND		20	1	09/19/08	09/19/08	KWG0809684	
1,3-Dichloropropane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
			P					

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

 Service Request:
 K0808698

 Date Collected:
 09/06/2008

 Date Received:
 09/10/2008

Volatile Organic Compounds

Sample Name:	KEP-DUPLICATE 1	Units:	U
Lab Code:	K0808698-003	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Tetrachloroethene (PCE)	0.71		0.50	1	09/19/08	09/19/08	KWG0809684	
Dibromochloromethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2-Dibromoethane (EDB)	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Chlorobenzene	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
1,1,1,2-Tetrachloroethane	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Ethylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
m,p-Xylenes	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
o-Xylene	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Styrene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Bromoform	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	^
Isopropylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,1,2,2-Tetrachloroethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2,3-Trichloropropane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Bromobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
n-Propylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
2-Chlorotoluene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
4-Chlorotoluene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,3,5-Trimethylbenzene	ND	U	. 0.50	1	09/19/08	09/19/08	KWG0809684	
tert-Butylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2,4-Trimethylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
sec-Butylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,3-Dichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
4-Isopropyltoluene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,4-Dichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
n-Butylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2-Dichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2-Dibromo-3-chloropropane	ND	U	2.0	1	09/19/08	09/19/08	KWG0809684	
1,2,4-Trichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2,3-Trichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Naphthalene	ND	U	1.0	1	09/19/08	09/19/08	KWG0809684	
Hexachlorobutadiene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,3,5-Trichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	

Analytical Results

Client: Environmental Chemistry Consulting Servi **Project:** Kuhlman Electric Sample Matrix: Water

96

80-128

75-117

Service Request: K0808698 Date Collected: 09/06/2008 Date Received: 09/10/2008

Volatile Organic Compounds

Sample Name: Lab Code:	KEP-DUPLICATE 1 K0808698-003				Units: ug/L Basis: NA
Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	e 103	75-120	09/19/08	Acceptable	
Toluene-d8	109	80-128	09/19/08	Acceptable	

09/19/08

09/19/08

Acceptable

Acceptable

Comments:

4-Bromofluorobenzene

Merged

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

 Service Request:
 K0808698

 Date Collected:
 09/06/2008

 Date Received:
 09/10/2008

Volatile Organic Compounds

Sample Name:	Trip Blank	Units:	0
Lab Code:	K0808698-004	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

Analyte Name	Result	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Dichlorodifluoromethane	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Chloromethane	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Vinyl Chloride	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Bromomethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Chloroethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Trichlorofluoromethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Acetone	ND	U	20	1	09/19/08	09/19/08	KWG0809684	
1,1-Dichloroethene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Carbon Disulfide	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Methylene Chloride	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
trans-1,2-Dichloroethene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,1-Dichloroethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
2-Butanone (MEK)	ND	U	20	1	09/19/08	09/19/08	KWG0809684	
2,2-Dichloropropane	ND	U	0,50	1	09/19/08	09/19/08	KWG0809684	
cis-1,2-Dichloroethene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Chloroform	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Bromochloromethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,1,1-Trichloroethane (TCA)	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,1-Dichloropropene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Carbon Tetrachloride	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
1,2-Dichloroethane (EDC)	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Benzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Trichloroethene (TCE)	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
1,2-Dichloropropane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Bromodichloromethane	ND	-	0.50	1	09/19/08	09/19/08	KWG0809684	
Dibromomethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
2-Hexanone	ND	U	20	1	09/19/08	09/19/08	KWG0809684	
cis-1,3-Dichloropropene	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Toluene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
trans-1,3-Dichloropropene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,1,2-Trichloroethane	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
4-Methyl-2-pentanone (MIBK)	ND		20	1	09/19/08	09/19/08	KWG0809684	
1,3-Dichloropropane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	

Comments:

Merged

Analytical Results

Client: Environmental Chemistry Consulting Servi **Project:** Kuhlman Electric Sample Matrix: Water

Service Request: K0808698 **Date Collected: 09/06/2008 Date Received:** 09/10/2008

Volatile Organic Compounds

Sample Name:	Trip Blank	Units:	0
Lab Code:	K0808698-004	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

Analyte Name	Result	0	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
Tetrachloroethene (PCE)	ND		0,50	1	09/19/08	09/19/08	KWG0809684	
Dibromochloromethane	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
1,2-Dibromoethane (EDB)	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Chlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Ethylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
m,p-Xylenes	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
o-Xylene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Styrene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Bromoform	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Isopropylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,1,2,2-Tetrachloroethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2,3-Trichloropropane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Bromobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
n-Propylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
2-Chlorotoluene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
4-Chlorotoluene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,3,5-Trimethylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
tert-Butylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2,4-Trimethylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
sec-Butylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,3-Dichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
4-Isopropyltoluene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,4-Dichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
n-Butylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2-Dichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2-Dibromo-3-chloropropane	ND	U	2.0	1	09/19/08	09/19/08	KWG0809684	
1,2,4-Trichlorobenzene	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
1,2,3-Trichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Naphthalene	ND	U	1.0	1	09/19/08	09/19/08	KWG0809684	
Hexachlorobutadiene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,3,5-Trichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

 Service Request:
 K0808698

 Date Collected:
 09/06/2008

 Date Received:
 09/10/2008

Volatile Organic Compounds

Sample Name: Lab Code:	Trip Blank K0808698-004			Units: Basis:	•
		Control	Data		

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	104	75-120	09/19/08	Acceptable	
Toluene-d8	109	80-128	09/19/08	Acceptable	
4-Bromofluorobenzene	95	75-117	09/19/08	Acceptable	

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Service Request: K0808698 Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name:	Method Blank	Units:	•
Lab Code:	KWG0809684-4	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

		_		Dilution	Date	Date	Extraction	
Analyte Name	Result		MRL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Chloromethane	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Vinyl Chloride	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Bromomethane	ND		0.50	1 .	09/19/08	09/19/08	KWG0809684	
Chloroethane	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Trichlorofluoromethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Acetone	ND		20	1	09/19/08	09/19/08	KWG0809684	
1,1-Dichloroethene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Carbon Disulfide	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Methylene Chloride	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
trans-1,2-Dichloroethene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,1-Dichloroethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
2-Butanone (MEK)	ND	U	20	1	09/19/08	09/19/08	KWG0809684	
2,2-Dichloropropane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
cis-1,2-Dichloroethene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Chloroform	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Bromochloromethane	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
1,1,1-Trichloroethane (TCA)	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,1-Dichloropropene	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Carbon Tetrachloride	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
1,2-Dichloroethane (EDC)	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Benzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Trichloroethene (TCE)	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2-Dichloropropane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Bromodichloromethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Dibromomethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
2-Hexanone	ND	U	20	1	09/19/08	09/19/08	KWG0809684	
cis-1,3-Dichloropropene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Toluene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
trans-1,3-Dichloropropene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,1,2-Trichloroethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
4-Methyl-2-pentanone (MIBK)	ND	U	20	1	09/19/08	09/19/08	KWG0809684	
1,3-Dichloropropane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Service Request: K0808698 Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name:	Method Blank	Units:	U
Lab Code:	KWG0809684-4	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

Analyta Nama	D., 14	0	MDI	Dilution	Date	Date	Extraction	N T .
Analyte Name	Result		MRL	Factor	Extracted	Analyzed	Lot	Note
Tetrachloroethene (PCE)	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Dibromochloromethane	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
1,2-Dibromoethane (EDB)	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Chlorobenzene	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
1,1,1,2-Tetrachloroethane	ND		0.50	1	09/19/08	09/19/08	KWG0809684	
Ethylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
m,p-Xylenes	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
o-Xylene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Styrene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Bromoform	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Isopropylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,1,2,2-Tetrachloroethane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2,3-Trichloropropane	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Bromobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
n-Propylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
2-Chlorotoluene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
4-Chlorotoluene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,3,5-Trimethylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
tert-Butylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2,4-Trimethylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
sec-Butylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,3-Dichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
4-Isopropyltoluene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,4-Dichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
n-Butylbenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2-Dichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2-Dibromo-3-chloropropane	ND	U	2.0	1	09/19/08	09/19/08	KWG0809684	
1,2,4-Trichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,2,3-Trichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
Naphthalene	ND	U	1.0	1	09/19/08	09/19/08	KWG0809684	
Hexachlorobutadiene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	
1,3,5-Trichlorobenzene	ND	U	0.50	1	09/19/08	09/19/08	KWG0809684	

Comments:

Merged

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Service Request: K0808698 Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:	Method Blank KWG0809684-4			Units: Basis:	•
		Control	Data		

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	102	75-120	09/19/08	Acceptable	
Toluene-d8	110	80-128	09/19/08	Acceptable	
4-Bromofluorobenzene	96	75-117	09/19/08	Acceptable	

QA/QC Report

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Service Request: K0808698

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method:	EPA 5030B
Analysis Method:	8260B

Units: PERCENT Level: Low

Sample Name	Lab Code	<u>Sur1</u>	<u>Sur2</u>	<u>Sur3</u>
KEP-GW-003-010	K0808698-001	103	109	95
KEP-GW-010B-005	K0808698-002	104	110	96
KEP-DUPLICATE 1	K0808698-003	103	109	96
Trip Blank	K0808698-004	104	109	95
Method Blank	KWG0809684-4	102	110	96
Batch QC	K0808550-001	103	109	97
Batch QCMS	KWG0809684-1	101	109	98
Batch QCDMS	KWG0809684-2	101	107	100
Lab Control Sample	KWG0809684-3	100	107	99

Surrogate Recovery Control Limits (%)

Sur1 = Dibromofluoromethane	75-120
Sur2 = Toluene-d8	80-128
Sur3 = 4-Bromofluorobenzene	75-117

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:	Batch QC	Units:	0
Lab Code:	K0808550-001	Basis:	
Extraction Method:	EPA 5030B	Level:	
Analysis Method:	8260B	Extraction Lot:	

	Sample	Batch QCMS KWG0809684-1 Matrix Spike			Batch QCDMS KWG0809684-2 Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	ND	10.0	10.0	100	8.98	10.0	90	67-147	11	30
Benzene	ND	8.98	10.0	90	8.29	10.0	83	69-126	8	30
Trichloroethene (TCE)	5.5	15.1	10.0	97	13.8	10.0	83	56-137	10	30
Toluene	ND	9.49	10.0	95	8.80	10.0	88	66-128	8	30
Chlorobenzene	ND	8.59	10.0	86	8.04	10.0	80	68-120	7	30
1,2-Dichlorobenzene	ND	8.25	10.0	83	7.90	10.0	79	67-116	4	30
Naphthalene	ND	7.89	10.0	79	7.91	10.0	79	61-137	0	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 Service Request:
 K0808698

 Date Extracted:
 09/19/2008

 Date Analyzed:
 09/19/2008

QA/QC Report

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:	EPA 5030B
Analysis Method:	8260B

Units: ug/L Basis: NA Level: Low Extraction Lot: KWG0809684

	Lab Control Sample KWG0809684-3 Lab Control Spike			%Rec
Analyte Name	Result	Expected	%Rec	Limits
Dichlorodifluoromethane	10.1	10.0	101	21-156
Chloromethane	9.97	10.0	100	45-135
Vinyl Chloride	10.5	10.0	105	59-135
Bromomethane	9.75	10.0	98	24-144
Chloroethane	10.3	10.0	103	60-128
Trichlorofluoromethane	9.82	10.0	98	54-129
Acetone	42.3	50.0	85	53-129
1,1-Dichloroethene	10.8	10.0	108	70-136
Carbon Disulfide	20.8	20.0	104	64-129
Methylene Chloride	10.7	10.0	107	64-137
trans-1,2-Dichloroethene	10.0	10.0	100	70-121
1,1-Dichloroethane	10.3	10.0	103	72-122
2-Butanone (MEK)	44.4	50.0	89	56-137
2,2-Dichloropropane	10.5	10.0	105	48-133
cis-1,2-Dichloroethene	9.90	10.0	99	76-125
Chloroform	10.4	10.0	104	71-118
Bromochloromethane	10.1	10.0	101	72-123
1,1,1-Trichloroethane (TCA)	10.3	10.0	103	65-126
1,1-Dichloropropene	10.4	10.0	104	71-119
Carbon Tetrachloride	10.4	10.0	104	58-133
1,2-Dichloroethane (EDC)	9.99	10.0	100	69-125
Benzene	9.82	10.0	98	74-118
Trichloroethene (TCE)	10.3	10.0	103	71-122
1,2-Dichloropropane	10.0	10.0	100	73-123
Bromodichloromethane	10.5	10.0	105	72-127
Dibromomethane	10.3	10.0	103	71-124
2-Hexanone	39.4	50.0	79	44-135
cis-1,3-Dichloropropene	9.82	10.0	98	71-125
Toluene	10.1	10.0	101	74-117
trans-1,3-Dichloropropene	8.35	10.0	84	56-121
1,1,2-Trichloroethane	9.06	10.0	91	73-122
4-Methyl-2-pentanone (MIBK)	43.6	50.0	87	57-129
1,3-Dichloropropane	9.15	10.0	92	74-120
Tetrachloroethene (PCE)	9.47	10.0	95	65-121
Dibromochloromethane	9.12	10.0	91	67-124

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

 Service Request:
 K0808698

 Date Extracted:
 09/19/2008

 Date Analyzed:
 09/19/2008

QA/QC Report

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:	EPA 5030B
Analysis Method:	8260B

Units: ug/L Basis: NA Level: Low Extraction Lot: KWG0809684

Service Request: K0808698

Date Extracted: 09/19/2008

Date Analyzed: 09/19/2008

	Lab Control Sample KWG0809684-3 Lab Control Spike			%Rec
Analyte Name	Result	Expected	%Rec	Limits
1,2-Dibromoethane (EDB)	8.84	10.0	88	71-120
Chlorobenzene	9.63	10.0	96	74-115
1,1,1,2-Tetrachloroethane	9.13	10.0	91	71-118
Ethylbenzene	9.51	10.0	95	71-118
m,p-Xylenes	19.2	20.0	96	73-119
o-Xylene	9.68	10.0	97	74-120
Styrene	9.47	10.0	95	75-123
Bromoform	8.83	10.0	88	57-135
Isopropylbenzene	8.78	10.0	88	65-110
1,1,2,2-Tetrachloroethane	8.83	10.0	88	63-126
1,2,3-Trichloropropane	8.65	10.0	87	67-123
Bromobenzene	9.20	10.0	92	76-111
n-Propylbenzene	9.45	10.0	95	69-122
2-Chlorotoluene	9.39	10.0	94	72-120
4-Chlorotoluene	9.27	10.0	93	70-118
1,3,5-Trimethylbenzene	9.22	10.0	92	70-120
tert-Butylbenzene	9.63	10.0	96	72-118
1,2,4-Trimethylbenzene	9.54	10.0	95	72-121
sec-Butylbenzene	9.47	10.0	95	73-130
1,3-Dichlorobenzene	9.58	10.0	96	76-110
4-Isopropyltoluene	8.95	10.0	90	67-115
1,4-Dichlorobenzene	9.12	10.0	91	74-112
n-Butylbenzene	9.27	10.0	93	62-123
1,2-Dichlorobenzene	9.33	10.0	93	75-110
1,2-Dibromo-3-chloropropane	7.85	10.0	79	49-124
1,2,4-Trichlorobenzene	9.23	10.0	92	66-115
1,2,3-Trichlorobenzene	8.85	10.0	89	64-120
Naphthalene	8.55	10.0	86	58-132
Hexachlorobutadiene	8.90	10.0	89	61-124
1,3,5-Trichlorobenzene	37.4	40.0	93	46-133

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Form 3C - Organic

1,4-Dioxane by GC/MS

Analytical Results

			i mary fieur reesur						
Client: Project: Sample Matrix:	Environmental Chemistr Kuhlman Electric Water	ry Consultin	ng Servi			Service Rec Date Colle Date Rece	ected:	K080869 09/06/20 09/10/20	008
		1,	4-Dioxane by G	C/MS					
Sample Name: Lab Code:	KEP-GW-003-010 K0808698-001						Units: Basis:	-	
Extraction Method: Analysis Method:	EPA 3510C 8270C SIM					Ι	Level:	Low	
Analyte Name	Result (2	MRL	Dilution Factor	Date Extracted	Date Analyzed		action Lot	Note
1,4-Dioxane	15		0.50	1	09/12/08	09/29/08	KWG	0809256	
Surrogate Name	%Rec	Control Limits	Date Analyzed	Note					
1,4-Dioxane-d8	80	55-100	09/29/08	Acceptable					

Analytical Results

Client:	Environmental Chemistry Consulting Servi	Service Request:	K0808698
Project:	Kuhlman Electric	Date Collected:	
Sample Matrix:	Water	Date Received:	09/10/2008

1,4-Dioxane by GC/MS

Sample Name: Lab Code:	KEP-GW-010B-005 K0808698-002						Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 3510C 8270C SIM]	Level: Low	
Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,4-Dioxane	1.7		0.50	1	09/12/08	09/29/08	KWG0809256	
Surrogate Name	%Rec	Control Limits	Date Analyzed	Note				
1,4-Dioxane-d8	81	55-100	09/29/08	Acceptable				

Analytical Results

			Analytical Resu	Its					
Client: Project: Sample Matrix:	Environmental Chemist Kuhlman Electric Water	ry Consulti	ng Servi			Service Req Date Colle Date Rece	cted:	K080869 09/06/20 09/10/20	008
		1,	,4-Dioxane by G	C/MS					
Sample Name: Lab Code:	KEP-DUPLICATE 1 K0808698-003						Units: Basis:	ug/L NA	
Extraction Method: Analysis Method:	EPA 3510C 8270C SIM					Ι	.evel:	Low	
Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed		action .ot	Note
1,4-Dioxane	16		0.50	1	09/12/08	09/29/08	KWG0	809256	
Surrogate Name	%Rec	Control Limits	Date Analyzed	Note					

1,4-Dioxane-d8 85 55-100 09/29/08 Acceptable

Comments:

1 of 1

Analytical Results

Client:	Environmental Chemistry Consulting Servi	Service Request: K0808698
Project:	Kuhlman Electric	Date Collected: NA
Sample Matrix:	Water	Date Received: NA

1,4-Dioxane by GC/MS

Sample Name: Lab Code:	Method Blank KWG0809256-6						Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 3510C 8270C SIM]	Level: Low	
Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,4-Dioxane	ND	U	0.50	1	09/12/08	09/29/08	KWG0809256	
Surrogate Name	%Rec	Control Limits	Date Analyzed	Note				
1,4-Dioxane-d8	89	55-100	09/29/08	Acceptable				

Comments:

1 of 1

QA/QC Report

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Service Request: K0808698

Surrogate Recovery Summary 1,4-Dioxane by GC/MS

Extraction Method:	EPA 3510C
Analysis Method:	8270C SIM

Units: PERCENT Level: Low

Sample Name	Lab Code	<u>Sur1</u>
KEP-GW-003-010	K0808698-001	80
KEP-GW-010B-005	K0808698-002	81
KEP-DUPLICATE 1	K0808698-003	85
Method Blank	KWG0809256-6	89
Batch QC	K0808709-001	82
Batch QCMS	KWG0809256-3	86
Batch QCDMS	KWG0809256-4	86
Lab Control Sample	KWG0809256-5	84

Surrogate Recovery Control Limits (%)

Sur1 = 1,4-Dioxane-d8

55-100

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

 Service Request:
 K0808698

 Date Extracted:
 09/12/2008

 Date Analyzed:
 09/29/2008

Matrix Spike/Duplicate Matrix Spike Summary 1,4-Dioxane by GC/MS

Sample Name: Lab Code:	Batch QC K0808709-001			ts: ug/L is: NA
Extraction Method: Analysis Method:	EPA 3510C 8270C SIM			el: Low ot: KWG0809256
Analyte Name	Sample Result	Batch QCMS KWG0809256-3 Matrix Spike Result Expected %Rec	Batch QCDMS KWG0809256-4 Duplicate Matrix Spike %I Result Expected %Rec Lin	

Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
1,4-Dioxane	0.91	21.2	25.0	81	20.6	25.0	79	53-105	3	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

Page

1 of 1

QA/QC Report

Client:	Environmental Chemistry Consulting Servi
Project:	Kuhlman Electric
Sample Matrix:	Water

Lab Control Spike Summary 1,4-Dioxane by GC/MS

Extraction Method:	EPA 3510C
Analysis Method:	8270C SIM

Units: ug/L Basis: NA Level: Low Extraction Lot: KWG0809256

Service Request: K0808698

 Date Extracted:
 09/12/2008

 Date Analyzed:
 09/29/2008

	KW	Control Samp G0809256-5 Control Spik		%Rec
Analyte Name	Result	Expected	%Rec	Limits
1,4-Dioxane	19.9	25.0	80	56-107

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

1 of 1