(360) 577-7222

(360) 636-1068 fax

October 16, 2008

Analytical Report for Service Request No: K0806268

Richard Johnson Environmental Chemistry Consulting Services, Inc. 2525 Advance Rd. Madison, WI 53718

RE: Kuhlman Electric

Dear Richard:

Enclosed are the revised pages for the samples submitted to our laboratory on July 10, 2008. For your reference, these analyses have been assigned our service request number K0806268.

The data has been reported to the MRL.

Analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please call if you have any questions. My extension is 3376. You may also contact me via Email at GSalata@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Gregory Salata, Ph.D

Project Chemist

GS/lb

Page 1 of _____

Acronyms

ASTM	American Society for Testing and Materials
A2LA	American Association for Laboratory Accreditation
CARB	California Air Resources Board
CAS Number	Chemical Abstract Service registry Number
CFC	Chlorofluorocarbon
CFU	Colony-Forming Unit
DEC	Department of Environmental Conservation
DEQ	Department of Environmental Quality
DHS	Department of Health Services
DOE	Department of Ecology
DOH	Department of Health
EPA	U. S. Environmental Protection Agency
ELAP	Environmental Laboratory Accreditation Program
GC	Gas Chromatography
GC/MS	Gas Chromatography/Mass Spectrometry
LUFT	Leaking Underground Fuel Tank
М	Modified
MCL	Maximum Contaminant Level is the highest permissible concentration of a
	substance allowed in drinking water as established by the USEPA.
MDL	Method Detection Limit
MPN	Most Probable Number
MRL	Method Reporting Limit
NA	Not Applicable
NC	Not Calculated
NCASI	National Council of the Paper Industry for Air and Stream Improvement
ND	Not Detected
NIOSH	National Institute for Occupational Safety and Health
PQL	Practical Quantitation Limit
RCRA	Resource Conservation and Recovery Act
SIM	Selected Ion Monitoring
ТРН	Total Petroleum Hydrocarbons
tr	Trace level is the concentration of an analyte that is less than the PQL but greater
	than or equal to the MDL.

Inorganic Data Qualifiers

- The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.

Metals Data Qualifiers

- # The control limit criteria is not applicable. See case narrative.
- B The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- E The percent difference for the serial dilution was greater than 10%, indicating a possible matrix interference in the sample.
- M The duplicate injection precision was not met.
- N The Matrix Spike sample recovery is not within control limits. See case narrative.
- S The reported value was determined by the Method of Standard Additions (MSA).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- W The post-digestion spike for furnace AA analysis is out of control limits, while sample absorbance is less than 50% of spike absorbance.
- i The MRL/MDL has been elevated due to a matrix interference.
- X See case narrative.
- * The duplicate analysis not within control limits. See case narrative.
- + The correlation coefficient for the MSA is less than 0.995.

Organic Data Qualifiers

- * The result is an outlier. See case narrative.
- # The control limit criteria is not applicable. See case narrative.
- A A tentatively identified compound, a suspected aldol-condensation product.
- B The analyte was found in the associated method blank at a level that is significant relative to the sample result.
- C The analyte was qualitatively confirmed using GC/MS techniques, pattern recognition, or by comparing to historical data.
- D The reported result is from a dilution.
- E The result is an estimate amount because the value exceeded the instrument calibration range.
- J The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.
- N The result is presumptive. The analyte was tentatively identified, but a confirmation analysis was not performed.
- P The GC or HPLC confirmation criteria was exceeded. The relative percent difference is greater than 40% between the two analytical results (25% for CLP Pesticides).
- U The compound was analyzed for, but was not detected ("Non-detect") at or above the MRL/MDL.
- i The MRL/MDL has been elevated due to a chromatographic interference.
- X See case narrative.

Additional Petroleum Hydrocarbon Specific Qualifiers

- F The chromatographic fingerprint of the sample matches the elution pattern of the calibration standard.
- L The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of lighter molecular weight constituents than the calibration standard.
- H The chromatographic fingerprint of the sample resembles a petroleum product, but the elution pattern indicates the presence of a greater amount of heavier molecular weight constituents than the calibration standard.
- O The chromatographic fingerprint of the sample resembles an oil, but does not match the calibration standard.
- Y The chromatographic fingerprint of the sample resembles a petroleum product eluting in approximately the correct carbon range, but the elution pattern does not match the calibration standard.
- Z The chromatographic fingerprint does not resemble a petroleum product.

Columbia Analytical Services, Inc. Kelso, WA State Certifications, Accreditations, and Licenses

Program	Number
Alaska DEC UST	UST-040
Arizona DHS	AZ0339
Arkansas - DEQ	88-0637
California DHS	2286
Colorado DPHE	-
Florida DOH	E87412
Hawaii DOH	
Idaho DHW	-
Indiana DOH	C-WA-01
Louisiana DEQ	3016
Louisiana DHH	LA050010
Maine DHS	WA0035
Michigan DEQ	9949
Minnesota DOH	053-999-368
Montana DPHHS	CERT0047
Nevada DEP	WA35
New Jersey DEP	WA005
New Mexico ED	
North Carolina DWQ	605
Oklahoma DEQ	9801
Oregon - DHS	WA200001
South Carolina DHEC	61002
Utah DOH	COLU
Washington DOE	C1203
Wisconsin DNR	998386840
Wyoming (EPA Region 8)	-

Case Narrative

Client:Environmental Chemistry Consulting Services, Inc. Service Request No.:K0806268Project:Kuhlman ElectricDate Received:07/10/08Sample Matrix:Water

CASE NARRATIVE

All analyses were performed consistent with the quality assurance program of Columbia Analytical Services, Inc. (CAS). This report contains analytical results for samples designated for Tier II data deliverables. When appropriate to the method, method blank results have been reported with each analytical test. Surrogate recoveries have been reported for all applicable organic analyses. Additional quality control analyses reported herein include: Matrix/Duplicate Matrix Spike (MS/DMS), and Laboratory Control Sample (LCS).

Sample Receipt

Three water samples were received for analysis at Columbia Analytical Services on 07/10/08. The samples were received in good condition and consistent with the accompanying chain of custody form. The samples were stored in a refrigerator at 4°C upon receipt at the laboratory.

Volatile Organic Compounds by EPA Method 8260B

Initial Calibration Exceptions:

The primary evaluation criterion was exceeded for the following analytes in Initial Calibration (ICAL) ID 7495: Dibromochloromethane, Bromoform and 1,2-Dibromo-3-chloropropane. In accordance with CAS standard operating procedures, the alternative evaluation specified in the EPA method was performed using the mean Relative Standard Deviation (RSD) of all analytes in the calibration. The result of the mean RSD calculation was 10.4%. The calibration meets the alternative evaluation criteria. Note that CAS/Kelso policy does not allow the use of averaging if any analyte in the ICAL exceeds 30% RSD.

No other anomalies associated with the analysis of these samples were observed.

1,4-Dioxane by EPA Method 8270C

No anomalies associated with the analysis of these samples were observed.

Approved by_	Michay Adlota	Date_7/75/06
		\bigcirc

Chain of Custody Documentation

An Employee - flwored Company	Columbia Analytical Services	
-------------------------------	------------------------------------	--

CHAIN OF CUSTODY

tana	
*	SR#:
4	<u> </u>
	8
	624
	S

lame Fi	Signature Nortes J. P. P. DaterTime	RELINQUISHED BY:		(includes all raw data)	III. Data Validation Report	II. Report Dup., MS, MSD as	required	I. Routine Report: Method	REPORT REQUIREMENTS			K	TRIP SLANK -	DUPLICATE 7/8/08	CSU-WAI-OZL 7/8/08	ELD.	SAMPLER'S SIGNATURE	PHONE #	CHYISTATEZIP BLACK May NTAIN	MARCIN + 3 C	JN -		
Printed Name	ne Signature Smith	REC	Provide FAX Hesuits Requested Report Date	Standard (10-15 working days)	24 hr48 hr48 hr.	TURNAROUND REQUIREMENTS		BIII TO: BIRG WARLNER	INVOICE INFORMATION				www.	washing the second seco	0735 W 6	TIME LAB I.D. MATRIX /	IMBE	FAX#	W C	ACCE		erectaric	317 South 13th Ave. • Kelso, WA 98626 • (360) 577-7222 •
	Date/Time	RECEIVED BY:	- -	1,4 Divans -	Frank lat -	SPECIAL INSTRUCTIONS/COMMENTS	Vissolved Metals: AI As Sb Ba Be B Ca Cd	Total Metals: Al As Sb Ba	Circle which metals are to be analyzed					×	×	0 /V62/H G/UD	Privol 525 latile droca s Fuel	atile (82; Orgai 8260 Die Finc	(*see L	s by C 270L 21 D Delow	AC/Me L D BT		(360) 577-7222 • (800) 695-7222x07
Printed Name Firm	Signature Date/Time	RELINQUISHED BY:		- much a. Sug/ L	Kahlumen Int		Co Cr Cu DURE: AK	B Ca Cd Co Cr Cu	zed:							PCArc/PEOC/CITI P	B's clors sticia lorop	HEN Des/He 8081, henol Tetra	Congel Co	166 ners (141A 51M	4 SG	51A	• FAX (360) 636-1068
Printed Name	îme Signature			report lind			Pb Mg Mn Mo Ni K Ag A WI NORTHWEST OTHER	Pb Mg Mn Mo Ni K Ag							×	0/0-12/10	anide 1, Cor 103, E 13-N, 20C (Delow	Hex-C SO4, TSS, TL Total-F	hrom PO4.C.	F.N.		
Pirm	Date/Time	RECEIVED BY:					R: (CIRCLE ONE)	Se Sr TI Sn V Zn								/ / REMARKS			AOX AOX	 	2700		

			nd Preservation Form		rund	4
С	lient / Project: Kuhlma	n. Electric.	Service Request K().	s 62/08)	
R	eceived: 7/10/08	Opened: 7/10/08	Bysha			
1.	Samples were received via?	US Mail (Fed Ex) UP	S DHL GH GS	PDN Courier	Hand D. H	
<u> </u>	Samples were received in: (circ	ele) Cooler Box	Envelope Other		Hand Deli	vered
3.	Were <u>custody seals</u> on coolers?	South and the second	If yes, how many and wher		N.4	
	If present, were custody seals in	ntact? Y N	If present, were they sign		V	
4.	Is shipper's air-bill filed? If no	t, record air-bill number:			NA (Y)	(N)
						Ν
õ.	Temperature of cooler(s) upo	n receipt (°C); <u>-9</u> ?	,			
	Temperature Blank (°C):	1.90	1			
б.,	If applicable, list Chain of Custo	ody Numbers:	nan ja da da mana ana ana ana ana ana ana ana ana a			
7.	Were custody papers properly fi		9999999144444		NA GY	
8.	Packing material used. <i>Insert</i>		Gel Packs Wet Ice Steeves	Other		Ν
9.	Did all bottles arrive in good c	ondition (unbroken)? Indicat	te in the table below.		NA D	
10.		e (i.e analysis, preservation, etc.)?	1	NA U	N
11.					ę	N
12.	Were appropriate bottles/cont	ainers and volumes received f	or the tests indicated?	۰ ۲	NA CH	N
13.	Were the pH-preserved bottles t	ested* received at the appropria	te pH? Indicate in the table belo			N
14.	Were VOA vials and 1631 Merc	ary bottles received without her	adspace? Indicate in the table be		YAY Y	N
15.	Are CWA Microbiology samp	les received with $>1/2$ the 24hr	. hold time remaining from col	Jection?	NA (Y)	Ņ
16.	Was C12/Res negative?				Y Y	N N
	Sample ID on Bottle	Sample ID on COC	Sample ID on Bottlo	*		

Sample ID on Bottle	Sample ID on COC	Sample ID on Bottle	Sample ID on COC
		,	
			r
	1		

Sample ID	Bottle Count	Bottle Type		Head- space	Broken	рН	Reagent	Volume added	Reagent Lot Number	Initials
								· · · · ·		
oes not include all all processes of										
oes not include all pH preserved sample al Idition'al Notes, Discrepancies,	iquois received. & Resoluti	See sample rec	eiving S(DP (SMC	D-GEN).					

Volatile Organic Compounds EPA Method 8260B

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Service Request: K0806268 Date Collected: 07/08/2008 Date Received: 07/10/2008

Volatile Organic Compounds

Sample Name:	CSW-WA1-026	Units:	0
Lab Code:	K0806268-001	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Chloromethane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Vinyl Chloride	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Bromomethane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Chloroethane	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
Trichlorofluoromethane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Acetone	ND	U	20	1	07/15/08	07/15/08	KWG0806766	
1,1-Dichloroethene	1.2		0.50	1	07/15/08	07/15/08	KWG0806766	
Carbon Disulfide	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Methylene Chloride	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
trans-1,2-Dichloroethene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,1-Dichloroethane	ND	U ·	0.50	1	07/15/08	07/15/08	KWG0806766	
2-Butanone (MEK)	ND		20	1	07/15/08	07/15/08	KWG0806766	
2,2-Dichloropropane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
cis-1,2-Dichloroethene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Chloroform	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Bromochloromethane	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
1,1,1-Trichloroethane (TCA)	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,1-Dichloropropene	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
Carbon Tetrachloride	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
1,2-Dichloroethane (EDC)	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Benzene	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
Trichloroethene (TCE)	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
1,2-Dichloropropane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Bromodichloromethane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Dibromomethane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
2-Hexanone	ND	U	20	1	07/15/08	07/15/08	KWG0806766	
cis-1,3-Dichloropropene	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
Toluene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
trans-1,3-Dichloropropene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,1,2-Trichloroethane	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
4-Methyl-2-pentanone (MIBK)	ND		20	1	07/15/08	07/15/08	KWG0806766	
1,3-Dichloropropane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	

Comments:

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

 Service Request:
 K0806268

 Date Collected:
 07/08/2008

 Date Received:
 07/10/2008

Volatile Organic Compounds

Sample Name:	CSW-WA1-026	Units:	0
Lab Code:	K0806268-001	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Tetrachloroethene (PCE)	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
Dibromochloromethane	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,2-Dibromoethane (EDB)	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
Chlorobenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
Ethylbenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
m,p-Xylenes	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
o-Xylene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
Styrene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
Bromoform	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
Isopropylbenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,1,2,2-Tetrachloroethane	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,2,3-Trichloropropane	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
Bromobenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
n-Propylbenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
2-Chlorotoluene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
4-Chlorotoluene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,3,5-Trimethylbenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
tert-Butylbenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,2,4-Trimethylbenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
sec-Butylbenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,3-Dichlorobenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
4-Isopropyltoluene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,4-Dichlorobenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
n-Butylbenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,2-Dichlorobenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,2-Dibromo-3-chloropropane	ND U	2.0	1	07/15/08	07/15/08	KWG0806766	
1,2,4-Trichlorobenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,2,3-Trichlorobenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
Naphthalene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
Hexachlorobutadiene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,3,5-Trichlorobenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	

Comments:

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

 Service Request:
 K0806268

 Date Collected:
 07/08/2008

 Date Received:
 07/10/2008

Volatile Organic Compounds

Sample Name:	CSW-WA1-026	Units:	ug/L
Lab Code:	K0806268-001	Basis:	NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note	
Dibromofluoromethane	96	75-120	07/15/08	Acceptable	
Toluene-d8	109	80-128	07/15/08	Acceptable	
4-Bromofluorobenzene	102	75-117	07/15/08	Acceptable	

Comments:

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

 Service Request:
 K0806268

 Date Collected:
 07/08/2008

 Date Received:
 07/10/2008

Volatile Organic Compounds

Sample Name:	Duplicate	Units:	0
Lab Code:	K0806268-002	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Chloromethane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Vinyl Chloride	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Bromomethane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Chloroethane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Trichlorofluoromethane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Acetone	ND,	U	20	1	07/15/08	07/15/08	KWG0806766	
1,1-Dichloroethene	1.5		0.50	1	07/15/08	07/15/08	KWG0806766	
Carbon Disulfide	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Methylene Chloride	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
trans-1,2-Dichloroethene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,1-Dichloroethane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
2-Butanone (MEK)	ND	U	20	. 1	07/15/08	07/15/08	KWG0806766	
2,2-Dichloropropane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
cis-1,2-Dichloroethene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Chloroform	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Bromochloromethane	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
1,1,1-Trichloroethane (TCA)	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,1-Dichloropropene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Carbon Tetrachloride	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
1,2-Dichloroethane (EDC)	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Benzene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Trichloroethene (TCE)	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,2-Dichloropropane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Bromodichloromethane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Dibromomethane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
2-Hexanone	ND	U	20	1	07/15/08	07/15/08	KWG0806766	
cis-1,3-Dichloropropene	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
Toluene	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
trans-1,3-Dichloropropene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,1,2-Trichloroethane	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
4-Methyl-2-pentanone (MIBK)	ND		20	1	07/15/08	07/15/08	KWG0806766	
1,3-Dichloropropane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	

Comments:

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Service Request: K0806268 Date Collected: 07/08/2008 Date Received: 07/10/2008

Volatile Organic Compounds

Sample Name:	Duplicate	Units:	0
Lab Code:	K0806268-002	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

				Dilution	Date	Date	Extraction	
Analyte Name	Result	Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Tetrachloroethene (PCE)	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Dibromochloromethane	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
1,2-Dibromoethane (EDB)	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Chlorobenzene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,1,1,2-Tetrachloroethane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Ethylbenzene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
m,p-Xylenes	ND	U	0.50 .	1	07/15/08	07/15/08	KWG0806766	
o-Xylene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Styrene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Bromoform	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Isopropylbenzene	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
1,1,2,2-Tetrachloroethane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,2,3-Trichloropropane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Bromobenzene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
n-Propylbenzene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
2-Chlorotoluene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
4-Chlorotoluene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,3,5-Trimethylbenzene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
tert-Butylbenzene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,2,4-Trimethylbenzene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
sec-Butylbenzene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,3-Dichlorobenzene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	-
4-Isopropyltoluene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,4-Dichlorobenzene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
n-Butylbenzene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	ladaaayadha dhishadadaa aykadaa aykada
1,2-Dichlorobenzene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,2-Dibromo-3-chloropropane	ND	U	2.0	1	07/15/08	07/15/08	KWG0806766	
1,2,4-Trichlorobenzene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,2,3-Trichlorobenzene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Naphthalene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Hexachlorobutadiene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,3,5-Trichlorobenzene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	

Comments:

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

 Service Request:
 K0806268

 Date Collected:
 07/08/2008

 Date Received:
 07/10/2008

Volatile Organic Compounds

Sample Name:	Duplicate	Units:	0
Lab Code:	K0806268-002	Basis:	

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	96	75-120	07/15/08	Acceptable
Toluene-d8	109	80-128	07/15/08	Acceptable
4-Bromofluorobenzene	99	75-117	07/15/08	Acceptable

Comments:

Merged

Form 1A - Organic

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Service Request: K0806268 Date Collected: 07/08/2008 Date Received: 07/10/2008

Volatile Organic Compounds

Sample Name:	Trip Blank	Units:	0
Lab Code:	K0806268-003	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

A B. A. BY	2 75 ¥.	0		Dilution	Date	Date	Extraction	×.
Analyte Name	Result	Interview interview interview	MRL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
Chloromethane	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
Vinyl Chloride	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Bromomethane	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
Chloroethane	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
Trichlorofluoromethane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Acetone	ND	U	20	1	07/15/08	07/15/08	KWG0806766	
1,1-Dichloroethene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Carbon Disulfide	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Methylene Chloride	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
trans-1,2-Dichloroethene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,1-Dichloroethane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
2-Butanone (MEK)	ND	U	20	1	07/15/08	07/15/08	KWG0806766	
2,2-Dichloropropane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
cis-1,2-Dichloroethene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Chloroform	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	-
Bromochloromethane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,1,1-Trichloroethane (TCA)	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,1-Dichloropropene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Carbon Tetrachloride	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,2-Dichloroethane (EDC)	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Benzene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Trichloroethene (TCE)	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,2-Dichloropropane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Bromodichloromethane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Dibromomethane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
2-Hexanone	ND	U	20	1	07/15/08	07/15/08	KWG0806766	
cis-1,3-Dichloropropene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Toluene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
trans-1,3-Dichloropropene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,1,2-Trichloroethane	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
4-Methyl-2-pentanone (MIBK)	ND		20	1	07/15/08	07/15/08	KWG0806766	
1,3-Dichloropropane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	

Comments:

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

 Service Request:
 K0806268

 Date Collected:
 07/08/2008

 Date Received:
 07/10/2008

Volatile Organic Compounds

Sample Name:	Trip Blank	Units:	0
Lab Code:	K0806268-003	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Note
Tetrachloroethene (PCE)	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
Dibromochloromethane	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,2-Dibromoethane (EDB)	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
Chlorobenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,1,1,2-Tetrachloroethane	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
Ethylbenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
m,p-Xylenes	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
o-Xylene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
Styrene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
Bromoform	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
Isopropylbenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,1,2,2-Tetrachloroethane	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,2,3-Trichloropropane	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
Bromobenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
n-Propylbenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
2-Chlorotoluene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
4-Chlorotoluene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,3,5-Trimethylbenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
tert-Butylbenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,2,4-Trimethylbenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
sec-Butylbenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,3-Dichlorobenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
4-Isopropyltoluene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,4-Dichlorobenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
n-Butylbenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,2-Dichlorobenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,2-Dibromo-3-chloropropane	ND U	2.0	1	07/15/08	07/15/08	KWG0806766	
1,2,4-Trichlorobenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,2,3-Trichlorobenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
Naphthalene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
Hexachlorobutadiene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,3,5-Trichlorobenzene	ND U	0.50	1	07/15/08	07/15/08	KWG0806766	

Comments:

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

 Service Request:
 K0806268

 Date Collected:
 07/08/2008

 Date Received:
 07/10/2008

Volatile Organic Compounds

Sample Name:	Trip Blank	Units: ug/L
Lab Code:	K0806268-003	Basis: NA

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	95	75-120	07/15/08	Acceptable
Toluene-d8	107	80-128	07/15/08	Acceptable
4-Bromofluorobenzene	98	75-117	07/15/08	Acceptable

Comments:

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Service Request: K0806268 Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name:	Method Blank	Units:	0
Lab Code:	KWG0806766-4	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

A R	100 X.	0		Dilution	Date	Date	Extraction	W . Y .
Analyte Name	Result		MRL	Factor	Extracted	Analyzed	Lot	Note
Dichlorodifluoromethane	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
Chloromethane	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
Vinyl Chloride	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Bromomethane	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
Chloroethane	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
Trichlorofluoromethane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Acetone	ND	U	20	1	07/15/08	07/15/08	KWG0806766	
1,1-Dichloroethene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Carbon Disulfide	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Methylene Chloride	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
trans-1,2-Dichloroethene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,1-Dichloroethane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
2-Butanone (MEK)	ND	U	20	1	07/15/08	07/15/08	KWG0806766	
2,2-Dichloropropane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
cis-1,2-Dichloroethene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Chloroform	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Bromochloromethane	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
1,1,1-Trichloroethane (TCA)	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,1-Dichloropropene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Carbon Tetrachloride	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,2-Dichloroethane (EDC)	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Benzene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Trichloroethene (TCE)	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,2-Dichloropropane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Bromodichloromethane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Dibromomethane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
2-Hexanone	ND	U	20	1	07/15/08	07/15/08	KWG0806766	
cis-1,3-Dichloropropene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
Toluene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
trans-1,3-Dichloropropene	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	
1,1,2-Trichloroethane	ND		0.50	1	07/15/08	07/15/08	KWG0806766	
4-Methyl-2-pentanone (MIBK)	ND		20	1	07/15/08	07/15/08	KWG0806766	
1,3-Dichloropropane	ND	U	0.50	1	07/15/08	07/15/08	KWG0806766	

Comments:

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Service Request: K0806268 Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name:	Method Blank	Units:	0
Lab Code:	KWG0806766-4	Basis:	
Extraction Method: Analysis Method:	EPA 5030B 8260B	Level:	Low

			Dilution	Date	Date	Extraction	
Analyte Name	Result	Q MRL	Factor	Extracted	Analyzed	Lot	Note
Tetrachloroethene (PCE)	ND I	U 0.50	1	07/15/08	07/15/08	KWG0806766	
Dibromochloromethane	ND I	U 0.50	1	07/15/08	07/15/08	KWG0806766	
1,2-Dibromoethane (EDB)	ND I	U 0.50	1	07/15/08	07/15/08	KWG0806766	
Chlorobenzene	ND I	U 0.50	1	07/15/08	07/15/08	KWG0806766	
1,1,1,2-Tetrachloroethane	ND I	U 0.50	1	07/15/08	07/15/08	KWG0806766	
Ethylbenzene	ND I	U 0.50	1	07/15/08	07/15/08	KWG0806766	
m,p-Xylenes	ND I		1	07/15/08	07/15/08	KWG0806766	
o-Xylene	ND I		1	07/15/08	07/15/08	KWG0806766	
Styrene	ND I	U 0.50	1	07/15/08	07/15/08	KWG0806766	
Bromoform	ND I		1	07/15/08	07/15/08	KWG0806766	
Isopropylbenzene	ND U		1	07/15/08	07/15/08	KWG0806766	
1,1,2,2-Tetrachloroethane	ND I	U 0.50	1	07/15/08	07/15/08	KWG0806766	
1,2,3-Trichloropropane	ND I	U 0.50	1	07/15/08	07/15/08	KWG0806766	
Bromobenzene	ND U	U 0.50	1	07/15/08	07/15/08	KWG0806766	
n-Propylbenzene	ND U	J 0.50	1	07/15/08	07/15/08	KWG0806766	
2-Chlorotoluene	ND I	U 0.50	1	07/15/08	07/15/08	KWG0806766	
4-Chlorotoluene	ND I	J 0.50	1	07/15/08	07/15/08	KWG0806766	
1,3,5-Trimethylbenzene	ND U	J 0.50	1	07/15/08	07/15/08	KWG0806766	
tert-Butylbenzene	ND U	U 0.50	1	07/15/08	07/15/08	KWG0806766	
1,2,4-Trimethylbenzene	ND I	J 0.50	1	07/15/08	07/15/08	KWG0806766	
sec-Butylbenzene	ND U	J 0.50	1	07/15/08	07/15/08	KWG0806766	
1,3-Dichlorobenzene	ND U	J 0.50	1	07/15/08	07/15/08	KWG0806766	
4-Isopropyltoluene	ND U	J 0.50	1	07/15/08	07/15/08	KWG0806766	
1,4-Dichlorobenzene	ND U	J 0.50	1	07/15/08	07/15/08	KWG0806766	
n-Butylbenzene	ND U	J 0.50	1	07/15/08	07/15/08	KWG0806766	
1,2-Dichlorobenzene	ND U	J 0.50	1	07/15/08	07/15/08	KWG0806766	
1,2-Dibromo-3-chloropropane	ND U	J 2.0	1	07/15/08	07/15/08	KWG0806766	
1,2,4-Trichlorobenzene	ND U		1	07/15/08	07/15/08	KWG0806766	
1,2,3-Trichlorobenzene	ND U	J 0.50	1	07/15/08	07/15/08	KWG0806766	
Naphthalene	ND U	J 0.50	1	07/15/08	07/15/08	KWG0806766	
Hexachlorobutadiene	ND U		1	07/15/08	07/15/08	KWG0806766	
1,3,5-Trichlorobenzene	ND U	J 0.50	1	07/15/08	07/15/08	KWG0806766	

Comments:

Analytical Results

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Service Request: K0806268 Date Collected: NA Date Received: NA

Volatile Organic Compounds

Sample Name: Lab Code:	Method Blank KWG0806766-4	Units: Basis:	0

Surrogate Name	%Rec	Control Limits	Date Analyzed	Note
Dibromofluoromethane	94	75-120	07/15/08	Acceptable
Toluene-d8	107	80-128	07/15/08	Acceptable
4-Bromofluorobenzene	100	75-117	07/15/08	Acceptable

Comments:

QA/QC Report

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Service Request: K0806268

Surrogate Recovery Summary Volatile Organic Compounds

Extraction Method:	EPA 5030B
Analysis Method:	8260B

Units: PERCENT **Level:** Low

Sample Name	Lab Code	<u>Sur1</u>	<u>Sur2</u>	<u>Sur3</u>
CSW-WA1-026	K0806268-001	96	109	102
Duplicate	K0806268-002	96	109	99
Trip Blank	K0806268-003	95	107	98
Method Blank	KWG0806766-4	94	107	100
Batch QC	K0806150-003	94	106	98
Batch QCMS	KWG0806766-1	99	108	101
Batch QCDMS	KWG0806766-2	100	107	103
Lab Control Sample	KWG0806766-3	98	106	102

Surrogate Recovery Control Limits (%)

Sur1 = Dibromofluoromethane	75-120	
Sur2 = Toluene-d8	80-128	
Sur3 = 4-Bromofluorobenzene	75-117	

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Service Request: K0806268 Date Extracted: 07/15/2008 Date Analyzed: 07/15/2008

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds

Sample Name:	Batch QC	Units:	0
Lab Code:	K0806150-003	Basis:	
Extraction Method:	EPA 5030B	Level:	
Analysis Method:	8260B	Extraction Lot:	

	Sample	KV	Batch QCMS KWG0806766-1 Matrix Spike		Batch QCDMS KWG0806766-2 Duplicate Matrix Spike			%Rec		RPD
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
1,1-Dichloroethene	ND	13.3	10.0	133	13.0	10.0	130	67-147	2	30
Benzene	ND	11.5	10.0	115	11.5	10.0	115	69-126	0	30
Trichloroethene (TCE)	ND	12.2	10.0	122	12.1	10.0	121	56-137	1	30
Toluene	ND	11.5	10.0	115	11.7	10.0	117	66-128	1	30
Chlorobenzene	ND	10.8	10.0	108	10.9	10.0	109	68-120	1	30
1,2-Dichlorobenzene	ND	10.4	10.0	104	10.5	10.0	105	67-116	0	30
Naphthalene	ND	11.2	10.0	112	11.9	10.0	119	61-137	6	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:	EPA 5030B
Analysis Method:	8260B

Units: ug/L Basis: NA Level: Low Extraction Lot: KWG0806766

Service Request: K0806268

Date Extracted: 07/15/2008

Date Analyzed: 07/15/2008

	Lab Control Sample KWG0806766-3 Lab Control Spike			%Rec	
Analyte Name	Result	Expected	%Rec	Limits	
Dichlorodifluoromethane	7.33	10.0	73	21-156	
Chloromethane	8.07	10.0	81	45-135	
Vinyl Chloride	9.23	10.0	92	59-135	
Bromomethane	6.22	10.0	62	24-144	
Chloroethane	9.64	10.0	96	60-128	
Trichlorofluoromethane	9.78	10.0	98	54-129	
Acetone	45.6	50.0	91	53-129	
1,1-Dichloroethene	11.0	10.0	110	70-136	
Carbon Disulfide	20.7	20.0	103	64-129	
Methylene Chloride	11.0	10.0	110	64-137	
trans-1,2-Dichloroethene	10.8	10.0	108	70-121	
1,1-Dichloroethane	10.5	10.0	105	72-122	
2-Butanone (MEK)	48.2	50.0	96	56-137	
2,2-Dichloropropane	11.0	10.0	110	48-133	
cis-1,2-Dichloroethene	11.0	10.0	110	76-125	
Chloroform	11.2	10.0	112	71-118	
Bromochloromethane	10.9	10.0	109	72-123	
1,1,1-Trichloroethane (TCA)	10.8	10.0	108	65-126	
1,1-Dichloropropene	10.2	10.0	102	71-119	
Carbon Tetrachloride	10.7	10.0	107	58-133	
1,2-Dichloroethane (EDC)	10.5	10.0	105	69-125	
Benzene	10.1	10.0	101	74-118	
Trichloroethene (TCE)	10.3	10.0	103	71-122	
1,2-Dichloropropane	10.9	10.0	109	73-123	
Bromodichloromethane	11.3	10.0	113	72-127	
Dibromomethane	11.2	10.0	112	71-124	
2-Hexanone	45.9	50.0	92	44-135	
cis-1,3-Dichloropropene	11.1	10.0	111	71-125	
Toluene	10.1	10.0	101	74-117	
trans-1,3-Dichloropropene	10.2	10.0	102	56-121	
1,1,2-Trichloroethane	10.2	10.0	102	73-122	
4-Methyl-2-pentanone (MIBK)	50.1	50.0	100	57-129	
1,3-Dichloropropane	10.2	10.0	102	74-120	
Tetrachloroethene (PCE)	9.80	10.0	98	65-121	
Dibromochloromethane	10.2	10.0	102	67-124	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

1 of 2

QA/QC Report

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Lab Control Spike Summary Volatile Organic Compounds

Extraction Method:	EPA 5030B
Analysis Method:	8260B

Units: ug/L Basis: NA Level: Low Extraction Lot: KWG0806766

Service Request: K0806268

Date Extracted: 07/15/2008

Date Analyzed: 07/15/2008

	KW	Control Samp /G0806766-3 Control Spik		%Rec								
Analyte Name	Result	Expected	%Rec	Limits								
1,2-Dibromoethane (EDB)	10.7	10.0	107	71-120	 	 an an fair ann an an ann an ann an ann an an ann an a	n an	анан алан алан алан алан алан алан алан		муу улуу дуу ана саруулаан муу улуу улуу тараан алаан тараан тараан тараан тараан тараан тараан тараан тараан т Тараан		
Chlorobenzene	10.0	10.0	100	74-115				 ·	·		a para se a secondario de la companya de la company	
1,1,1,2-Tetrachloroethane	10.3	10.0	103	71-118								
Ethylbenzene	9.49	10.0	95	71-118								
m,p-Xylenes	19.5	20.0	98	73-119						·		
o-Xylene	10.1	10.0	101	74-120								
Styrene	10.6	10.0	106	75-123								
Bromoform	9.60	10.0	96	57-135								
Isopropylbenzene	9.06	10.0	91	65-110								
1,1,2,2-Tetrachloroethane	9.65	10.0	97	63-126								
1,2,3-Trichloropropane	9.76	10.0	98	67-123								
Bromobenzene	9.32	10.0	93	76-111								
n-Propylbenzene	9.46	10.0	95	69-122								
2-Chlorotoluene	9.98	10.0	100	72-120								
4-Chlorotoluene	9.84	10.0	98	70-118								
1,3,5-Trimethylbenzene	9.49	10.0	95	70-120								
tert-Butylbenzene	9.62	10.0	96	72-118								
1,2,4-Trimethylbenzene	9.54	10.0	95	72-121								
sec-Butylbenzene	9.38	10.0	94	73-130								
1,3-Dichlorobenzene	9.77	10.0	98	76-110								
4-Isopropyltoluene	9.54	10.0	95	67-115								
1,4-Dichlorobenzene	9.59	10.0	96	74-112								
n-Butylbenzene	9.70	10.0	97	62-123								
1,2-Dichlorobenzene	9.94	10.0	99	75-110								
1,2-Dibromo-3-chloropropane	9.57	10.0	96	49-124								
1,2,4-Trichlorobenzene	9.57	10.0	96	66-115								
1,2,3-Trichlorobenzene	9.59	10.0	96	64-120								
Naphthalene	10.9	10.0	109	58-132								
Hexachlorobutadiene	9.62	10.0	96	61-124								
1,3,5-Trichlorobenzene	42.9	40.0	107	46-133								

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

2 of 2

1,4-Dioxane by GC/MS

Analytical Results

Client:	Environmental Chemistry Consulting Servi	Service Request:	K0806268
Project:	Kuhlman Electric	Date Collected:	07/08/2008
Sample Matrix:	Water	Date Received:	07/10/2008

1,4-Dioxane by GC/MS

Sample Name: Lab Code:	CSW-WA1-026 K0806268-001					Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 3510C 8270C SIM]	Level: Low	
Analyte Name	Result (Q MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,4-Dioxane	0.94	0.50	1	07/14/08	07/22/08	KWG0806698	
		Control	D - / -				

Surrogate Name	%Rec	Limits	Date Analyzed	Note
1,4-Dioxane-d8	74	55-100	07/22/08	Acceptable

Comments:

Analytical Results

Client:	Environmental Chemistry Consulting Servi	Service Request:	K0806268
Project:	Kuhlman Electric	Date Collected:	07/08/2008
Sample Matrix:	Water	Date Received:	07/10/2008

1,4-Dioxane by GC/MS

Sample Name: Lab Code:	Duplicate K0806268-002					Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 3510C 8270C SIM]	Level: Low	
Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,4-Dioxane	0.99	0.50	1	07/14/08	07/22/08	KWG0806698	
		ontrol Data					

Surrogate Name	%Rec	Limits	Analyzed	Note
1,4-Dioxane-d8	77	55-100	07/22/08	Acceptable

Comments:

Analytical Results

Client:	Environmental Chemistry Consulting Servi	Service Request:	K0806268
Project:	Kuhlman Electric	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA

1,4-Dioxane by GC/MS

Sample Name: Lab Code:	Method Blank KWG0806698-4						Units: ug/L Basis: NA	
Extraction Method: Analysis Method:	EPA 3510C 8270C SIM					1	Level: Low	
Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Note
1,4-Dioxane	ND	U	0.50	1	07/14/08	07/22/08	KWG0806698	

Surrogate Name	%Rec	Limits	Analyzed	Note	
1,4-Dioxane-d8	76	55-100	07/22/08	Acceptable	

Comments:

QA/QC Report

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Service Request: K0806268

Surrogate Recovery Summary 1,4-Dioxane by GC/MS

Extraction Method:	EPA 3510C
Analysis Method:	8270C SIM

Units: PERCENT Level: Low

Sample Name	Lab Code	<u>Sur1</u>
CSW-WA1-026	K0806268-001	74
Duplicate	K0806268-002	77
Method Blank	KWG0806698-4	76
CSW-WA1-026MS	KWG0806698-1	80
CSW-WA1-026DMS	KWG0806698-2	71
Lab Control Sample	KWG0806698-3	75

Surrogate Recovery Control Limits (%)

Sur1 = 1,4-Dioxane-d8

55-100

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

QA/QC Report

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

 Service Request:
 K0806268

 Date Extracted:
 07/14/2008

 Date Analyzed:
 07/22/2008

Matrix Spike/Duplicate Matrix Spike Summary 1,4-Dioxane by GC/MS

Sample Name: Lab Code:	CSW-WA1-026 K0806268-001							Units: Basis:	ug/L NA	
Extraction Method: Analysis Method:	EPA 3510C 8270C SIM						Extract	Level: ion Lot:	Low KWG08	06698
	Sample	CSW-WA1-026MS KWG0806698-1 Matrix Spike		KV	-WA1-026D VG0806698-2 cate Matrix S	2	%Rec		RPD	
Analyte Name	Result	Result	Expected	%Rec	Result	Expected	%Rec	Limits	RPD	Limit
1,4-Dioxane	0.94	-20.3-	25.0	77	18.1	25.0	69	53-105	11	30

Results flagged with an asterisk (*) indicate values outside control criteria.

Results flagged with a pound (#) indicate the control criteria is not applicable.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

QA/QC Report

Client:Environmental Chemistry Consulting ServiProject:Kuhlman ElectricSample Matrix:Water

Lab Control Spike Summary 1,4-Dioxane by GC/MS

Extraction Method:	EPA 3510C		Units:	ug/L
Analysis Method:	8270C SIM		Basis:	NA
			Level:	Low
			Extraction Lot:	KWG0806698
		Lab Control Sample KWG0806698-3		

	Lab Control Spike			%Rec	
Analyte Name	Result	Expected	%Rec	Limits	
1,4-Dioxane	18.4	25.0	73	56-107	

Results flagged with an asterisk (*) indicate values outside control criteria.

Percent recoveries and relative percent differences (RPD) are determined by the software using values in the calculation which have not been rounded.

1 of 1

Service Request: K0806268

Date Extracted: 07/14/2008

Date Analyzed: 07/22/2008